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Abstract
Multi-view observations offer a broader percep-
tion of the real world, compared to observations
acquired from a single viewpoint. While existing
multi-view 2D diffusion models for novel view
synthesis typically rely on a single conditioning
reference image, a limited number of methods ac-
commodate a multiple number thereof, by explic-
itly conditioning the generation process through
tailored attention mechanisms. In contrast, we
introduce DIMVIS, a novel method enabling the
conditional generation in multi-view settings by
means of a joint diffusion model. DIMVIS cap-
italizes on a pre-trained diffusion model, while
combining an innovative masked diffusion pro-
cess to implicitly learn the underlying conditional
data distribution, which endows our method with
the ability to produce multiple images given a flex-
ible number of reference views. Our experimen-
tal evaluation demonstrates DIMVIS’s superior
performance compared to current state-of-the-art
methods, while achieving reference-to-target and
target-to-target visual consistency.

1. Introduction
Generative models play a pivotal role in learning data distri-
butions, which endows them with the capability of generat-
ing synthetic samples that closely resemble real-world data,
such as, for example, images or text. Over the years, Genera-
tive Adversarial Networks (GANs) (Goodfellow et al., 2014)
and Variational AutoEncoders (VAEs) (Kingma & Welling,
2013) have dominated the field; however, recently, diffusion
models (Ho et al., 2020; Song et al., 2021) have emerged as a
powerful alternative. Specifically, Latent Diffusion Models
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(LDMs), such as Stable Diffusion (Rombach et al., 2022),
have become the state-of-the-art for image generation: large-
scale training on billions of 2D images (Schuhmann et al.,
2022) equips such models with rich semantic priors and,
hence, a strong generalization capability.

Motivated by the impressive performance of diffusion mod-
els, many works trained 3D variants thereof; despite their
remarkable results, 3D datasets are still inadequate com-
pared to the large available 2D datasets. To fill this gap,
Zero123 (Liu et al., 2023) capitalizes on the rich 2D priors
provided by Stable Diffusion, leveraging multi-view image
data to learn 3D priors: once trained, given a single-view
image, Zero123 is able to generate images of the under-
lying object from different target viewpoints. Subsequent
works build on Zero123 to improve the generated views
consistency (Liu et al., 2024; Weng et al., 2023).

Such methods perform the task usually referred to as Novel
View Synthesis (NVS) and try to emulate the experience-
based human capability of inferring 3D shapes and occluded
views from a single observed reference view. However, in
real-world scenarios, observation may be acquired from
different viewpoints, offering a more comprehensive un-
derstanding compared to single-view observations, which
may fall short in capturing the complexity and diversity of
an object or a scene. Driven by this motivation, (Li et al.,
2023) extend Zero123, to allow multiple conditioning views
for generating a novel image from a target viewpoint.

We provide a detailed review of the related work in Ap-
pendix A, where we underline that most existing approaches
lack flexibility in accommodating a varying number of both
input and output views, namely reference and generated
images. This drawback hinders such methods’ deployment
in practical applications requiring higher flexibility. Con-
sider a set of recording cameras used, for instance, to ensure
people’s safety or to improve a classification task: in these
real-use case scenarios, cameras may malfunction or be
occluded. In such circumstances, we are interested in re-
covering the missing views, considering the observed ones.
Consequently, the number of input views and images that
must be generated cannot be fixed a priori.

To this end, (Höllein et al., 2024; Tang et al., 2024b) pro-
pose a diffusion model based on a multi-branch U-Net, with
branches sharing the same architecture and weights; a simi-
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lar approach is also envisioned in (Kong et al., 2024). Im-
portantly, these methods employ elaborate attention mech-
anisms to ensure consistency among conditioning and tar-
get views and across the target views themselves. Differ-
ently from this approach, we propose a novel method called
Diffusion-based Multi-View Synthesis (DIMVIS) that
we specifically design for conditional generation by imple-
menting a mechanism that allows latent variables to evolve
according to different time values in the forward process,
and that produces a correlation between latent variables in
the backward process through a joint diffusion model.

At inference time, given a fixed-size set of images, DIMVIS
accepts any number of reference views to conditionally
generate the missing ones. DIMVIS uses the pre-trained
weights of Stable Diffusion Image Variations (Pinkney),
while adopting both for training and inference the masked
diffusion method introduced in (Bounoua et al., 2024),
which addresses the problem of modeling multiple input
modalities (image, audio, and text data) representing the
same concept. Remarkably, DIMVIS does not need any
addition or change with respect to the standard attention
mechanism employed in the pre-trained model, as it relies
on a joint diffusion model that allows latent image variables
to mutually influence one another. Therefore, DIMVIS is
able to effectively aggregate multiple reference views: when
incorporating additional images, thanks to the larger con-
ditioning information, DIMVIS performance is enhanced
while the inherent stochasticity of the image generation pro-
cess is reduced. We experimentally find that DIMVIS out-
performs current state-of-the-art NVS 2D diffusion models
while achieving visual consistency of the generated images.

To summarize, DIMVIS addresses the following key re-
quirements:

• Generalization capability inherited by the strong 2D
generative prior provided by Stable Diffusion;

• Flexibility, as it both accepts and generates multiple
views by leveraging a joint diffusion model that seam-
lessly combines masked diffusion with the pre-trained
model;

• Efficient multi-view aggregation, with improvement
up to 15% in perceptual similarity when multiple views
are available.

2. Preliminaries
For the sake of clarity, we summarize in this section the
joint latent diffusion model introduced in (Bounoua et al.,
2024), which we adapt to the NVS domain.

Given the set of input views X={X1, . . . , XV }, first, a
(deterministic) encoder eϕ produces latent variable Zv for

each Xv. We denote with qϕ(z) the produced distribution
of the concatenated latent variable Z=[Z1, . . . , ZV ]. A
score-based diffusion model is then employed to learn qϕ(z),
which endows the model with the capability to generate a
new sample Ẑ=[Ẑ1, . . . , ẐV ].

The score-based diffusion model relies on two stages,
namely, the forward and the backward diffusion processes.
The forward process is a stochastic noising process injecting
noise into the input data, i.e., the latent representations, and
is defined by the following Stochastic Differential Equation
(SDE):

dRt = α(t)Rtdt+ g(t)dWt, R0 = Z ∼ q(r, 0), (1)

where α(t)Rt and g(t) are the drift and diffusion terms,
respectively. Wt is a Wiener process, while q(r, t) denotes
the time-varying probability density of the stochastic pro-
cess at time t∈[0, T ], with finite T and initial conditions
q(r, 0)=qϕ(r).

To generate a new sample, we need to reverse the noising
process by simulating the reverse-time SDE:

dRt=
(
−α(T−t)Rt+g2(T−t)∇ log(q(Rt, T−t))

)
dt

+g(T−t)dWt, R0∼q(r, T ). (2)

To solve Eq. 2, a parametric score network sχ(r, t) is used
to approximate the true score function; furthermore, q(r, T )
is approximated with the noise distribution ϵ∼N (0, I). Fi-
nally, a decoder dψ is used to map back the latent variables
into the input space.

Conditional generation. Our model accommodates condi-
tional generation: specifically, the model leverages masked
forward and backward diffusion processes to produce sam-
ples from the conditional distribution qϕ(z

M | zC), being
C and M the sets of conditioning and missing views to
be generated, and, hence, zC and zM the respective latent
variables. Formally, we define the masked forward SDE as:

dRt = M(M)⊙ [α(t)Rtdt+ g(t)dWt] ,

q(r, 0) = qϕ(r
M | zC)δ(rC − zC), (3)

where R0=C(RM0 , RC0 ), with RM0 ∼qϕ(r
M | zC), RC0 =zC ,

and C(·) being the concatenation operator. Importantly, the
mask M(M) is used to freeze or diffuse the latent variable
zC and zM , respectively.

The reverse-time process of Eq. 3 is defined as follows:

dRt=M(M)⊙ [(−α(T−t)Rt+

g2(T−t)∇ log
(
q(Rt, T−t | zC)

))
dt+g(T−t)dWt

]
,
(4)

with R0=C(RM0 , zC) and RM0 ∼q(rM , T | zC). Also in this
case, q(rM , T | zC) is approximated by its corresponding
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Figure 1. DIMVIS Architecture. Given a set of multi-view images, DIMVIS is able to generate the missing views given the conditioning
observed views. In this example, we consider two conditioning images and two missing ones.

steady state distribution ϵ∼N (0, I), and the true conditional
score function ∇ log

(
q(r, t | zC)

)
is estimated with a condi-

tional score network sχ(r
M , t | zC).

The joint diffusion model in (Bounoua et al., 2024) imple-
ments masked diffusion by using a multi multi-time vector
τ=[t1, . . . , tV ], which concurrently indicates the diffusion
time and which views are missing. Formally, the multi-time
vector is defined as τ(M, t)=t

[
1(1∈M), . . . ,1(V ∈M)

]
.

Note that this formulation can be easily adapted to include
conditioning signals, such as CLIP (Radford et al., 2021)
embeddings.

Finally, the original continuous-time model definition
from (Bounoua et al., 2024) can be cast in discrete-
time, such as Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020). Indeed, continuous- and discrete-
time diffusion converge to a mathematically equivalent ex-
pression with a sufficiently high number of integration steps.
In DIMVIS we use a discrete-time diffusion formulation,
which enables our approach to exploit pre-trained models
such as Stable Diffusion (Rombach et al., 2022).

3. Our Method: DIMVIS
Given a set of V views, we define the generic subsets
of conditioning, i.e., reference, and missing views as
XC={Xc}c∈C and XM={Xm}m∈M , where C and M
are the sets of indices of conditioning and missing views,
respectively. The goal is to generate the missing views given
the reference ones: we model this problem as a conditional
generation task, by using a joint diffusion model.

To exploit the generalization ability provided by the strong
2D prior acquired through large-scale training of pre-trained

2D diffusion models, we capitalize on the Stable Diffu-
sion (Rombach et al., 2022) architecture; specifically, we
initialize the model weights from Stable Diffusion Image
Variations v2 (Pinkney), which was obtained by fine-tuning
Stable Diffusion v1.4. However, we need to accommodate
a variable number of reference and target views at infer-
ence; consequently, to learn the conditional data distribution,
we adapt the original architecture to fine-tune it according
to the Masked Multi-time diffusion approach introduced
in (Bounoua et al., 2024) for the multi-modal domain.

At inference, our approach is depicted in Fig. 1, where we
consider a set of V=4 views in total and, for example, the
set of missing views with M={2, 4}. A deterministic en-
coder eϕ is used to encode each conditioning reference view
Xc, with C={1, 3}, to obtain their latent representations
Zc=eϕ(X

c); on the other hand, the missing views latent
variables are represented using random noise, sampling
from the Normal distribution N (0, I). Such latent represen-
tations are concatenated along the height and width axes,
forming a 2×2 tile of latent variables, which is the input of
the U-Net.

Our architecture uses a conditioning branch containing a
CLIP image encoder. The CLIP embeddings obtained from
the reference views are concatenated together with the null
vectors corresponding to the missing views embeddings
and injected into the cross-attention modules of the U-Net.
The resulting concatenated embeddings vector has two pur-
poses: it both contains the conditioning signals relative to
the reference views and, thanks to the null vectors, indicates
which views are missing. In (Bounoua et al., 2024), the
information concerning the missing modalities is provided
by a multi-time vector; however, by using the CLIP embed-
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dings, we integrate such conditioning signal without any
modification to the U-Net, which instead would be neces-
sary with the multi-time vector, which can interfere with the
pre-trained model.

Finally, the U-Net generates the latent variables Ẑm of
the missing views Xm, and a deterministic decoder dψ
transforms the generated latent variables back into the input
space, obtaining the generated images X̂m=dψ(Ẑ

m).

3.1. Training procedure

During training, we freeze the encoder eϕ, the decoder dψ
and the CLIP image encoder, and we fine-tune the whole U-
Net, to learn the conditional distribution of the missing latent
variables ZM={Zm}m∈M∼p(zM |zC). To do so, we em-
ploy the masked diffusion approach introduced in (Bounoua
et al., 2024), by using a complete training set and randomly
setting some views as missing during the fine-tuning. Specif-
ically, with probability d=0.2 we set C=∅, i.e., there is no
conditioning view, hence, we diffuse all latent variables and
all the CLIP embeddings are null-vectors; on the other hand,
with probability 1−d, we perform masked diffusion: first,
we uniformly sample the set of conditioning views over
all the possible sets; then, the remaining views, which are
assumed to be missing, are diffused and their CLIP embed-
ding is set to the null-vector, while the latent variables of
the conditioning views are frozen.

Formally, we fine-tune the denoiser U-Net ϵθ by minimizing
the following loss:

L = λ(M,C)∥M(M)⊙ [ϵ− ϵθ(Rt, t,CLIP(M,X))]∥22,
(5)

where Rt is obtained by first sampling from the distribu-
tion q(r |Z, t) and aggregating it with the input Z using
the mask M(M). Importantly, we use a scaling factor
λ(M,C)=1+ |C|

|M | to take into account the randomization of
M and C that leads to the diffusion of different portions of
the latent space.

4. Experiments
4.1. Training details

We fine-tune DIMVIS on Objaverse-1.0 (Deitke et al.,
2023), a large object-centric dataset containing more than
800k 3D models, which is commonly used for multi-view
diffusion models. However, the original dataset contains
many samples with poor quality, that may negatively affect
the model training; for this reason, we filter the dataset as
in (Tang et al., 2024a), obtaining a subset of ∼82k objects.
For each object, we render 16 images with azimuth evenly
distributed from 0◦ to 360◦ and elevation view fixed to 30◦.

To speed up fine-tuning, we first build the latent dataset by
randomly sampling for every object a set of 4 images having

azimuth offset by multiple of 90◦; importantly, the latent
variables are deterministically generated by using the mode
of posterior distribution produced by the frozen encoder eϕ
employed in the Stable Diffusion variational autoencoder.

We use the AdamW (Loshchilov & Hutter, 2018) optimizer
with peak learning rate 5×10−5, and cosine annealing with
100 warm-up steps. The total batch size is 112, with gra-
dient accumulation over 12 batches, and image resolution
is 256×256. We fine-tune our model for 15750 steps on 7
NVIDIA A100-80GB GPUs, which take about 5 days.

4.2. Evaluation

Baseline methods. We compare DIMVIS to two state-of-
the-art NVS 2D diffusion models, namely Zero123-XL and
EscherNet (Kong et al., 2024), by using their publicly avail-
able pre-trained models. Zero123-XL inherits the architec-
ture from Zero123 (Liu et al., 2023), but it is trained with the
extended version of the Objaverse dataset, i.e., Objaverse-
XL (Deitke et al., 2024), which contains over 1 million 3D
objects. Zero123-XL is a one-to-one model, as it accepts
only one conditioning image to generate a single output
representing the same object from a given different angle.
Conversely, EscherNet is trained on the standard version
of Objaverse-1.0 and is a many-to-many generative model,
as it can accept more than one conditioning input image
and generates multiple outputs from the target viewpoints.
Specifically, we use the EscherNet variant employing 6 DoF
camera poses. Indeed, both reference and target camera
poses are required by EscherNet, and Zero123-XL; in con-
trast, DIMVIS is able to work without such information, as
our implemented method generates a set of 4 images with
azimuth evenly spaced between 0◦ and 360◦; nevertheless,
the set of potentially achievable viewpoints can be enlarged
during training, such that DIMVIS could generate more
views at inference.

Metrics. For the comparison, we compute three key met-
rics: the peak signal-to-noise ratio (PSNR), the structural
similarity index measure (SSIM) (Wang et al., 2004) and the
learned perceptual image patch similarity (LPIPS) (Zhang
et al., 2018). PSNR is a widely used metric based on the
pixel-wise difference between two images; SSIM measures
the similarity of two images by comparing luminance, con-
trast, and structure. SSIM aims to reflect better the human
visual perception, which is also the goal of LPIPS. The lat-
ter, though, computes the difference between the features
obtained from a layer of a pre-trained image Convolutional
Neural Network, namely the VGG (Simonyan & Zisserman,
2014) in our implementation.

Evaluation dataset. We evaluate DIMVIS and the baseline
models on the Google Scanned Objects (GSO) (Downs
et al., 2022) dataset. Specifically, we use the same subset of
30 objects used in (Liu et al., 2024; Kong et al., 2024), by
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Table 1. Numerical evaluation of novel view synthesis on GSO

Method
Target
views

Ref.
views

CFG
scale

PSNR
(↑)

SSIM
(↑)

LPIPS
(↓)

Zero123-XL
3

1

3.0 16.13 0.772 0.181
EscherNet 3.0 14.85 0.755 0.209
DIMVIS 3.0 16.32 0.78 0.171
EscherNet* 3×5 3.0 17.26 0.8 0.165

EscherNet
2

2
3.0 19.57 0.828 0.132

DIMVIS 1.0 21.07 0.854 0.113
EscherNet* 2×7 3.0 20.76 0.849 0.117

EscherNet
1

3
3.0 20.20 0.821 0.131

DIMVIS 1.0 23.96 0.886 0.088
EscherNet* 1×15 3.0 22.35 0.869 0.104

rendering 16 images for each object following the procedure
described for the training set. Notably, for the rendering,
we use the same lighting conditions used in (Kong et al.,
2024), although they differ from the lighting settings of our
training set, which are the same as in (Liu et al., 2024). This
poses an additional generalization challenge for DIMVIS.

For an extensive evaluation, we consider all possible subsets
compatible with the fine-tuning dataset settings: to do so,
we first build all four sets having four images with an az-
imuth offset by multiple of 90◦, and, for each set, we finally
consider all subsets with one, two and three conditioning
reference views.

Results. Tab. 1 shows the considered metrics computed on
the GSO dataset using the DDIM (Song et al., 2020) sampler
with 50 steps, as well as the values of the classifier-free
guidance (CFG) (Ho & Salimans, 2021) scale used for the
generation. In particular, we compute all the metrics with
CFG equal to 1 and 3, but we report only the best obtained
results. Interestingly, we found that when having only one
condition view, DIMVIS works better setting the CFG scale
equal to 3, while with two and three conditioning images
we obtain the best performance without using classifier-free
guidance, i.e., setting the CFG scale equal to 1.

When considering only one reference view, DIMVIS works
slightly better than Zero123-XL; furthermore, the latter is
a one-to-one model, hence lacking flexibility, and the per-
formance gap gets larger when DIMVIS is used with mul-
tiple reference views. Overall, DIMVIS also outperforms
EscherNet. Interestingly, the latter does not show a clear im-
provement when increasing the number of reference views
from 2 to 3. In this regard, EscherNet is empirically proven
to work at its best with many target views, being them ran-
dom or duplicates of the actual target one. For this reason,

we evaluate EscherNet by repeating each target 5, 7, and
15 times when the actual number of targets is respectively
3, 2 and 1, and taking only the first output image. This
workaround, referred to as “EscherNet*” in Tab. 1, leads
to better performance at the expense of increased computa-
tional cost during inference, with EscherNet outperforming
DIMVIS only when a single view is available. Neverthe-
less, even in this case, DIMVIS outperforms EscherNet
when multiple views are available; we attribute the superior
DIMVIS performance to its capability of better aggregating
the information provided by the reference images.

Fig. 2 shows the images generated using the considered
methods. As it is possible to notice, the images produced
by Zero123-XL are coherent with the (single) reference
view, but are not consistent with each other, as they are
generated independently. EscherNet overcomes this draw-
back by implementing specifically designed attention mech-
anisms, while DIMVIS addresses this challenge by lever-
aging a joint diffusion model that exploits the self- and
cross-attention mechanisms inherited from the pre-trained
Stable Diffusion, without requiring any modification.

The images produced with DIMVIS generally exhibit higher
visual quality and consistency; furthermore, DIMVIS seems
to generate more diverse images throughout different runs
(e.g., changing the set of conditioning images), while still
maintaining reference-to-target and target-to-target consis-
tency. Nevertheless, the shades produced by DIMVIS, even
if plausible, do not always accurately reflect those present in
the ground truth pictures: this is due to the different lighting
conditions between our training set and the used test set,
created following the same settings employed in EscherNet
paper. However, this issue is alleviated when more views
are observed.

Consistency and diversity. Importantly, when increas-
ing the number of reference views, more information is
available and the generative process is more constrained:
this means that the inherent randomness of the generation
decreases and the produced novel views get closer to the
ground-truth images, which leads to improved performance
in terms of the analyzed metrics. However, the low metrics
values obtained with fewer reference views do not necessar-
ily indicate poor generation quality. Consider for example
the sofa pictures in Fig. 2 obtained with DIMVIS. When
only one or two condition views are available, the diffusion
model is less constrained and can be more imaginative, gen-
erating different images that are still plausible and realistic,
and also consistent with each other and with the available
views. However, the standard metrics used in NVS compute
the similarity, either pixel-wise or perceptual, between the
generated image and ground truth, thus penalizing the diver-
sity in the produced images that are not close to the latter,
but are perfectly coherent with the information provided by

5



Submission and Formatting Instructions for ICML 2024

First ref./
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Zero123-XL
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Figure 2. Visual evaluation of novel view synthesis visualization on GSO datasets. Ground truth, reference and generated images
are respectively represented in black, green and red boxes. Note that, for each object, the first reference view is used for all generation
processes, whereas we show only one ground truth image, as the other ones are already displayed as conditioning views. DIMVIS
produces images that exhibit higher quality and diversity while ensuring reference-to-target and target-to-target consistency.

the reference view(s).

Nevertheless, diversity is one of the three main requirements
in generative modeling (Xiao et al., 2022). Then, to take
diversity into account, we argue that the currently used met-
rics should be integrated with new evaluation methods better
suitable for novel view synthesis. One metric typically used
to compare generative model performance is the Fréchet
Inception Distance (FID) (Heusel et al., 2017), which eval-
uates both quality and diversity. However, the FID score
has recently been shown to present some limitations (Jaya-
sumana et al., 2023; Kynkäänniemi et al., 2023), and hence
we do not include it in our analysis. Interestingly, (Watson
et al., 2023) introduce what they call a “3D consistency
scoring”, a novel metric that respects the above-mentioned

criteria. However, it is not compliant with our sparse-view
setting, as it is based on a NeRF model, whose training re-
quires many views. Alternatively, one viable way would be
to resort to human evaluation, which we defer to our future
work.

5. Conclusion
In this paper, we have presented DIMVIS, a multi-view 2D
diffusion model able to accommodate a varying number of
reference and target images. DIMVIS capitalizes on Stable
Diffusion, inheriting its generalization capability, and on
masked diffusion, which permits learning the latent condi-
tional distribution by means of a joint diffusion model. Our
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experimental evaluation has demonstrated the superiority of
DIMVIS, compared to two state-of-the-art baselines.

Although DIMVIS is flexible in terms of the number of
conditioning and generated views, it is trained on, and hence
only produces, images with azimuth offset by multiples of
90◦. Future research will investigate extending the current
architecture to provide further flexibility, increasing the
number of reference and target views and including the
related camera poses. Future work will also include training
images with different elevation, diverse lighting conditions
and not limited to object-centric samples in order to achieve
superior generalization ability.
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A. Related work
In this section, we divide the current novel view synthesis approaches into two main categories, namely, Neural Radiance
Fields (NeRFs) and 2D diffusion models.

A.1. NeRF models

NeRFs (Mildenhall et al., 2021) are powerful methods that pioneered a substantial advancement in 3D scene reconstruction
and rendering, enabling NVS. While the first models required a per-scene optimization using dense input views and accurate
camera poses, recent works have tried to overcome these limitations. BARF (Lin et al., 2021) trains a NeRF from noisy or
unknown camera poses, but assumes dense input views. FORGE (Jiang et al., 2024a) is a NeRF variant that jointly predicts
the input images’ camera poses, which are assumed to be unknown, and performs the object reconstruction. FORGE is
endowed with generalization capability and carries out a quick test-time optimization for further performance improvement;
nevertheless, it requires at least 2 input images to work. SPARF (Truong et al., 2023) is a NeRF variant that performs
effectively given only a few sparse input images, i.e., only a few views are available, with noisy camera poses, which are
jointly optimized together with the radiance field; however, it requires per-scene optimization.

To deal with the challenges related to NeRF models, LEAP (Jiang et al., 2024b) proposes a generalizable NeRF that can
model 3D scenes or objects given a sparse set of views, relying only on their relative camera poses. However, (Tang
et al., 2024b) highlight that its proposed diffusion-based method achieves much better image quality than LEAP: according
to the authors, the reason relies upon the strong image priors inherited from the pre-trained latent diffusion models.
Furthermore, experimental results in (Kong et al., 2024) demonstrate the superior generation quality of a reference NeRF
model (Müller et al., 2022) with respect to their diffusion-based method only when considering a dense set of conditioning
views; nonetheless, the NeRF model requires scene-specific training and is outperformed in sparse-view settings. In such
a scenario, we argue that novel view synthesis should be modeled as a conditional generation problem: when a part of
an object is not visible, it can be only obtained by using a generative model, such as a diffusion model, and not NeRF
approaches, which typically lack generative capability as they do not rely on generative modeling. By doing so, it is possible
to take into account the stochasticity of the generation process and, hence, to produce different plausible images. Importantly,
the generation randomness should decrease when increasing the number of reference views.

In this direction, (Zhou & Tulsiani, 2023) design a category-specific model for 3D reconstruction that leverages a diffusion
model to optimize a NeRF, through a diffusion distillation mechanism. A similar approach is proposed in (Wu et al., 2024),
where a NeRF is coupled with a diffusion model conditioned on the CLIP embeddings of the available views and a feature
map containing their geometric information. However, such proposed models are only tested when more than one input
view is available, whereas in real-use case scenarios only a single image may be observed.

A.2. 2D Diffusion models

The remarkable generative capability of 2D diffusion models (Rombach et al., 2022) has motivated the development of NVS
methods built upon them. 3DiM (Watson et al., 2023) uses a diffusion model operating in the image space and allows more
than one input image to condition the novel view synthesis; however, it generates only one output image, whose quality,
counterintuitively, becomes worse when increasing the number of conditioning inputs.

Zero123 (Liu et al., 2023) paved the way to 2D diffusion models for NVS thanks to its strong generalization capability
inherited by Stable Diffusion; however, it accepts only one conditioning image and generates a single output; thus, when
creating images of the same object from multiple target viewpoints, this approach suffers from inconsistency as the images
are generated independently. To overcome this issue, (Shi et al., 2023; Weng et al., 2023) extend Zero123 in order to
generate multiple consistent views simultaneously, while (Liu et al., 2024) propose a diffusion model, still based on Zero123,
that uses a 3D-aware feature attention mechanism to ensure consistency across the produced images. To achieve this goal,
(Ye et al., 2023) use epipolar attention for geometric awareness and multi-view attention, which better combines information
from multi-view images. The latter method generates different images simultaneously and can potentially be fed with a
sparse set of multi-view images, but all experiments are performed with only one reference image. Nevertheless, using
only a single conditioning input may be a limitation in real use-case applications: to address this drawback, (Li et al.,
2023) modifie the Zero123 architecture to accommodate multiple views in input, but still generates a single image from
a target viewpoint. (Tang et al., 2024b) propose a pose-free method to generate at the same time multiple images given
a sparse set of views. To do so, the model employs a U-Net with several branches, i.e., copies, whose number is equal
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to the number of total views, both conditioning and target. Notably, a global self-attention mechanism among the U-Net
features across all branches is applied to enhance the consistency of the generated views. A similar methodology based on a
multi-branch U-Net is envisioned in (Höllein et al., 2024). (Kong et al., 2024) employ transformers (Vaswani et al., 2017)
that, by leveraging specifically designed camera positional encodings, aim to improve reference-to-target and target-to-target
views consistency.

Another area of research focuses on 3D-aware diffusion models, combining both diffusion models and NeRF-like 3D
representations. (Chan et al., 2023) present a diffusion model that integrates geometric priors by conditioning it on 3D
features. The model takes a variable number of input views, while still generating a single output image. Also, the model is
category-specific. (Anciukevicius et al., 2024) introduce a diffusion model based on a multi-view U-Net that produces a
neural scene representation, instead of images, by leveraging cross-view attention to align the induced features, similar to
the previously mentioned works. Notably, the model is trained from scratch on a limited set of classes of different datasets.
This hinders the comparison with our method, which exhibits generalization capability thanks to the 2D prior inherited by
the pre-trained Stable Diffusion model.

Novelty. Conversely to the works based on explicit conditioning by means of tailored attention modules, DIMVIS employs
a joint diffusion model endowed with conditional generation ability by leveraging a straightforward yet effective masked
diffusion mechanism that encourages correlation across the latent variables, which influence each other.
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