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Abstract

Physics-informed neural networks (PINNs) have emerged as a promising frame-
work to develop complex scientific surrogate models, yet their scalability and
accuracy often degrade in non-canonical geometries, such as non-rectangular do-
mains or three-dimensional (3D) domains with high aspect ratios. These limitations
hinder the broader adoption of vanilla PINNs in real-world, practical systems. In
this work, we introduce a multi-domain PINN (MDPINN) framework designed to
address the scalability and generalization challenges inherent in 3D non-rectangular
domains governed by nonlinear fluid dynamics. The target domain consists of
intersecting 3D fluid channels with a high aspect ratio, inducing complex flow
features such as deflections, mixing, and recirculations. Our approach is grounded
in two key innovations: 1) domain decomposition, which partitions the channel
volumes into multiple cubic-like subdomains, each modeled by an individual PINN,
2) enforcement of global dynamics (MDPINN-GD), which ensures that the total
mass flow rate entering the domain equals that exiting. These innovations reduce
the complexity of the problem imposed on individual PINNs and guide effective
network optimization toward physically consistent solutions throughout the domain.
We demonstrate that our method achieves: 1) 74.8% accuracy improvement over a
single-network PINN, and 2) 52.9% accuracy improvement over MDPINN that do
not enforce global mass conservation. Furthermore, the MDPINN-GD framework
exhibits accurate prediction even in highly complex regions-such as the channel
intersecting zone and the outlet zone characterized by intense flow mixing and large
velocity gradients-achieving maximum normalized mean absolute errors below
14.9% for velocity predictions compared to simulation results. This work estab-
lishes a path towards scalable, physically grounded surrogate modeling approach
that is extensible to multiphysics and high-dimensional scientific problems.

1 Introduction

Recent advancements in scientific machine learning have garnered much attention for their potential
to bridge modern machine learning methods with traditional scientific computing. This integration is
particularly appealing to the engineering design community, where conventional simulation methods
such as computational fluid dynamics (CFD) can be computationally expensive for their applications.
For instance, CFD-based design optimization of fluidic networks-such as microchannels used for
electronic cooling-often involves simulations across a wide range of geometric and physical parame-
ters. Major bottlenecks in these simulations lie in the generation and refinement of computational
meshes for large geometric variations, as well as in the computational cost of iterative design searches.
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To address the challenges in engineering designs, physics-informed neural networks (PINNs) have
emerged as a viable surrogate modeling approach [1–9].

PINNs are a class of neural networks whose solutions are guided by embedded physical laws rather
than being solely determined by data. Unlike traditional data-driven machine learning approaches,
it is demonstrated that PINNs do not require large datasets-or any datasets in simple cases-as they
are trained using a physics-driven loss function formulated from the residuals of governing partial
differential equations (PDEs), boundary conditions, and initial conditions. In particular, in high-
dimensional fluid simulations, PINNs offer significant potential to reduce computational costs, where
traditional CFD methods often require substantial computational time and resource demand as the
dimensionality of a problem increases. In contrast, PINNs enable efficient inference once trained
and can further extend scalable acceleration through transfer learning. For example, Tang et al.
used transfer learning to model vortex-induced vibrations, reducing the required training data by
87.5% (using only 1/8 of the original data), while achieving a 10-fold decrease in computation
time with a maximum relative error of 8.51% [10]. Prantikos et al. used transfer learning to
accelerate the prediction of nuclear reactor transients, achieving at least a 16-fold acceleration in
training convergence, with prediction times under sub 10 seconds [11]. In another study, Ohashi
et al. applied a transfer learning scheme to PINNs for modeling two-dimensional (2D) transient
temperature fields, achieving a 9.9-fold reduction in computational time-from 8.32 to 0.84 hours [12].
Lastly, coupled with extreme learning machines (ELM), a physics-informed ELM demonstrated
training time reduction from eight hours to a few seconds for simple 1D and 2D linear PDEs [13].
These results highlight the potential of PINNs as forward-predictive models that scale to complex,
multi-scale geometries and adapt to diverse flow conditions. Consequently, PINNs are promising
methodologies to solve challenging high-dimensional physics problems, such as modeling ill-posed
fluid systems where conventional CFD methods struggle due to under-constrained conditions and
the existence of multiple plausible solutions [1, 14]. PINNs have been successfully applied to a
variety of problems, including steady and unsteady heat conduction, convection, and incompressible
Navier–Stokes problems, offering a mesh-free and differentiable alternative to conventional numerical
solvers [5, 15].

Despite the advantages of PINNs for fluid simulations, their application to three-dimensional (3D)
fluid systems with complex flow structures remains challenging. Chan et al. systematically evaluated
the performance of PINNs against a supervised learning approach trained on extensive CFD data
for steady and pulsatile flow in a 3D curved tube with varying geometries. Their findings showed
that PINNs were only successful under carefully controlled steady-state conditions, including (1)
the use of a transformed coordinate system, (2) enforcement of no-slip boundary conditions as hard
constraints, and (3) specialized strategies to propagate boundary effects [16]. The complexity of 3D
domains amplifies challenges already encountered in 2D simulations—most notably, the handling of
corner singularities. In 2D, these singularities typically occur at domain corners where abrupt changes
in boundary conditions or geometry lead to discontinuities or sharp gradients in flow variables. In
3D, the problem becomes more pronounced as these singularities extend along edges or lines formed
by the intersection of surfaces [17, 18]. Cai et al. explored transient 3D flow reconstruction around
a cylinder at Reynolds number 200, which required a large number of simulation data (at least
344,650 data points) and collocation points (3×106) for PINN training [5]. In another study, Moser
et al. investigated PINNs applied to flow through cylindrical and aneurysmal geometries, using up
to 17×106 collocation points and enforcing mass conservation via Monte Carlo integration across
continuity planes [19]. While Deep Galerkin Methods provided the best performance—particularly
for simple geometries—the models still exhibited significant pressure errors in complex aneurysms.
Collectively, these studies highlight the current limitations of 3D PINNs, even with relatively simple
geometries. Notably, existing work has largely focused on geometries with nearly uniform aspect
ratios, where the streamwise and spanwise dimensions are roughly equal.

In most of the literature, PINNs based on a single neural network have shown limited effectiveness
in modeling high-aspect-ratio 3D fluid channels [20]. Our separate empirical studies find that this
occurs around a channel length that exceeds the depth by a factor greater than five—primarily due to
challenges in convergence and solution accuracy. Empirical studies on various geometries can be
found in Appendix A.1. High-aspect-ratio domains introduce pronounced disparities in characteristic
length scales, often resulting in vanishing gradients during training and significantly imbalanced loss
contributions across physical equations along different orientations. As a consequence, single-network
PINNs tend to prioritize dominant flow directions and large-scale structures while underrepresenting
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transverse or localized features critical to accurate prediction. This imbalance can lead to poor
generalization, limited predictive accuracy, and unstable convergence behavior. To address these
issues, recent studies have proposed decomposing the computational domain and assigning dedicated
subnetworks to individual physical components (e.g., momentum, continuity, energy). Multi-network,
multi-domain PINN (MDPINN) architecture with domain decomposition strategies have demonstrated
greater effectiveness for such geometrically complex systems. One such example is given by a study
investigating 3D blood flow in a three-branch intersection, in which the L2 error was around 7.8%
but required 8×105 epochs [21]. Another is given by Shukla et al. in which 2D steady-state lid
driven cavity flow and heat conduction were investigated [22]. The authors showed advancements
in computational time by leveraging parallel tasks. Next, Laubscher [23] and Merdasi et al. [24]
demonstrated that multi-network architectures—where subnetworks are optimized independently
within subdomains or for specific governing equations—can significantly improve training stability
and accuracy. This method is further described by Dwivedi et al., which introduced distributed
PINN for each subdomain with additional flux conditions at cell interfaces as local regularizer when
combining together, and demonstrated higher accuracy and better data efficiency over PINNs [25].
Other various interface conditions and irregular domain geometries have also been studied by Jagtap
et al. [26, 27]. Due to many interface conditions, Li et al. proposed a meta-learning strategy to
dynamically determine the appropriate constraints [28]. However, these studies explored domains
limited to 2D with simple constraints. These approaches mitigate the complexity faced by any
single network, making them particularly suitable for high-aspect-ratio geometries characterized by
anisotropic behavior and multiscale physics. Advancements, such as causal sweeping strategies, loss
term balancing, and transfer learning, have improved training time and accuracy to a certain degree,
yet more research is required in higher-dimensional domain [29, 20, 30].

Here, we investigate a MDPINN strategy and further improve with global dynamic enforce-
ment, applied to 3D intersecting fluid channels characterized by large aspect ratios of 7.1:1.4:1
(length:width:depth) and strong flow mixing at the intersection. Fluid channel networks that promote
flow mixing have broad applications, particularly in cold plates for electronics cooling, where flow
mixing disrupts thermal boundary layer development and improves localized heat removal. Another
application is in species mixing (e.g., chemical, particulates, fuel/air), in which a homogeneous
mixture is desired. The overall model consists of an ensemble of PINNs optimized jointly with
parallel parameter updates. To ensure physical consistency across subdomains, we introduce two
additional loss components: (1) a global continuity loss (MDPINN-GD) and (2) matching boundary
condition losses, which enforce conservation laws and interface compatibility, respectively.

2 Problem setup

2.1 Design domain

Cross-flow channels are widely used in fluidic networks due to their simple design and ability to
create localized mixing zones that enhance fluid homogeneity and further heat transfer efficiency.
Fig. 1 (a) illustrates a 3D cross-shaped channel configuration, where two inlet ports are positioned on
the left and bottom faces, two outlet ports on the right and top faces and two channels intersect in the
middle. This configuration establishes a central cross-flow region that promotes fluid interaction and
recirculation. The channel dimensions are set to 500 µm in length l, 100 µm in width w, and 70 µm in
depth d. Liquid water at 25 ◦C, with a kinematic viscosity of ν = 8.917×10-7 m2/s and density of ρ0
= 997 kg/m3, enters both inlets at a uniform velocity (U0) of 2.68 m/s. The objective is unsupervised
learning, predicting the velocity and pressure fields within the domain using governing equations
and boundary conditions only, without any simulation data or experimental measurements. The
flow regime is characterized by the Reynolds number [Re = U0DH/ν], where DH is the hydraulic
diameter. By tuning Re, various flow regimes can be explored, but to limit the scope of this work, Re
is fixed to 247.5, with system-wide aspect ratios of γ1=l/w = 5 and γ2=l/d = 7.14. To evaluate the
accuracy of the PINN predictions, we use a reference CFD simulation conducted in Ansys Fluent.
The CFD domain is discretized at a resolution of 1 µm, resulting in approximately 6.3×106 cells.
The model assumes laminar flow with normalized convergence criteria of 1×10-5 for all residuals.
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Figure 1: (a) 3D cross-intersecting fluid channel. (b) MDPINN network architecture in which each
subdomain is assigned a separate PINN. Network loss includes local and interface terms. Index
i runs from 1 through 9, corresponding to the nine subdomains. Index j runs from 1 through 8,
corresponding to the eight subdomains interfaces.

2.2 Governing equations

For demonstration purposes, we focus on a simplified flow regime, steady-state laminar flow, gov-
erned by the 3D steady-state incompressible Navier-Stokes equations. To improve generalization and
numerical stability, the governing PDEs are non-dimensionalized, allowing the system to be charac-
terized in terms of dimensionless parameters. Furthermore, input and output variables are normalized
to the range of 0 to 1, which align with the effective range of common activation functions used in
PINNs (e.g., tanh and swish [2]). Consequently, the problem formulation incorporates the following
normalized terms, denoted by ‘∗’ to signify the dimensional parameters with x = x∗/l, y = y∗/w,
z = z∗/d, U = U∗/U0, V = V ∗/U0, W = W ∗/U0, and P = P ∗/ρ0U

2
0 . x, y, z are dimensionless

coordinates in length, width, and depth directions, respectively, defined by the dimensional variables
x∗ ∈ [0, l], y∗ ∈ [0, w], and z∗ ∈ [0, d]. U , V , W are the dimensionless velocity components in the
x-, y-, and z-directions, respectively, normalized by U0. P is the dimensionless pressure, normalized
by ρ0U

2
0 . The non-dimensional PDEs of continuity, x-, y-, and z-momentum in Cartesian coordinates

are listed in order at Eq. 1.
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3 Multiple domain physics-informed neural network (MDPINN)

To address the optimization challenges associated with training a single-network PINN on 3D domains
with high aspect ratios, we adopt a domain decomposition strategy that improves both convergence
and scalability. As shown by the black dotted lines in Fig. 1 (a), the domain is divided into nine
subdomains with reduced aspect ratios. Each subdomain measures 100 µm in length, 100 µm in
width, and 70 µm in depth, resulting in nearly cube-like volumes with an aspect ratio of 1.4:1.4:1. An
overview of the MDPINN framework is shown in Fig. 1 (b), where each subdomain is assigned to an
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individual subnetwork. Domain decomposition allows each subnetwork to learn within a subdomain
with reduced geometric aspect ratios, which helps mitigate vanishing gradient issues and imbalanced
loss contributions commonly observed in single-network PINNs applied to elongated geometries.
The training loop shows both intra-network losses (within each subnetwork) and inter-network losses
(across subnetworks). The losses are aggregated across all subnetworks into a total loss function,
which is minimized through a single backpropagation step. This scheme enables simultaneous
parameter updates across all subnetworks.

Each subnetwork is implemented as a fully-connected network that takes 3D Cartesian coordinates
as input and predicts four flow variables as output: P , U , V , and W . Based on literature and
empirical hyperparameter tuning, each subnetwork and training settings are configured as follows
with the range explored in parentheses, offering a balance between accuracy and computational
efficiency: 1) 7 hidden layers (5~10), 2) 100 neurons per layer (100~150), 3) 100,000 epochs for
Adam optimizer (50K~100K), 4) 20,000 collocation points (10K~40K) randomly sampled within
each subdomain using Latin hypercube sampling [31], and 5) boundary points uniformly sampled
from a grid with 1 µm spacing (1 µm~4 µm). The activation function used is the adaptive sine [32].
Network optimization was conducted in two stages-the Adam optimizer with a learning rate of
1×10-4, followed by the L-BFGS optimizer until convergence. The network was built using PyTorch
and its associated libraries. A pseudocode outlining the network training process is included in
Appendix A.2.

3.1 Interface-matching loss

To maintain physical consistency across adjacent subdomains, continuity is enforced by applying
matching Dirichlet boundary conditions at the interfaces. The interface-matching loss is defined as:

LM =
1

NM

NM∑
n=1

(F1,n − F2,n)
2 (2)

where LM represents the mean squared error (MSE) of field variables between adjacent subdomain
interfaces, F1 and F2, across NM matching points. This formulation ensures the continuity of fluid
flow variables (e.g., velocity and pressure) across subdomain interfaces. It is important to note
that the current interface-matching condition constrains only the zeroth-order continuity. Improved
continuity and physical consistency can be achieved by extending the matching conditions to include
higher-order derivatives, such as incorporating first-order derivatives of the flow variables (e.g.,
volumetric flux). However, further improvements by including higher-order derivatives incur the cost
of increased computational complexity.

3.2 Global mass conservation loss (MDPINN-GD)

Whilst subdomain and interface predictions are greatly improved with MDPINN, there is still a
tendency to violate global mass conservation when applied to complex 3D fluid systems. To mitigate
this, we introduced an additional physics-based constraint into the loss function to enforce global
volumetric flow rate conservation. Specifically, a global continuity loss term, denoted as LV , is
incorporated to penalize discrepancies between the total volumetric inflow and outflow across the
entire fluid network. To maintain scale invariance and improve numerical stability during training,
all flow rates are normalized against a reference volumetric flow rate, U0Ac, where Ac = wd is the
cross-sectional area at the inlet. The volumetric flow rate loss was formulated as:

LV =

(
1

U0Ac

(
Nin∑
l=1

(u · n)lAl −
Nout∑
m=1

(u · n)mAm

))2

(3)

where u is the local velocity vector, n is the unit normal vector to the boundary surface, and Al and
Am represent the discretized cross-sectional areas perpendicular to n at the inlet and outlet boundaries,
respectively. Nin and Nout correspond to the number of discrete inlet and outlet segments used in
the numerical integration.

3.3 Composite loss function

The total loss function is constructed as a composite of multiple components: the sum of PDE residual
loss, boundary condition loss, the interface-matching loss across all subdomains, and global mass
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conservation. Thus, the composite loss function, L, to minimize is written as:

L =
1

NSNR

NS∑
i=1

NR∑
n=1

(
ein
)2

+
1

NSNBC

NS∑
i=1

NBC∑
n=1

(
ξin − ξi0,n

)2
+

1

NF

NF∑
i=1

Li
M + LV (4)

where summation is performed across NS = 9 subdomains and NF = 8 interfaces. The number of
collocation points, boundary points, PDE residual loss, MDPINN-GD predictions on the boundary,
and boundary condition ground truths are represented by NR NBC , ein, ξin, and ξi0,n, respectively.
Factors leading the double summations arise due to the MSE function. Additional details on traditional
PINN loss functions can be found in the seminal work by Raissi et al. [1].

4 Results and discussion

4.1 Reference flow patterns

Simulated streamlines in three different planes, shown in Fig. 2 (a-c), illustrate the expected flow
patterns in this 3D cross-flow channel. In the (a) xy-plane, the flow remains nearly straight until
the intersection, where it is deflected into the perpendicular outlet branches, and recirculating flow
near the outlet walls is clearly visible. In the (b) yz-plane at the entrance of the outlet section
(subdomain 4), the flow moves upward, deflects at the top, and forms recirculating zones near the
sidewalls. In the (c) yz-plane at the exit of the outlet section (subdomain 5), strong flow mixing
occurs, with a prominent recirculation zone forming at the channel center. Overall, the simulation
captures the key transport features of a 3D cross-flow junction, including laminar inlet development,
intersection-induced deflection, and outlet mixing and recirculation. The CFD simulation results
in Fig. 2 (d) further highlight the overall flow patterns, particularly in the xy-plane view at z =
0.5 (mid-plane). At the inlet boundaries located on the left and bottom, the flow exhibits classical
Poiseuille flow features, with maximum stream-wise velocity at the center and decreasing velocity
near walls. In contrast, the outlet boundaries on the top and right display more complex flow behavior
due to the merging and redirection of streams.

Figure 2: Streamline plots for simulation at: (a) xy-plane at z = 0.5, (b) inlet yz-plane of subdomain
4 at x = 0.6, and (c) outlet yz-plane of subdomain 5 at x = 1. These views demonstrate overall flow
patterns and the change in flow profile as it moves downstream. Comparison of pressure, x-velocity,
y-velocity, and z-velocity fields between the (d) CFD simulation and (e) single-network PINN model
at the z = 0.5, viewed in the xy-plane.
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4.2 Single-network PINN

To understand the limitations of single-network PINNs for modeling 3D fluid networks, we first
implemented and tested a single-network architecture without domain decomposition. The network
was optimized through hyperparameter tuning based on previous studies [5, 15, 33]. The architecture
consisted of a fully connected network with 10 hidden layers and 150 neurons per layer, employing
adaptive sine activation functions. Training was conducted with 250,000 collocation points (average
separation of 2.444 µm between points) and boundary points sampled uniformly along a grid with a
spacing of 1 µm. The network was trained using the same two-stage optimization (Adam + L-BFGS)
as the MDPINN. However, the model produced highly inaccurate predictions, as shown in the xy-
plane view in Fig. 2 (e), with additional plane views provided in Appendix A.3. The network failed
to capture the expected flow patterns shown in the simulation results: fluid entered only from the left
inlet and dissipated rapidly along the channel walls, without meaningful circulation or cross-flow
behavior. Notably, even with a low final loss (on the order of 1×10-6), the single-network PINN was
unable to resolve the flow features of the intersecting channel geometry. Additional experiments of
various geometries are shown in Appendix A.1.

To quantitatively assess the model accuracy, we evaluated two error metrics: the mean absolute
error, ϵ, and the maximum absolute error, ϵmax, as given in Eq. 5, where Φi, Φ0,i, and Np represent
the PINN prediction, simulation result, and number of nodes in simulation, respectively. For the
single-network PINN, ϵ for pressure, x-velocity, y-velocity, and z-velocity were 3.41 kPa, 0.52 m/s,
0.52 m/s, and 0.18 m/s, respectively. The corresponding ϵmax were 23.6 kPa, 2.16 m/s, 2.16 m/s,
and 1.79 m/s, respectively. This indicates mean errors of nearly 20% of U0 for the x- and y-velocity
components. Furthermore, the maximum velocity errors reach nearly 81% of U0, suggesting that the
discrepancies in the single-network PINN are on the same order of magnitude as U0 of the system,
which is highly undesirable as errors will impose similar influence on the flow dynamics as U0.

ϵ =
1

Np

Np∑
i=1

|Φi − Φ0,i| ϵmax = max (|Φi − Φ0,i|) (5)

4.3 MDPINN-GD

To identify the most effective optimization strategy for the MDPINN-GD framework, we compared
three approaches in terms of their accuracy and computational efficiency. The approaches included:
(1) MDPINN1, a baseline model trained with 20,000 collocation points (average separation of
2.729 µm between points) per subdomain; (2) MDPINN2, a higher-resolution model using 40,000
collocation points (average separation of 2.165 µm between points) per subdomain; and (3) MDPINN-
GD, an optimized model using 20,000 collocation points per subdomain incorporating a global mass
conservation constraint. The training loss plot can be found in Appendix A.4. The training times for
MDPINN1, MDPINN2, and MDPINN-GD were 24.3 hours, 38.8 hours, and 68 hours, respectively.
Corresponding GPU memory usage was approximately 40 GB, 60 GB, and 45 GB. All models were
trained on a single Nvidia A100 80GB GPU.

The field predictions from the three MDPINN networks are shown in Fig. 3. MDPINN1 failed
to satisfy the mass continuity constraint, as evidenced by zero outlet flows in the y-velocity field.
Additionally, the pressure at the bottom-face inlet was lower than that at the right-face outlet,
contradicting the expected pressure gradient from inlet to outlet. However, compared to single-
network PINN, the results indicate that MDPINN outperforms even with fewer collocation points.
MDPINN2, which utilized doubled collocation point density, showed improved mass continuity and
captured general flow patterns. This suggests that increasing the number of collocation points can
enhance prediction quality, although it incurs additional computational cost. However, MDPINN2

still underestimated both velocity magnitudes and pressure values in the outflow region, implying
that greater collocation point density alone was insufficient for accurate field prediction in regions of
complex flow behavior. These results suggest that using a multi-network architecture without explicit
enforcement of global continuity is insufficient for accurately predicting complex flow fields. In
contrast, MDPINN-GD successfully demonstrated mass continuity and accurate magnitudes for all
flow variables throughout the domain. A further comparison in the channel cross-section (yz-plane
view) at the entrance of the outlet section (subdomain 4) revealed that MDPINN-GD accurately
captured both x- and y-velocity fields, whereas MDPINN2 significantly underpredicted the y-velocity
relative to the CFD results.
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Figure 3: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation and
MDPINN models of xy-plane at z = 0.5 (mid-plane). Additional views for x and y-velocity of
yz-plane at the inlet of subdomain 4 is also shown to highlight 3D features.

To quantitatively compare the predictive accuracy, we evaluated ϵ and ϵmax across all four fields.
The MDPINN-GD achieved a mean ϵ improvement of 76.2% and 52.9% over MDPINN1 and
MDPINN2, respectively. Similarly, the mean ϵmax improvement of MDPINN-GD over MDPINN1

and MDPINN2 was 75.2%, and 49%, respectively. These results indicate that improvements are
observed evenly across ϵ and ϵmax. From MDPINN1 to MDPINN2, comparison shows that doubling
the collocation points results in approximately 50% decrease in error, which yields to comparable
flow field predictions. However, it clearly shows that incorporating global constraints provides further
substantial accuracy gains without additional collocation points. Overall, MDPINN-GD achieves
roughly twice the accuracy of MDPINN2. These results underscore the importance of combining
domain decomposition with global continuity enforcement and sufficient sampling to achieve robust
and physically consistent PINN predictions in complex 3D flow configurations. Error comparisons
for all PINN models can be found in Appendix A.5.

To understand how the complexity of fluid dynamics affects model accuracy, ϵ and ϵmax were evaluated
for each subdomain, as shown in Table 1. A key observation is that the largest streamwise errors
(i.e., errors aligned with the main flow direction) occurred in the outlet subdomains, where flow
deceleration and recirculation introduce additional physical complexity. The largest x- and y-velocity
error, ϵ (U) and ϵ (W), is 29.9×10-2 m/s, corresponding to 14.9% of U0. Notably, the largest z-
velocity and pressure errors, ϵ (W) and ϵ (P), are observed in the cross junction (subdomain 3),
where converging inlet flows subsequently diverge, creating strong velocity gradients in all directions.
Complete flow fields at the inlets and outlets of subdomain 3 are shown in Appendix A.6. Analysis
of ϵ and ϵmax shows similar trends, with slight deviations of symmetry in the values. For example,
comparing ϵmax along the streamwise directions in subdomains 1, 5, 6, and 9 (inlets and outlets)
reveals that this asymmetry is likely due to numerical randomness rather than physical effects.
Additional error metrics normalized by inlet velocity and inlet dynamic pressure are provided in
Appendix A.7.

The MDPINN-GD results are further illustrated in Fig. 4, which presents five views of the x-velocity
field alongside corresponding predictions and absolute error distributions. In the xy-plane, error
concentrations appear specifically at the diagonal intersection of the channels and the right outlet,
likely due to intense mixing and sharp changes in velocity direction. Increased errors are also
observed at the inlets of subdomain 4 (yz-plane) and subdomain 8 (xz-plane), particularly near the
top and right sides, respectively. These regions correspond to the top-right corner of the channel
intersection, where the fluid undergoes sharp directional changes, potentially leading to localized
numerical singularities. In addition, the outlet regions of subdomain 5 (yz-plane) and subdomain
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Table 1: Subdomain ϵ and ϵmax for MDPINN-GD with bold indicating maximum across each row.
Left inlet Intersect Right outlet Bottom inlet Top outlet

Subdomain number 1 2 3 4 5 6 7 8 9

ϵ (P ) [102 Pa] 1.95 1.04 16.5 13.9 2.15 3.31 1.13 14.5 2.25
ϵ (U ) [10−2 m/s] 9.65 18.9 21.5 24.4 29.9 1.96 2.64 11.7 8.16
ϵ (V ) [10−2 m/s] 1.85 2.56 21.4 11.7 8.21 9.84 18.9 24.4 29.7
ϵ (W ) [10−2 m/s] 2.79 3.46 7.99 6.88 6.27 2.92 3.46 6.92 6.16
ϵmax (P ) [102 Pa] 74.2 12.2 25.4 22.2 4.96 85.1 10.2 23.2 4.96
ϵmax (U ) [m/s] 1.51 0.702 1.04 1.41 1.54 0.39 0.31 0.69 0.44
ϵmax (V ) [m/s] 0.43 0.41 1.04 0.67 0.44 1.72 0.69 1.47 1.60
ϵmax (W ) [10−1 m/s] 4.28 2.96 6.39 5.49 4.46 4.14 3.04 5.49 4.52

Figure 4: Comparison of x-velocities between CFD simulation and MDPINN-GD with absolute
errors. Viewed at: xy-plane at z = 0.5 (mid-plane), yz-plane at inlet of subdomain 4, yz-plane at
outlet of subdomain 5, xz-plane at inlet of subdomain 8, and xz-plane at outlet of subdomain 9.

9 (xz-plane) exhibit asymmetric errors near the walls, likely resulting from the propagation of
numerical artifacts originating at the corners. These artifacts may accumulate along the flow path,
contributing to the final prediction errors. Additional visualization and error distributions can be
found in Appendix A.6.

5 Conclusion

In summary, this work addresses key limitations in applying PINNs to the modeling of fluid dynamics
in complex geometries, i.e., intersecting 3D fluid channels with a high aspect ratio. Traditional PINNs
often struggle with convergence and predictive accuracy in high-aspect-ratio geometries, which
induce intricate flow features such as deflections, mixing, and recirculations. To overcome these
challenges, we first demonstrated that a vanilla MDPINN that leverages domain decomposition to
facilitate localized learning, MDPINN1, was able to outperform the single-network PINN with 39%
less collocation points while decreasing error by 90.2%. Next, we presented an enhanced MDPINN-
GD framework that enforces global dynamics by integrating global mass conservation constraints into
the loss formulation. Together, these enhancements led to a 52.9%~74.8% improvement in average
predictive accuracy over the single-network PINN and MDPINN architectures without the global
mass conservation. Furthermore, mean absolute velocity errors of MDPINN-GD were below 14.9%
when normalized by the inlet velocity. This indicates that the proposed method is able to accurately
predict the complex flow phenomena, with minimal errors likely caused by the propagation of corner
singularities. Overall, the proposed approach effectively captures complex cross-flow interactions
and resolves steep inlet pressure gradients, demonstrating its potential as a scalable, high-fidelity and
physically consistent surrogate modeling tool for fluid simulations.

9



Limitations Despite these advancements, several limitations remain. As shown in Fig. 3, the
predicted z-velocity exhibits noticeable deviations from the CFD baseline, suggesting a need for
finer spatial resolution or improved learning of secondary flow features. This issue underscores the
necessity for future research into adaptive loss weighting strategies, multi-scale network architectures,
enforcing boundary conditions as hard constraints, and enhanced interface treatments for domain
coupling. Furthermore, the demonstrated method has so far been applied to a 3D intersecting channel
flow; experiments on other geometries can be helpful to assess its robustness and generalizability.
Future research will focus on advancing the MDPINN-GD framework through more adaptive and
generalizable learning strategies on various geometries. Additionally, we plan to extend the framework
to handle transient and multi-physics systems, thereby demonstrating the scalability of PINNs in
dynamic and coupled environments. We also acknowledge that systematic benchmarking of inference
speed across various discretization levels are necessary to justify computational efficiency claims.
We consider this an important direction for future work.

Acknowledgments and Disclosure of Funding

We would like to recognize Nagahiro Ohashi and Prof. Beomjin Kwon (School for Engineering of
Matter, Transport and Energy at Arizona State University) for their substantial intellectual contribu-
tions to this work. They have led and were deeply involved in the research design, execution, and
preparation of the manuscript. Due to an unintentional clerical error during the submission process,
they are not listed as co-authors (Nagahiro Ohashi as the first author and Prof. Beomjin Kwon as the
second author) of this NeurIPS version, but they should be regarded as key contributors to the ideas
and results presented in this paper. This work was supported by the National Science Foundation
grant under Grant No. 2337973. Additionally, this research was partially supported by the Nano
& Material Technology Development Program through the National Research Foundation of Korea
(NRF), funded by Ministry of Science and ICT (RS-2024-00448639) and Arizona State University
startup funds.

References
[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, February 2019.

[2] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli. Scientific Machine Learning Through Physics–Informed Neural Networks: Where we
are and What’s Next. Journal of Scientific Computing, 92(3):88, July 2022.

[3] Zaharaddeen Karami Lawal, Hayati Yassin, Daphne Teck Ching Lai, and Azam Che Idris. Physics-Informed
Neural Network (PINN) Evolution and Beyond: A Systematic Literature Review and Bibliometric Analysis.
Big Data and Cognitive Computing, 6(4):140, December 2022. Number: 4 Publisher: Multidisciplinary
Digital Publishing Institute.

[4] Solji Choi, Ikhwan Jung, Haeun Kim, Jonggeol Na, and Jong Min Lee. Physics-informed deep learning
for data-driven solutions of computational fluid dynamics. Korean Journal of Chemical Engineering,
39(3):515–528, March 2022.

[5] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-Informed
Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 143(6):060801, June 2021.

[6] Xiao-dong Bai, Yong Wang, and Wei Zhang. Applying physics informed neural network for flow data
assimilation. Journal of Hydrodynamics, 32(6):1050–1058, December 2020.

[7] Yikun Yang, Xifeng Wang, Jinfeng Li, and Riletu Ge. A data-physic driven method for gear fault diagnosis
using PINN and pseudo-dynamic features. Measurement, 236:115124, August 2024.

[8] Félix Fernández de la Mata, Alfonso Gijón, Miguel Molina-Solana, and Juan Gómez-Romero. Physics-
informed neural networks for data-driven simulation: Advantages, limitations, and opportunities. Physica
A: Statistical Mechanics and its Applications, 610:128415, January 2023.

[9] Lu Zhu, Xianyang Jiang, Adrien Lefauve, Rich R. Kerswell, and P. F. Linden. Physics-informed neural net-
work to augment experimental data: an application to stratified flows, September 2023. arXiv:2309.14722
[physics].

10



[10] Hesheng Tang, Yangyang Liao, Hu Yang, and Liyu Xie. A transfer learning-physics informed neural
network (TL-PINN) for vortex-induced vibration. Ocean Engineering, 266:113101, December 2022.

[11] Konstantinos Prantikos, Stylianos Chatzidakis, Lefteri H. Tsoukalas, and Alexander Heifetz. Physics-
informed neural network with transfer learning (TL-PINN) based on domain similarity measure for
prediction of nuclear reactor transients. Scientific Reports, 13(1):16840, October 2023. Publisher: Nature
Publishing Group.

[12] Nagahiro Ohashi, Leslie K. Hwang, and Beomjin Kwon. Physics-informed neural networks for multi-field
visualization with single-color laser induced fluorescence. AI Thermal Fluids, 1:100005, March 2025.

[13] Vikas Dwivedi and Balaji Srinivasan. Physics Informed Extreme Learning Machine (PIELM)–A rapid
method for the numerical solution of partial differential equations. Neurocomputing, 391:96–118, May
2020.

[14] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June 2021.

[15] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computa-
tional Physics, 426:109951, February 2021.

[16] Wei Xuan Chan, Wenhao Ding, Binghuan Li, Hong Shen Wong, and Choon Hwai Yap. Role of physics-
informed constraints in real-time estimation of 3D vascular fluid dynamics using multi-case neural network.
Computers in Biology and Medicine, 190:110074, May 2025.

[17] Philip Heger, Daniel Hilger, Markus Full, and Norbert Hosters. Investigation of physics-informed deep
learning for the prediction of parametric, three-dimensional flow based on boundary data. Computers &
Fluids, 278:106302, June 2024.

[18] Gaurav Kumar Yadav, Sundararajan Natarajan, and Balaji Srinivasan. Distributed PINN for Linear Elasticity
— A Unified Approach for Smooth, Singular, Compressible and Incompressible Media. International
Journal of Computational Methods, 19(08):2142008, October 2022. Publisher: World Scientific Publishing
Co.

[19] Philipp Moser, Wolfgang Fenz, Stefan Thumfart, Isabell Ganitzer, and Michael Giretzlehner. Modeling of
3D Blood Flows with Physics-Informed Neural Networks: Comparison of Network Architectures. Fluids,
8(2):46, February 2023. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

[20] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. In Advances in Neural Information Processing
Systems, volume 34, pages 26548–26560. Curran Associates, Inc., 2021.

[21] Linyan Gu, Shanlin Qin, Lei Xu, and Rongliang Chen. Physics-informed neural networks with domain
decomposition for the incompressible Navier–Stokes equations. Physics of Fluids, 36(2):021914, February
2024.

[22] Khemraj Shukla, Ameya D. Jagtap, and George Em Karniadakis. Parallel physics-informed neural networks
via domain decomposition. Journal of Computational Physics, 447:110683, December 2021.

[23] R. Laubscher. Simulation of multi-species flow and heat transfer using physics-informed neural networks.
Physics of Fluids, 33(8):087101, August 2021.

[24] Arshia Merdasi, Saman Ebrahimi, Xiang Yang, and Robert Kunz. Physics Informed Neural Network
application on mixing and heat transfer in combined electroosmotic-pressure driven flow. Chemical
Engineering and Processing - Process Intensification, 193:109540, November 2023.

[25] Vikas Dwivedi, Nishant Parashar, and Balaji Srinivasan. Distributed physics informed neural network
for data-efficient solution to partial differential equations. Neurocomputing, 420:299–316, January 2021.
arXiv:1907.08967 [cs].

[26] Ameya D. Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed neural
networks on discrete domains for conservation laws: Applications to forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering, 365:113028, June 2020.

[27] Ameya D. Jagtap and George Em Karniadakis. Extended Physics-Informed Neural Networks (XPINNs):
A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial
Differential Equations. Communications in Computational Physics, 28(5), November 2020. Institution:
Brown Univ., Providence, RI (United States) Publisher: Global Science Press.

11



[28] Shibo Li, Michael Penwarden, Yiming Xu, Conor Tillinghast, Akil Narayan, Robert M. Kirby, and Shandian
Zhe. Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks. In
Proceedings of the 40th International Conference on Machine Learning, pages 19855–19881, July 2023.

[29] Michael Penwarden, Ameya D. Jagtap, Shandian Zhe, George Em Karniadakis, and Robert M. Kirby. A
unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs)
and their temporal decompositions. Journal of Computational Physics, 493:112464, November 2023.

[30] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow Pathologies in
Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, January
2021. Publisher: Society for Industrial and Applied Mathematics.

[31] Wei-Liem Loh. On Latin hypercube sampling. The Annals of Statistics, 24(5):2058–2080, October 1996.
Publisher: Institute of Mathematical Statistics.

[32] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404:109136,
March 2020.

[33] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed
neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica, 37(12):1727–1738,
December 2021.

12



A Technical Appendices and Supplementary Material

A.1 Illustration of PINN failures

Here we show some typical failure points of single-network PINNs, which demonstrates the diffi-
culties of training on non-canonical geometries. A 2D straight channel evaluated at two different
aspect ratios are shown. The pressure fields are good indicators of poor network performance, since
it is typically the hardest to resolve. Fig. A.1 (a) and (b) show channel aspect ratio of 1:5 and
1:10 (width:length), respectively. It is clearly visible that these high aspect ratios pose an intrinsic
challenge due to multi-scale issues. Next, we demonstrate a 3D cubic channel domain. Fig. A.1 (c)
shows the yz-plane view PINN predictions at the outlet, in which asymmetry along the z-axis is
observed. The likely sources of error are corner singularities that PINNs struggle to approximate.

Figure A.1: Demonstration of 2D straight channel PINN and simulation pressure field with aspect
ratios (width:length) of (a) 1:5 and (b) 1:10. 3D cubic channel flow fields at the outlet are shown in
(c) to demonstrate effects of corner singularities.
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A.2 MDPINN-GD pseudocode

Algorithm 1 MDPINN-GD with NS domain decomposition

Input: Local spatial coordinates: x, y, z
Output: Local fluid parameters: P,U, V,W

1: Create NS subdomain geometries
2: Define subdomain neural network architecture: layers l, neurons n
3: Define activation function (i.e., adaptive sine)
4: Define NR collocation points and boundary points
5: Define fluid properties, boundary conditions and initial conditions (if any)
6: Define matching conditions and global continuity constraints
7: for s = 0 to NS do
8: Assign to l × n fully-connected neural network
9: Initialize network weights and bias: W∼Xavier normal, b = 0

10: end for
11: Initialize loss values: LR, LBC , LM = 0
12: Load W and b into Adam and L-BFGS optimizer
13: for e = 0 to max_epoch do
14: for s = 0 to NS do
15: Extract sth subdomain geometric and fluid properties
16: Compute fluid parameters on all coordinates with forward propagation
17: Calculate PDE loss for sth subdomain, Ls

R
18: Add Ls

R to total LR

19: Extract sth subdomain boundary conditions
20: Calculate boundary loss for sth subdomain, Ls

BC
21: Add Ls

BC to total LBC

22: end for
23: for f = 0 to NF do
24: Extract pairs of subdomain matching conditions
25: Calculate matching loss for fth subdomain pair, Lf

M

26: Add Lf
M to total LM

27: end for
28: for i = 0 to num_inlets do
29: Calculate volumetric flow rate at inlet face i, Qi

in
30: Add Qi

in to total Qin

31: end for
32: for o = 0 to num_outlets do
33: Calculate volumetric flow rate at outlet face o, Qo

out
34: Add Qo

out to total Qout

35: end for
36: Calculate global continuity loss, LV = (Qout −Qin)

2

37: Calculate total loss, L = LR

NS
+ LBC

NS
+ LM

NF
+ LV

38: if e < Adam_max_epoch then
39: Reset Adam optimizer gradient
40: Calculate ∂L

∂θ with backpropagation
41: Update Adam optimizer
42: else
43: Reset L-BFGS optimizer gradient
44: Calculate ∂L

∂θ and ∂2L
∂θ2 with backpropagation

45: Update L-BFGS optimizer
46: end if
47: if L < convergence_criteria then
48: End training
49: end if
50: end for
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A.3 Model comparisons

Comparisons of single-network PINN, MDPINN1, MDPINN2, and MDPINN-GD for various views
are given in the following figures. Flow fields are shown at the outlets of subdomains 5 and 9, and
inlets of subdomains 4 and 8.

Figure A.2: Comparison of pressure, x-velocity, y-velocity, and z-velocity fields between the
simulation and PINN models at outlet of subdomain 5, viewed in the yz-plane.

Figure A.3: Comparison of pressure, x-velocity, y-velocity, and z-velocity fields between the
simulation and PINN models at outlet of subdomain 9, viewed in the xz-plane.
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Figure A.4: Comparison of pressure, x-velocity, y-velocity, and z-velocity fields between the
simulation and PINN models at inlet of subdomain 4 viewing the yz-plane.

Figure A.5: Comparison of pressure, x-velocity, y-velocity, and z-velocity fields between the
simulation and PINN models at inlet of subdomain 8, viewed in the xz-plane.

16



Figure A.6: Comparison of pressure, x-velocity, y-velocity, and z-velocity fields between the
simulation and PINN models at the center of the cross-shaped channel, viewed in the xy-plane.

A.4 Loss plot

To understand the training dynamics, the evolution of loss components for MDPINN-GD is shown
in Fig. A.7. In Fig. A.7 (a), the total loss gradually decreases, with the most contribution from
the boundary loss and one or two orders of magnitude lower contributions from the PDE loss and
global continuity loss. Notably, the global continuity loss decreases rapidly by several orders of
magnitude from around 1,000 epochs among the 100,000 epoch and continues to drop below 10−8,
indicating that the PINN effectively enforces inter-network continuity across subdomains. Meanwhile,
the boundary loss decreases more slowly and remains the dominant contributor to the total loss,
suggesting that enforcing boundary conditions in as hard constraints may be necessary. Fig. A.7 (b)
further decomposes the PDE loss into its physical components. Initially, all components exhibit rapid
error reduction, followed by more gradual convergence. Interestingly, the z-momentum loss reaches
lower final values compared to the other losses, reflecting the geometric anisotropy of the domain,
where flow variations in the z-direction are less pronounced, leading to faster convergence in that
component.

Figure A.7: Loss plots of MDPINN-GD: (a) high-level loss terms: total, boundary condition, PDE,
and global continuity loss, (b) PDE loss terms: continuity, x-momentum, y-momentum, and z-
momentum.
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A.5 Model error comparison

Table A.1: Mean and max absolute errors for all PINN models. MDPINN models are averaged across
all subdomains. Overall mean errors are averaged across all fields and percentage improvement of
MDPINN-GD are compared against other models.

Mean errors MDPINN-GD Single-network
PINN MDPINN1 MDPINN2

ϵ (P) [kPa] 0.62 3.41 3.55 1.76
ϵ (U) [m/s] 0.14 0.52 0.7 0.33
ϵ (V) [m/s] 0.14 0.52 0.96 0.33
ϵ (W) [m/s] 0.052 0.18 0.12 0.076
ϵmax (P) [kPa] 1.63 23.6 8.11 3.4
ϵmax (U) [m/s] 0.3 2.16 1.52 0.66
ϵmax (V) [m/s] 0.3 2.16 2 0.68
ϵmax (W) [m/s] 0.08 1.79 0.18 0.12

MDPINN-GD mean ϵ improvement 74.8% 76.2% 52.9%
MDPINN-GD mean ϵmax improvement 90.2% 75.2% 49%
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A.6 MDPINN-GD error

Comparison of MDPINN-GD predictions to the CFD groundtruth with absolute error fields for various
views which include: left and bottom inlets of subdomain 3, right and top outlets of subdomain 3,
outlet of subdomains 5 and 9, and xy-plane view at z = 0.5 (mid-plane).

Figure A.8: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation and
MDPINN-GD at left inlet of subdomain 3 with absolute error field viewing the yz-plane.

Figure A.9: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation and
MDPINN-GD at bottom inlet of subdomain 3 with absolute error field viewing the xz-plane.
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Figure A.10: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation
and MDPINN-GD at right outlet of subdomain 3 with absolute error field viewing the yz-plane.

Figure A.11: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation
and MDPINN-GD at top outlet of subdomain 3 with absolute error field viewing the xz-plane.
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Figure A.12: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation
and MDPINN-GD at outlet of subdomain 5 with absolute error field viewing the yz-plane.

Figure A.13: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation
and MDPINN-GD at outlet of subdomain 9 with absolute error field viewing the xz-plane.

21



Figure A.14: Pressure, x-velocity, y-velocity, and z-velocity field comparisons of CFD simulation
and MDPINN-GD at center of cross-shaped channel with absolute error field viewing the xy-plane.

A.7 MDPINN-GD normalized absolute error

Table A.2: Subdomain mean and max absolute errors for MDPINN-GD with bold indicating maxi-
mum across each row. Values are given as a percentage of reference inlet velocity (U0) and reference
inlet dynamic pressure (ρ0U2

0 ).
Left inlet Intersect Right outlet Bottom inlet Top outlet

Subdomain number 1 2 3 4 5 6 7 8 9

%ϵ (P) 4.86 2.59 40.83 34.7 5.36 8.26 2.81 36.2 5.62
%ϵ (U) 4.82 9.43 10.7 12.1 14.9 0.98 1.31 5.86 4.07
%ϵ (V) 0.92 1.27 10.7 5.83 4.10 4.92 9.48 12.18 14.8
%ϵ (W) 1.39 1.73 3.99 3.43 3.13 1.46 1.72 3.45 3.07
%ϵmax (P) 185.4 30.7 63.6 55.6 12.3 212.6 25.5 58.0 12.4
%ϵmax (U) 75.6 35.1 52.1 70.5 76.8 19.5 15.9 34.7 22.1
%ϵmax (V) 21.6 20.7 52.0 33.8 22.2 85.9 34.5 73.5 80.1
%ϵmax (W) 21.3 14.8 31.9 27.4 22.3 20.7 15.2 27.4 22.6
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A.8 Loss weight ratio tuning

The loss weight ratio between boundary loss and PDE loss were explored for the optimal MDPINN-
GD result. The x-velocity field predictions at different views are shown in Fig. A.15, in which 10×
PDE loss, 20× PDE loss, and 10× boundary loss were compared against MDPINN-GD (uniform
loss). It is evident that uniform loss is optimal in this application.

Figure A.15: Comparison of x-velocities between CFD simulation, MDPINN-GD, and MDPINN-GD
with different loss ratios with absolute errors. Viewed at: xy-plane at z = 0.5 (mid-plane), yz-plane
at inlet of subdomain 4, yz-plane at outlet of subdomain 5, xz-plane at inlet of subdomain 8, and
xz-plane at outlet of subdomain 9.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made by the authors include: 1) MDPINN-GD significantly
improves fluid prediction results, 2) global continuity loss is necessary for accurate prediction
results, and 3) the method demonstrated is applicable to systems with large aspect ratios.
These claims have been explored and reflected upon throughout this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitations of the paper include: 1) MDPINN-GD z-velocity predic-
tion inaccuracies, and 2) demonstrations on other geometries. These limitations have been
addressed in the conclusion section with a limitations subsection.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not contain any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All settings for the simulation and MDPINN-GD network are provided in
Section 2: Problem setup under 2.1 and 3. These details are necessary for reproducing the
main experimental results. A pseudocode is also provided in the Appendix A.2 for further
clarifications.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We utilized a well-established code for PINN, already available from the
original contributors. Our primary contribution lies in adopting multiple PINNs with more
robust loss terms. This does not require the sharing of code. Instead, pseudocode is provided
in the Appendix A.2 for reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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Answer: [NA]
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Answer: [NA]
Justification: This research and the corresponding paper does not involve crowdsourcing nor
research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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