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Abstract

In this paper we propose the deep Dirichlet pro-
cess mixture (DDPM) model, which is an unsuper-
vised method that simultaneously performs cluster-
ing and feature learning. The traditional Dirichlet
process mixture model can infer the number of
mixture components, but its flexibility is restricted
since the clustering is performed in the raw feature
space. Our method alleviates this limitation by us-
ing the flow-based deep neural network to learn
more expressive features. DDPM unifies Dirichlet
processes and the flow-based model with Monte
Carlo expectation-maximization, and uses Gibbs
sampling to sample from the posterior. This com-
bination allows our method to exploit the mutually
beneficial relation between clustering and feature
learning. The effectiveness of DDPM is demon-
strated by thorough experiments in various syn-
thetic and real-world datasets.

1 INTRODUCTION

Clustering is one of the most long-standing and fundamental
tasks in computer science. Besides the well-known k-means
algorithm [MacQueen, 1967] and Gaussian mixture models
(GMMs) [Bishop, 2006], a plethora of methods have been
proposed [Ester et al., 1996, Szekely et al., 2005, Frey and
Dueck, 2007, Zhao et al., 2008]. In those early investiga-
tions, clustering is performed in the raw feature space, and
the models lack the capacity of learning or improving the
expressiveness of the representation.

With the recent success of deep neural networks (DNNs),
a new line of research termed deep clustering has emerged
[Xie et al., 2016, Yang et al., 2016, Jiang et al., 2017, Caron
et al., 2018]. These works are based on the intuitive principle
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that good representation encourages better clustering, and
similarly, good clustering can lead to better representation.
Their methods take advantage of the successful deep neural
network structures, such as convolution neural networks
(CNNs) [Krizhevsky et al., 2012] and variational autoen-
coders (VAEs) [Kingma and Welling, 2014]. Their superior
performance demonstrates the benefits of jointly clustering
and representation learning.

However, all these methods share the same shortcoming –
they consider the number of clusters (i.e., k in k-means) as
a hyperparameter that needs to be specified by the user. This
brings severe restrictions to their applications: 1) most of
these algorithms are sensitive to the choice of k; 2) users
lack the prior knowledge of the number of clusters; 3) this
value itself may be time-varying (e.g., k may increase as
more data is accumulated); 4) in some scenarios, particularly
for large datasets, there is no golden ground truth for this
value [Li et al., 2018].

The Dirichlet process mixture (DPM) model, which belongs
to the Bayesian nonparametric family, is a popular method
that can solve this conundrum [Antoniak, 1974]. Its solid
mathematical background originates from the Dirichlet pro-
cess [Ferguson, 1973], which is an infinite generalization of
the Dirichlet distribution. DPM can model the data with a
possibly infinite number of mixtures, and the exact number
of mixtures is rigorously inferred by the Bayesian princi-
ple. It is thus desirable to combine the strengths of DPM
and deep neural networks, which could lead to a clustering
method that simultaneously adjusts the number of mixture
components and learns better representation.

In this paper, we propose the deep Dirichlet process mixture
(DDPM) model, which brings the above idea into realiza-
tion. Two working examples of DDPM are presented in
Fig. 1, where the potentials of DDPM are clearly demon-
strated, particularly its ability to enjoy the mutually bene-
ficial relationship between clustering and feature learning.
Our method bridges the standard DPM with the recently
proposed flow-based generative models [Dinh et al., 2015,
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Figure 1: Demonstration of the clustering and representation learning process on two synthetic datasets. The leftmost figures
are the ground truth clustering results. The middle figures show the latent representation learned by DDPM during the
training. The rightmost figures show the final clustering results, with the circles denoting 2 standard deviations of the
Gaussian distributions. We can see that DDPM is able to learn better representation during clustering. Particularly in the
second example, the raw data representation is challenging for many centroid-based clustering methods, and the benefit of
the new representation learned by DDPM is quite evident. Also note that the number of clusters is unknown in advance.

Kingma and Dhariwal, 2018], which is a special kind of
invertible deep neural network that learns better representa-
tion through density transformation. The overall clustering
process is guided by the Bayesian principle, while the op-
timization of model parameters is derived from the Monte
Carlo expectation-maximization (EM) algorithm [Bishop,
2006]. During the iterations, Gibbs sampling is used to ob-
tain samples from the posterior as in the standard DPM
literature. DDPM also works as a generative model, so
that unseen new samples could be obtained by introduc-
ing noises to the learned features. The source code for re-
producing our main experiments is publicly available at
https://github.com/naiqili/DDPM.

2 RELATED WORK

Clustering and representation learning are both among
the most well-investigated topics in computer science. Be-
sides the well-known k-means [MacQueen, 1967], GMMs
[Bishop, 2006], and their variants [Zhao et al., 2008, Li
et al., 2021], the recent success of deep neural networks
have inspired a new paradigm called deep clustering. The
work of [Yang et al., 2016, Caron et al., 2018] tries to take
advantage of the convolution neural networks in computer
vision tasks. Their major difference lies in the loss function
and the training scheme. Other DNN structures are also
exploited. Xie et al. [2016] proposed Deep Embedded Clus-
tering (DEC), which jointly optimizes deep embeddings
and performs clustering based on features extracted from
deep autoencoders. In [Jiang et al., 2017], Variational Deep
Embedding (VaDE) was introduced, which combines the

variational autoencoder with the GMM model. However all
these works share the same insufficiency, i.e., the number of
the clusters is a hyperparameter that needs to be specified by
the user. As aforementioned this presents challenges for their
applications in real-world scenarios, where prior knowledge
about the number of clusters is generally unavailable.

The dirichlet process mixture model [Antoniak, 1974],
which belongs to the Bayesian nonparametric family, is one
of the most popular methods that are capable of inferring
the number of clusters automatically. This distinguishing
ability is further utilized and strengthened. Teh et al. [2006]
proposed Hierarchical Dirichlet processes, which can share
mixture components among different clusters. The maxi-
mum margin DPM (MMDPM) introduces a discriminate
model for clustering, which bridges DPM and the SVM clas-
sifier [Chen et al., 2016]. All these methods operate in the
raw feature space, without the ability to learn more expres-
sive representation. Recently Echraibi et al. [2020] proposed
the Dirichlet process deep latent Gaussian mixture model
(DP-DLGMM), which combines the Dirichlet process prior
with the deep latent Gaussian mixture model so that the
number of mixture components can be adjusted. However,
their work focuses on representation learning rather than
clustering.

Naturally one may wonder whether it is possible to simulta-
neously infer the number of mixture components and learn
better (possibly nonlinear) features. Ehsan Abbasnejad et al.
[2017] proposed to use an infinite mixture of VAEs to model
the data. Since the number of effective VAEs may increase
as more data arrives, their model can adapt to the complexity
of the data. In the paper of [Nalisnick and Smyth, 2017],
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stick-breaking variational autoencoders (SB-VAEs) were
presented, which model the latent variables in VAEs to be
infinite-dimensional. Dirichlet processes and particularly
the stick-breaking construction serve as the cornerstones in
their method. Our work distinguishes from theirs in both
goal and methodology: their works focus on improving the
performance of semi-supervised classification tasks, while
our research considers the unsupervised task of clustering
where the number of mixtures and better representation
needs to be jointly learned. Both of their models are based
on VAEs while our method utilizes the recently proposed
flow-based invertible deep neural network, which demon-
strates superior performance in various density estimation
and computer vision tasks [Dinh et al., 2015, Kingma and
Dhariwal, 2018].

3 METHODOLOGY

3.1 OVERVIEW

Consider the input as a set X = {xi ∈ RD}Ni=1. Our
first step is to use a standard dimension reduction tech-
nique to extract representative features, so that the follow-
ing clustering can be performed in the lower dimensional
feature space. In our work we use the stack autoencoder
[Vincent et al., 2010, Xie et al., 2016] to extract the fea-
tures as Y = {yi = he(xi) ∈ Rd}Ni=1 (d ≪ D), where
he and hd denote the encoder and decoder functions re-
spectively, such that hd(he(x)) ≈ x. Next the features are
transformed by a nonlinear learnable function f(y;θ) into
Z = {zi = f(yi;θ) ∈ Rd}Ni=1. Clustering is performed in
this transformed space. We assume that each zi follows an
isotropic Gaussian distribution. Suppose that zi belongs to
the k-th cluster, the likelihood is given by:

p(zi|µk, λk) = N (zi|µk, λ
−1
k I)

= (
λk

2π
)

d
2 exp

(
−λk

2
||zi − µk||2

)
, (1)

where µk and λk denote the mean and the precision of the
k-th cluster. Note that the isotropic Gaussian assumption
does not restrict the model’s capacity since the transforma-
tion f(yi;θ) is nonlinear, which is implemented by a deep
neural network in practice. The cluster assignment variables
are denoted as c = {ci ∈ {1, ...,K}}Ni=1, where ci = k
indicates that zi belongs to the k-th cluster. Here the to-
tal number of clusters K is unknown to us and could be
arbitrarily large.

From the Bayesian perspective, the task of clustering is
equivalent to the inference of

p(c, {µk}Kk=1, {λk}Kk=1|Y;θ,Φ). (2)

Here Φ is the set of hyperparameters that specify the prior,
which will soon be introduced in the next section. We em-
phasize the challenges of the task: 1) the number of clusters

K is unknown; 2) θ parameterizes a deep neural network
which needs to be learned; 3) the cluster information (i.e.,
µk and λk) need to be computed at the same time. In what
follows we will see how the proposed method can address
all these challenges under a unified framework.

3.2 MODEL SPECIFICATION

Likelihood in the feature space Eq. (1) describes the
likelihood function in the transformed space. Now we de-
rives the likelihood in the feature space (i.e., before the
transformation) as follows:

p(Y|c, {µk}Kk=1, {λk}Kk=1;θ,Φ)

=
∏

p(yi|µci , λci ;θ,Φ)

=
∏

p(zi|µci , λci)|det
∂f(yi;θ)

∂yi
|. (3)

The last term in Eq. (3) is due to the change of variable
zi = f(yi;θ). Recall that p(zi|µci , λci) is given in Eq (1).

For a general nonlinear function f(yi;θ) implemented by a
neural network, the Jacobian term in Eq. (3) is analytically
intractable. To address this problem we utilize the NICE
model [Dinh et al., 2015], which is a flow-based deep neural
network with the appealing property that the determinant of
Jacobian can be trivially computed. The basic idea of NICE
is that, in each layer it splits the input y into two parts as
y = {y1,y2}, and defines the output as z = {z1, z2}where
z1 = y1 and z2 = y2 + σ(y1). It is easy to verify that for
such function the determinant of Jacobian equals one. After
stacking multiple such layers, we have a highly nonlinear
function whose Jacobian term can be trivially cancelled out.
Another useful property of NICE is that the transformation
is invertible. Particularly if z = f(y;θ), y = f−1(z;θ)
can also be easily computed. Interested readers may refer to
[Dinh et al., 2015] for further details.

Dirichlet process mixture model in the transformed
space After the transformation zi = f(yi;θ), we can
now perform clustering in this transformed space. In our
problem the number of clusters K is unknown. The Dirich-
let process mixture (DPM) models [Antoniak, 1974, Neal,
2000, Li et al., 2019] is one of the most popular tools in this
situation. Here we present a concise review of DPM models,
and in the next subsection we will see how to connect it
with NICE.

Given a measurable space (Θ,A) where A is a σ-algebra
defined on Θ, the Dirichlet process (DP) [Ferguson, 1973]
is characterized by a probability measure G0 on the mea-
sure space, and a positive scaling parameter α. A DP is
a random probability measure over (Θ,A), denoted as
G ∼ DP (G0, α), such that for any partition (A1, ..., Ar)
of Θ we have

(G(A1), ..., G(Ar)) ∼ Dir(α0G0(A1), ..., α0G0(Ar)),



where Dir is the finite-dimensional Dirichlet distribution.
In other words, a DP is a “distribution over distribution”.

The DPM model is based on DP. Under our formulation, it
is defined as

G|G0, α ∼ DP (G0, α) (4)
µk, λk|G ∼ G(µk, λk) (5)
zi|µk, λk ∼ p(zi|µk, λk) (6)

The likelihood in (6) is given in Eq. (1), i.e., in our work
the DPM model is applied in the transformed space Z =
{zi = f(yi;θ)}Ni=1. We define the base distribution G0 as
the conjugate prior of the likelihood, which is the normal-
gamma distribution [Bishop, 2006]1:

µk,λk|µ0, κ0, α0, β0 ∼ NG(µk, λk|µ0, κ0, α0, β0)

= N (µk|µ0, (κ0λk)
−1I)Gamma(λk|α0, β0). (7)

A key property of DPM models is that the marginalized
conditional distribution of the cluster assignment variable
has closed from:

p (ci = k | c−i, α) =


n−i,k

N − 1 + α
, n−i,k > 0

α

N − 1 + α
, n−i,k = 0

(8)

where c−i = c \ {ci}, N is the number of all data points,
and n−i,k is the size of the k-th cluster excluding the i-
th datum. Intuitively the first formula is the probability of
assigning the i-th datum into the k-th existing cluster, while
the second formula is the probability of assigning it to a new
cluster. The proof of this result is available in many related
literature [Görür and Rasmussen, 2010, Chen et al., 2016,
Li et al., 2019].

We collect all the hyperparameters in the DPM model as
Φ = {α,µ0, κ0, α0, β0}, which was used in Eq. (2). To
keep the representation succinct we will suppress Φ in the
following discussions, unless it is explicitly needed.

3.3 UNIFIED PARAMETER ESTIMATION

To combine NICE and DPM models, the key question is how
to learn the deep neural network, or in other words how to
optimize the parameters θ in f(yi;θ). In this subsection we
will address this challenge with the Monte Carlo expectation-
maximization (MC-EM) algorithm. The whole process is
summarized in Algorithm 1.

3.3.1 The Overall MC-EM Framework

We consider c, {µk}Kk=1 and {λk}Kk=1 in Eq. (2) as hidden
variables, Y as the observed variables, and θ as the set of

1In our work we consider µk as a vector, while in the standard
normal-gamma distribution it is a scalar.

parameters need to be optimized. To keep the representation
succinct, we denote H = {{µk}Kk=1, {λk}Kk=1}. Following
the maximal likelihood principle, the optimal θ∗ is:

θ∗ = argmaxθp(Y|θ). (9)

This can be solved by the expectation-maximization (EM)
algorithm [Dempster et al., 1977], which iterates between
the E-step and M-step until converges:

E: Q(θ,θ(old)) = EH,c|Y,θ(old) [log p(H, c,Y|θ)] (10)

M: θ(new) = argmaxθQ(θ,θ(old)) (11)

θ(old) ← θ(new) (12)

In the case that the E-step (10) has no closed-form solution,
it can be numerically estimated as

Q(θ,θ(old)) ≈ 1

G

∑
g

log p(H(g), c(g),Y|θ), (13)

where H(g), c(g) ∼ p(H, c|Y,θ(old)) are i.i.d. samples and
G is the sample size. This method is called the Monte Carlo
EM algorithm [Bishop, 2006]. As θ denotes the parameters
of a deep neural network, we can use stochastic gradient
descent to find the maximal value in Eq. (11):

θt+1 ← θt + λs
∂

∂θ
Q(θ,θ(old)) (14)

≈ θt +
λs

G

∑
g

∂

∂θ
log p(H(g), c(g),Y|θ), (15)

where λs is the learning rate. Finally to complete the picture,
we need to:

• Present the analytical form of the complete data like-
lihood p(H(g), c(g),Y|θ), and particularly the deriva-
tive of the log-likelihood in Eq. (15);

• Develop a method to obtain the samples H(g), c(g) ∼
p(H, c|Y,θ(old)).

These two questions will be addressed respectively in the
following two subsections.

3.3.2 The Complete Data Likelihood

With our discussions in the model specification section, the
complete data likelihood can be derived as follows:

p(H(g), c(g),Y|θ)
=p(Y|H(g), c(g);θ)p(H(g), c(g))

=p(Z|H(g), c(g))p(H(g), c(g))
∏
i

|det ∂f(yi;θ)

∂yi
|

=p(Z|H(g), c(g))p(H(g))p(c(g))

=
∏
i

p(zi|µ(g)
ci , λ(g)

ci )
∏
k

p(µ
(g)
k , λ

(g)
k )p(c(g)),



Algorithm 1 DDPM(X, he(·),Φ, λs)

Require: Input dataset X; encoder he(·); hyperparameters
Φ; learning rate λs

Ensure: Cluster parameters {µk, λk}Kk=1; cluster assign-
ment vector c.

1: Initialize neural network’s parameters θ
2: Y ← {he(xi)|xi ∈ X}Ni=1.
3: for epoch in {1, ..., EPOCHS} do
4: Z(old) ← {f(yi;θ)}Ni=1

5: \\ E-step; iterations for the Gibbs sampling
6: for t in {1, ..., GIBBS_STEPS} do
7: For each k sample µk, λk ∼ p(µk, λk|H \

{µk, λk}, c,Z(old)) by Eq. (17)
8: For each i sample ci ∼ p(ci|c−i,Z

(old),H) by Eq.
(18) and Eq. (19)

9: end for
10: For each k sample µ

(g)
k , λ

(g)
k , for each i sample c

(g)
i

11: \\M-step; optimization of the NICE model
12: for t in {1, ..., OPT_STEPS} do
13: Sample a batch Y(b) ← {yi ∈ Y}Bi=1

14: ∇θ ← ∂
∂θ log p(H(g), c(g),Y(b)|θ) (Eq. (16))

15: θ ← θ + λs∇θ

16: end for
17: end for
18: Return sampled cluster parameters {µ(g)

k , λ
(g)
k }Kk=1,

and the cluster assignment vector c(g)

where p(zi|µ(g)
ci , λ

(g)
ci ) is given in Eq. (1). As we are inter-

ested in optimizing the neural network’s parameters θ, and
the likelihood only involves θ through zi = f(yi;θ), the
derivative of the log-likelihood is:

∂

∂θ
log p(H(g), c(g),Y|θ)

=
∑
i

∂

∂θ
log p(zi|µ(g)

ci , λ(g)
ci )

=
∑
i

−λ(g)
ci (zi − µ(g)

ci )
∂f(yi;θ)

∂θ
. (16)

Since f(yi;θ) is implemented by a DNN, its derivative
can be automatically computed by many modern machine
learning frameworks like PyTorch [Paszke et al., 2019].

3.3.3 Gibbs Sampling

Next we consider how to obtain the samples H(g), c(g) ∼
p(H, c|Y,θ(old)) = p(H, c|Z(old)), where we define that
Z(old) = {z(old)i = f(yi;θ

(old))}Ni=1. This can be achieved
by Gibbs sampling, which states that we can sample from
the joint distribution by iteratively sampling from the con-
ditional distribution of each variable while keeping others
fixed [Bishop, 2006]. So in what follows we will derive the
conditional distribution of each variable.

Conditional distribution of µk and λk:

p(µk, λk|H \ {µk, λk}, c,Z(old))

=p(µk, λk|c,Z(old))

=p(µk, λk|[Z(old)]k)

=NG(µk, λk|µn, κn, αn, βn), (17)

where [Z(old)]k = {zi ∈ Z(old)|ci = k} denotes all the
latent variables which are assigned to the k-th cluster. So
the result is a normal-gamma distribution, with parameters
given by:

nk = #[Z(old)]k, z̄k =
1

nk

∑
zi∈[Z(old)]k

zi,

µn =
κ0µ0 + nkz̄k

κ0 + nk
, κn = κ0 + nk,

αn = α0 +
nkd

2
,

βn = β0 +
1

2

∑
zi∈[Z(old)]k

||zi − z̄k||22 +
κ0nk||z̄k − µ0||22

2(κ0 + nk)
.

Conditional distribution of ci:

• If n−i,k > 0 (assign to an existing cluster):

log p(ci = k|c−i,Z
(old),H)

= log p (ci = k | c−i, α) + log p(zi|µk, λk) + const

= log
n−i,k

N − 1 + α
+ logN (zi|µk, λ

−1
k I) + const (18)

• If n−i,k = 0 (assign to a new cluster):

log p(ci = k|c−i,Z
(old),H)

= log p(zi|µ0, κ0, α0, β0)p (ci = k | c−i, α) + const

= log

∫
p(zi|µ, λ)NG(µ, λ|µ0, κ0, α0, β0)dµdλ+

log p (ci = k | c−i, α) + const

= log Γ(α′
n)− log Γ(α0) + α0 log β0 − α′

n log β
′
n+

1

2
(log κ0 − log κ′

n)−
nd

2
log 2π+

log
α

N − 1 + α
+ const, (19)

where

κ′
n = κ0 + 1,

α′
n = α0 + d/2,

β′
n = β0 +

κ0||zi − µ0||22
2(κ0 + 1)

.

Since the normal-gamma distribution is the conjugate prior
of the likelihood, the integration in the third line of Eq. (19)
is analytically tractable [Murphy, 2007].



Table 1: Hyperparameters of the prior distribution.

Dataset α µ0 κ0 α0 β0

MNIST 1.0E-03 0.0 0.005 2000 1000
HHAR 1.0E-10 0.0 0.005 6000 1000
STL-10 1.0E-10 0.0 0.005 10000 1000
REU-10K 1.0E-10 0.0 0.005 6000 1000

4 EXPERIMENTS

4.1 SYNTHETIC DATASETS

We begin by demonstrating DDPM’s potential on two syn-
thetic datasets, and the results are shown in Fig. 1.

Non-isotopic Gaussian dataset: In the first example we
generate three clusters. The data points in each cluster are
sampled from a non-isotopic Gaussian distribution with
different covariance matrices. As the training continues, the
data points gradually “concentrate” and approximate the
standard Gaussian distribution, which is a more convenient
representation for clustering.

Intertwined moon dataset: In this example the ini-
tial raw data consists of two intertwined clusters of moon
shapes. Note that such representation is challenging for
many centroid-based clustering methods, including k-means
and DPM. Interestingly, during the training of DDPM, the
clusters in the latent representation space are automatically
disentangled and finally be successfully identified. This ex-
ample shows that DDPM can learn better representation
during the training, and also articulates the mutually benefi-
cial relationship between clustering and feature learning.

4.2 REAL-WORLD DATASETS

4.2.1 Datasets and settings

Datasets: We evaluate our method on 4 widely used real-
world datasets including MNIST [LeCun et al., 1998],
HHAR [Stisen et al., 2015], STL-10 [Coates et al., 2011]
and REU-10K [Lewis et al., 2004]. MNIST is a handwritten
digit database, containing 10 classes of 786-dimensional
training samples with 7000 samples for each class. HHAR
is a sensor signal classification dataset, containing 10 classes
of 561-dimensional training samples and 10200 samples in
total. STL-10 is an image recognition dataset, which con-
tains unlabeled data for unsupervised learning. It contains
10 classes of 2048-dimensional training samples and 1300
samples for each class. REU-10K is a text classification
dataset consisting of the TF-IDF features of the word. It has
4 classes of 2000-dimensional training instances, and 10000
samples in total.

Model structure and settings: We train the autoencoder

Table 2: Performance comparison on real-world datasets.

Dataset Methods ARI F score V score

MNIST
G-means 0.1126 0.1255 0.5314
DPM 0.3974 0.4511 0.5571
DDPM 0.4400 0.4917 0.6016

HHAR
G-means 0.0904 0.1146 0.4358
DPM 0.4342 0.5385 0.5761
DDPM 0.4473 0.5449 0.5865

STL-10
G-means 0.2140 0.2512 0.4830
DPM 0.2156 0.3073 0.4679
DDPM 0.2269 0.3193 0.4917

REU-10K
G-means 0.0581 0.0933 0.3147
DPM 0.1406 0.2365 0.3662
DDPM 0.1827 0.2756 0.3918

by following the prior work of [Jiang et al., 2017]. The
network structure is d-500-500-2000-10 for encoder and
10-2000-500-500-d for decoder, where d denotes the dimen-
sion of preprocessed input samples. The encoded features
are normalized to have 0 mean and 1 standard deviation.
The NICE model has 6 layers, each containing 512 units.
The training starts with running the standard DPM model
for 3 epochs, and each epoch sweeps through the whole
dataset for 3 times. After that the main DDPM algorithm
runs for 5 epochs. In each epoch the loop of Gibbs sampling
sweeps the dataset 3 times, and the NICE model is trained
for 0.2N iterations (N is the size of the dataset). The batch
size is 128 and the learning rate is set to be 1.0E-6. The
hyperparameters of the prior are listed in Table 1.

4.2.2 Numerical Results

In our study, we assume the number of clusters K is un-
known, so we focus on three K-agnostic evaluation metrics
for performance comparison: adjust random index (ARI)
[Steinley, 2004], clustering F1 score (F score), and V-
measure score (V score) [Rosenberg and Hirschberg, 2007].
For all these metrics larger means better, and their defini-
tions are presented as follows.

• ARI is an adjusted version of the Rand Index (RI).
Suppose that C is the ground truth class assignment
and K is the predictive clustering. We define a as the
number of pairs of elements that are in the same set in
C and in the same set in K, and define b as the number
of pairs of elements that are in different sets in C and
in different sets in K. RI is then given by RI = a+b

C2
N

,

where C2
N is the total number of possible data pairs.

Finally, ARI is defined as ARI = RI−E[RI]
max(RI)−E[RI] .

• F score for clustering evaluation is just a traditional
F1 score calculated based on a pair confusion matrix.
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(a) The comparison of DDPM and DPM. The benefit of better feature learning is significant.
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(b) The comparison of applying k-means to DDPM’s learned feature and the raw feature.

Figure 2: The performance of clustering using the raw autoencoder features (ae repr) and DDPM’s learned features (flow
repr). (a) DDPM significantly outperforms DPM by learning better representation. (b) By using the learned features in
the standard k-means, all metrics in almost all the datasets are improved, and the improvement in the MNIST dataset is
particularly significant. This demonstrates DDPM’s ability to learn better and transferable representation.

Similar to ARI, The pair confusion matrix (Hubert and
Arabie [1985]) computes a 2 by 2 similarity matrix be-
tween two clusters by considering all pairs of samples
and counting pairs that are assigned into the same or
into different clusters under the ground truth cluster
assignment.

• V score is defined based on the homogeneity term h =

1−H(C|K)
H(C) and the completeness term c = 1−H(K|C)

H(K) .
Here H(C) is the entropy of the classes and H(C | K)
is the conditional entropy of the classes, defined as

H(C) = −
|C|∑
c=1

nc

N
· log

(nc

N

)
,

H(C | K) = −
|C|∑
c=1

|K|∑
k=1

nc,k

N
· log

(
nc,k

nk

)
Homogeneity encourages each cluster contains only
members of a single class, and completeness prefers
all members of a given class to be assigned to the same
cluster. The V score is finally defined as v = 2 · h·c

h+c .

We compare with two other clustering baselines that can
infer the number of clusters K, i.e., the standard Dirichlet
Process Mixture (DPM) Model and G-means [Zhao et al.,
2008]. The numerical results are presented in Table 2, where

the best results are highlighted with bold font. We can see
that DDPM consistently outperforms other baselines across
various datasets and metrics.

4.2.3 Representation quality

To show that the learned representation of DDPM is bet-
ter than DPM and even transferable to other algorithms,
we examine and compare the features before and after pro-
cessing by the model in all datasets. We additionally apply
the k-means clustering algorithms in the feature space (i.e.,
{yi = he(xi) ∈ Rd}Ni=1) and the transformed space (i.e.,
{zi = f(yi;θ) ∈ Rd}Ni=1), with the number of clusters
K specified by DDPM. The results are presented in Fig.
2. It is obvious that the DPM performs better in all cases
when the features learned from the DDPM are used. More-
over, with the same prior of K, the k-means can also benefit
from the learned representation (e.g. particularly evident
in the MNIST dataset), indicating the transferability of the
enhanced features. This means that the feature learned from
DDPM is not only suitable for DPM but also for other algo-
rithms. We also visualize the learning process of DDPM in
Fig. 3. We randomly select 5,000 samples from the MNIST
datasets and visualize their t-SNE embedding over different
epochs. We can see the clusters become denser and more
concentrated as the training progresses, which is potentially
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Figure 3: The representation learning process of DDPM on MNIST. The clearest example is the cluster of number 1, which
becomes denser and more concentrated as the training process progresses. Its shape gradually changes from a crescent to a
circle, making it easier to distinguish from other clusters.
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Figure 4: The generated handwritten digits in the MNIST dataset.

beneficial for clustering and label discrimination.

4.2.4 DDPM as a generative model

Benefiting from the reversibility of the flow model, DDPM
can be utilized as a generative model. We select the largest
cluster for each ground truth label, and generate 25 random
samples by adding scaled noise to the cluster centers. Specif-
ically for each selected cluster k, we obtain µ̂ = µk + nϵ,
where ϵ ∼ N (0, 1) is a Gaussian noise and n is the noise
scale. Since the flow model is invertible, we can obtain the
sample as x̂ = hd(f

−1(µ̂;θ)). The visualization results are
presented in Fig. 4. It can be observed that DDPM is capable
of generating clear handwritten digits with sharp edges.

4.2.5 Impact of the autoencoder

In this subsection we study the impact of the autoencoder’s
quality to the performance of our clustering method. We
trained the autoencoder for a different number of iterations

and repeated our experiments. As we previously discussed,
DPM performs clustering directly on the features extracted
by the autoencoder, while DDPM further applies the flow
model. The results are presented below (the fully trained
autoencoder is optimized for 100000 iterations). We can see
that the performance of the clustering methods generally
improves as the autoencoder is better trained. Nonetheless,
for all the #iter. settings, DDPM consistently outperforms
DPM, and the improvement is robust. So our method is
effective even if the autoencoder is not sufficiently trained
or has low quality.

5 CONCLUSION

In this paper we proposed the deep Dirichlet process mixture
(DDPM) model, which jointly achieves clustering and fea-
ture learning in an unsupervised fashion. Our method com-
bines the strengths of the traditional DPM models and deep
neural networks. Based on the Dirichlet process, DDPM
inherits the ability to adapt the number of mixture compo-



Table 3: Impact of the autoencoder trained with different number of iterations.

#iter. ARI F SCORE V SCORE

DPM DDPM ↑ DPM DDPM ↑ DPM DDPM ↑
250000 0.2352 0.2618 11% 0.3309 0.3549 7% 0.3754 0.3928 5%
500000 0.3001 0.3316 10% 0.3844 0.4071 6% 0.4306 0.4481 4%
750000 0.2584 0.2815 9% 0.3567 0.3790 6% 0.4117 0.4488 9%

1000000 0.3974 0.4400 11% 0.4511 0.4917 9% 0.5571 0.6016 8%

nents, which is an important and useful feature in many
real-world scenarios where prior knowledge of the clus-
ters is unavailable. The invertible flow-based deep neural
network component further enables DDPM to learn com-
plex and nonlinear features. Experimental results suggested
that DDPM can learn more expressive representation, and
achieve better clustering performance compared to other
baselines. As for future work, we would like to improve the
training efficiency by employing other inference techniques,
such as the variational inference framework [Blei and Jor-
dan, 2006]. It is also interesting to extend our method to
more sophisticated DPM models like the hierarchical Dirich-
let processes [Teh et al., 2006].
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