
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP DISTRIBUTED OPTIMIZATION FOR
LARGE-SCALE QUADRATIC PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Quadratic programming (QP) forms a crucial foundation in optimization, encom-
passing a broad spectrum of domains and serving as the basis for more advanced
algorithms. Consequently, as the scale and complexity of modern applications
continue to grow, the development of efficient and reliable QP algorithms becomes
increasingly vital. In this context, this paper introduces a novel deep learning-
aided distributed optimization architecture designed for tackling large-scale QP
problems. First, we combine the state-of-the-art Operator Splitting QP (OSQP)
method with a consensus approach to derive DistributedQP, a new method tai-
lored for network-structured problems, with convergence guarantees to optimality.
Subsequently, we unfold this optimizer into a deep learning framework, leading
to DeepDistributedQP, which leverages learned policies to accelerate reaching to
desired accuracy within a restricted amount of iterations. Our approach is also the-
oretically grounded through Probably Approximately Correct (PAC)-Bayes the-
ory, providing generalization bounds on the expected optimality gap for unseen
problems. The proposed framework, as well as its centralized version DeepQP,
significantly outperform their standard optimization counterparts on a variety of
tasks such as randomly generated problems, optimal control, linear regression,
transportation networks and others. Notably, DeepDistributedQP demonstrates
strong generalization by training on small problems and scaling to solve much
larger ones (up to 50K variables and 150K constraints) using the same policy.
Moreover, it achieves orders-of-magnitude improvements in wall-clock time com-
pared to OSQP. The certifiable performance guarantees of our approach are also
demonstrated, ensuring higher-quality solutions over traditional optimizers.

1 INTRODUCTION

Quadratic programming (QP) serves as a fundamental cornerstone in optimization with a wide va-
riety of applications in machine learning (Cortes & Vapnik, 1995; Tibshirani, 1996), control and
robotics (Garcia et al., 1989; Rawlings et al., 2017), signal processing (Mattingley & Boyd, 2010),
finance (Cornuejols et al., 2018), and transportation networks (Mota et al., 2014) among other
fields. Beyond its standalone applications, QP also acts as the core component of many advanced
non-convex optimization algorithms such as sequential quadratic programming (Nocedal & Wright,
1999), trust-region methods (Conn et al., 2000), augmented Lagrangian approaches (Houska et al.,
2016), mixed-integer optimization (Belotti et al., 2013), etc. For these reasons, the pursuit of more
efficient QP algorithms remains an ever-evolving area of research from active set (Wolfe, 1959) and
interior point methods (Nesterov & Nemirovskii, 1994) during the previous century to first-order
methods such as the state-of-the-art Operator Splitting QP (OSQP) algorithm (Stellato et al., 2020).

As the scale of modern decision-making applications rapidly increases, there is an emerging in-
terest in developing effective optimization architectures for addressing high-dimensional problems.
Given the fundamental role of QP in optimization, there is a clear demand for algorithms capable
of solving large-scale QPs with thousands, and potentially much more, variables and constraints.
Such problems arise in diverse applications including sparse linear regression (Mateos et al., 2010)
and support vector machines (Navia-Vazquez et al., 2006) with decentralized data, multi-agent con-
trol (Van Parys & Pipeleers, 2017), resource allocation (Huang et al., 2014), network flow (Mota
et al., 2014), power grids (Lin et al., 2012) and image processing (Soheili & Eftekhari-Moghadam,
2020). Traditional centralized optimization algorithms are inadequate for solving such problems at

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

scale (see for example Fig. 1), prompting the development of distributed methods that leverage the
underlying network/decentralized structure to parallelize computations. In this context, the Alter-
nating Direction Method of Multipliers (ADMM) has gained widespread popularity as an effective
approach for deriving distributed algorithms (Boyd et al., 2011; Mota et al., 2013). Nevertheless,
as scale increases, such algorithms continue to face significant challenges such as their need for
meticulous tuning, the absence of generalization guarantees and restrictions on the allowed number
of iterations imposed by computational or communication limitations.

62ms

129ms

3s

8.2s

146ms

511ms

22.4s

90.1s

61ms
86ms

9m 58s

N/A

Figure 1: Wall-clock time comparison:
DeepDistributedQP, DistributedQP (ours)
and OSQP on large-scale QPs.

Learning-to-optimize has recently emerged as a
methodology for enhancing existing optimizers or de-
veloping entirely new ones through training on sample
problems (Chen et al., 2022; Amos et al., 2023). A
notable approach within this paradigm is deep unfold-
ing, which involves unrolling the optimizer iterations
for a fixed number of steps and tuning their parameters
to refine performance (Monga et al., 2021; Shlezinger
et al., 2022). Our key insight is that deep unfolding is
particularly well-suited for overcoming the limitations
of distributed constrained optimization, as it can elim-
inate the need for extensive tuning, manage iteration
restrictions and enhance generalization. However, to
our best knowledge, its combination with distributed
optimization has only recently been explored in Noah
& Shlezinger (2024). While this framework shows promising initial results, it relies on a relatively
simple setup that studies unconstrained problems, assumes local updates consisting of gradient steps,
focuses solely on parameter tuning, and is not accompanied by any formal performance guarantees.

This paper introduces a novel deep learning-aided distributed optimization architecture for solving
large-scale constrained QP problems. Our proposed approach relies on unfolding a newly intro-
duced distributed QP algorithm as a supervised learning framework for a prescribed number of
iterations. To our best knowledge, this is the first work to propose a learning-based architecture for
distributed constrained optimization using ADMM, despite its widespread popularity. Our frame-
work demonstrates remarkable performance and scalability when trained on small problems and
can be effectively applied to much larger ones. Furthermore, its performance is theoretically sup-
ported by establishing guarantees based on generalization bounds from statistical learning theory.
We believe that this work lays the foundation for developing learned distributed optimizers capable
of handling large-scale constrained optimization problems without requiring training at such scales.

Our specific contributions can be summarized as follows:

• First, we introduce DistributedQP, a new decentralized method that combines the well-
established OSQP solver with a consensus approach. We further prove that the algorithm
is guaranteed to converge to optimality, even under varying local algorithm parameters.

• Then, we propose DeepDistributedQP, a deep learning-aided distributed architecture that
unrolls the iterations of DistributedQP in a supervised manner, learning feedback policies
for the underlying algorithm parameters. As a byproduct, we also present DeepQP, its
centralized counterpart which corresponds to unfolding the standard OSQP solver.

• To certify the performance of the learned solver, we establish generalization guarantees on
the optimality gap of the final solution of DeepDistributedQP for unseen problems using
Probably Approximately Correct (PAC)-Bayes theory.

• Finally, we present an extensive experimental evaluation that validates the following:
– For centralized QPs, DeepQP consistently outperforms OSQP requiring 1.5-3 times

fewer iterations for achieving the desired accuracy.
– DeepDistributedQP successfully scales for high-dimensional problems (up to 50K

variables and 150K constraints) while being trained exclusively on much smaller ones.
Furthermore, both DeepDistributedQP and DistributedQP outperform OSQP in wall-
clock time by orders of magnitude as problem dimensionality increases.

– The resulting performance bounds offer valuable guarantees on the quality of solutions
produced by DeepDistributedQP for unseen problems from the same class.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

This section provides an overview of the existing related literature from both the angles of distributed
optimization and learning-to-optimize approaches.

Distributed optimization with ADMM. Distributed ADMM algorithms have emerged as a scal-
able approach for addressing large-scale optimization problems (Boyd et al., 2011; Mota et al.,
2013). Despite their significant applicability to machine learning (Mateos et al., 2010), robotics
(Shorinwa et al., 2024) and many other fields, their successful performance has been shown to be
highly sensitive to the proper tuning of its underlying parameters (Xu et al., 2017; Saravanos et al.,
2023). Moreover, tuning parameters for large-scale problems is often tedious and time-consuming,
making it desirable to develop effective learned optimizers that can be trained on smaller problems
instead. Furthermore, even if an distributed optimizer performs well for a specific problem instance,
its generalization to new problems remains challenging to verify. These challenges constitute our
main motivation for studying learning-aided distributed ADMM architectures. We also note that an
ADMM-based distributed QP solver resembling a simpler version of DistributedQP was presented
in Pereira et al. (2022), but it focused on multi-robot control and lacked theoretical analysis.

Learning-to-optimize. The area of learning-to-optimize methods has emerged as an effective ap-
proach for enhancing existing optimizers or even deriving new algorithmic updates through training
on sample problems (Chen et al., 2022; Shlezinger et al., 2022; Amos et al., 2023). A prominent
technique in this paradigm is deep unfolding, which under the realistic assumption of computational
budget restrictions, unrolls a fixed number of iterations as layers of a deep learning framework and
learns the optimal parameters for improving performance on a specific problem class (Monga et al.,
2021; Zhang et al., 2020). Nevertheless, combining deep unfolding with distributed ADMM has only
been investigated recently in Noah & Shlezinger (2024). Although this framework demonstrates
promising results, it is limited to an unconstrained problem formulation, assumes gradient-based
local updates, focuses exclusively on parameter tuning and lacks formal performance guarantees. A
reinforcement learning algorithm for accelerating OSQP was presented in Ichnowski et al. (2021).
While this approach also explores learning policies for algorithm parameters, it is limited to central-
ized quadratic programming, lacks guarantees and its training comes at a significant computational
cost. In the context of establishing generalization bounds for learned optimizers, Sambharya & Stel-
lato (2024) recently explored the idea of incorporating PAC-Bayes bounds in learned optimizers, yet
our approach differs fundamentally, as their method employs a binary error function, whereas ours
directly establishes bounds based on the optimality gap of the final solution. The works in Sucker &
Ochs (2023) and Sucker et al. (2024) are also investigating generalization bounds for learned opti-
mizers, considering the update function as a gradient step or a multi-layer perceptron, respectively.

3 DISTRIBUTED QUADRATIC PROGRAMMING

3.1 PROBLEM FORMULATION

Global variable components

Local variables

w1 w2 w3 w4

[x1]1 = w1

[x1]2 = w2 [x2]1 = w2

[x2]2 = w3

[x3]1 = w3

[x3]2 = w4

x1 x2 x3

Figure 2: Example of consensus
mapping G in problem (2).

A convex (centralized) QP problem is expressed in general as

min
x

1

2
x⊤Qx+ q⊤x s.t. Ax ≤ b, (1)

where x ∈ Rn is the decision vector and ζ = {Q ∈ Sn++, q ∈
Rn,A ∈ Rm×n, b ∈ Rm} are the problem data. 1 As the scale
of such problems increases to higher dimensions, there is often
an underlying networked/decentralized structure that could be
leveraged for achieving distributed computations. This work specifically aims to address problems
characterized by such structures. Let w ∈ Rn be the main global variable and xi ∈ Rni be local
variables i ∈ V = {1, . . . , N}. Then, assume a mapping (i, j) 7→ G(i, j) from all index pairs (i, j)
of local variable components [xi]j to indices l = G(i, j) of global components wl

2 - for an example
see Fig. 2. We consider QP problems of the following distributed consensus form:

min
x,w

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi ≤ bi, xi = w̃i, i ∈ V, (2)

1Note that equality constraints can also be captured as pairs of inequalities.
2This formulation is adopted from the standard consensus ADMM framework (Boyd et al., 2011), wherein

local variables are typically associated with their respective computational nodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the problem data are now given by ζ = {ζi}Ni=1 with ζi = (Qi ∈ Sni
++, qi ∈ Rni ,Ai ∈

Rmi×ni , bi ∈ Rmi). The vector x = [{xi}i∈V] is the concatenation of all local variables, while
w̃i ∈ Rni , defined as w̃i = [{wl}l∈G(q,j):q=i], is the selection of global variable components that
correspond to the components of xi. This form captures a wide variety of large-scale QPs found
in machine learning (Mateos et al., 2010; Navia-Vazquez et al., 2006), optimal control (Van Parys
& Pipeleers, 2017), transportation networks, (Mota et al., 2014), power grids (Lin et al., 2012),
resource allocation (Huang et al., 2014) and many other fields.

3.2 DISTRIBUTEDQP: THE UNDERLYING OPTIMIZATION ALGORITHM

This section introduces a new distributed algorithm named DistributedQP for solving problems of
the form (2). The proposed method can be viewed as a combination of consensus ADMM (Boyd
et al., 2011) and OSQP (Stellato et al., 2020) using local iteration-varying penalty parameters.

Let us introduce the auxiliary variables zi, si ∈ Rmi , such that problem (2) can be reformulated as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, si ≤ bi, zi = si, xi = w̃i, i ∈ V.

The proposed DistributedQP algorithm is then summarized as follows, where k denotes iterations:

1. Local updates for xi, zi. For each node i ∈ V , solve in parallel:[
Qi + µk

i I A⊤
i

Ai −1/ρki I

] [
xk+1
i

νk+1
i

]
=

[
−qi + µk

i w̃i − yi

zi − 1/ρki λi

]
, (3)

and then update in parallel

zk+1
i = ski + 1/ρki (ν

k+1
i − λk

i). (4)

2. Local updates for si and global update for w. For each node i ∈ V , update in parallel:

sk+1
i = Πsi≤bi

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i

)
. (5)

In addition, each global variable component wl is updated through:

wk+1
l = αk

∑
G(i,j)=l µ

k
i [xi]j∑

G(i,j)=l µ
k
i

+ (1− αk)wk
l . (6)

3. Local updates for Lagrange multipliers λi,yi. For each node i ∈ V , update in parallel:

λk+1
i = λk

i + ρki (α
kzk+1

i + (1− αk)ski − sk+1
i), (7)

yk+1
i = yk

i + µk
i (α

kxk+1
i + (1− αk)w̃k

i − w̃k+1
i). (8)

The Lagrange multipliers νi,λi and yi correspond to the equality constraints Aixi = zi, zi = si
and xi = w̃i, respectively. The penalty parameters ρi, µi > 0 correspond to zi = si and xi = w̃i,
while αk ∈ [1, 2) are over-relaxation parameters. A complete derivation is provided in Appendix A.

3.3 CONVERGENCE GUARANTEES

Prior to unrolling DistributedQP into a deep learning framework, it is particularly important to estab-
lish that the underlying optimization algorithm is well-behaved even for varying parameters, i.e., it
is expected to asymptotically converge to the optimal solution. This property is especially important
in deep unfolding where parameters are expected to be distinct between different iterations.

In the simpler case of αk = 1, ρki = ρ, µk
i = µ, the standard convergence guarantees of two-

block ADMM would apply directly (Deng & Yin, 2016); for a detailed discussion, see Appendix
B. Nevertheless, the introduction of local iteration-varying penalty parameters ρki , µ

k
i , as well as

the over-relaxation with varying parameters αk makes proving the convergence of this algorithm
non-trivial. In the following, we provide convergence guarantees to optimality for DistributedQP.

We consider the following assumption for the penalty parameters.
Assumption 1. As k → ∞, the parameters ρki = ρk−1

i , µk
i = µk−1

i , for all i ∈ V .
Theorem 1 (Convergence guarantees for DistributedQP). If Assumption 1 holds and αk ∈ [1, 2),
then the iterates wk converge to the optimal solution w∗ of problem (2), as k → ∞.

The proof of Theorem 1, as well as necessary intermediate results, are provided in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Layer k = 1 Layer k = K

i = 1

i = N

L
oc

al
Pr

ob
le

m
D

at
a

&
In

iti
al

iz
at

io
ns

L
oc

al
Pr

ob
le

m
D

at
a

&
In

iti
al

iz
at

io
ns

L
oc

al
up

da
te

(3
)-

(4
)

L
oc

al
up

da
te

(3
)-

(4
)

L
oc

al
up

da
te

(5
)

L
oc

al
up

da
te

(5
)

G
lo

ba
lu

pd
at

e
(6

)

D
ua

lu
pd

at
e

(7
)-

(8
)

D
ua

lu
pd

at
e

(7
)-

(8
)

L
oc

al
up

da
te

(3
)-

(4
)

L
oc

al
up

da
te

(3
)-

(4
)

G
lo

ba
lu

pd
at

e
(6

)

ρ̄01

µ̄0
1

ρ̄0N

µ̄0
N

ρ̂01

µ̂0
1

ρ̂0N

µ̂0
N

ᾱ0

r01

s01

r01

s01

r0N

s0N

r0N

s0N

x1
1, z

1
1

x1
N , z1

N

x1
2, z

1
2

x1
N−1, z

1
N−1

s11

s1N

w1

w̃1
1

w̃1
N

y1
1 ,λ

1
1

y1
N ,λ1

N

ρ̄K−1
1

µ̄K−1
1

ρ̄K−1
N

µ̄K−1
N

ρ̂K−1
1

µ̂K−1
1

ρ̂K−1
N

µ̂K−1
N

rK−1
1

sK−1
1

rK−1
1

sK−1
1

rK−1
N

sK−1
N

rK−1
N

sK−1
N

ᾱK−1
xK
1 , zK

1

xK
N , zK

N

xK
2 , zK

2

xK
N−1, z

K
N−1

wK

Training Loss

Figure 3: The DeepDistributedQP architecture. The proposed framework relies on unrolling the
DistributedQP optimizer as a supervised deep learning framework. In particular, we interpret its
iterations (3)-(8) as sequential network layers and introduce learnable components (orange blocks)
to facilitate reaching the desired accuracy after a predefined number of allowed iterations.

4 THE DEEPDISTRIBUTEDQP ARCHITECTURE

The proposed DeepDistributedQP architecture emerges from unfolding the iterations of the Dis-
tributedQP optimizer into a deep learning framework. Section 4.1 illustrates the main architecture,
key aspects of our methodology, as well as the centralized version DeepQP. Section 4.2 leverages
implicit differentiation during backpropagation to facilitate the training of our framework.

4.1 MAIN ARCHITECTURE

Architecture overview. The DeepDistributedQP architecture arises from unrolling the Distribut-
edQP optimizer within the supervised learning paradigm. (Fig. 3). This is accomplished through
treating the updates (3)-(7) as blocks in sequential layers of a deep learning network. The number of
layers is equal to the predefined number of allowed iterations K, with each layer corresponding to
an iteration k = 1, . . . ,K. The inputs of the network are the local problem data ζi and initializations
x0
i , z0

i , w̃0
i , s0i , λ0

i and y0
i . These are initially passed to N parallel local blocks corresponding to

(3)-(4), which output the new variables x1
i and z1

i . Then, all z1
i are fed into N new parallel local

blocks (5), yielding the new iterates s1i . In the meantime, all x1
i are communicated to a central node

that computes the new iterate w1 through the weighted averaging step (6). Subsequently, the global
variable components w̃i are communicated back to each local node i, to perform the updates (7)-
(8) which output the updated dual variables λi,yi. This group of blocks is then repeated K times,
yielding the output of the network which is the final global variable iterate wK .

Learning feedback policies. Standard deep unfolding typically leverages data to learn algorithm
parameters tailored for a specific problem (Shlezinger et al., 2022). From a control theoretic point
of view, this process can be interpreted as seeking open-loop policies without the incorporating any
feedback. In our setup, this would be equivalent with learning the optimal parameters ρ̄ki , µ̄k

i , ᾱk

ρki = SoftPlus(ρ̄ki), µk
i = SoftPlus(µ̄k

i), αk = Sigmoid1,2(ᾱ
k), (9)

for all i = 1, . . . , N and k = 1, . . . ,K, where the SoftPlus(·) function is used to guarantee the
positivity of ρki , µk

i , and the sigmoid function Sigmoid1,2(·) restricts each αk to lie between (1, 2).

In the meantime, the predominant practice for online adaptation of the ADMM penalty parameters
relies on observing the primal and dual residuals every few iterations (Boyd et al., 2011). The
widely-used rule suggests that if the ratio of primal-to-dual residuals is high, the penalty parameter
ρ should be increased; conversely, if the ratio is low, ρ should be decreased. Despite its heuristic
nature, this approach includes a notion of “feedback” since the current state of the optimizer is used
to adapt the parameters, and as a result, it can be interpreted as a closed-loop policy. Based on this

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

point of view, our goal is to learn the optimal closed-loop policies for the local penalty parameters

ρki = SoftPlus
(
ρ̄ki + πk

i,ρ(r
k
i,ρ, s

k
i,ρ; θ

k
i,ρ)︸ ︷︷ ︸

ρ̂k
i

)
, µk

i = SoftPlus
(
µ̄k
i + πk

i,µ(r
k
i,µ, s

k
i,µ; θ

k
i,µ)︸ ︷︷ ︸

µ̂k
i

)
, (10)

where ρ̂ki , µ̂k
i are feedback components obtained from policies πk

i,·(r
k
i,·, s

k
i,·; θ

k
i,·), parameterized by

fully-connected neural network layers with inputs rki,·, s
k
i,· and weights θki,·. The terms rki,· and ski,·

represent the local primal and dual residuals of node i at layer k and are detailed in Appendix D.

Solving the local updates. The most computationally demanding block in DeepDistributedQP is
solving the local updates (3), as this requires solving a linear system of size ni+mi. Similar to OSQP
(Stellato et al., 2020), this can be accomplished using either a direct or an indirect method. The direct
method factors the KKT matrix, solving the system via forward and backward substitution. This
approach is particularly efficient when penalty parameters remain fixed, as the same factorization
can then be reused accross iterations. Nevertheless, at larger scales, this factorization might become
impractical. In contrast, with the indirect method, we eliminate νk+1

i to solve the linear system:

(Qi + µk
i I +A⊤

i ρ
k
iAi)︸ ︷︷ ︸

Q̄k
i

xk+1
i = −qi + µk

i w̃i − yi +A⊤
i ρ

k
i zi −A⊤

i λi︸ ︷︷ ︸
b̄k
i

. (11)

This new linear system is solved for xk+1
i using an iterative scheme such as the conjugate gradi-

ent (CG) method. We then substitute νk+1
i = ρki (Aix

k+1
i − zi) + λi. The indirect method has

three important properties that make it particularly attractive in our setup. First, its computational
complexity scales better w.r.t. the dimension of the local problem, while no additional overhead is
introduced by changing the penalty parameters. Second, it can be warmstarted using the solution
from the previous iteration, greatly reducing the number of iterations required to converge to a solu-
tion. The final important property, which is critical for the scalability of the DeepDistributedQP, is
that training with the indirect method can be much more memory efficient as shown in Section 4.2.

Training loss. Let S = {ζj}Hj=1 be a dataset consisting of H problem instances ζj =

{(Qi, qi,Ai, bi)
N
i=1,w

∗}j subject to the known mapping G of problem (2). The loss we are us-
ing for training is the average of the γk-scaled distances of the global iterates w1, . . . ,wN from the
known optimal solution w∗ of each problem instance ζj , provided as

ℓ(S; θ) = 1

H

H∑
j=1

K∑
k=1

γk∥wk(ζj ; θ)−w∗(ζj)∥2, (12)

where θ corresponds to the concatenation of all learnable parameters/weights of our framework.

Layer k = 1 Layer k = K

Fi
rs

tu
pd

at
e

(1
36

)

Se
co

nd
up

da
te

(1
38

)

D
ua

lu
pd

at
e

(1
39

)

Fi
rs

tu
pd

at
e

(1
36

)

x1

z1

t1

s1
λ1

Pr
ob

le
m

D
at

a
&

In
iti

al
iz

at
io

ns

Tr
ai

ni
ng

L
os

s

ᾱ0

ρ̄0

ρ̂0r0

s0

xK

ρ̄K−1

ρ̂K−1rK−1

sK−1

Figure 4: The DeepQP architecture: The cen-
tralized version of DeepDistributedQP.

Centralized version. While this work pri-
marily focuses on distributed optimization, for
completeness, we also introduce DeepQP, the
centralized version of our framework, for ad-
dressing general QPs of the form (1). In the
centralized case, our framework simplifies to
N = 1, eliminating the need for distinguish-
ing between local and global variables. Under
this simplification, the DistributedQP optimizer
coincides with OSQP. Hence, DeepQP consists
of unfolding the OSQP updates (see Appendix E) and learning policies for adapting its penalty and
over-relaxation parameters. The resulting framework is illustrated in Fig. 4. Additional details on
DeepQP are provided in Appendix E.

4.2 IMPLICIT DIFFERENTIATION

When solving for the local updates in (11) using the indirect method, it is computationally intractable
to backpropagate through all CG iterations. This is especially important in the context of unfolding,
as it would become necessary to unroll multiple inner CG optimization loops. To address this, we
leverage the implicit function theorem (IFT) to express the solution of (11) as an implicit function

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of the local problem data. This allows us to compute gradients in a manner that avoids unrolling the
CG iterations and requires solving a linear system with the same coefficient matrix, but with a new
RHS, achieved by rerunning the CG method. This result is formalized in the following theorem.
Theorem 2 (Implicit Differentiation of Indirect Method). Let xk+1

i be the unique solution to the
linear system Q̄k

i x
k+1
i = b̄ki in (11). Let ∇xL(x

k+1
i) be a backward pass vector computed through

reverse-mode automatic differentiation of some loss function L. Then, the gradient of L with respect
to Q̄k

i and b̄ki is given by

∇Q̄k
i
L =

1

2
(xk+1

i ⊗ dxk+1
i + dxk+1

i ⊗ xk+1
i),

∇b̄k
i
L = −dxk+1

i ,

where dxk+1
i is the unique solution to the linear system Q̄k

i dx
k+1
i = −∇xL(x

k+1
i).

The proof is provided in Appendix F and is a straightforward application of the IFT, similar to the
results established by Amos & Kolter (2017) and Agrawal et al. (2019).

5 GENERALIZATION BOUNDS

In this section, we establish guarantees on the expected performance of DeepDistributedQP. To
achieve this, we leverage the PAC-Bayes framework (Alquier, 2024), a well-known statistical learn-
ing methodology for providing bounds on expected loss metrics that hold with high probability. In
our case, we provide bounds on the expected progress of the final iterate wK towards reaching the
optimal solution w∗ for unseen problems drawn from the same distribution as the training dataset.

Learning stochastic policies. PAC-Bayes theory is applicable to frameworks that learn weight
distributions rather than fixed weights. For this reason, in order to establish such guarantees, we
switch to learning a Gaussian distribution of weights P = N (µΘ,ΣΘ) based on a prior P0 =
N (µ0

Θ,Σ
0
Θ). This choice is motivated by the fact that PAC-Bayes bounds include Kullback–Leibler

(KL) divergence terms which can be easily evaluated and optimized for Gaussian distributions.

Generalization bound for DeepDistributedQP. To facilitate the exhibition of our performance
guarantees, we provide necessary preliminaries on PAC-Bayes theory in Appendix G. To establish a
generalization guarantee for DeepDistributedQP, a meaningful loss function must first be selected.
This quantity will be denoted q(ζ; θ) to differentiate from the loss used for training. To capture the
progress the optimizer makes towards optimality, we propose the following progress metric:

q(ζ; θ) = min

{
∥wK(ζ; θ)−w∗(ζ)∥2
∥w0(ζ)−w∗(ζ)∥2

, 1

}
. (13)

This loss function measures progress by comparing the distance between the final iterate wK(ζ; θ)
and problem solution w∗(ζ) with the distance between the initialization w0(ζ; θ) and the solution.
This choice satisfies the requirement of being bounded between 0 and 1 while being more informa-
tive than the indicator losses used in prior work that simply determine whether the final iterate is
within a specified neighborhood of the optimal solution (Sambharya & Stellato, 2024). Moreover,
this loss is invariant to the scale of the problem data since it is a relative measurement.

As in Appendix G, let qD(P) be the true expected loss and qS(P) the empirical expected loss. To
evaluate the PAC-Bayes bounds in (148), the expectation Eθ∼P [q(ζ; θ)] must be computed as part
of the definition of qS(P). Since no closed-form solution is available, an empirical estimate using
M sampled weights (θi)

M
i=1 is required to upper bound qS(P) with high probability. We adopt a

standard approach involving a sample convergence bound (Majumdar et al. (2021), Dziugaite & Roy
(2017), Langford & Caruana (2001)). Specifically, define the empirical estimate of qS(P) as:

q̂S(P;M) =
1

MH

H∑
i=1

M∑
j=1

q(ζi; θj). (14)

Then, the following sample convergence bound provides an upper bound on qS(P),

qS(P) ≤ q̄S(P;M, ϵ) := DKL
(
q̂S(P;M) ∥ M−1 log (2/ϵ)

)
. (15)

with probability 1− ϵ. The following theorem summarizes the PAC-Bayes bound we use to evaluate
the generalization capabilities of our framework.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Small-scale centralized comparison of DeepQP and OSQP. Across all tested problems,
DeepQP consistently outperforms OSQP (same per-iteration complexity using the indirect method).

Theorem 3 (Generalization bound for DeepDistributedQP). For problems ζ ∈ Z drawn from dis-
tribution D, the true expected progress metric of DeepDistributedQP with policy P , i.e.,

qD(P) = Eζ∼D Eθ∼P

[
min

{
∥wK(ζ; θ)−w∗(ζ)∥2
∥w0(ζ)−w∗(ζ)∥2

, 1

}]
, (16)

is bounded with probability at least 1− δ − ϵ by:

qD(P) ≤ D−1
KL

(
q̄S(P;M, ϵ)

∥∥∥(DKL(P∥P0) + log(2
√
H/δ)

)
/H
)
, (17)

where q̄S(P;M, ϵ) is the estimate of qS(P;M, ϵ) described in Eq. (15).

We explain in detail how we train for optimizing the generalization bounds in Appendix H.

6 EXPERIMENTS

We conduct extensive experiments to highlight the effectiveness, scalability and generalizability
of the proposed methods. Section 6.1 shows the advantageous performance of DeepQP against
OSQP on a variety of centralized QPs. In Section 6.2, we address large-scale problems, showcasing
the scalability of DeepDistributedQP despite being trained exclusively on much lower-dimensional
instances. Additionally, we discuss the advantages of learning local policies over shared ones and
evaluate the proposed generalization bounds, which provide guarantees for the performance of our
framework on unseen problems. An overall discussion and potential limitations are provided in
Section 6.3. All experiments were performed on an system with an RTX 4090 GPU 24GB, a 13th
Gen Intel(R) Core(TM) i9-13900K and 64GB of RAM.

6.1 SMALL-SCALE CENTRALIZED EXPERIMENTS: DEEPQP VS OSQP

Setup. We begin with comparing DeepQP against OSQP for solving centralized QPs (1). The
following problems are considered: i,ii) random QPs without/with equality constraints, iii, iv) opti-
mal control for double integrator and oscillating masses, v) portfolio optimization, and vi) LASSO
regression. For all problems, we set a maximum allowed amount of iterations K for DeepQP within
[10, 30] and examine how many iterations OSQP requires to reach the same accuracy. We train
DeepQP using both open-loop and closed-loop policies and with a dataset of size H ∈ [500, 2000].
For OSQP, we consider both constant and adaptive penalty parameters ρ and we set α to be either
1.0 or 1.6. Additional details on DeepQP, OSQP and the problems can be found in Appendix I.
Performance comparison. The comparison between DeepQP and OSQP is illustrated in Fig. 5.
Note that both methods share the same per-iteration complexity from solving (139). We evaluate
their performance by comparing the (normalized) optimality gap ∥xk − x∗∥2/

√
n. For all tested

problems, DeepQP provides a consistent improvement over OSQP, requiring 1.5 − 3 times fewer
iterations to reach the desired accuracy. Furthermore, the advantage of incorporating feedback in
the policies is shown, as closed-loop policies outperform open-loop ones in all cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

50ms
129ms

514ms 703ms

63ms
159ms

3.03s
8.2s

75ms
240ms

693ms 956ms

83ms

371ms

5.83s
11.6s

146ms
285ms

22.4s
90.1s

317ms
628ms

N/A N/A

92ms149ms

5.45s

132s

133ms
305ms

243s

N/A

21ms 32ms

8.73s 11.6s

61ms86ms

558s

N/A

31ms 51ms

85.9s
343s

69ms
130ms

N/A N/A

Figure 6: Scaling DeepDistributedQP to high-dimensional problems. Left: Comparison be-
tween DeepDistributedQP and its traditional optimization counterpart DistributedQP (same per-
iteration complexity). Right: Total wall-clock time required by DeepDistributedQP, DistributedQP
and OSQP (using indirect or direct method) to achieve the same accuracy.

6.2 LARGE-SCALE DISTRIBUTED EXPERIMENTS: SCALING DEEPDISTRIBUTEDQP
Setup. The purpose of the following analysis is to compare the performance and scalability of
DeepDistributedQP (ours), DistributedQP (ours) and OSQP for large-scale QPs of the form (2). We
consider the following six problems: i,ii) random networked QPs without/with equality constraints,
iii, iv) multi-agent optimal control for coupled pendulums and oscillating masses, v) network flow,
and vi) distributed LASSO. We select a maximum allowed number of iterations K for DeepDis-
tributedQP within [20, 50] and examine what is the computaional effort required by DistributedQP
and OSQP to achieve the same accuracy measured by the optimality gap ∥wk −w∗∥2/

√
n. More

details about our experimental setup are provided in Appendix I.
Training on low-dimensional problems. One of the key advantages of DeepDistributedQP is that
it only requires using small-scale problems for training. The training dimensions for each problem
are detailed in Table 1. Both open-loop and closed-loop versions are trained using shared policies
on datasets of size H ∈ [500, 1000]. We employ the shared policies version of DeepDistributedQP
to enable the same policies to be applied to larger problems during testing.
Scaling to high-dimensional problems. Subsequently, we evaluate DeepDistributedQP on prob-
lems with significantly larger scale than those used during training. The maximum problem dimen-
sions tested are shown in Table 1. On the left side of Fig. 6, we highlight the superior performance
of DeepDistributedQP over its standard optimization counterpart DistributedQP (same per-iteration
complexity). In all cases, the learned algorithm achieves the same level of accuracy while requiring
1.5-3.5 times fewer iterations. Additionally, the right side of Fig. 6 compares the total wall-clock
time between DeepDistributedQP, DistributedQP and OSQP (using indirect or direct method). For a
complete illustration, we refer the reader to Table 6 in Appendix I.5. The provided results emphasize
the superior scalability of the two proposed distributed methods against OSQP for large-scale QPs,
as well as the advantage of our deep learning-aided approach over traditional optimization.
Local vs shared policies. When applying a policy to a problem with the same dimensions as used
during training, leveraging local policies instead of shared ones can be advantageous for better ex-
ploiting the structure of the problem. On the left side of Fig. 7 ,we compare the performance of local
and shared policies on random QPs and coupled pendulums. For the coupled pendulums problem,
which exhibits significant underlying structure, local policies demonstrate clear superiority. For the
random QPs problem, where structural patterns are less pronounced, the advantage of local policies
is smaller but still significant.
Performance guarantees. Next, we verify the guarantees of our framework for generalizing on
unseen random QP (N = 16) and coupled pendulums (N = 10) problems. We switch from
learning deterministic weights to learning stochastic ones and follow the procedure described in
Appendix H with H = 15000 training samples, M = 30000 sampled weights for the bounds
evaluation, δ = 0.009 and ϵ = 0.001. The resulting generalization bounds, illustrated in Fig. 7
(right), are expressed in terms of the the expected final relative optimality gap - the progress metric

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Training dimensions for DeepDistributedQP and maximum testing dimensions. The
metric nnz(Q,A) denotes the total number of non-zero elements in Q and A.

Training Max Testing
Problem Class N n m nnz(Q,A) N n m nnz(Q,A)
Random QPs 16 160 120 4,000 1,024 10,240 9,920 300,800

Random QPs w/ Eq. Constr. 16 160 168 4,960 1,024 10,240 9,920 300,800
Coupled Pendulums 10 470 640 3,690 1,000 47,000 64,000 380,880

Coupled Osc. Masses 10 470 1,580 4,590 300 28,200 47,400 141,180
Network Flow 20 100 140 600 5,000 25,000 35,000 150,000

Distributed LASSO 10 1,100 3,000 29,000 500 50,100 150,000 1,450,000

Figure 7: Left: Local vs shared policies. We showcase the advantage of learning local policies
over shared ones . Right: Performance guarantees. The obtained generalization bounds guarantee
the performance of DeepDistributedQP and its improvements over DistributedQP.

used for deriving bounds in Section 5, implying that with 99% probability the average performance
of our framework will be bounded by this threshold. The bounds are observed to be tight compared
to actual performance, underscoring their significance. Moreover, they outperform the standard
optimizers, providing a strong guarantee of improved performance for DeepDistributedQP.

6.3 DISCUSSION

In which cases can we use the direct method? As illustrated in Fig. 6 and Table 6, and further
discussed in Stellato et al. (2020), the indirect method is generally preferred for solving systems
of the form (3) - or (137) for DeepQP/OSQP - once the problem reaches a certain scale. In this
work, we adopt this approach both for training, due the memory and computational advantages out-
lined in Section 4.2, and evaluating DeepDistributedQP/DeepQP. However, it is worth considering
whether the direct method might be advantageous during evaluation, a choice that depends on the
problem scale and capabilities of the available hardware. Overall, the results of this work show that
learning policies for the algorithm parameters is significantly beneficial in the context of both dis-
tributed and centralized QP assuming the indirect method is used. In future work, we wish to also
explore schemes that adapt the parameters less frequently using the direct method and/or designing
mechanisms to dynamically switch between the two approaches.
Limitations. One limitation of the proposed framework is its reliance on a supervised training
loss, requiring a dataset of pre-solved problems. In future work, we aim to explore training through
directly minimizing the problem residuals rather than the optimality gaps. Furthermore, while PAC-
Bayes theory provides an important probabilistic bound on average performance, stronger guaran-
tees may be necessary for safety-critical applications to ensure reliability and robustness.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced DeepDistributedQP, a new deep learning-aided distributed optimiza-
tion architecture for solving large-scale QP problems. The proposed method relies on unfolding the
iterations of a novel optimizer named DistributedQP as layers of a supervised deep learning frame-
work. The expected performance of our learned optimizer on unseen problems is also theoretically
established through PAC-Bayes theory. DeepDistributedQP exhibits impressive scalability in effec-
tively tackling large-scale optimization problems while being trained exclusively on much smaller
ones. In addition, both DeepDistributedQP and Distributed significantly outperform OSQP in terms
of required wall-clock time to reach the same accuracy as dimension increases. Furthermore, we
showcase that the proposed PAC-Bayes bounds provide meaningful practical guarantees for the per-
formance of DeepDistributedQP on new problems. In future work, we wish to extend the proposed
framework to a semi-supervised version that relies less on pre-solved problems for training. In ad-
dition, we wish to explore incorporating more complex learnable components such as LSTMs for
feedback within our framework. Finally, we wish to consider other classes of distributed constrained
optimization methods outside of quadratic programming.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. Foundations and Trends in Ma-
chine Learning, 17(2):174–303, 2024.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International conference on machine learning, pp. 136–145. PMLR, 2017.

Brandon Amos et al. Tutorial on amortized optimization. Foundations and Trends® in Machine
Learning, 16(5):592–732, 2023.

Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh Ma-
hajan. Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131, 2013.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine learning, 3(1):1–122, 2011.

Steven W Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari. Large scale
model predictive control with neural networks and primal active sets. Automatica, 135:109947,
2022.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Christian Conte, Tyler Summers, Melanie N Zeilinger, Manfred Morari, and Colin N Jones. Compu-
tational aspects of distributed optimization in model predictive control. In 2012 IEEE 51st IEEE
conference on decision and control (CDC), pp. 6819–6824. IEEE, 2012a.

Christian Conte, Niklaus R Voellmy, Melanie N Zeilinger, Manfred Morari, and Colin N Jones. Dis-
tributed synthesis and control of constrained linear systems. In 2012 American control conference
(ACC), pp. 6017–6022. IEEE, 2012b.

Gerard Cornuejols, Javier Peña, and Reha Tütüncü. Optimization methods in finance. Cambridge
University Press, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 1995.

Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating
direction method of multipliers. Journal of Scientific Computing, 66:889–916, 2016.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy. On
the role of data in PAC-Bayes bounds. In International Conference on Artificial Intelligence and
Statistics, pp. 604–612. PMLR, 2021.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and prac-
tice—a survey. Automatica, 25(3):335–348, 1989.

Boris Houska, Janick Frasch, and Moritz Diehl. An augmented lagrangian based algorithm for
distributed nonconvex optimization. SIAM Journal on Optimization, 26(2):1101–1127, 2016.

Shaojun Huang, Qiuwei Wu, Shmuel S Oren, Ruoyang Li, and Zhaoxi Liu. Distribution locational
marginal pricing through quadratic programming for congestion management in distribution net-
works. IEEE Transactions on Power Systems, 30(4):2170–2178, 2014.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph E Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with
reinforcement learning. Advances in Neural Information Processing Systems, 34:21043–21055,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Steven George Krantz and Harold R Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

John Langford and Rich Caruana. (not) bounding the true error. Advances in Neural Information
Processing Systems, 14, 2001.

Shieh-Shing Lin, Shih-Cheng Horng, et al. Distributed quadratic programming problems of power
systems with continuous and discrete variables. IEEE Transactions on Power Systems, 28(1):
472–481, 2012.

Anirudha Majumdar, Alec Farid, and Anoopkumar Sonar. PAC-Bayes control: learning policies that
provably generalize to novel environments. The International Journal of Robotics Research, 40
(2-3):574–593, 2021.

Gonzalo Mateos, Juan Andrés Bazerque, and Georgios B Giannakis. Distributed sparse linear re-
gression. IEEE Transactions on Signal Processing, 58(10):5262–5276, 2010.

John Mattingley and Stephen Boyd. Real-time convex optimization in signal processing. IEEE
Signal processing magazine, 27(3):50–61, 2010.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Joao FC Mota. Communication-efficient algorithms for distributed optimization. PhD thesis,
Carnegie Mellon University, 2013.

Joao FC Mota, Joao MF Xavier, Pedro MQ Aguiar, and Markus Püschel. D-admm: A
communication-efficient distributed algorithm for separable optimization. IEEE Transactions on
Signal processing, 61(10):2718–2723, 2013.

João FC Mota, João MF Xavier, Pedro MQ Aguiar, and Markus Püschel. Distributed optimization
with local domains: Applications in mpc and network flows. IEEE Transactions on Automatic
Control, 60(7):2004–2009, 2014.

Angel Navia-Vazquez, D Gutierrez-Gonzalez, Emilio Parrado-Hernández, and JJ Navarro-Abellan.
Distributed support vector machines. IEEE Transactions on Neural Networks, 17(4):1091–1097,
2006.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Yoav Noah and Nir Shlezinger. Distributed learn-to-optimize: Limited communications optimiza-
tion over networks via deep unfolded distributed admm. IEEE Transactions on Mobile Comput-
ing, 2024.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Marcus A Pereira, Augustinos D Saravanos, Oswin So, and Evangelos A. Theodorou. Decentralized
Safe Multi-agent Stochastic Optimal Control using Deep FBSDEs and ADMM. In Proceedings
of Robotics: Science and Systems, New York City, NY, USA, June 2022. doi: 10.15607/RSS.
2022.XVIII.055.

James Blake Rawlings, David Q Mayne, Moritz Diehl, et al. Model predictive control: theory,
computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical and
learned optimizers. arXiv preprint arXiv:2404.13831, 2024.

Augustinos D Saravanos, Yuichiro Aoyama, Hongchang Zhu, and Evangelos A Theodorou. Dis-
tributed differential dynamic programming architectures for large-scale multiagent control. IEEE
Transactions on Robotics, 2023.

Nir Shlezinger, Yonina C Eldar, and Stephen P Boyd. Model-based deep learning: On the intersec-
tion of deep learning and optimization. IEEE Access, 10:115384–115398, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ola Shorinwa, Trevor Halsted, Javier Yu, and Mac Schwager. Distributed optimization methods for
multi-robot systems: Part 1—a tutorial. IEEE Robotics & Automation Magazine, 2024.

Majid Soheili and Amir Masoud Eftekhari-Moghadam. Dqpfs: Distributed quadratic programming
based feature selection for big data. Journal of Parallel and Distributed Computing, 138:1–14,
2020.

Valeriu Soltan. Moreau-type characterizations of polar cones. Linear Algebra and its
Applications, 567:45–62, 2019. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.
2019.01.006. URL https://www.sciencedirect.com/science/article/pii/
S0024379519300199.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An operator splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637–672, 2020.

Michael Sucker and Peter Ochs. Pac-bayesian learning of optimization algorithms. In International
Conference on Artificial Intelligence and Statistics, pp. 8145–8164. PMLR, 2023.

Michael Sucker, Jalal Fadili, and Peter Ochs. Learning-to-optimize with pac-bayesian guarantees:
Theoretical considerations and practical implementation. arXiv preprint arXiv:2404.03290, 2024.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Ruben Van Parys and Goele Pipeleers. Distributed mpc for multi-vehicle systems moving in forma-
tion. Robotics and Autonomous Systems, 97:144–152, 2017.

Philip Wolfe. The simplex method for quadratic programming. Econometrica: Journal of the
Econometric Society, pp. 382–398, 1959.

Zheng Xu, Mario Figueiredo, and Tom Goldstein. Adaptive admm with spectral penalty parameter
selection. In Artificial Intelligence and Statistics, pp. 718–727. PMLR, 2017.

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfolding network for image super-resolution.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
3217–3226, 2020.

13

https://www.sciencedirect.com/science/article/pii/S0024379519300199
https://www.sciencedirect.com/science/article/pii/S0024379519300199

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A COMPLETE DERIVATION OF DISTRIBUTEDQP ALGORITHM

Here, we present the detailed derivation of the DistributedQP algorithm presented in Section 3.2.
We consider the over-relaxed version of ADMM (Boyd et al., 2011) with α ∈ [1, 2).

First, let us rewrite problem (2) as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, zi ≤ bi, xi = w̃i, i ∈ V. (18)

where we have introduced the auxiliary variables zi for each i = 1, . . . , N . In addition, we let us
define the new variables si, i = 1, . . . , N , and rewrite the above problem as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi
(xi, zi)

s.t. zi = si, si ≤ bi, xi = w̃i, i = 1, . . . , N.

(19)

The above splitting constitutes the problem suitable for being addressed with a two-block ADMM
scheme where the first block of variables consists of {xi, zi}i=1,...,N , while the second one consists
of {si}i=1,...,N and w. The (scaled) augmented Lagrangian (AL) for this problem is given by

L =
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi(xi, zi) + Isi≤bi(si)

+
ρi
2

∥∥∥∥zi − si +
λi

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥xi − w̃i +
yi

µi

∥∥∥∥2
2

.

(20)

The first block of variables is updated through

{xi, zi}i∈V = argminL(x, z, sk,wk,λk,yk) (21)

which can be decoupled to the following subproblems for each i ∈ V:

{xi, zi} = argmin
1

2
x⊤
i Qixi + q⊤

i xi +
ρi
2

∥∥∥∥zi − si +
λi

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥xi − w̃i +
yi

µi

∥∥∥∥2
2

(22)

s.t. Aixi = zi.

Since these problems are equality constrained QPs, we can find a closed-form solution. The opti-
mality conditions for each subproblem are given by

Qixi + qi + µi(xi − w̃i) + yi +A⊤
i νi = 0 (23a)

ρi(zi − zi) + λi − νi = 0 (23b)
Aixi − zi = 0 (23c)

where νi is the Lagrange multiplier corresponding to the constraint Aixi = zi. Eliminating zi
leads to the following system of equations[

Qi + µiI A⊤
i

Ai −1/ρiI

] [
xk+1
i

νk+1
i

]
=

[
−qi + µiw̃

k
i − yk

i

zi − 1/ρiλ
k
i

]
(24)

with zk+1
i given by

zk+1
i = ski + ρ−1

i (νk+1
i − λk

i). (25)
The second block of updates is given by

{si}i∈V ,w = argminL(xk+1, zk+1, s,w,λk,yk) (26)

or more analytically

{si}i∈V ,w = argmin
∑
i∈V

ρi
2

∥∥∥∥αzk+1
i + (1− α)ski − si +

λk
i

ρi

∥∥∥∥2
2

(27)

+
µi

2

∥∥∥∥αxk+1
i + (1− α)w̃k

i − w̃i +
yk
i

µi

∥∥∥∥2
2

s.t. si ≤ bi (28)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Note that this minimization can be decoupled w.r.t. all si, i ∈ V and w. In particular, each si can
be updated in parallel through

sk+1
i = Πsi≤bi

(
αzk+1

i + (1− αk)ski + λk
i /ρi

)
. (29)

The global variable w minimization can be decoupled among the components ℓ = 1, . . . , n, as
follows

wℓ = argmin
∑

G(i,j)=ℓ

µi

2

∥∥∥∥α[xk+1
i]j + (1− α)[w̃k

i]j − [w̃i]j +
[yk

i]j
µi

∥∥∥∥2
2

(30)

Setting the gradient to be equal to zero gives∑
G(i,j)=ℓ

µi

[
α[xk+1

i]j + (1− α)wk
ℓ −wk+1

ℓ +
[yk

i]j
µi

]
= 0 (31)

which leads to ∑
(G(i,j)=ℓ

µiw
k+1
ℓ =

∑
G(i,j)=ℓ

µi

[
α[xk+1

i]j + (1− α)wk
ℓ +

[yk
i]j
µi

]
(32)

which eventually gives the update rule

wk+1
ℓ =

∑
G(i,j)=ℓ αµi[x

k+1
i]j + [yk

i]j∑
G(i,j)=ℓ µi

+ (1− α)wk
ℓ . (33)

Finally, the dual variables are updated through dual ascent steps as follows

λk+1
i = λk

i + ρi(αz
k+1
i + (1− α)ski − sk+1

i) (34)

yk+1
i = yk

i + µi(αx
k+1
i + (1− α)w̃k

i − w̃k+1
i). (35)

It is important to observe that after the first iteration, the global update can be simplified to

wk+1
ℓ = α

∑
G(i,j)=ℓ µi[x

k+1
i]j∑

G(i,j)=ℓ µi
+ (1− α)wk

ℓ , (36)

since the summation∑
G(i,j)=ℓ

[yk+1
i]j =

∑
G(i,j)=ℓ

[yk
i]j + µi(α[x

k+1
i]j + (1− α)[w̃k

i]j − [w̃k+1
i]j)

=
∑

G(i,j)=ℓ

[yk
i]j + µi(α[x

k+1
i]j + (1− α)wk

ℓ −wk+1
ℓ)

=
∑

G(i,j)=ℓ

[yk
i]j + µi

[
α[xk+1

i]j +�����(1− α)wk
ℓ

−
∑

G(u,v)=ℓ αµu[x
k+1
u]v + [yk

u]v∑
G(u,v)=ℓ µu

−�����(1− α)wk
ℓ

]

=
∑

G(i,j)=ℓ

[yk
i]j + µi

[
α[xk+1

i]j −
∑

G(u,v)=ℓ αµu[x
k+1
u]v + [yk

u]v∑
G(u,v)=ℓ µu

]

=
∑

G(i,j)=ℓ

[yk
i]j + αµi[x

k+1
i]j −������∑

G(i,j)=ℓ µi

[∑
G(u,v)=ℓ αµu[x

k+1
u]v + [yk

u]v

]
������∑

G(u,v)=ℓ µu

=
∑

G(i,j)=ℓ

[yk
i]j + αµi[x

k+1
i]j −

∑
G(u,v)=ℓ

αµu[x
k+1
u]v + [yk

u]v = 0. (37)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B STANDARD CONVERGENCE GUARANTEES FOR SIMPLIFIED
DISTRIBUTEDQP

In the simplified case where ρki = ρ, µk
i = µ for all i ∈ V and for all k, as well as αk = 1, for all k,

it would be straightforward to apply the classical convergence guarantees of two-block ADMM for
convex optimization problems.

Let us define the variables x̄ = [{xi}i∈V ; {zi}i∈V] and z̄ = [{si}i∈V ;w]. Then, we can rewrite
problem (19) as

min f(x̄) + g(z̄) s.t. Āx̄+ B̄z̄ = c̄, (38)
where

f(x̄) =
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi
(xi, zi), g(z̄) =

∑
i∈V

Isi≤bi
(si), (39)

and Ā = bdiag(I, I), B̄ = bdiag(I,G) and c = 0, with G ∈ R(
∑

i ni)×n defined such that
x = Gw. In other words, G is the matrix that represents the local-to-global variable components
mapping, formally defined as G = [G1; . . . ;GN] with each submatrix Gi ∈ Rni×n given by

[Gi]u,v =

{
1, if v = G(i, v)
0, else

. (40)

Given this representation, it becomes clear that our algorithm can be framed as a two-block ADMM.
Now, note that G is a full column rank matrix since all global variable components gℓ are mapped to
at least one local variable component [xi]j . Then, since the functions f, g are convex and the matri-
ces Ā, B̄ are full column rank, it follows from Deng & Yin (2016) that the algorithm is guaranteed
to converge to the optimal solution.

Nevertheless, this analysis would have only been applicable to this simplified case of the proposed
DISTRQP algorithm. In Appendix C, we tackle the more complex case of varying local penalty
parameters and varying relaxation parameters. A similar analysis is exhibited in In Xu et al. (2017),
the convergence of an adaptive relaxed variant of two-block ADMM is provided, yet that is not
directly applicable to our case which includes local penalty parameters.

C PROOF OF DISTRIBUTEDQP ASYMPTOTIC CONVERGENCE

C.1 SKETCH OF PROOF

In this section, we prove the convergence guarantees for DistributedQP. To begin, we outline the
following conventions. The points x∗, z∗, s∗,w∗,y∗,λ∗ are the KKT points of the problem (19).
We refer to the notion of a distance function at any (k+1)th iteration to be representing a weighted
squared norm of the difference between the variables sk+1,wk+1,yk+1,λk+1 and their correspond-
ing optimal values s∗,w∗,y∗,λ∗, indicating the distance from the optimal point.

We prove the convergence in the following steps.

• First, we will derive a descent relation (101), which establishes a relationship between the
values of the distance function for consecutive iterations. To derive the descent relation in
Lemma 4, we first introduce the relations (R1-R8) in Lemma 1-3.

• Next, we use the derived descent relation to prove the convergence in the subsection C.3
based on Assumption 1.

C.2 NECESSARY LEMMAS

Here, we present the necessary lemmas before proving the convergence of the algorithm. For nota-
tional convenience, we use

fi(xi) =
1

2
x⊤
i Qixi + q⊤

i xi, Ci = {si|si ≤ bi}. (41)

for each i ∈ V .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma 1. For all i ∈ V , the following relationships hold at every iteration k:

(R1):
∑
i∈V

G⊤
i y

k+1
i = 0, (42)

(R2): αkxk+1
i =

1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1, (43)

(R3): αkzk+1
i =

1

ρki
(λk+1

i − λk
i)− (1− αk)ski + sk+1

i , (44)

(R4): λk
i
⊤(t1 − t2) = 0, for any t1, t2 ∈ Ci. (45)

Proof. Relationship (R1) is equivalent with the argument proved in (37). Indeed, if we observe that
each matrix G⊤

i ∈ Rn×ni indicates the mapping from local indices (i, j) to global indices ℓ for a
particular i, then we can write

∑
i∈V

G⊤
i y

k+1
i =


∑

G(i,j)=1[y
k+1
i]j

...∑
G(i,j)=n[y

k+1
i]j

 = 0. (46)

Relationship (R2) follows by rearranging the dual update step (8) and replacing w̃i = Giw. Simi-
larly, relationship (R3) follows by rearranging the dual update step (7).

In the remaining, we focus on proving (R4). Let us first rewrite the si update (5) as

sk+1
i = ΠCi

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i

)
. (47)

Now, we consider a closed convex cone C̄i defined as

C̄i = {p| p ≤ 0}, (48)

such that (47) can be rewritten as follows.

sk+1
i = ΠC̄i

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i − bi

)
+ bi (49)

Let us also define ŝk+1 as follows,

ŝk+1
i = αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i − bi (50)

such that (49) is given as
sk+1
i = ΠC̄i

(
ŝk+1
i

)
+ bi (51)

Now, let us rewrite the dual update for λk+1
i in (7) as follows.

λk+1
i = λk

i + ρki (α
kzk+1

i + (1− αk)ski − sk+1
i) (52)

which can be rearranged to

λk+1
i = ρki (λ

k
i /ρ

k
i + αkzk+1

i + (1− αk)ski − sk+1
i) (53)

Using (50), the above can rewritten as

λk+1
i = ρki (ŝ

k+1
i + bi − sk+1

i) (54)

Substituting (51) in the above, we get

λk+1
i = ρki (ŝ

k+1
i −ΠC̄i

(
ŝk+1
i

)
) (55)

By Moreau’s decomposition (refer to theorems 1.1 and 1.2 from Soltan (2019)), the vector ŝk+1
i can

be written as follows.
ŝk+1
i = ΠC̄i

(
ŝk+1
i

)
+ΠC̄o

i

(
ŝk+1
i

)
(56)

where C̄o
i is a polar cone to C̄i.

Note that any two cone sets D and Do are called polar cones if for any d ∈ D and d̄ ∈ Do, dT d̄ = 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Thus, using (56) and (55), we get

λk+1
i = ρkiΠC̄o

i

(
ŝk+1
i

)
(57)

which implies that
λk+1
i /ρki ∈ C̄o

i (58)

Further, since C̄o
i is a cone, and ρki > 0, we get

λk+1
i ∈ C̄o

i (59)

Now, any vector t ∈ Ci satisfies the following.

t− bi ∈ C̄i (60)

Since C̄i and C̄o
i are polar cones, and using (59), the following relation holds true by the definition

of polar cones.
λk+1
i

T (t− bi) = 0 for all t ∈ Ci (61)

Thus, for any vectors t1, t2 ∈ Ci and for all k, we have

λk+1
i

T (t1 − t2) = λk+1
i

T (t1 − bi − (t2 − bi)) = 0 (62)

which proves the relationship (R3).

Lemma 2. The following relationships hold at every iteration k:

(R5):
(
∇fi(x

∗
i) + y∗

i

)⊤
(x∗

i − xk+1
i) + λ∗

i
⊤(z∗

i − zk+1
i) = 0 (63)

(R6):
[
∇fi(x

k+1
i) + yk+1

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]T
(xk+1

i − x∗
i)

+

[
λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]T
(zk+1

i − z∗
i) = 0 (64)

Proof. We start with proving relationship (R5). The KKT conditions for problem (19) can be written
as follows. The point (x∗, z∗, s∗,w∗) is the optimum of problem (19) if and only if the following
conditions are true:

Optimality for xi: ∇fi(x
∗
i) +A⊤

i ν
∗
i + y∗

i = 0 (65a)
Optimality for zi: − ν∗

i + λ∗
i = 0 (65b)

Optimality for si: λ∗
i ∈ NCi

(s∗i) ⇔ λ∗
i
⊤(si − s∗i) ≤ 0 ∀ si ∈ Ci (65c)

Optimality for w:
∑
i∈V

G⊤
i y

∗
i = 0 (65d)

Constraints feasibility: z̃∗
i = s∗i (65e)

x∗
i = Giw

∗ (65f)
Aix

∗
i = zi (65g)

si ∈ Ci (65h)

From (65a), we have (
∇fi(x

∗
i) +A⊤

i ν
∗
i + y∗

i

)⊤
(x∗

i − xk+1
i) = 0 (66)

and similarly from (65b), we get(
− ν∗

i + λ∗
i

)⊤
(z∗

i − zk+1
i) = 0. (67)

Adding the above two equations, we get(
∇fi(x

∗
i) +A⊤

i ν
∗
i + y∗

i

)⊤
(x∗

i − xk+1
i) +

(
− ν∗

i + λ∗
i

)⊤
(z∗

i − zk+1
i) = 0 (68)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

which yields(
∇fi(x

∗
i)+y∗

i

)⊤
(x∗

i −xk+1
i)+λ∗

i
⊤(z∗

i −zk+1
i)+ν∗

i
⊤(Ai(x

∗
i −xk+1

i)−(z∗
i −zk+1

i)
)
= 0. (69)

Using (65g) and the fact that Aix
k+1
i − zk+1

i = 0, we can rewrite the above as follows(
∇fi(x

∗
i) + y∗

i

)⊤
(x∗

i − xk+1
i) + λ∗

i
⊤(z∗

i − zk+1
i) = 0 (70)

which yields (R5).

Subsequently, we proceed with proving relationship (R6). The KKT conditions for the (k + 1)-th
update of xi, zi are given by

Optimality for xi: ∇fi(x
k+1
i) +A⊤

i ν
k+1
i + µk

i (x
k+1
i −Giw

k + yk
i /µ

k
i) = 0 (71a)

Optimality for zi: − νk+1
i + ρki (z

k+1
i − ski + λk

i /ρ
k
i) = 0 (71b)

Constraints feasibility: Aix
k+1
i = zk+1

i (71c)
From (71a), we have[

∇fi(x
k+1
i) +A⊤

i ν
k+1
i + µk

i (x
k+1
i −Giw

k + yk
i /µ

k
i)
]T

(xk+1
i − x∗

i) = 0 (72)

We simplify the term µk
i (x

k+1
i −Giw

k + yk
i /µ

k
i) using (8) as follows

µk
i (x

k+1
i −Giw

k + yk
i /µ

k
i) =

= µk
i

(
xk+1
i −Giw

k + yk+1
i /µk

i −
(
αkxk+1

i + (1− αk)Giw
k −Giw

k+1
))

= yk+1
i + µk

i

(
xk+1
i −Giw

k − αkxk+1
i − (1− αk)Giw

k +Giw
k+1
)

= yk+1
i + µk

i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
)

(73)

such that (72) can be rewritten as[
∇fi(x

k+1
i) +A⊤

i ν
k+1
i + yk+1

i

+ µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]T
(xk+1

i − x∗
i) = 0 (74)

From (71b), we get [
− νk+1

i + ρki (z
k+1
i − ski + λk

i /ρ
k
i)
]T

(zk+1
i − z∗

i) = 0. (75)

We simplify the term ρki (z
k+1
i − ski + λk

i /ρ
k
i) using (7) as follows

ρki (z
k+1
i − ski + λk

i /ρ
k
i) = ρki

(
zk+1
i − ski + λk+1

i /ρki −
(
αkzk+1

i + (1− αk)ski − sk+1
i

))
= λk+1

i + ρki
(
zk+1
i − ski − αkzk+1

i − (1− αk)ski + sk+1
i

)
= λk+1

i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)
(76)

such that equation 75 can be rewritten as follows[
− νk+1

i + λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]T
(zk+1

i − z∗
i) = 0 (77)

Combining (74) and (77) and using (65g) and the fact that Aix
k+1
i − zk+1

i = 0, we get[
∇fi(x

k+1
i) + yk+1

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]T
(xk+1

i − x∗
i)

+

[
λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]T
(zk+1

i − z∗
i) = 0

(78)

which yields relationship (R6).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma 3. For αk > 0,

(R7):
(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

(79)

(R8):
(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(−(1− αk)ski + sk+1
i − αks∗i) (80)

Proof. Let us simplify the individual terms of the LHS of the relationship (R7). For that, we start by
rewriting the term xk+1

i − x∗
i as follows using the relationship (R2) (i.e., (43)). (It should be noted

that we consider αk > 0, thus making the division by αk possible.)

xk+1
i − x∗

i =
1

αk

(
1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1 − αkx∗
i

)
(81)

Using (65d), we can rewrite the above as following.

xk+1
i − x∗

i =
1

αk

(
1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1 − αkGiw
∗
)

(82)

which can be written in simplified form as

xk+1
i − x∗

i =
1

αkµk
i

(yk+1
i − yk

i) +
1

αk
Gi

(
wk+1 − (1− αk)wk − αkw∗). (83)

Let us now simplify the following term in the LHS of the relationship (R7).

(1−αk)xk+1
i − (2−αk)Giw

k +Giw
k+1 = (1−αk)(xk+1

i −Giw
k)+Gi(w

k+1 −wk) (84)

We further simplify the term (xk+1
i −Giw

k) using the relationship (R2) (i.e., (43)) as follows.

xk+1
i −Giw

k =
1

αk

(
1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1

)
−Giw

k (85)

which can be written in a simplified form as

xk+1
i −Giw

k =
1

µk
i α

k
(yk+1

i − yk
i) +

1

αk
Gi(w

k+1 −wk). (86)

Substituting (86) in (84), we get

(1− αk)xk+1
i − (2− αk)Giw

k +Giw
k+1 =

(1− αk)

µk
i α

k
(yk+1

i − yk
i) +

1

αk
Gi(w

k+1 −wk)

(87)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Using the above result, we rewrite the following term on the LHS of the relationship (R7).

yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
)

= yk+1
i − y∗

i +
(1− αk)

αk
(yk+1

i − yk
i) +

µk
i

αk
Gi(w

k+1 −wk)
(88)

For notational simplicity, let us consider the LHS of the relationship (R7) as LHS(R7). Using (88)
and (83), we get

LHS(R7) =

(
yk+1
i − y∗

i +
(1− αk)

αk
(yk+1

i − yk
i) +

µk
i

αk
Gi(w

k+1 −wk)

)⊤

(
1

αkµk
i

(yk+1
i − yk

i) +
1

αk
Gi

(
wk+1 − (1− αk)wk − αkw∗)) (89)

which can be further rewritten as

LHS(R7) =
1

αkµk
i

(yk+1
i − y∗

i)
⊤(yk+1

i − yk
i) +

1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk

− αkw∗)+ (1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2 +
(1− αk)

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
wk+1

− (1− αk)wk − αkw∗)+ 1

(αk)2
(wk+1 −wk)⊤G⊤

i (y
k+1
i − yk

i)

+
µk
i

(αk)2
(
Gi(w

k+1 −wk)
)⊤

Gi

(
wk+1 − (1− αk)wk − αkw∗)

(90)
Let us now simplify each term on the RHS of the above equation. We start with the terms including
only the variables yk+1

i , yk
i and y∗

i . Using the fact that a⊤b = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2), we get

1

αkµk
i

(yk+1
i − y∗

i)
⊤(yk+1

i − yk
i) =

1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 + ∥yk+1

i − yk
i ∥2 − ∥yk

i − y∗
i ∥2
)

(91)

Using the above result, we can write

1

αkµk
i

(yk+1
i − y∗

i)
⊤(yk+1

i − yk
i) +

(1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 + ∥yk+1

i − yk
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2 (92)

Next, we consider the following terms in the RHS of (90) involving only the variables wk+1,wk

and w∗.

µk
i

(αk)2
(
Gi(w

k+1 −wk)
)⊤

Gi

(
wk+1 − (1− αk)wk − αkw∗)

=
(1− αk)µk

i

(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

αk

(
Gi(w

k+1 −wk)
)⊤(

Gi(w
k+1 −w∗)

) (93)

Using the similar approach that is used to derive (92), we derive the following.

(1− αk)µk
i

(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

αk

(
Gi(w

k+1 −wk)
)⊤(

Gi(w
k+1 −w∗)

)
=

(2− αk)µk
i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2 − ∥Gi(w
k −w∗)∥2)

(94)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Now, we will consider the following terms from the rest of the terms on the RHS of (90) as follows.

(1− αk)

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)
+

1

(αk)2
(wk+1 −wk)⊤G⊤

i (y
k+1
i − yk

i)

=
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(1− αk)wk+1 − (1− αk)2wk − αk(1− αk)w∗ +wk+1 −wk

)
=

1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗) (95)

Substituting (92), (93), (94), and (95) in (90), we get

LHS(R7) =
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

(96)
which proves the relationship (R7).

Subsequently, we prove the relation (R8). Using similar steps as in the derivation of the relationship
(R7), we can derive the following.

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(sk+1
i − (1− αk)ski − αks∗i)

+
1

(αk)2
(λk+1

i − λk
i)

⊤((2− αk)sk+1
i − (1 + (1− αk)2)ski − αk(1− αk)s∗i

)

(97)

Let us now simplify the last term of the RHS of the above equation as follows.

(λk+1
i − λk

i)
⊤((2− αk)sk+1

i − (1 + (1− αk)2)ski − αk(1− αk)s∗i
)

= (1 + (1− αk)2)(λk+1
i − λk

i)
⊤(sk+1

i − ski) + αk(1− αk)(λk+1
i − λk

i)
⊤(sk+1

i − s∗i)
(98)

From (5) and (65h), we have that the vectors ski , s
k+1
i , s∗i ∈ Ci. Using the relationship (R4) (i.e.,

(45)), the above equation gives us the following.

(λk+1
i − λk

i)
⊤((2− αk)sk+1

i − (1 + (1− αk)2)ski − αk(1− αk)s∗i
)

= (λk+1
i − λk

i)
⊤((2− αk)sk+1

i − (2 + (αk)2 − 2αk)ski + (−αk + (αk)2)s∗i
)

= 0 (99)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Substituting the above result in (97), we get(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(sk+1
i − (1− αk)ski − αks∗i)

(100)

which proves the relationship (R8).

Lemma 4. For αk ≥ 1,∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
(101)

Proof. We start by combining the relationships (R5) and (R6) (i.e., (63) and (64)) to get the follow-
ing equation.(

yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

+

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

= −(∇fi(x
k+1
i)−∇fi(x

∗
i))

⊤(xk+1
i − x∗

i)

(102)

Since fi is convex, the following holds true.

(∇fi(x
k+1
i)−∇fi(x

∗
i))

⊤(xk+1
i − x∗

i) ≥ 0 (103)

Using the above inequality, we can rewrite (102) as follows.(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

+

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i) ≤ 0

(104)

Adding the above result over all the agents i ∈ V , we get

∑
i∈V

(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

+
∑
i∈V

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i) ≤ 0

(105)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Now, we use the relationships (R7) and (R8) (i.e., (79) and (80)) to rewrite the above equation as
following.

0 ≥
∑
i∈V

(
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

+
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(−(1− αk)ski + sk+1
i − αks∗i)

)
(106)

Let us now further simplify the terms on the RHS of the above equation. For that, let us start with
the last term on the RHS. We have

(λk+1
i − λ∗

i)
⊤(−(1− αk)ski + sk+1

i − αks∗i) = (λk+1
i − λ∗

i)
⊤(sk+1

i − s∗i)

− (1− αk)(λk+1
i − λ∗

i)
⊤(ski − s∗i)

(107)

Using the relationship (R4) (i.e., (45)), and (65c), and using the fact that ski , s
k+1
i , s∗i ∈ Ci, we get

(λk+1
i − λ∗

i)
⊤(sk+1

i − s∗i) ≥ 0, (108)

(λk+1
i − λ∗

i)
⊤(ski − s∗i) ≥ 0. (109)

Thus, for αk ≥ 1, combining (107), (108), and (109), we get

(λk+1
i − λ∗

i)
⊤(−(1− αk)ski + sk+1

i − αks∗i) ≥ 0. (110)

Now, the following results hold based on the relationship (R1) (i.e., (42)) and (65d).∑
i∈V

(yk+1
i − y∗

i)
⊤Gi = 0,

∑
i∈V

(yk+1
i − yk

i)
⊤Gi = 0. (111)

By substituting (110) and (111) in (106), and by rearranging the terms, we get

∑
i∈V

(
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2 − ∥Gi(w
k −w∗)∥2)

+
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ −
∑
i∈V

(
(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2 +
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2

+
(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2 +

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

)
(112)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Since, we consider αk ≥ 1, we can multiply the above equation with 2αk to obtain the following.

∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
(113)

C.3 PROOF OF THEOREM 1

Let us first rewrite the relation (101) derived in Lemma 4 for αk ∈ [1, 2), as follows.

∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
(114)

which can be rearranged to give the following.

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤
∑
i∈V

(
1

µk
i

(
∥yk

i − y∗
i ∥2 − ∥yk+1

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k −w∗)∥2 − ∥Gi(w

k+1 −w∗)∥2)

+
1

ρki

(
∥λk

i − λ∗
i ∥2 − ∥λk+1

i − λ∗
i ∥2
)
+ ρki

(
∥ski − s∗i ∥2 − ∥sk+1

i − s∗i ∥2
))

(115)
For convenience, let us define for each iteration k, the terms ηki , i ∈ V , and ηk such that

ηki + 1 = max

(
ρki

ρk−1
i

,
ρk−1
i

ρki
,

µk
i

µk−1
i

,
µk−1
i

µk
i

)
, ηkmax = max

i∈V
ηki , (116)

and the term V k as

V k =
∑
i∈V

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
.

(117)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Based on the definition of ηki in (116), we can write

1

µk
i

∥yk
i − y∗

i ∥2 + µk
i ∥Gi(w

k −w∗)∥2 + 1

ρki
∥λk

i − λ∗
i ∥2 + ρki ∥ski − s∗i ∥2

≤ (ηki + 1)

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

) (118)

Further, by adding the above result over all the agents i ∈ V , and using the fact that ηkmax ≥ ηki for
all i, we get∑

i∈V

(
1

µk
i

∥yk
i − y∗

i ∥2 + µk
i ∥Gi(w

k −w∗)∥2 + 1

ρki
∥λk

i − λ∗
i ∥2 + ρki ∥ski − s∗i ∥2

)
≤
∑
i∈V

(ηki + 1)

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
≤ (ηkmax + 1)

∑
i∈V

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
= (ηkmax + 1)V k

(119)

Substituting the above result in (115), we get

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤ (ηkmax + 1)V k − V k+1

(120)

Now that we have derived the above relation, we need to next prove that V k is bounded. By the
definition of V k, we have that V k is lower bounded by zero. Thus, we now prove that V k is upper
bounded. From (120), we have

V k+1 ≤ (ηkmax + 1)V k, (121)

which leads to the following relation

V k+1 ≤
k∏

l=1

(ηlmax + 1)V 1 (122)

It should be noted that based on the assumption 1, we have (ηkmax + 1) → 1, as k → ∞. Based on
this condition, (122) implies that V k+1 is upper bounded for all k, and there exists Vmax such that

V k ≤ Vmax < ∞, for all k (123)

Let us now consider adding the result (120) over k as follows.

∞∑
k=1

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤

∞∑
k=1

(ηkmax + 1)V k − V k+1

(124)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The term on the RHS of the above equation can be further simplified as follows.

∞∑
k=1

(ηkmax + 1)V k − V k+1 =

∞∑
k=1

ηkmaxV
k +

∞∑
k=1

(V k − V k+1) = V 1 − V ∞ +

∞∑
k=1

ηkmaxV
k (125)

Based on the assumption 1, we have ηkmax → 0 as k → ∞, which implies the following.

∞∑
k=1

ηkmax < ∞ (126)

Using the above fact and (123), we can upper bound
∑∞

k=1 η
k
maxV

k as follows.

∞∑
k=1

ηkmaxV
k ≤

(∞∑
k=1

ηkmax

)
Vmax < ∞ (127)

Using the facts that V 1 is upper bounded, and V ∞ is lower bounded by zero, and using the above
equation, we get

V 1 − V ∞ +

∞∑
k=1

ηkmaxV
k ≤ V 1 +

∞∑
k=1

ηkmaxV
k < ∞ (128)

Thus, we can rewrite (124) as following.

∞∑
k=1

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
< ∞

(129)

Since αk ∈ [1, 2), we have (2−αk)
αk > 0 for all k. Further, we have 0 < µk

i , ρ
k
i < ∞ for all k. Thus,

(129) implies the following for all i ∈ V .

As k → ∞, (yk+1
i − yk

i) → 0, Gi(w
k+1 −wk) → 0 (130)

(λk+1
i − λk

i) → 0, (sk+1
i − ski) → 0 (131)

which proves the convergence of the variables yi,λi and si. Further, we have, as k → ∞,

Gi(w
k+1 −wk) → 0 ∀ i ∈ V =⇒ G(wk+1 −wk) → 0 (132)

Since G has full column rank, the above equation implies

(wk+1 −wk) → 0 as k → ∞, (133)

which proves the convergence of the global variable w.

Further, using the relationships (R2) and (R3) (i.e., (43) and (44)), and the convergence results (130)
and (131), we obtain the following.

As k → ∞, (xk+1
i − xk

i) → 0, (zk+1 − zk) → 0. (134)

Hence, we prove the convergence of the algorithm.

Now that we have proved convergence, we can verify that the limit point of convergence is the
optimal solution to the problem 19. For that, we need to check if the limit point satisfies the KKT
condition (65) for the problem 19. The convergence of the dual variables yi and λi, and the update
steps verify that the limit points have constraint feasibility (65e - 65h). The constraint feasibility of
the limit points and the optimality conditions of (k+ 1)-th update of xi, zi (71) imply that the limit
points satisfy the optimality conditions (65a - 65b). Further, using relations (R1) and (R4) (i.e., (42)
and (45)), we can prove that the limit points also satisfy (65c - 65d).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D DETAILS ON DEEPDISTRIBUTEDQP FEEDBACK POLICIES

In DeepDistributedQP, the penalty parameters are given by

ρki = SoftPlus
(
ρ̄ki + πk

i,ρ(r
k
i,ρ, s

k
i,ρ; θ

k
i,ρ)︸ ︷︷ ︸

ρ̂k
i

)
, µk

i = SoftPlus
(
µ̄k
i + πk

i,µ(r
k
i,µ, s

k
i,µ; θ

k
i,µ)︸ ︷︷ ︸

µ̂k
i

)
(135)

where ρ̄ki , µ̄k
i are learnable feed-forward parameters and ρ̂ki , µ̂k

i and the feedback parts. The latter
are obtain through the learnable policies πk

i,·(r
k
i,·, s

k
i,·; θ

k
i,·) parameterized by fully-connected neural

network layers with inputs rki,·, s
k
i,· and weights θki,·. The analytical expressions for rki,·, s

k
i,· are

provided as follows:

rki,ρ =

[
∥zk

i − ski ∥2
∥Aix

k
i − ski ∥2

]
, ski,ρ =

[
∥ski − sk−1

i ∥2
∥Qix

k
i + qi +A⊤

i λ
k
i ∥2

]
(136a)

rki,µ = ∥xk
i − w̃k

i ∥2, ski,µ = ∥w̃k
i − w̃k−1

i ∥2, (136b)

being motivated by the primal and dual residuals of ADMM (Boyd et al., 2011, Section 3) and the
ones used in the OSQP algorithm (Stellato et al., 2020).

E THE CENTRALIZED VERSION: DEEPQP

The centralized version of DeepDistributedQP boils down to simply unfolding the iterates of the
standard OSQP algorithm for solving centralized QPs (1), while applying the same principles as in
Section 4.1 for DeepDistributedQP.

For convenience, we repeat the OSQP updates from Stellato et al. (2020) here:

1. Update for (x, z): Solve linear system[
Q+ σI A⊤

A −1/ρkI

] [
xk+1

νk+1

]
=

[
σtk − q

sk − 1/ρkλk

]
(137)

and update
zk+1 = sk + 1/ρk(νk+1 − λk). (138)

As explained in Stellato et al. (2020), as the scale of the system equation 137 increases, it
is often preferrable to solve the following system instead,

(Q+ σI + ρkA⊤A)xk+1 = σxk − q +A⊤(ρkzk − yk), (139)

using a method such as conjugate gradient.

2. Update for (t, s):

tk+1 = αkxk+1 + (1− αk)tk (140a)

sk+1 = ΠC
(
αkzk+1 + (1− αk)sk + λk/ρk

)
(140b)

3. Dual update for λ:

λk+1 = λk + ρk(αkzk+1 + (1− αk)sk − sk+1) (141)

The DeepQP framework then emerges through unfolding the OSQP updates following the same
methodology as in DeepDistributedQP. In particular, its iterations are unrolled for a prescribed
amount of K iterations as shown in Fig. 4.

F PROOF OF INDIRECT METHOD IMPLICIT DIFFERENTIATION

We start by stating the implicit function theorem, whose proof is given in (Krantz & Parks, 2002).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma 5 (Implicit Function Theorem). Let r : Rn × Rm → Rn be a continuously differentiable
function. Let (x0,θ0) be a point such that r(x0,θ0) = 0. If the Jacobian matrix ∂r

∂x (x0,θ0) is
invertible, then there exists a function x∗(·) defined in a neighborhood of θ0 such that x∗(θ0) = x0,
and

∂x∗

∂θ
(θ) = −

(
∂r

∂x
(x∗(θ),θ)

)−1
∂r

∂θ
(x∗(θ),θ). (142)

Proof of Theorem 2. Let θ = (Q̄k
i , b̄

k
i) be the concatenation of all the parameters in Eq. (11).

Q̄k
i is always positive definite since Qi is positive definite and the penalty parameters are al-

ways non-negative. Therefore, Eq. (11) has a unique solution xk+1
i satisfying r(xk+1

i ,θ) :=

Q̄k
i x

k+1
i − b̄ki = 0. Applying Lemma 5 to this residual function yields the relationship ∂xk+1

i

∂θ (θ) =

−(Q̄k
i)

−1 ∂r
∂θ (x

k+1
i (θ),θ).

Now, for any downstream loss function L(xk+1
i (θ)), we have that

∇θL(x
k+1
i (θ)) =

∂xk+1
i

∂θ
(θ)∇xL(x

k+1
i (θ)) (143)

= − ∂r

∂θ
(xk+1

i (θ),θ)⊤(Q̄k
i)

−1∇xL(x
k+1
i (θ)) (144)

=
∂r

∂θ
(xk+1

i (θ),θ)⊤dxk+1
i , (145)

where dxk+1
i is the unique solution to the linear system

Q̄k
i dx

k+1
i = −∇xL(x

k+1
i (θ)).

Expanding the matrix multiplication in Eq. (145) yields

∇Q̄k
i
L =

1

2
(xk+1

i ⊗ dxk+1
i + dxk+1

i ⊗ xk+1
i),

∇b̄k
i
L = −dxk+1

i .

G BACKGROUND ON PAC-BAYES THEORY

Here, we provide a brief overview of PAC-Bayes theory (Alquier (2024)). Consider a bounded loss
function ℓ(ζ; θ). Without loss of generality, we assume that this loss is uniformly bounded between
0 and 1. PAC-Bayes theory aims to providing a probabilistic bound for the true expected loss

ℓD(P) = Eζ∼D Eθ∼P [ℓ(ζ; θ)] , (146)

where D is the data distribution — in our case, this is the distribution optimization problems are
drawn from. The empirical expected loss is given by,

ℓS(P) = Eθ∼P

 1

H

H∑
j=1

(ζj ; θ)

 , (147)

where S = {ζj}Hj=1 is the training dataset consisting of H problem instances.

The PAC-Bayes framework operates by forming a bound that holds in high probability on the true
loss ℓD(P) in terms of the empirical loss and a the deviation between the learned policy P and a
prior policy P0 used to as an initial guess for P . This deviation is measured using the KL divergence.
Importantly, P0 need not be a Bayesian prior but can be any distribution independent of the data used
to train P and evaluate the sample loss. Moreover, ℓ(ζ; θ) need not be the loss used to train P , but
can be any bounded function. This observation is useful because, both in the literature and in the
sequel, it is common to use a loss function modified for practicality during training before evaluating
the bound using the loss function of interest.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Specifically, the following PAC-Bayes bounds hold with probability 1− δ,

ℓD(P) ≤ D−1
KL

(
ℓS(P)∥

DKL(P∥P0) + log 2
√
H

δ

H

)
≤ ℓS(P) +

√
DKL(P∥P0) + log 2

√
H

δ

2H
, (148)

where the D−1
KL (p∥c) is the inverse of the KL divergence for Bernoulli random variables B(p),B(q):

D−1
KL (p∥c) = sup{q ∈ [0, 1] | DKL(B(p)∥B(q)) ≤ c}. (149)

The probability δ captures the failure case that the data set S is not sufficiently representative of the
data distribution D. In the sequel, both of the above inequalities will be used. As the first bound is
tighter, it is used to evaluate the generalization capabilities of the learned optimizer. The benefit of
the second, loser, bound is that its form is convenient to use during training as a regularizer. Using
both bounds in this manner is a common technique in the PAC-Bayes literature (Majumdar et al.
(2021), Dziugaite & Roy (2017)).

H OPTIMIZING AND EVALUATING GENERALIZATION BOUND

Two important requirements for establishing a tight PAC-Bayes bound are selecting an informative
prior and optimizing the PAC-Bayes bounds in Eq. (148) instead of simply minimizing the loss
function. The choice of prior P0 is particularly important because the KL divergence is unbounded
and can produce a vacuous result Dziugaite et al. (2021). While the distribution P0 need not be a
Bayesian prior, it must be selected independently from the data used to optimize P and evaluate the
bound. To select P0, we follow a common approach in the literature and split our training set S into
two disjoint subsets S0,S1. The prior P0 is first trained using the data set S0 and the loss ℓ(D; Θ)
discussed in Section 4.

Subsequently, the posterior P is trained by minimizing the looser (i.e., rightmost) PAC-Bayes bound
in Eq. (148). This bound is used for training because it is straightforward to evaluate in comparison
to computing the inverse of the KL divergence, and this objective is easily interpreted as minimizing
an expected loss function with a regularizer. To evaluate the loss function in the PAC-Bayes bound,
parameters are sampled from P using the current network weights and an empirical average is used.
Once training is complete, the PAC-Bayes bound is evaluated as described in Theorem 3, i.e., by
using the tighter PAC-Bayes bound in (148) and the sample convergence bound in (15).

I DETAILS ON EXPERIMENTS

This section provides further details on the problems considered in the experiments, the training of
the learned optimizers, as well as the evaluation of both learned and traditional methods.

I.1 PROBLEM TYPES IN CENTRALIZED EXPERIMENTS

Random QPs. We consider randomly generated problems of the following form

min
x

1

2
x⊤Qx+ q⊤x s.t. Ax ≤ b, Cx = d. (150)

For each generated problem, the cost Hessian is given by Q = F⊤F + γI , where each element
of F ∈ Rn×n is sampled through Fij ∼ N (0, 1) and γ = 1.0. The coefficients of q are also
sampled as qi ∼ N (0, 1). The elements of the inequality constraints matrix A ∈ Rm×n are given
by Aij ∼ N (0, 1), while b = Aθ, where each element of θ ∈ Rn is sampled through θi ∼ N (0, 1).
Similarly, the elements of the equality constraints matrix C ∈ Rp×n are given by Cij ∼ N (0, 1),
while d = Cξ, where each element of ξ ∈ Rn is ξi ∼ N (0, 1).

For random QPs without equality constraints, we set n = 50, m = 40 and p = 0. For random QPs
with equality constraints, we set n = 50, m = 25 and p = 20.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Optimal control. We consider linear optimal control problems of the following form

min
x,u

T−1∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
TQTxT (151a)

s.t. xt+1 = Adxt +Bdut, t = 0, . . . , T − 1, (151b)
Auut ≤ bu, Axxt ≤ bx, t = 0, . . . , T, (151c)
x0 = x̄0. (151d)

where x = {x0, . . . ,xT } is the state trajectory, u = {u0, . . . ,uT−1} is the control trajectory, x̄0

is the given initial state condition, Q and R are the running state and control cost matrices, QT is
the terminal state cost matrix, Ad and Bd are the dynamics matrices, and finally Au, bu and Ax, bx
are the control and state constraints coefficients, respectively.

Both the double integrator and the mass-spring problem setups are drawn from Chen et al. (2022).
For the double integrator system, we have xt ∈ R2 and ut ∈ R, with time horizon T = 20. The
dynamics matrices are given by

Ad =

[
1 1
0 1

]
, Bd =

[
0.5
0.1

]
(152)

The cost matrices are Q = QT = I2 and R = 1.0. The state and control constraint coefficients are
given by

Ax =

[
I2
−I2

]
, bx = [5 1 5 1]

⊤
, Au =

[
1
−1

]
, bu = [0.1 0.1]

⊤
. (153)

Finally, the initial state conditions are sampled from the uniform distribution U [[−1;−0.3], [1; 0.3]].

For the oscillating masses, we have xt ∈ R12 and ut ∈ R3, with time horizon T = 10. The discrete-
time dynamics matrices are obtained from the continuous-time ones through Euler discretization,

Ad = I +Ac∆t, Bd = Ac∆t. (154)
The continuous-time dynamics matrices are given by

Ac =

[
06×6 I6

aI6 + cL6 + cL⊤
6 bI6 + dL6 + dL⊤

6

]
, Bc =

[
06×3

F

]
(155)

with c = 1.0, d = 0.1, a = −2c, b = −2.0. L6 is the 6× 6 lower shift matrix and

F = [e1 −e1 e2 e3 −e2 e3]
⊤ (156)

where e1, e2, e3 are the standard basis vectors in R3.

The timestep is set as ∆t = 0.5. The cost matrices are Q = QT = I12 and R = I3. The state and
control constraints are defined through

Ax =

[
I12
−I12

]
, bx = 4 · 124, Au =

[
I3
−I3

]
, bu = 0.5 · 16. (157)

The initial conditions x̄0 are sampled from U
[
[−1, 1]12

]
.

Portfolio optimization. We consider the same portfolio optimization problem setup as in Stellato
et al. (2020). For completeness, we briefly repeat it here,

max
x

µ⊤x− γ(x⊤Σx) s.t. x1 + · · ·+ xn = 1, x ≥ 0, (158)

where x ∈ Rn is the assets allocation vector, µ ∈ Rn is the expected returns vector, Σ ∈ RN
+ is

the risk covariance matrix and γ > 0 is the risk aversion parameter. The matrix Σ is of the form
Σ = FF⊤+D with F ∈ Rd×n is the factors matrix and D ∈ Rn×n is a diagonal matrix involving
individual asset risks. Using an auxiliary variable t = F⊤x, then problem equation 158 is rewritten
as

min
x,t

x⊤Dx+ t⊤t− 1

γ
µ⊤x s.t. t = F⊤x, 1⊤x = 1, x ≥ 0. (159)

For the problems we are generating, we use n = 250, k = 25 and γ = 1.0. Each element of the
expected return vector µ is sampled through µi ∼ N (0, 1). The matrix F consists of 50% non-zero
elements sampled through Fij ∼ N (0, 1). Finally, the diagonal elements of D are sampled with
Dii ∼ U [0,

√
k].

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

LASSO. The least absolute shrinkage and selection operator (LASSO) is a linear regression tech-
nique with an added ℓ1-norm regularization term to promote sparsity in the parameters (Tibshirani,
1996). We again consider the same problem setup as in Stellato et al. (2020), where the initial
optimization problem

min
x

∥Ax− b∥22 + λ∥x∥1 (160)

is rewritten as
min
x,t

(Ax− b)⊤(Ax− b) + λ1⊤t s.t. − t ≤ x ≤ t, (161)

where x ∈ Rn is the vector of parameters, A ∈ Rm×n is the data matrix, λ is the weighting
parameter, and t ∈ Rn are newly introduced variables. The matrix A consists of 15% non-zero
elements sampled through Aij ∼ N (0, 1). The true sparse vector v ∈ Rn to be learned consists of
50% non-zero elements sampled through vi ∼ N (0, 1/n). We then construct b = Av + ξ where
ξi ∼ N (0, 1) represents noise in the data. Finally, we set λ = (1/5)∥A⊤b∥∞. For the problems we
are generating, we set n = 100 and m = 104.

I.2 PROBLEM TYPES IN DISTRIBUTED EXPERIMENTS

Random Networked QPs. In this family of problems, we generate random QPs with an under-
lying network structure. Consider an undirected graph G(V, E), where V and E are the nodes and
edges sets, respectively. Each node i is associated with a decision variable xi ∈ Rni . Then, we
generate problems of the following form

min
{xi}i∈V

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi (162a)

s.t. Aij

[
xi

xj

]
≤ bij , Cij

[
xi

xj

]
= dij , (i, j) ∈ E , (162b)

For each generated problem, a cost Hessian is constructed as Qi = F⊤
i Fi+γI , where each element

of Fi ∈ Rni×ni is sampled through F kl
i ∼ N (0, 1) and γ = 1.0. The elements of the cost

coefficients vectors qi are also sampled through qk
i ∼ N (0, 1). The elements of the inequality

constraints matrix Aij ∈ Rmij×(ni+nj) are given by Akl
ij ∼ N (0, 1). The vectors bij ∈ Rmij are

obtained through bij = Aijθij , where each element of θij ∈ Rni+nj is sampled through θk
ij ∼

N (0, 1). In a similar manner, the elements of the equality constraints matrices Cij ∈ Rpij×(ni+nj)

are generated through Ckl
ij ∼ N (0, 1), while the vectors dij ∈ Rpij are acquired through dij =

Cijξij , where each element of ξij ∈ Rni+nj is generated with ξkij ∼ N (0, 1).

It is straightforward to observe that problems of the form (162) can be cast in the form (2) by
introducing the augmented node variables xaug

i = [xi, {xj}j∈Ni
]⊤. The problem data can then

be augmented based on this new xaug
i to yield the desired problem structure. Most notably, the

constraints can be rewritten as Aaug
i xaug

i ≤ baugi and Caug
i xaug

i = daugi , respectively.

In our experiments, the underlying graph structure is a square grid. For random QPs without equality
constraints, we set ni = 10, mij = 5, and pij = 0. For random QPs with equality constraints, we
set ni = 10, mij = 3, and pij = 2 for the N = 16 training experiment and pij = 1 for the rest of
the testing experiments until N = 1, 024.

Multi-agent optimal control. We adapt the distributed MPC problem from (Conte et al., 2012a;b),
which generalizes to different systems based on the choice of dynamics matrices, as described below.
The optimization problem is given as

min
x,u

∑
i∈V

T−1∑
t=0

(xt
i)

⊤Qix
t
i + (ut

i)
⊤Riu

t
i + (xT

i)
⊤Pix

T
i , (163a)

s.t. xt+1
i = Aiix

t
i +Biu

t
i +

∑
j∈Ni

Aijx
t
j , t = 0, . . . , T − 1, i ∈ V (163b)

Gi
xx

t
i ≤ f i

x, G
i
uu

t
i ≤ f i

u, t = 0, . . . , T, i ∈ V (163c)

x0
i = x̄0

i , i ∈ V, (163d)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

where xt
i and ut

i are the state and control for agent i at time t. Eq. (163b) describes the dynamics
and the coupling between the agents, Eq. (163c) describe local inequality constraints, and Eq. (163d)
describes the initial condition for each of the agents.

For the coupled pendulums, the individual state xt
i ∈ R2 for each agent consists of the angle and

angular velocity of the pendulum and the control ut
i ∈ R1 is the torque. The dynamics matrices are

given as

Aii =

[
1 dt

−(gℓ + nn(i)k
m)dt 1− nn(i)c

m dt

]
, Aij =

[
0 0

k
mdt c

mdt

]
, Bi =

[
0

1
mℓ2 dt

]
,

where dt = 0.1 is the discretization step size, g = 9.81 is the gravitational constant, m = 1.0 is the
mass of each pendulum, ℓ = 0.5 is the length of each pendulum, nn(i) is the number of neighbors of
agent i, k = 0.1 is the spring constant between each pendulum, and c = 0.1 is the damping constant
between each pendulum. We have used the small angle assumption sin θ ≈ θ so the dynamics are
linear and therefore the optimization is convex. There are no inequality constraints for the coupled
pendulums. The initial states are sampled uniformly from U [−π, π]. Finally, we considered N = 10
and T = 30.

For the coupled oscillating masses, we adapt the same benchmark system from Chen et al. (2022)
used in the non-distributed experiments. The individual state xt

i ∈ R2 for each agent consists of the
displacement and velocity of the mass and the control ut

i ∈ R1 is the force acting on the mass. The
dynamics matrices are

Aii =

[
1 dt

− 2k
m dt 1− 2c

mdt

]
, Aij =

[
0 0

k
mdt c

mdt

]
, Bi =

[
0

1
mdt

]
,

where dt = 0.5 is the discretization step size, m = 1.0 is the mass, k = 0.4 is the spring constant
between each mass, and c = 0.1 is the damping constant between each mass. The initial states are
sampled uniformly from U [−2.0, 2.0]. Inequality constraints −4 ≤ xt

i ≤ 4 and −0.5 ≤ ut
i ≤ 0.5

are represented as

Gi
x =

[
I2
−I2

]
, f i

x = 4 · 14, Gi
u =

[
1
−1

]
, f i

u = 0.5 · 12,

For both the distributed MPC problems described above, the cost matrices are taken to be identity
matrices: Qi = I2, Ri = I1, and Pi = I2, for all i ∈ V .

The optimization Eq. (163) can be expressed in the form of Eq. (2) by defining an augmented vector
consisting of the individual agent’s states and controls, as well as the states and controls of its
neighbors. Letting zi = [x0

i ,u
0
i , . . . ,x

T
i]

⊤, the augmented optimization vector for each agent i is
given as xaug

i = [zi, {zj}j∈Ni
]⊤. The cost, dynamics, and constraint matrices can be augmented

straightforwardly based on this new xaug
i . For all problems, we considered T = 15.

Network flow. The network flow problem is adapted from Mota (2013); Mota et al. (2014). We
consider a directed regular graph with 200 nodes and 1000 directed edges xij ∈ E . Each edge
has an associated quadratic cost function ϕij(xij) = 1

2 (xij − aij)
2, where aij is sampled from

[1.0, 2.0, 3.0, 4.0, 5.0, 10.0] with probabilities [0.2, 0.2, 0.2, 0.2, 0.1, 0.1]. The objective is to opti-
mize the flow through the graph subject to equality constraints on the flow into and out of each
node. Namely, the flow into each node should be equal to the flow out of the node. For node i, the
flow conservation constraint is

∑
j∈E−

i
xji =

∑
k∈E+

i
xik, where E−

i is the set of all incoming edges
to node i, and similarly E+

i is the set of all outgoing edges from node i. 100 nodes are randomly
selected and injected with an external flow fk sampled identically to aij . For each of these nodes,
a reachable descendant is randomly selected and an equivalent amount of flow fk is removed from
those nodes.

This problem is straightforward to express in the form Eq. (2) by considering each node as an
individual agent and defining the local state vector for each agent as

xi =

[{xji}j∈E−
i

{xik}k∈E+
i

]
, (164)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 2: Training and testing details for DeepQP.

Problem Class No of layers K Training dataset size Epochs Training time Test dataset size
Random QPs 30 2,000 125 21min 1,000

Random QPs with Eq. Constraints 30 2,000 125 23min 1,000
Double Integrator 30 500 300 28min 1,000

Osc. Masses 15 500 300 48min 1,000
Portfolio Optimization 30 500 300 1h 14min 1,000

LASSO 10 500 300 20min 1,000

Table 3: Training and testing details for DeepDistributedQP.

Problem Class No of layers K Training dataset size Epochs Training time Test dataset size
Random QPs 50 1,000 300 3h 21min 500

Random QPs with Eq. Constraints 50 500 600 3h 29min 500
Coupled Pendulums 20 500 400 1h 49min 500

Coupled Osc. Masses 20 500 600 2h 29min 500
Network Flow 30 500 600 2h 8min 500

Distributed LASSO 20 500 600 56min 500

consisting of all the incoming and outgoing edges for node i. Each agent is responsible for its own
flow constraint defined by

Ai =

[{1}j∈E−
i

{−1}k∈E+
i

{−1}j∈E−
i

{1}k∈E+
i

]
, bi = 0, (165)

where bi might instead contain the external injected or removed flow fi for that node i. The aug-
mented cost matrix Qi is zero for all incoming edges and has entries 1/2 on the diagonal of the
outgoing edges. The augmented cost vector qi contains each of the quadratic cost offsets aik:

Qi =

[
{0}j∈E−

i

{ 1
2}k∈E+

i

]
, qi =

[{0}j∈E−
i

{−aik}k∈E+
i

]
. (166)

Finally, we impose the constraint −fmax · 1 ≤ xi ≤ fmax · 1 on the maximum allowed flow of all
edges, with fmax = 5.

Distributed LASSO. Distributed LASSO (Mateos et al., 2010) extends LASSO to situations
where the training data are distributed across different agents and agents cannot share training data
with each other. It can be formulated as

min
{xi}N

i=1,w

N∑
i=1

∥Aixi − bi∥22 +
λ

N
∥xi∥1 s.t. xi = w, i = 1, ..., N (167)

where w ∈ Rni is a global vector of regression coefficients, xi ∈ Rni is a local copy of w,
Ai ∈ Rmi×ni and b ∈ Rmi are the training data available to agent i, and λ is the weighting
parameter. Similarly to non-distributed LASSO, this formulation is rewritten as

min

N∑
i=1

(Aixi − bi)
⊤(Aixi − bi) +

λ

N
1⊤ti (168a)

s.t. ti ≤ xi ≤ ti, xi = w, ti = g, i = 1, ..., N (168b)

where ti ∈ Rni are newly-introduced variables and g is the global copy of ti.

The matrix Ai consists of 15% non-zero elements sampled through Akl
i ∼ N (0, 1). The true sparse

vector v ∈ Rn to be learned consists of 50% non-zero elements sampled through vi ∼ N (0, 1/n).
We then construct b = Av + ξ where ξi ∼ N (0, 1) represents noise in the data.

Finally, we set λ = (1/5)maxi(∥A⊤
i bi∥∞). For the problems, we have ni = 50 and mi = 5 · 103.

I.3 DETAILS ON TRAINING AND TESTING

Here, we discuss details regarding the training and testing of DeepQP and DeepDistributedQP in the
presented experiments.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 4: List of OSQP penalty parameters used in centralized experiments

Problem Class List of penalty parameters ρ
Random QPs 0.1, 0.3, . . . , 3, 10

Random QPs with Eq. Constraints 0.1, 0.3, . . . , 3, 10
Double Integrator 3, 5, . . . , 100, 300

Osc. Masses 0.1, 0.3, . . . , 3, 10
Portfolio Optimization 3, 5, . . . , 100, 300

LASSO 30, 50, . . . , 1000, 3000

Table 5: List of DistributedQP penalty parameters used in distributed experiments

Problem Class List of penalty parameters ρ
Random QPs 0.1, 0.3, . . . , 3, 10

Random QPs with Eq. Constraints 0.1, 0.3, . . . , 3, 10
Coupled Pendulums 0.1, 0.3, . . . , 3, 10

Coupled Osc. Masses 0.1, 0.3, . . . , 3, 10
Network Flow 0.1, 0.3, . . . , 3, 10

Distributed LASSO 30, 50, . . . , 1000, 3000

Centralized experiments. Table 2 shows the number of layers K, training dataset size, number
of epochs, total training time and testing dataset size for DeepQP in every centralized problem.
The increased dataset size and number of epochs for RandomQPs is motivated by the fact that the
structure in these problems is less clear; learning policies that exploit this structure therefore requires
more examples and takes longer. In all experiments, DeepQP was trained with a batch size of 50
using the Adam optimizer with learning rate 10−3. The feedback layers are set as 2 × 16 MLPs.
DeepQP and OSQP always start with zero initializations in all comparisons. The weights of the
training loss were set to γk = exp ((k −K) /5) in all experiments. Both the training and testing
datasets are contructed after letting OSQP running until optimality.

Distributed experiments. Table 3 shows the number of layers K, training dataset size, number
of epochs, total training time and testing dataset size for DeepDistributedQP in every distributed
problem. In all experiments, DeepDistributedQP was trained with a batch size of 50 using the Adam
optimizer with learning rate 10−3. The feedback layers are set as 2× 16 MLPs. DeepDistributedQP
and DistributedQP always start with zero initializations in all comparisons. In all experiments, the
weights of the training loss were set to γk = exp ((k −K) /5). For the low-dimensional testing
datasets, these datasets are constructed using OSQP. For larger scales, the testing dataset is con-
structed with DistributedQP instead as it is much faster (see Table 6), after ensuring convergence to
optimality.

Generalization bounds experiments. These experiments were performed on a networked random
QPs problem with N = 16, ni = 10,mij = 5, pij = 0 and on a coupled pendulums problem with
N = 10 and the same parameters as described in the previous section. The prior was obtained
through training on a small separate dataset of 500 problems for 50 epochs. The posterior was then
acquired through optimizing for the generalization bound with a dataset of 15, 000 problems for 100
epochs.

I.4 DETAILS ON STANDARD OPTIMIZERS

Details on OSQP. When comparing with OSQP using fixed penalty parameters, we selected the
best-performing subsequence of {..., 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, ...} as the penalty parameters to plot
against. Table 4 shows these parameters for every centralized problem in our experiments. For
equality constraints, we scaled ρ by 103, as in Stellato et al. (2020). For the adaptive version,
we prefered the standard heuristic adaptation rule shown in Boyd et al. (2011) with τ = 2.0 and
µ = 10.0, instead of the OSQP adaptation scheme (Stellato et al., 2020), as it performed better in
our problem instances. We hypothesize that this might be due to the fact that as scale increases the
infinity norm is ignoring more information that the 2-norm. The initial ρ0 was initialized as the
median of the range of fixed penalty parameters.

Details on DistributedQP. The range of fixed penalty parameters to compare with was chosen
using the same methodology as with OSQP. Table 5 shows these parameters for every distributed
problem in our experiments. For the adaptive version, we used the standard heuristic adaptation rule

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 6: Wall-clock times and iterations for DeepDistributedQP, DistributedQP, OSQP (in-
direct) and OSQP (direct). This comparison shows the total wall-clock times for DistributedQP
and OSQP (indirect or direct method) required to reach the same accuracy as DeepDistributedQP.
For OSQP with direct method, we only report the time for the first iteration, assuming the best-
case scenario in which the factorized KKT matrix can be reused for all subsequent iterations. Both
DeepDistributedQP and DistributedQP demonstrate orders-of-magnitude improvements compared
to OSQP as scale increases. In additon, DeepDistributedQP maintains a significant advantage over
its standard optimization counterpart in all cases.

DeepDistrQP (ours) DistrQP (ours) OSQP (Indirect) OSQP (Direct)
Networked Random QPs

N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
16 160 120 4,000 33.05 ms 50 141.9 ms 208 46.16 ms 29 0.86 ms 29
64 640 560 17,600 39.11 ms 50 129.2 ms 192 185.1 ms 28 23.8 ms 28

256 2,560 2,400 73,600 50.21 ms 50 128.8 ms 168 514 ms 23 703.5 ms 23
1,024 10,240 9,920 300,800 62.68 ms 50 158.9 ms 165 3.03s 23 8.20 s 23

Networked Random QPs with Equality Constraints
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
16 160 168 4,960 37.21 ms 50 138.9 ms 170 36.52 ms 19 0.76 ms 19
64 640 560 17,600 57.76 ms 50 238.1 ms 172 109.0 ms 17 26.9 ms 17

256 2,560 2,400 73,600 74.54 ms 50 239.5 ms 164 692.5 ms 17 956.0 ms 17
1,024 10,240 9,920 300,800 82.55 ms 50 371.0 ms 172 5.83 s 16 11.60 s 16

Coupled Pendulums Optimal Control
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 470 640 3,690 50.99 ms 20 89.81 ms 35 49.46 ms 8 4.95 ms 8
20 940 1,200 7,500 66.44 ms 20 116.7 ms 35 372.0 ms 8 199.7 ms 8
50 2,350 3,200 18,930 75.9 ms 20 142.1 ms 34 948.8 ms 8 4.38 s 8

100 4,700 6,400 37,980 101.9 ms 20 201.9 ms 35 3.97 s 9 19.91 s 9
200 9,400 12,800 76,080 146.0 ms 20 284.8 ms 34 22.41 s 8 90.07 s 8
500 23,500 32,000 190,380 204.3 ms 20 379.8 ms 36 112.9 s 9 Out of memory

1,000 47,000 64,000 380,880 317.2 ms 20 628.2 ms 34 Out of memory Out of memory
Coupled Oscillating Masses Optimal Control

N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 470 1,580 4,590 48.22 ms 20 73.58 ms 33 79.1 ms 9 178.4 ms 9
20 940 3,160 9,300 67.93 ms 20 91.53 ms 33 641.9 ms 9 2.37 s 9
50 2,350 7,900 23,430 73.92 ms 20 97.34 ms 32 1.07 s 8 28.1 s 8

100 4,700 15,800 46,980 91.93 ms 20 148.8 ms 33 5.45 s 8 132 s 8
200 9,400 31,600 94,080 109.4 ms 20 194.4 ms 34 31.8 s 8 614 s 8
300 28,200 47,400 141,180 132.8 ms 20 304.8 ms 33 243 s 8 Out of memory

Network Flow
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
20 100 140 600 6.80 ms 30 10.68 ms 50 9.51 ms 15 0.59 ms 15
50 250 350 1,500 7.81 ms 30 13.17 ms 48 14.81 ms 16 1.30 ms 16

200 1,000 1,400 6,000 12.08 ms 30 17.61 ms 42 208.19 ms 17 61.93 ms 17
500 2,500 3,500 15,000 13.63 ms 30 19.73 ms 40 425.7 ms 17 745.2 ms 17

1,000 5,000 7,000 30,000 20.51 ms 30 31.62 ms 40 8.73 s 18 11.59 s 18
2,000 10,000 14,000 60,000 29.86 ms 30 47.22 ms 40 51.6 s 18 73.9 s 18
5,000 25,000 35,000 150,000 61.23 ms 30 85.99 ms 39 558 s 18 Out of memory

Distributed LASSO
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 1,100 3,000 29,000 15.06 ms 20 28.57 ms 37 2.04 s 33 148.2 ms 33
50 5,500 15,000 145,000 24.92 ms 20 44.27 ms 38 13.74 s 31 49.21 s 31

100 10,100 30,000 290,000 30.51 ms 20 51.44 ms 35 85.92 s 32 342.9 s 32
200 20,100 60,000 580,000 40.88 ms 20 76.21 ms 36 418.9 s 32 Out of memory
500 50,100 150,000 1,450,000 69.19 ms 20 130.24 ms 35 Out of memory Out of memory

shown in Boyd et al. (2011) with τ = 2.0 and µ = 10.0. The initial value was again always chosen
as the median value of the above lists.

I.5 DETAILS ON WALL-CLOCK TIMES

In Table 6, we list the observed wall-clock times for DeepDistributedQP (ours), DistributedQP (ours)
and OSQP using either the indirect or the direct method. The table presents all six studied prob-
lems with an increasing dimension. As clearly observed, DeepDistributedQP and DistributedQP
demonstrate a substantially more favorable scalability than OSQP. In fact, the two algorithms can
efficiently solve problems that OSQP cannot even handle due to memory overflow on our system.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure 8: Varying training dataset size for DeepQP. The performance of DeepQP remains robust
(for both open-loop and closed-loop policies) even as the training dataset size is reduced.

Finally, DeepDistributedQP also maintains a clear advantage over its standard optimization counter-
part DistributedQP across all experiments which signifies the importance of learning policies for the
algorithm parameters.

J ADDITIONAL EXPERIMENTS

The following experiments are dedicated into providing additional insight on exploring the perfor-
mance of DeepDistributedQP and DeepQP in various testing scenarios.

J.1 VARYING TRAINING DATASET SIZE

This section provides additional insight on the amount of training data required for the proposed
learned optimizers to perform well.

In Fig. 8, we compare the performance of DeepQP on the centralized problems using a training
dataset size of 500, 1000 or 2000. To ensure an “equivalent total training effort”, we train these
three cases for 4e, 2e and e epochs, respectively, where e = 125 for random QPs and e = 75
for the other problems. This comparison highlights the robust performance of DeepQP even with
a limited amount of training data. Interestingly, we also observe that training with less data but
over more epochs had a beneficial effect on two out of six problems. We hypothesize that this
could be attributed to the non-convex nature of training in deep learning, as well as the possibility
that additional epochs might have allowed for further improvements in cases where the training
of the model had not yet fully converged. Overall, we conclude that DeepQP maintains reliable
performance even when training data is limited.

For the training of DeepDistributedQP, a limited training dataset of 500 sample problems was used
for all problems except for the random QPs without equality constraints. For completeness, Fig. 9
presents a performance comparison of the learned optimizer when trained with 500 sample problems
(600 epochs) and 1000 sample problems (300 epochs). While additional training data provides
some improvement, the model trained with less sample problems still significantly outperforms the
standard optimization counterparts.

J.2 CAN POLICIES TRAINED FOR SPECIFIC PROBLEMS BE APPLIED TO OTHER PROBLEMS?

The field of learning-to-optimize primarily focuses on improving the performance of an underlying
optimizer for problems drawn from the same distribution as the training data (Shlezinger et al.,
2022). However, this prompts an interesting question: How does a policy trained on a specific
problem class perform when evaluated on a different class?

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 9: Performance of DeepDistributedQP on random QPs using training dataset size 500
and 1000. While using more training data results in a slight improvement in the performance of
DeepDistributedQP, in both scenarios, the proposed learned optimizer consistently outperforms the
traditional one. The right figure illustrates only the first 50 iterations.

Figure 10: Testing policies on different classes of problems. We evaluate the policy trained on
small-scale random equality-constrained QP problems (N = 16) on two large-scale scenarios of
different problem types: random QPs without equality constraints (N = 1, 024) and coupled pen-
dulums (N = 1, 000). Notably, in the first case (left), the policy demonstrates strong performance
which is attributed on the fact that there is still some similarity between the training and testing
setups. In the second case (right), where the testing problems differ entirely from the training setup,
the performance of the learned optimizer is suboptimal but remains acceptable.

At this point, we wish to emphasize the following fact:

The proposed DeepDistributedQP framework already surpasses the expected capabilities of typi-
cal learning-to-optimize algorithms, as it is trained on small-scale problems and then successfully
deployed on much higher-dimensional ones.

For completeness, we also conducted curiosity-driven experiments by applying the trained policies
to different classes of problems than the ones used for training. In Fig. 10, we test a policy trained
on small-scale random equality-constrained QPs on large-scale random QPs without equality con-
straints and large-scale coupled pendulums problems. In the first case, DeepDistributedQP maintains
remarkable performance compared to DistributedQP due to the existing similarity between the two
classes. In the second setup, where the training and testing problems are entirely different, the per-
formance is suboptimal. Overall, these results highlight that when there is a degree of similarity
between the training and testing setups, DeepDistributedQP is expected to still perform very well.
In future work, we plan to explore extensions trained on a broader variety of problem classes to
improve generalization on entirely different setups.

J.3 VARYING THE NUMBER OF LAYERS IN TESTING DEEPDISTRIBUTEDQP

Another natural question that arises is how DeepDistributedQP can be adapted to run for more
iterations than the number of layers it was originally trained for. A straightforward modification is
to repeat the last layer of the framework for the extra needed iterations. In Fig. 11, we add 30 extra
iterations for the random QPs and 20 for the other problems. For all cases, the closed-loop policies
continue to outperform the standard optimizers. Additionally, the open-loop policies maintain strong

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 11: Varying the number of layers while testing DeepDistributedQP. If additional itera-
tions are needed, DeepDistributedQP maintains strong performance by repeating its last layer for
these extra iterations. Specifically, we explore adding 30 iterations for the random QPs and 20 for
the rest of the problems. In all cases, the closed-loop policies continue to demonstrate superior per-
formance, while in 4 out of 6 problems, the open-loop policies also remain advantageous.

performance in 4 out of 6 problems. In future work, we plan to incorporate the repetition of the last
layer during training to further ensure robust performance when additional iterations are required.

39

	Introduction
	Related Work
	Distributed Quadratic Programming
	Problem Formulation
	DistributedQP: The Underlying Optimization Algorithm
	Convergence Guarantees

	The DeepDistributedQP Architecture
	Main Architecture
	Implicit Differentiation

	Generalization Bounds
	Experiments
	Small-Scale Centralized Experiments: DeepQP vs OSQP
	Large-Scale Distributed Experiments: Scaling DeepDistributedQP
	Discussion

	Conclusion and Future Work
	Complete Derivation of DistributedQP Algorithm
	Standard Convergence Guarantees for Simplified DistributedQP
	Proof of DistributedQP Asymptotic Convergence
	Sketch of Proof
	Necessary Lemmas
	Proof of Theorem 1

	Details on DeepDistributedQP Feedback Policies
	The Centralized Version: DeepQP
	Proof of Indirect Method Implicit Differentiation
	Background on PAC-Bayes Theory
	Optimizing and Evaluating Generalization Bound
	Details on Experiments
	Problem Types in Centralized Experiments
	Problem Types in Distributed Experiments
	Details on Training and Testing
	Details on Standard Optimizers
	Details on Wall-Clock Times

	Additional Experiments
	Varying Training Dataset Size
	Can Policies Trained for Specific Problems Be Applied to Other Problems?
	Varying the Number of Layers in Testing DeepDistributedQP

