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ABSTRACT

Quadratic programming (QP) forms a crucial foundation in optimization, encom-
passing a broad spectrum of domains and serving as the basis for more advanced
algorithms. Consequently, as the scale and complexity of modern applications
continue to grow, the development of efficient and reliable QP algorithms becomes
increasingly vital. In this context, this paper introduces a novel deep learning-
aided distributed optimization architecture designed for tackling large-scale QP
problems. First, we combine the state-of-the-art Operator Splitting QP (OSQP)
method with a consensus approach to derive DistributedQP, a new method tai-
lored for network-structured problems, with convergence guarantees to optimality.
Subsequently, we unfold this optimizer into a deep learning framework, leading
to DeepDistributedQP, which leverages learned policies to accelerate reaching to
desired accuracy within a restricted amount of iterations. Our approach is also the-
oretically grounded through Probably Approximately Correct (PAC)-Bayes the-
ory, providing generalization bounds on the expected optimality gap for unseen
problems. The proposed framework, as well as its centralized version DeepQP,
significantly outperform their standard optimization counterparts on a variety of
tasks such as randomly generated problems, optimal control, linear regression,
transportation networks and others. Notably, DeepDistributedQP demonstrates
strong generalization by training on small problems and scaling to solve much
larger ones (up to 50K variables and 150K constraints) using the same policy.
Moreover, it achieves orders-of-magnitude improvements in wall-clock time com-
pared to OSQP. The certifiable performance guarantees of our approach are also
demonstrated, ensuring higher-quality solutions over traditional optimizers.

1 INTRODUCTION

Quadratic programming (QP) serves as a fundamental cornerstone in optimization with a wide va-
riety of applications in machine learning (Cortes & Vapnik, 1995; Tibshirani, 1996), control and
robotics (Garcia et al., 1989; Rawlings et al., 2017), signal processing (Mattingley & Boyd, 2010),
finance (Cornuejols et al., 2018), and transportation networks (Mota et al., 2014) among other
fields. Beyond its standalone applications, QP also acts as the core component of many advanced
non-convex optimization algorithms such as sequential quadratic programming (Nocedal & Wright,
1999), trust-region methods (Conn et al., 2000), augmented Lagrangian approaches (Houska et al.,
2016), mixed-integer optimization (Belotti et al., 2013), etc. For these reasons, the pursuit of more
efficient QP algorithms remains an ever-evolving area of research from active set (Wolfe, 1959) and
interior point methods (Nesterov & Nemirovskii, 1994) during the previous century to first-order
methods such as the state-of-the-art Operator Splitting QP (OSQP) algorithm (Stellato et al., 2020).

As the scale of modern decision-making applications rapidly increases, there is an emerging in-
terest in developing effective optimization architectures for addressing high-dimensional problems.
Given the fundamental role of QP in optimization, there is a clear demand for algorithms capable
of solving large-scale QPs with thousands, and potentially much more, variables and constraints.
Such problems arise in diverse applications including sparse linear regression (Mateos et al., 2010)
and support vector machines (Navia-Vazquez et al., 2006) with decentralized data, multi-agent con-
trol (Van Parys & Pipeleers, 2017), resource allocation (Huang et al., 2014), network flow (Mota
et al., 2014), power grids (Lin et al., 2012) and image processing (Soheili & Eftekhari-Moghadam,
2020). Traditional centralized optimization algorithms are inadequate for solving such problems at

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

scale (see for example Fig. 1), prompting the development of distributed methods that leverage the
underlying network/decentralized structure to parallelize computations. In this context, the Alter-
nating Direction Method of Multipliers (ADMM) has gained widespread popularity as an effective
approach for deriving distributed algorithms (Boyd et al., 2011; Mota et al., 2013). Nevertheless,
as scale increases, such algorithms continue to face significant challenges such as their need for
meticulous tuning, the absence of generalization guarantees and restrictions on the allowed number
of iterations imposed by computational or communication limitations.

62ms

129ms

3s

8.2s

146ms

511ms

22.4s

90.1s

61ms
86ms

9m 58s

N/A

Figure 1: Wall-clock time comparison:
DeepDistributedQP, DistributedQP (ours)
and OSQP on large-scale QPs.

Learning-to-optimize has recently emerged as a
methodology for enhancing existing optimizers or de-
veloping entirely new ones through training on sample
problems (Chen et al., 2022; Amos et al., 2023). A
notable approach within this paradigm is deep unfold-
ing, which involves unrolling the optimizer iterations
for a fixed number of steps and tuning their parameters
to refine performance (Monga et al., 2021; Shlezinger
et al., 2022). Our key insight is that deep unfolding is
particularly well-suited for overcoming the limitations
of distributed constrained optimization, as it can elim-
inate the need for extensive tuning, manage iteration
restrictions and enhance generalization. However, to
our best knowledge, its combination with distributed
optimization has only recently been explored in Noah
& Shlezinger (2024). While this framework shows promising initial results, it relies on a relatively
simple setup that studies unconstrained problems, assumes local updates consisting of gradient steps,
focuses solely on parameter tuning, and is not accompanied by any formal performance guarantees.

This paper introduces a novel deep learning-aided distributed optimization architecture for solving
large-scale constrained QP problems. Our proposed approach relies on unfolding a newly intro-
duced distributed QP algorithm as a supervised learning framework for a prescribed number of
iterations. To our best knowledge, this is the first work to propose a learning-based architecture for
distributed constrained optimization using ADMM, despite its widespread popularity. Our frame-
work demonstrates remarkable performance and scalability when trained on small problems and
can be effectively applied to much larger ones. Furthermore, its performance is theoretically sup-
ported by establishing guarantees based on generalization bounds from statistical learning theory.
We believe that this work lays the foundation for developing learned distributed optimizers capable
of handling large-scale constrained optimization problems without requiring training at such scales.

Our specific contributions can be summarized as follows:

• First, we introduce DistributedQP, a new decentralized method that combines the well-
established OSQP solver with a consensus approach. We further prove that the algorithm
is guaranteed to converge to optimality, even under varying local algorithm parameters.

• Then, we propose DeepDistributedQP, a deep learning-aided distributed architecture that
unrolls the iterations of DistributedQP in a supervised manner, learning feedback policies
for the underlying algorithm parameters. As a byproduct, we also present DeepQP, its
centralized counterpart which corresponds to unfolding the standard OSQP solver.

• To certify the performance of the learned solver, we establish generalization guarantees on
the optimality gap of the final solution of DeepDistributedQP for unseen problems using
Probably Approximately Correct (PAC)-Bayes theory.

• Finally, we present an extensive experimental evaluation that validates the following:
– For centralized QPs, DeepQP consistently outperforms OSQP requiring 1.5-3 times

fewer iterations for achieving the desired accuracy.
– DeepDistributedQP successfully scales for high-dimensional problems (up to 50K

variables and 150K constraints) while being trained exclusively on much smaller ones.
Furthermore, both DeepDistributedQP and DistributedQP outperform OSQP in wall-
clock time by orders of magnitude as problem dimensionality increases.

– The resulting performance bounds offer valuable guarantees on the quality of solutions
produced by DeepDistributedQP for unseen problems from the same class.
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2 RELATED WORK

This section provides an overview of the existing related literature from both the angles of distributed
optimization and learning-to-optimize approaches.

Distributed optimization with ADMM. Distributed ADMM algorithms have emerged as a scal-
able approach for addressing large-scale optimization problems (Boyd et al., 2011; Mota et al.,
2013). Despite their significant applicability to machine learning (Mateos et al., 2010), robotics
(Shorinwa et al., 2024) and many other fields, their successful performance has been shown to be
highly sensitive to the proper tuning of its underlying parameters (Xu et al., 2017; Saravanos et al.,
2023). Moreover, tuning parameters for large-scale problems is often tedious and time-consuming,
making it desirable to develop effective learned optimizers that can be trained on smaller problems
instead. Furthermore, even if an distributed optimizer performs well for a specific problem instance,
its generalization to new problems remains challenging to verify. These challenges constitute our
main motivation for studying learning-aided distributed ADMM architectures. We also note that an
ADMM-based distributed QP solver resembling a simpler version of DistributedQP was presented
in Pereira et al. (2022), but it focused on multi-robot control and lacked theoretical analysis.

Learning-to-optimize. The area of learning-to-optimize methods has emerged as an effective ap-
proach for enhancing existing optimizers or even deriving new algorithmic updates through training
on sample problems (Chen et al., 2022; Shlezinger et al., 2022; Amos et al., 2023). A prominent
technique in this paradigm is deep unfolding, which under the realistic assumption of computational
budget restrictions, unrolls a fixed number of iterations as layers of a deep learning framework and
learns the optimal parameters for improving performance on a specific problem class (Monga et al.,
2021; Zhang et al., 2020). Nevertheless, combining deep unfolding with distributed ADMM has only
been investigated recently in Noah & Shlezinger (2024). Although this framework demonstrates
promising results, it is limited to an unconstrained problem formulation, assumes gradient-based
local updates, focuses exclusively on parameter tuning and lacks formal performance guarantees. A
reinforcement learning algorithm for accelerating OSQP was presented in Ichnowski et al. (2021).
While this approach also explores learning policies for algorithm parameters, it is limited to central-
ized quadratic programming, lacks guarantees and its training comes at a significant computational
cost. In the context of establishing generalization bounds for learned optimizers, Sambharya & Stel-
lato (2024) recently explored the idea of incorporating PAC-Bayes bounds in learned optimizers, yet
our approach differs fundamentally, as their method employs a binary error function, whereas ours
directly establishes bounds based on the optimality gap of the final solution. The works in Sucker &
Ochs (2023) and Sucker et al. (2024) are also investigating generalization bounds for learned opti-
mizers, considering the update function as a gradient step or a multi-layer perceptron, respectively.

3 DISTRIBUTED QUADRATIC PROGRAMMING

3.1 PROBLEM FORMULATION

Global variable components

Local variables

w1 w2 w3 w4

[x1]1 = w1

[x1]2 = w2 [x2]1 = w2

[x2]2 = w3

[x3]1 = w3

[x3]2 = w4

x1 x2 x3

Figure 2: Example of consensus
mapping G in problem (2).

A convex (centralized) QP problem is expressed in general as

min
x

1

2
x⊤Qx+ q⊤x s.t. Ax ≤ b, (1)

where x ∈ Rn is the decision vector and ζ = {Q ∈ Sn++, q ∈
Rn,A ∈ Rm×n, b ∈ Rm} are the problem data. 1 As the scale
of such problems increases to higher dimensions, there is often
an underlying networked/decentralized structure that could be
leveraged for achieving distributed computations. This work specifically aims to address problems
characterized by such structures. Let w ∈ Rn be the main global variable and xi ∈ Rni be local
variables i ∈ V = {1, . . . , N}. Then, assume a mapping (i, j) 7→ G(i, j) from all index pairs (i, j)
of local variable components [xi]j to indices l = G(i, j) of global components wl

2 - for an example
see Fig. 2. We consider QP problems of the following distributed consensus form:

min
x,w

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi ≤ bi, xi = w̃i, i ∈ V, (2)

1Note that equality constraints can also be captured as pairs of inequalities.
2This formulation is adopted from the standard consensus ADMM framework (Boyd et al., 2011), wherein

local variables are typically associated with their respective computational nodes.
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where the problem data are now given by ζ = {ζi}Ni=1 with ζi = (Qi ∈ Sni
++, qi ∈ Rni ,Ai ∈

Rmi×ni , bi ∈ Rmi). The vector x = [{xi}i∈V ] is the concatenation of all local variables, while
w̃i ∈ Rni , defined as w̃i = [{wl}l∈G(q,j):q=i], is the selection of global variable components that
correspond to the components of xi. This form captures a wide variety of large-scale QPs found
in machine learning (Mateos et al., 2010; Navia-Vazquez et al., 2006), optimal control (Van Parys
& Pipeleers, 2017), transportation networks, (Mota et al., 2014), power grids (Lin et al., 2012),
resource allocation (Huang et al., 2014) and many other fields.

3.2 DISTRIBUTEDQP: THE UNDERLYING OPTIMIZATION ALGORITHM

This section introduces a new distributed algorithm named DistributedQP for solving problems of
the form (2). The proposed method can be viewed as a combination of consensus ADMM (Boyd
et al., 2011) and OSQP (Stellato et al., 2020) using local iteration-varying penalty parameters.

Let us introduce the auxiliary variables zi, si ∈ Rmi , such that problem (2) can be reformulated as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, si ≤ bi, zi = si, xi = w̃i, i ∈ V.

The proposed DistributedQP algorithm is then summarized as follows, where k denotes iterations:

1. Local updates for xi, zi. For each node i ∈ V , solve in parallel:[
Qi + µk

i I A⊤
i

Ai −1/ρki I

] [
xk+1
i

νk+1
i

]
=

[
−qi + µk

i w̃i − yi

zi − 1/ρki λi

]
, (3)

and then update in parallel

zk+1
i = ski + 1/ρki (ν

k+1
i − λk

i ). (4)

2. Local updates for si and global update for w. For each node i ∈ V , update in parallel:

sk+1
i = Πsi≤bi

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i

)
. (5)

In addition, each global variable component wl is updated through:

wk+1
l = αk

∑
G(i,j)=l µ

k
i [xi]j∑

G(i,j)=l µ
k
i

+ (1− αk)wk
l . (6)

3. Local updates for Lagrange multipliers λi,yi. For each node i ∈ V , update in parallel:

λk+1
i = λk

i + ρki (α
kzk+1

i + (1− αk)ski − sk+1
i ), (7)

yk+1
i = yk

i + µk
i (α

kxk+1
i + (1− αk)w̃k

i − w̃k+1
i ). (8)

The Lagrange multipliers νi,λi and yi correspond to the equality constraints Aixi = zi, zi = si
and xi = w̃i, respectively. The penalty parameters ρi, µi > 0 correspond to zi = si and xi = w̃i,
while αk ∈ [1, 2) are over-relaxation parameters. A complete derivation is provided in Appendix A.

3.3 CONVERGENCE GUARANTEES

Prior to unrolling DistributedQP into a deep learning framework, it is particularly important to estab-
lish that the underlying optimization algorithm is well-behaved even for varying parameters, i.e., it
is expected to asymptotically converge to the optimal solution. This property is especially important
in deep unfolding where parameters are expected to be distinct between different iterations.

In the simpler case of αk = 1, ρki = ρ, µk
i = µ, the standard convergence guarantees of two-

block ADMM would apply directly (Deng & Yin, 2016); for a detailed discussion, see Appendix
B. Nevertheless, the introduction of local iteration-varying penalty parameters ρki , µ

k
i , as well as

the over-relaxation with varying parameters αk makes proving the convergence of this algorithm
non-trivial. In the following, we provide convergence guarantees to optimality for DistributedQP.

We consider the following assumption for the penalty parameters.
Assumption 1. As k → ∞, the parameters ρki = ρk−1

i , µk
i = µk−1

i , for all i ∈ V .
Theorem 1 (Convergence guarantees for DistributedQP). If Assumption 1 holds and αk ∈ [1, 2),
then the iterates wk converge to the optimal solution w∗ of problem (2), as k → ∞.

The proof of Theorem 1, as well as necessary intermediate results, are provided in Appendix C.
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N
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N
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Figure 3: The DeepDistributedQP architecture. The proposed framework relies on unrolling the
DistributedQP optimizer as a supervised deep learning framework. In particular, we interpret its
iterations (3)-(8) as sequential network layers and introduce learnable components (orange blocks)
to facilitate reaching the desired accuracy after a predefined number of allowed iterations.

4 THE DEEPDISTRIBUTEDQP ARCHITECTURE

The proposed DeepDistributedQP architecture emerges from unfolding the iterations of the Dis-
tributedQP optimizer into a deep learning framework. Section 4.1 illustrates the main architecture,
key aspects of our methodology, as well as the centralized version DeepQP. Section 4.2 leverages
implicit differentiation during backpropagation to facilitate the training of our framework.

4.1 MAIN ARCHITECTURE

Architecture overview. The DeepDistributedQP architecture arises from unrolling the Distribut-
edQP optimizer within the supervised learning paradigm. (Fig. 3). This is accomplished through
treating the updates (3)-(7) as blocks in sequential layers of a deep learning network. The number of
layers is equal to the predefined number of allowed iterations K, with each layer corresponding to
an iteration k = 1, . . . ,K. The inputs of the network are the local problem data ζi and initializations
x0
i , z0

i , w̃0
i , s0i , λ0

i and y0
i . These are initially passed to N parallel local blocks corresponding to

(3)-(4), which output the new variables x1
i and z1

i . Then, all z1
i are fed into N new parallel local

blocks (5), yielding the new iterates s1i . In the meantime, all x1
i are communicated to a central node

that computes the new iterate w1 through the weighted averaging step (6). Subsequently, the global
variable components w̃i are communicated back to each local node i, to perform the updates (7)-
(8) which output the updated dual variables λi,yi. This group of blocks is then repeated K times,
yielding the output of the network which is the final global variable iterate wK .

Learning feedback policies. Standard deep unfolding typically leverages data to learn algorithm
parameters tailored for a specific problem (Shlezinger et al., 2022). From a control theoretic point
of view, this process can be interpreted as seeking open-loop policies without the incorporating any
feedback. In our setup, this would be equivalent with learning the optimal parameters ρ̄ki , µ̄k

i , ᾱk

ρki = SoftPlus(ρ̄ki ), µk
i = SoftPlus(µ̄k

i ), αk = Sigmoid1,2(ᾱ
k), (9)

for all i = 1, . . . , N and k = 1, . . . ,K, where the SoftPlus(·) function is used to guarantee the
positivity of ρki , µk

i , and the sigmoid function Sigmoid1,2(·) restricts each αk to lie between (1, 2).

In the meantime, the predominant practice for online adaptation of the ADMM penalty parameters
relies on observing the primal and dual residuals every few iterations (Boyd et al., 2011). The
widely-used rule suggests that if the ratio of primal-to-dual residuals is high, the penalty parameter
ρ should be increased; conversely, if the ratio is low, ρ should be decreased. Despite its heuristic
nature, this approach includes a notion of “feedback” since the current state of the optimizer is used
to adapt the parameters, and as a result, it can be interpreted as a closed-loop policy. Based on this

5
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point of view, our goal is to learn the optimal closed-loop policies for the local penalty parameters

ρki = SoftPlus
(
ρ̄ki + πk

i,ρ(r
k
i,ρ, s

k
i,ρ; θ

k
i,ρ)︸ ︷︷ ︸

ρ̂k
i

)
, µk

i = SoftPlus
(
µ̄k
i + πk

i,µ(r
k
i,µ, s

k
i,µ; θ

k
i,µ)︸ ︷︷ ︸

µ̂k
i

)
, (10)

where ρ̂ki , µ̂k
i are feedback components obtained from policies πk

i,·(r
k
i,·, s

k
i,·; θ

k
i,·), parameterized by

fully-connected neural network layers with inputs rki,·, s
k
i,· and weights θki,·. The terms rki,· and ski,·

represent the local primal and dual residuals of node i at layer k and are detailed in Appendix D.

Solving the local updates. The most computationally demanding block in DeepDistributedQP is
solving the local updates (3), as this requires solving a linear system of size ni+mi. Similar to OSQP
(Stellato et al., 2020), this can be accomplished using either a direct or an indirect method. The direct
method factors the KKT matrix, solving the system via forward and backward substitution. This
approach is particularly efficient when penalty parameters remain fixed, as the same factorization
can then be reused accross iterations. Nevertheless, at larger scales, this factorization might become
impractical. In contrast, with the indirect method, we eliminate νk+1

i to solve the linear system:

(Qi + µk
i I +A⊤

i ρ
k
iAi)︸ ︷︷ ︸

Q̄k
i

xk+1
i = −qi + µk

i w̃i − yi +A⊤
i ρ

k
i zi −A⊤

i λi︸ ︷︷ ︸
b̄k
i

. (11)

This new linear system is solved for xk+1
i using an iterative scheme such as the conjugate gradi-

ent (CG) method. We then substitute νk+1
i = ρki (Aix

k+1
i − zi) + λi. The indirect method has

three important properties that make it particularly attractive in our setup. First, its computational
complexity scales better w.r.t. the dimension of the local problem, while no additional overhead is
introduced by changing the penalty parameters. Second, it can be warmstarted using the solution
from the previous iteration, greatly reducing the number of iterations required to converge to a solu-
tion. The final important property, which is critical for the scalability of the DeepDistributedQP, is
that training with the indirect method can be much more memory efficient as shown in Section 4.2.

Training loss. Let S = {ζj}Hj=1 be a dataset consisting of H problem instances ζj =

{(Qi, qi,Ai, bi)
N
i=1,w

∗}j subject to the known mapping G of problem (2). The loss we are us-
ing for training is the average of the γk-scaled distances of the global iterates w1, . . . ,wN from the
known optimal solution w∗ of each problem instance ζj , provided as

ℓ(S; θ) = 1

H

H∑
j=1

K∑
k=1

γk∥wk(ζj ; θ)−w∗(ζj)∥2, (12)

where θ corresponds to the concatenation of all learnable parameters/weights of our framework.
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Figure 4: The DeepQP architecture: The cen-
tralized version of DeepDistributedQP.

Centralized version. While this work pri-
marily focuses on distributed optimization, for
completeness, we also introduce DeepQP, the
centralized version of our framework, for ad-
dressing general QPs of the form (1). In the
centralized case, our framework simplifies to
N = 1, eliminating the need for distinguish-
ing between local and global variables. Under
this simplification, the DistributedQP optimizer
coincides with OSQP. Hence, DeepQP consists
of unfolding the OSQP updates (see Appendix E) and learning policies for adapting its penalty and
over-relaxation parameters. The resulting framework is illustrated in Fig. 4. Additional details on
DeepQP are provided in Appendix E.

4.2 IMPLICIT DIFFERENTIATION

When solving for the local updates in (11) using the indirect method, it is computationally intractable
to backpropagate through all CG iterations. This is especially important in the context of unfolding,
as it would become necessary to unroll multiple inner CG optimization loops. To address this, we
leverage the implicit function theorem (IFT) to express the solution of (11) as an implicit function
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of the local problem data. This allows us to compute gradients in a manner that avoids unrolling the
CG iterations and requires solving a linear system with the same coefficient matrix, but with a new
RHS, achieved by rerunning the CG method. This result is formalized in the following theorem.
Theorem 2 (Implicit Differentiation of Indirect Method). Let xk+1

i be the unique solution to the
linear system Q̄k

i x
k+1
i = b̄ki in (11). Let ∇xL(x

k+1
i ) be a backward pass vector computed through

reverse-mode automatic differentiation of some loss function L. Then, the gradient of L with respect
to Q̄k

i and b̄ki is given by

∇Q̄k
i
L =

1

2
(xk+1

i ⊗ dxk+1
i + dxk+1

i ⊗ xk+1
i ),

∇b̄k
i
L = −dxk+1

i ,

where dxk+1
i is the unique solution to the linear system Q̄k

i dx
k+1
i = −∇xL(x

k+1
i ).

The proof is provided in Appendix F and is a straightforward application of the IFT, similar to the
results established by Amos & Kolter (2017) and Agrawal et al. (2019).

5 GENERALIZATION BOUNDS

In this section, we establish guarantees on the expected performance of DeepDistributedQP. To
achieve this, we leverage the PAC-Bayes framework (Alquier, 2024), a well-known statistical learn-
ing methodology for providing bounds on expected loss metrics that hold with high probability. In
our case, we provide bounds on the expected progress of the final iterate wK towards reaching the
optimal solution w∗ for unseen problems drawn from the same distribution as the training dataset.

Learning stochastic policies. PAC-Bayes theory is applicable to frameworks that learn weight
distributions rather than fixed weights. For this reason, in order to establish such guarantees, we
switch to learning a Gaussian distribution of weights P = N (µΘ,ΣΘ) based on a prior P0 =
N (µ0

Θ,Σ
0
Θ). This choice is motivated by the fact that PAC-Bayes bounds include Kullback–Leibler

(KL) divergence terms which can be easily evaluated and optimized for Gaussian distributions.

Generalization bound for DeepDistributedQP. To facilitate the exhibition of our performance
guarantees, we provide necessary preliminaries on PAC-Bayes theory in Appendix G. To establish a
generalization guarantee for DeepDistributedQP, a meaningful loss function must first be selected.
This quantity will be denoted q(ζ; θ) to differentiate from the loss used for training. To capture the
progress the optimizer makes towards optimality, we propose the following progress metric:

q(ζ; θ) = min

{
∥wK(ζ; θ)−w∗(ζ)∥2
∥w0(ζ)−w∗(ζ)∥2

, 1

}
. (13)

This loss function measures progress by comparing the distance between the final iterate wK(ζ; θ)
and problem solution w∗(ζ) with the distance between the initialization w0(ζ; θ) and the solution.
This choice satisfies the requirement of being bounded between 0 and 1 while being more informa-
tive than the indicator losses used in prior work that simply determine whether the final iterate is
within a specified neighborhood of the optimal solution (Sambharya & Stellato, 2024). Moreover,
this loss is invariant to the scale of the problem data since it is a relative measurement.

As in Appendix G, let qD(P) be the true expected loss and qS(P) the empirical expected loss. To
evaluate the PAC-Bayes bounds in (148), the expectation Eθ∼P [q(ζ; θ)] must be computed as part
of the definition of qS(P). Since no closed-form solution is available, an empirical estimate using
M sampled weights (θi)

M
i=1 is required to upper bound qS(P) with high probability. We adopt a

standard approach involving a sample convergence bound (Majumdar et al. (2021), Dziugaite & Roy
(2017), Langford & Caruana (2001)). Specifically, define the empirical estimate of qS(P) as:

q̂S(P;M) =
1

MH

H∑
i=1

M∑
j=1

q(ζi; θj). (14)

Then, the following sample convergence bound provides an upper bound on qS(P),

qS(P) ≤ q̄S(P;M, ϵ) := DKL
(
q̂S(P;M) ∥ M−1 log (2/ϵ)

)
. (15)

with probability 1− ϵ. The following theorem summarizes the PAC-Bayes bound we use to evaluate
the generalization capabilities of our framework.
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Figure 5: Small-scale centralized comparison of DeepQP and OSQP. Across all tested problems,
DeepQP consistently outperforms OSQP (same per-iteration complexity using the indirect method).

Theorem 3 (Generalization bound for DeepDistributedQP). For problems ζ ∈ Z drawn from dis-
tribution D, the true expected progress metric of DeepDistributedQP with policy P , i.e.,

qD(P) = Eζ∼D Eθ∼P

[
min

{
∥wK(ζ; θ)−w∗(ζ)∥2
∥w0(ζ)−w∗(ζ)∥2

, 1

}]
, (16)

is bounded with probability at least 1− δ − ϵ by:

qD(P) ≤ D−1
KL

(
q̄S(P;M, ϵ)

∥∥∥(DKL(P∥P0) + log(2
√
H/δ)

)
/H
)
, (17)

where q̄S(P;M, ϵ) is the estimate of qS(P;M, ϵ) described in Eq. (15).

We explain in detail how we train for optimizing the generalization bounds in Appendix H.

6 EXPERIMENTS

We conduct extensive experiments to highlight the effectiveness, scalability and generalizability
of the proposed methods. Section 6.1 shows the advantageous performance of DeepQP against
OSQP on a variety of centralized QPs. In Section 6.2, we address large-scale problems, showcasing
the scalability of DeepDistributedQP despite being trained exclusively on much lower-dimensional
instances. Additionally, we discuss the advantages of learning local policies over shared ones and
evaluate the proposed generalization bounds, which provide guarantees for the performance of our
framework on unseen problems. An overall discussion and potential limitations are provided in
Section 6.3. All experiments were performed on an system with an RTX 4090 GPU 24GB, a 13th
Gen Intel(R) Core(TM) i9-13900K and 64GB of RAM.

6.1 SMALL-SCALE CENTRALIZED EXPERIMENTS: DEEPQP VS OSQP

Setup. We begin with comparing DeepQP against OSQP for solving centralized QPs (1). The
following problems are considered: i,ii) random QPs without/with equality constraints, iii, iv) opti-
mal control for double integrator and oscillating masses, v) portfolio optimization, and vi) LASSO
regression. For all problems, we set a maximum allowed amount of iterations K for DeepQP within
[10, 30] and examine how many iterations OSQP requires to reach the same accuracy. We train
DeepQP using both open-loop and closed-loop policies and with a dataset of size H ∈ [500, 2000].
For OSQP, we consider both constant and adaptive penalty parameters ρ and we set α to be either
1.0 or 1.6. Additional details on DeepQP, OSQP and the problems can be found in Appendix I.
Performance comparison. The comparison between DeepQP and OSQP is illustrated in Fig. 5.
Note that both methods share the same per-iteration complexity from solving (139). We evaluate
their performance by comparing the (normalized) optimality gap ∥xk − x∗∥2/

√
n. For all tested

problems, DeepQP provides a consistent improvement over OSQP, requiring 1.5 − 3 times fewer
iterations to reach the desired accuracy. Furthermore, the advantage of incorporating feedback in
the policies is shown, as closed-loop policies outperform open-loop ones in all cases.
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Figure 6: Scaling DeepDistributedQP to high-dimensional problems. Left: Comparison be-
tween DeepDistributedQP and its traditional optimization counterpart DistributedQP (same per-
iteration complexity). Right: Total wall-clock time required by DeepDistributedQP, DistributedQP
and OSQP (using indirect or direct method) to achieve the same accuracy.

6.2 LARGE-SCALE DISTRIBUTED EXPERIMENTS: SCALING DEEPDISTRIBUTEDQP
Setup. The purpose of the following analysis is to compare the performance and scalability of
DeepDistributedQP (ours), DistributedQP (ours) and OSQP for large-scale QPs of the form (2). We
consider the following six problems: i,ii) random networked QPs without/with equality constraints,
iii, iv) multi-agent optimal control for coupled pendulums and oscillating masses, v) network flow,
and vi) distributed LASSO. We select a maximum allowed number of iterations K for DeepDis-
tributedQP within [20, 50] and examine what is the computaional effort required by DistributedQP
and OSQP to achieve the same accuracy measured by the optimality gap ∥wk −w∗∥2/

√
n. More

details about our experimental setup are provided in Appendix I.
Training on low-dimensional problems. One of the key advantages of DeepDistributedQP is that
it only requires using small-scale problems for training. The training dimensions for each problem
are detailed in Table 1. Both open-loop and closed-loop versions are trained using shared policies
on datasets of size H ∈ [500, 1000]. We employ the shared policies version of DeepDistributedQP
to enable the same policies to be applied to larger problems during testing.
Scaling to high-dimensional problems. Subsequently, we evaluate DeepDistributedQP on prob-
lems with significantly larger scale than those used during training. The maximum problem dimen-
sions tested are shown in Table 1. On the left side of Fig. 6, we highlight the superior performance
of DeepDistributedQP over its standard optimization counterpart DistributedQP (same per-iteration
complexity). In all cases, the learned algorithm achieves the same level of accuracy while requiring
1.5-3.5 times fewer iterations. Additionally, the right side of Fig. 6 compares the total wall-clock
time between DeepDistributedQP, DistributedQP and OSQP (using indirect or direct method). For a
complete illustration, we refer the reader to Table 6 in Appendix I.5. The provided results emphasize
the superior scalability of the two proposed distributed methods against OSQP for large-scale QPs,
as well as the advantage of our deep learning-aided approach over traditional optimization.
Local vs shared policies. When applying a policy to a problem with the same dimensions as used
during training, leveraging local policies instead of shared ones can be advantageous for better ex-
ploiting the structure of the problem. On the left side of Fig. 7 ,we compare the performance of local
and shared policies on random QPs and coupled pendulums. For the coupled pendulums problem,
which exhibits significant underlying structure, local policies demonstrate clear superiority. For the
random QPs problem, where structural patterns are less pronounced, the advantage of local policies
is smaller but still significant.
Performance guarantees. Next, we verify the guarantees of our framework for generalizing on
unseen random QP (N = 16) and coupled pendulums (N = 10) problems. We switch from
learning deterministic weights to learning stochastic ones and follow the procedure described in
Appendix H with H = 15000 training samples, M = 30000 sampled weights for the bounds
evaluation, δ = 0.009 and ϵ = 0.001. The resulting generalization bounds, illustrated in Fig. 7
(right), are expressed in terms of the the expected final relative optimality gap - the progress metric

9
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Table 1: Training dimensions for DeepDistributedQP and maximum testing dimensions. The
metric nnz(Q,A) denotes the total number of non-zero elements in Q and A.

Training Max Testing
Problem Class N n m nnz(Q,A) N n m nnz(Q,A)
Random QPs 16 160 120 4,000 1,024 10,240 9,920 300,800

Random QPs w/ Eq. Constr. 16 160 168 4,960 1,024 10,240 9,920 300,800
Coupled Pendulums 10 470 640 3,690 1,000 47,000 64,000 380,880

Coupled Osc. Masses 10 470 1,580 4,590 300 28,200 47,400 141,180
Network Flow 20 100 140 600 5,000 25,000 35,000 150,000

Distributed LASSO 10 1,100 3,000 29,000 500 50,100 150,000 1,450,000

Figure 7: Left: Local vs shared policies. We showcase the advantage of learning local policies
over shared ones . Right: Performance guarantees. The obtained generalization bounds guarantee
the performance of DeepDistributedQP and its improvements over DistributedQP.

used for deriving bounds in Section 5, implying that with 99% probability the average performance
of our framework will be bounded by this threshold. The bounds are observed to be tight compared
to actual performance, underscoring their significance. Moreover, they outperform the standard
optimizers, providing a strong guarantee of improved performance for DeepDistributedQP.

6.3 DISCUSSION

In which cases can we use the direct method? As illustrated in Fig. 6 and Table 6, and further
discussed in Stellato et al. (2020), the indirect method is generally preferred for solving systems
of the form (3) - or (137) for DeepQP/OSQP - once the problem reaches a certain scale. In this
work, we adopt this approach both for training, due the memory and computational advantages out-
lined in Section 4.2, and evaluating DeepDistributedQP/DeepQP. However, it is worth considering
whether the direct method might be advantageous during evaluation, a choice that depends on the
problem scale and capabilities of the available hardware. Overall, the results of this work show that
learning policies for the algorithm parameters is significantly beneficial in the context of both dis-
tributed and centralized QP assuming the indirect method is used. In future work, we wish to also
explore schemes that adapt the parameters less frequently using the direct method and/or designing
mechanisms to dynamically switch between the two approaches.
Limitations. One limitation of the proposed framework is its reliance on a supervised training
loss, requiring a dataset of pre-solved problems. In future work, we aim to explore training through
directly minimizing the problem residuals rather than the optimality gaps. Furthermore, while PAC-
Bayes theory provides an important probabilistic bound on average performance, stronger guaran-
tees may be necessary for safety-critical applications to ensure reliability and robustness.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced DeepDistributedQP, a new deep learning-aided distributed optimiza-
tion architecture for solving large-scale QP problems. The proposed method relies on unfolding the
iterations of a novel optimizer named DistributedQP as layers of a supervised deep learning frame-
work. The expected performance of our learned optimizer on unseen problems is also theoretically
established through PAC-Bayes theory. DeepDistributedQP exhibits impressive scalability in effec-
tively tackling large-scale optimization problems while being trained exclusively on much smaller
ones. In addition, both DeepDistributedQP and Distributed significantly outperform OSQP in terms
of required wall-clock time to reach the same accuracy as dimension increases. Furthermore, we
showcase that the proposed PAC-Bayes bounds provide meaningful practical guarantees for the per-
formance of DeepDistributedQP on new problems. In future work, we wish to extend the proposed
framework to a semi-supervised version that relies less on pre-solved problems for training. In ad-
dition, we wish to explore incorporating more complex learnable components such as LSTMs for
feedback within our framework. Finally, we wish to consider other classes of distributed constrained
optimization methods outside of quadratic programming.
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A COMPLETE DERIVATION OF DISTRIBUTEDQP ALGORITHM

Here, we present the detailed derivation of the DistributedQP algorithm presented in Section 3.2.
We consider the over-relaxed version of ADMM (Boyd et al., 2011) with α ∈ [1, 2).

First, let us rewrite problem (2) as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, zi ≤ bi, xi = w̃i, i ∈ V. (18)

where we have introduced the auxiliary variables zi for each i = 1, . . . , N . In addition, we let us
define the new variables si, i = 1, . . . , N , and rewrite the above problem as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi
(xi, zi)

s.t. zi = si, si ≤ bi, xi = w̃i, i = 1, . . . , N.

(19)

The above splitting constitutes the problem suitable for being addressed with a two-block ADMM
scheme where the first block of variables consists of {xi, zi}i=1,...,N , while the second one consists
of {si}i=1,...,N and w. The (scaled) augmented Lagrangian (AL) for this problem is given by

L =
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi(xi, zi) + Isi≤bi(si)

+
ρi
2

∥∥∥∥zi − si +
λi

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥xi − w̃i +
yi

µi

∥∥∥∥2
2

.

(20)

The first block of variables is updated through

{xi, zi}i∈V = argminL(x, z, sk,wk,λk,yk) (21)

which can be decoupled to the following subproblems for each i ∈ V:

{xi, zi} = argmin
1

2
x⊤
i Qixi + q⊤

i xi +
ρi
2

∥∥∥∥zi − si +
λi

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥xi − w̃i +
yi

µi

∥∥∥∥2
2

(22)

s.t. Aixi = zi.

Since these problems are equality constrained QPs, we can find a closed-form solution. The opti-
mality conditions for each subproblem are given by

Qixi + qi + µi(xi − w̃i) + yi +A⊤
i νi = 0 (23a)

ρi(zi − zi) + λi − νi = 0 (23b)
Aixi − zi = 0 (23c)

where νi is the Lagrange multiplier corresponding to the constraint Aixi = zi. Eliminating zi
leads to the following system of equations[

Qi + µiI A⊤
i

Ai −1/ρiI

] [
xk+1
i

νk+1
i

]
=

[
−qi + µiw̃

k
i − yk

i

zi − 1/ρiλ
k
i

]
(24)

with zk+1
i given by

zk+1
i = ski + ρ−1

i (νk+1
i − λk

i ). (25)
The second block of updates is given by

{si}i∈V ,w = argminL(xk+1, zk+1, s,w,λk,yk) (26)

or more analytically

{si}i∈V ,w = argmin
∑
i∈V

ρi
2

∥∥∥∥αzk+1
i + (1− α)ski − si +

λk
i

ρi

∥∥∥∥2
2

(27)

+
µi

2

∥∥∥∥αxk+1
i + (1− α)w̃k

i − w̃i +
yk
i

µi

∥∥∥∥2
2

s.t. si ≤ bi (28)
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Note that this minimization can be decoupled w.r.t. all si, i ∈ V and w. In particular, each si can
be updated in parallel through

sk+1
i = Πsi≤bi

(
αzk+1

i + (1− αk)ski + λk
i /ρi

)
. (29)

The global variable w minimization can be decoupled among the components ℓ = 1, . . . , n, as
follows

wℓ = argmin
∑

G(i,j)=ℓ

µi

2

∥∥∥∥α[xk+1
i ]j + (1− α)[w̃k

i ]j − [w̃i]j +
[yk

i ]j
µi

∥∥∥∥2
2

(30)

Setting the gradient to be equal to zero gives∑
G(i,j)=ℓ

µi

[
α[xk+1

i ]j + (1− α)wk
ℓ −wk+1

ℓ +
[yk

i ]j
µi

]
= 0 (31)

which leads to ∑
(G(i,j)=ℓ

µiw
k+1
ℓ =

∑
G(i,j)=ℓ

µi

[
α[xk+1

i ]j + (1− α)wk
ℓ +

[yk
i ]j
µi

]
(32)

which eventually gives the update rule

wk+1
ℓ =

∑
G(i,j)=ℓ αµi[x

k+1
i ]j + [yk

i ]j∑
G(i,j)=ℓ µi

+ (1− α)wk
ℓ . (33)

Finally, the dual variables are updated through dual ascent steps as follows

λk+1
i = λk

i + ρi(αz
k+1
i + (1− α)ski − sk+1

i ) (34)

yk+1
i = yk

i + µi(αx
k+1
i + (1− α)w̃k

i − w̃k+1
i ). (35)

It is important to observe that after the first iteration, the global update can be simplified to

wk+1
ℓ = α

∑
G(i,j)=ℓ µi[x

k+1
i ]j∑

G(i,j)=ℓ µi
+ (1− α)wk

ℓ , (36)

since the summation∑
G(i,j)=ℓ

[yk+1
i ]j =

∑
G(i,j)=ℓ

[yk
i ]j + µi(α[x

k+1
i ]j + (1− α)[w̃k

i ]j − [w̃k+1
i ]j)

=
∑

G(i,j)=ℓ

[yk
i ]j + µi(α[x

k+1
i ]j + (1− α)wk

ℓ −wk+1
ℓ )

=
∑

G(i,j)=ℓ

[yk
i ]j + µi

[
α[xk+1

i ]j +�����(1− α)wk
ℓ

−
∑

G(u,v)=ℓ αµu[x
k+1
u ]v + [yk

u]v∑
G(u,v)=ℓ µu

−�����(1− α)wk
ℓ

]

=
∑

G(i,j)=ℓ

[yk
i ]j + µi

[
α[xk+1

i ]j −
∑

G(u,v)=ℓ αµu[x
k+1
u ]v + [yk

u]v∑
G(u,v)=ℓ µu

]

=
∑

G(i,j)=ℓ

[yk
i ]j + αµi[x

k+1
i ]j −������∑

G(i,j)=ℓ µi

[∑
G(u,v)=ℓ αµu[x

k+1
u ]v + [yk

u]v

]
������∑

G(u,v)=ℓ µu

=
∑

G(i,j)=ℓ

[yk
i ]j + αµi[x

k+1
i ]j −

∑
G(u,v)=ℓ

αµu[x
k+1
u ]v + [yk

u]v = 0. (37)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B STANDARD CONVERGENCE GUARANTEES FOR SIMPLIFIED
DISTRIBUTEDQP

In the simplified case where ρki = ρ, µk
i = µ for all i ∈ V and for all k, as well as αk = 1, for all k,

it would be straightforward to apply the classical convergence guarantees of two-block ADMM for
convex optimization problems.

Let us define the variables x̄ = [{xi}i∈V ; {zi}i∈V ] and z̄ = [{si}i∈V ;w]. Then, we can rewrite
problem (19) as

min f(x̄) + g(z̄) s.t. Āx̄+ B̄z̄ = c̄, (38)
where

f(x̄) =
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi
(xi, zi), g(z̄) =

∑
i∈V

Isi≤bi
(si), (39)

and Ā = bdiag(I, I), B̄ = bdiag(I,G) and c = 0, with G ∈ R(
∑

i ni)×n defined such that
x = Gw. In other words, G is the matrix that represents the local-to-global variable components
mapping, formally defined as G = [G1; . . . ;GN ] with each submatrix Gi ∈ Rni×n given by

[Gi]u,v =

{
1, if v = G(i, v)
0, else

. (40)

Given this representation, it becomes clear that our algorithm can be framed as a two-block ADMM.
Now, note that G is a full column rank matrix since all global variable components gℓ are mapped to
at least one local variable component [xi]j . Then, since the functions f, g are convex and the matri-
ces Ā, B̄ are full column rank, it follows from Deng & Yin (2016) that the algorithm is guaranteed
to converge to the optimal solution.

Nevertheless, this analysis would have only been applicable to this simplified case of the proposed
DISTRQP algorithm. In Appendix C, we tackle the more complex case of varying local penalty
parameters and varying relaxation parameters. A similar analysis is exhibited in In Xu et al. (2017),
the convergence of an adaptive relaxed variant of two-block ADMM is provided, yet that is not
directly applicable to our case which includes local penalty parameters.

C PROOF OF DISTRIBUTEDQP ASYMPTOTIC CONVERGENCE

C.1 SKETCH OF PROOF

In this section, we prove the convergence guarantees for DistributedQP. To begin, we outline the
following conventions. The points x∗, z∗, s∗,w∗,y∗,λ∗ are the KKT points of the problem (19).
We refer to the notion of a distance function at any (k+1)th iteration to be representing a weighted
squared norm of the difference between the variables sk+1,wk+1,yk+1,λk+1 and their correspond-
ing optimal values s∗,w∗,y∗,λ∗, indicating the distance from the optimal point.

We prove the convergence in the following steps.

• First, we will derive a descent relation (101), which establishes a relationship between the
values of the distance function for consecutive iterations. To derive the descent relation in
Lemma 4, we first introduce the relations (R1-R8) in Lemma 1-3.

• Next, we use the derived descent relation to prove the convergence in the subsection C.3
based on Assumption 1.

C.2 NECESSARY LEMMAS

Here, we present the necessary lemmas before proving the convergence of the algorithm. For nota-
tional convenience, we use

fi(xi) =
1

2
x⊤
i Qixi + q⊤

i xi, Ci = {si|si ≤ bi}. (41)

for each i ∈ V .
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Lemma 1. For all i ∈ V , the following relationships hold at every iteration k:

(R1):
∑
i∈V

G⊤
i y

k+1
i = 0, (42)

(R2): αkxk+1
i =

1

µk
i

(yk+1
i − yk

i )− (1− αk)Giw
k +Giw

k+1, (43)

(R3): αkzk+1
i =

1

ρki
(λk+1

i − λk
i )− (1− αk)ski + sk+1

i , (44)

(R4): λk
i
⊤(t1 − t2) = 0, for any t1, t2 ∈ Ci. (45)

Proof. Relationship (R1) is equivalent with the argument proved in (37). Indeed, if we observe that
each matrix G⊤

i ∈ Rn×ni indicates the mapping from local indices (i, j) to global indices ℓ for a
particular i, then we can write

∑
i∈V

G⊤
i y

k+1
i =


∑

G(i,j)=1[y
k+1
i ]j

...∑
G(i,j)=n[y

k+1
i ]j

 = 0. (46)

Relationship (R2) follows by rearranging the dual update step (8) and replacing w̃i = Giw. Simi-
larly, relationship (R3) follows by rearranging the dual update step (7).

In the remaining, we focus on proving (R4). Let us first rewrite the si update (5) as

sk+1
i = ΠCi

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i

)
. (47)

Now, we consider a closed convex cone C̄i defined as

C̄i = {p| p ≤ 0}, (48)

such that (47) can be rewritten as follows.

sk+1
i = ΠC̄i

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i − bi

)
+ bi (49)

Let us also define ŝk+1 as follows,

ŝk+1
i = αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i − bi (50)

such that (49) is given as
sk+1
i = ΠC̄i

(
ŝk+1
i

)
+ bi (51)

Now, let us rewrite the dual update for λk+1
i in (7) as follows.

λk+1
i = λk

i + ρki (α
kzk+1

i + (1− αk)ski − sk+1
i ) (52)

which can be rearranged to

λk+1
i = ρki (λ

k
i /ρ

k
i + αkzk+1

i + (1− αk)ski − sk+1
i ) (53)

Using (50), the above can rewritten as

λk+1
i = ρki (ŝ

k+1
i + bi − sk+1

i ) (54)

Substituting (51) in the above, we get

λk+1
i = ρki (ŝ

k+1
i −ΠC̄i

(
ŝk+1
i

)
) (55)

By Moreau’s decomposition (refer to theorems 1.1 and 1.2 from Soltan (2019)), the vector ŝk+1
i can

be written as follows.
ŝk+1
i = ΠC̄i

(
ŝk+1
i

)
+ΠC̄o

i

(
ŝk+1
i

)
(56)

where C̄o
i is a polar cone to C̄i.

Note that any two cone sets D and Do are called polar cones if for any d ∈ D and d̄ ∈ Do, dT d̄ = 0.
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Thus, using (56) and (55), we get

λk+1
i = ρkiΠC̄o

i

(
ŝk+1
i

)
(57)

which implies that
λk+1
i /ρki ∈ C̄o

i (58)

Further, since C̄o
i is a cone, and ρki > 0, we get

λk+1
i ∈ C̄o

i (59)

Now, any vector t ∈ Ci satisfies the following.

t− bi ∈ C̄i (60)

Since C̄i and C̄o
i are polar cones, and using (59), the following relation holds true by the definition

of polar cones.
λk+1
i

T (t− bi) = 0 for all t ∈ Ci (61)

Thus, for any vectors t1, t2 ∈ Ci and for all k, we have

λk+1
i

T (t1 − t2) = λk+1
i

T (t1 − bi − (t2 − bi)) = 0 (62)

which proves the relationship (R3).

Lemma 2. The following relationships hold at every iteration k:

(R5):
(
∇fi(x

∗
i ) + y∗

i

)⊤
(x∗

i − xk+1
i ) + λ∗

i
⊤(z∗

i − zk+1
i ) = 0 (63)

(R6):
[
∇fi(x

k+1
i ) + yk+1

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]T
(xk+1

i − x∗
i )

+

[
λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]T
(zk+1

i − z∗
i ) = 0 (64)

Proof. We start with proving relationship (R5). The KKT conditions for problem (19) can be written
as follows. The point (x∗, z∗, s∗,w∗) is the optimum of problem (19) if and only if the following
conditions are true:

Optimality for xi: ∇fi(x
∗
i ) +A⊤

i ν
∗
i + y∗

i = 0 (65a)
Optimality for zi: − ν∗

i + λ∗
i = 0 (65b)

Optimality for si: λ∗
i ∈ NCi

(s∗i ) ⇔ λ∗
i
⊤(si − s∗i ) ≤ 0 ∀ si ∈ Ci (65c)

Optimality for w:
∑
i∈V

G⊤
i y

∗
i = 0 (65d)

Constraints feasibility: z̃∗
i = s∗i (65e)

x∗
i = Giw

∗ (65f)
Aix

∗
i = zi (65g)

si ∈ Ci (65h)

From (65a), we have (
∇fi(x

∗
i ) +A⊤

i ν
∗
i + y∗

i

)⊤
(x∗

i − xk+1
i ) = 0 (66)

and similarly from (65b), we get(
− ν∗

i + λ∗
i

)⊤
(z∗

i − zk+1
i ) = 0. (67)

Adding the above two equations, we get(
∇fi(x

∗
i ) +A⊤

i ν
∗
i + y∗

i

)⊤
(x∗

i − xk+1
i ) +

(
− ν∗

i + λ∗
i

)⊤
(z∗

i − zk+1
i ) = 0 (68)
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which yields(
∇fi(x

∗
i )+y∗

i

)⊤
(x∗

i −xk+1
i )+λ∗

i
⊤(z∗

i −zk+1
i )+ν∗

i
⊤(Ai(x

∗
i −xk+1

i )−(z∗
i −zk+1

i )
)
= 0. (69)

Using (65g) and the fact that Aix
k+1
i − zk+1

i = 0, we can rewrite the above as follows(
∇fi(x

∗
i ) + y∗

i

)⊤
(x∗

i − xk+1
i ) + λ∗

i
⊤(z∗

i − zk+1
i ) = 0 (70)

which yields (R5).

Subsequently, we proceed with proving relationship (R6). The KKT conditions for the (k + 1)-th
update of xi, zi are given by

Optimality for xi: ∇fi(x
k+1
i ) +A⊤

i ν
k+1
i + µk

i (x
k+1
i −Giw

k + yk
i /µ

k
i ) = 0 (71a)

Optimality for zi: − νk+1
i + ρki (z

k+1
i − ski + λk

i /ρ
k
i ) = 0 (71b)

Constraints feasibility: Aix
k+1
i = zk+1

i (71c)
From (71a), we have[

∇fi(x
k+1
i ) +A⊤

i ν
k+1
i + µk

i (x
k+1
i −Giw

k + yk
i /µ

k
i )
]T

(xk+1
i − x∗

i ) = 0 (72)

We simplify the term µk
i (x

k+1
i −Giw

k + yk
i /µ

k
i ) using (8) as follows

µk
i (x

k+1
i −Giw

k + yk
i /µ

k
i ) =

= µk
i

(
xk+1
i −Giw

k + yk+1
i /µk

i −
(
αkxk+1

i + (1− αk)Giw
k −Giw

k+1
))

= yk+1
i + µk

i

(
xk+1
i −Giw

k − αkxk+1
i − (1− αk)Giw

k +Giw
k+1
)

= yk+1
i + µk

i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
)

(73)

such that (72) can be rewritten as[
∇fi(x

k+1
i ) +A⊤

i ν
k+1
i + yk+1

i

+ µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]T
(xk+1

i − x∗
i ) = 0 (74)

From (71b), we get [
− νk+1

i + ρki (z
k+1
i − ski + λk

i /ρ
k
i )
]T

(zk+1
i − z∗

i ) = 0. (75)

We simplify the term ρki (z
k+1
i − ski + λk

i /ρ
k
i ) using (7) as follows

ρki (z
k+1
i − ski + λk

i /ρ
k
i ) = ρki

(
zk+1
i − ski + λk+1

i /ρki −
(
αkzk+1

i + (1− αk)ski − sk+1
i

))
= λk+1

i + ρki
(
zk+1
i − ski − αkzk+1

i − (1− αk)ski + sk+1
i

)
= λk+1

i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)
(76)

such that equation 75 can be rewritten as follows[
− νk+1

i + λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]T
(zk+1

i − z∗
i ) = 0 (77)

Combining (74) and (77) and using (65g) and the fact that Aix
k+1
i − zk+1

i = 0, we get[
∇fi(x

k+1
i ) + yk+1

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]T
(xk+1

i − x∗
i )

+

[
λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]T
(zk+1

i − z∗
i ) = 0

(78)

which yields relationship (R6).
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Lemma 3. For αk > 0,

(R7):
(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i )

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i )

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

(79)

(R8):
(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i )

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i )

⊤(−(1− αk)ski + sk+1
i − αks∗i ) (80)

Proof. Let us simplify the individual terms of the LHS of the relationship (R7). For that, we start by
rewriting the term xk+1

i − x∗
i as follows using the relationship (R2) (i.e., (43)). (It should be noted

that we consider αk > 0, thus making the division by αk possible.)

xk+1
i − x∗

i =
1

αk

(
1

µk
i

(yk+1
i − yk

i )− (1− αk)Giw
k +Giw

k+1 − αkx∗
i

)
(81)

Using (65d), we can rewrite the above as following.

xk+1
i − x∗

i =
1

αk

(
1

µk
i

(yk+1
i − yk

i )− (1− αk)Giw
k +Giw

k+1 − αkGiw
∗
)

(82)

which can be written in simplified form as

xk+1
i − x∗

i =
1

αkµk
i

(yk+1
i − yk

i ) +
1

αk
Gi

(
wk+1 − (1− αk)wk − αkw∗). (83)

Let us now simplify the following term in the LHS of the relationship (R7).

(1−αk)xk+1
i − (2−αk)Giw

k +Giw
k+1 = (1−αk)(xk+1

i −Giw
k)+Gi(w

k+1 −wk) (84)

We further simplify the term (xk+1
i −Giw

k) using the relationship (R2) (i.e., (43)) as follows.

xk+1
i −Giw

k =
1

αk

(
1

µk
i

(yk+1
i − yk

i )− (1− αk)Giw
k +Giw

k+1

)
−Giw

k (85)

which can be written in a simplified form as

xk+1
i −Giw

k =
1

µk
i α

k
(yk+1

i − yk
i ) +

1

αk
Gi(w

k+1 −wk). (86)

Substituting (86) in (84), we get

(1− αk)xk+1
i − (2− αk)Giw

k +Giw
k+1 =

(1− αk)

µk
i α

k
(yk+1

i − yk
i ) +

1

αk
Gi(w

k+1 −wk)

(87)
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Using the above result, we rewrite the following term on the LHS of the relationship (R7).

yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
)

= yk+1
i − y∗

i +
(1− αk)

αk
(yk+1

i − yk
i ) +

µk
i

αk
Gi(w

k+1 −wk)
(88)

For notational simplicity, let us consider the LHS of the relationship (R7) as LHS(R7). Using (88)
and (83), we get

LHS(R7) =

(
yk+1
i − y∗

i +
(1− αk)

αk
(yk+1

i − yk
i ) +

µk
i

αk
Gi(w

k+1 −wk)

)⊤

(
1

αkµk
i

(yk+1
i − yk

i ) +
1

αk
Gi

(
wk+1 − (1− αk)wk − αkw∗)) (89)

which can be further rewritten as

LHS(R7) =
1

αkµk
i

(yk+1
i − y∗

i )
⊤(yk+1

i − yk
i ) +

1

αk
(yk+1

i − y∗
i )

⊤Gi

(
wk+1 − (1− αk)wk

− αkw∗)+ (1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2 +
(1− αk)

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
wk+1

− (1− αk)wk − αkw∗)+ 1

(αk)2
(wk+1 −wk)⊤G⊤

i (y
k+1
i − yk

i )

+
µk
i

(αk)2
(
Gi(w

k+1 −wk)
)⊤

Gi

(
wk+1 − (1− αk)wk − αkw∗)

(90)
Let us now simplify each term on the RHS of the above equation. We start with the terms including
only the variables yk+1

i , yk
i and y∗

i . Using the fact that a⊤b = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2), we get

1

αkµk
i

(yk+1
i − y∗

i )
⊤(yk+1

i − yk
i ) =

1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 + ∥yk+1

i − yk
i ∥2 − ∥yk

i − y∗
i ∥2
)

(91)

Using the above result, we can write

1

αkµk
i

(yk+1
i − y∗

i )
⊤(yk+1

i − yk
i ) +

(1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 + ∥yk+1

i − yk
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2 (92)

Next, we consider the following terms in the RHS of (90) involving only the variables wk+1,wk

and w∗.

µk
i

(αk)2
(
Gi(w

k+1 −wk)
)⊤

Gi

(
wk+1 − (1− αk)wk − αkw∗)

=
(1− αk)µk

i

(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

αk

(
Gi(w

k+1 −wk)
)⊤(

Gi(w
k+1 −w∗)

) (93)

Using the similar approach that is used to derive (92), we derive the following.

(1− αk)µk
i

(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

αk

(
Gi(w

k+1 −wk)
)⊤(

Gi(w
k+1 −w∗)

)
=

(2− αk)µk
i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2 − ∥Gi(w
k −w∗)∥2)

(94)
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Now, we will consider the following terms from the rest of the terms on the RHS of (90) as follows.

(1− αk)

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)
+

1

(αk)2
(wk+1 −wk)⊤G⊤

i (y
k+1
i − yk

i )

=
1

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
(1− αk)wk+1 − (1− αk)2wk − αk(1− αk)w∗ +wk+1 −wk

)
=

1

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗) (95)

Substituting (92), (93), (94), and (95) in (90), we get

LHS(R7) =
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i )

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

(96)
which proves the relationship (R7).

Subsequently, we prove the relation (R8). Using similar steps as in the derivation of the relationship
(R7), we can derive the following.

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i )

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i )

⊤(sk+1
i − (1− αk)ski − αks∗i )

+
1

(αk)2
(λk+1

i − λk
i )

⊤((2− αk)sk+1
i − (1 + (1− αk)2)ski − αk(1− αk)s∗i

)

(97)

Let us now simplify the last term of the RHS of the above equation as follows.

(λk+1
i − λk

i )
⊤((2− αk)sk+1

i − (1 + (1− αk)2)ski − αk(1− αk)s∗i
)

= (1 + (1− αk)2)(λk+1
i − λk

i )
⊤(sk+1

i − ski ) + αk(1− αk)(λk+1
i − λk

i )
⊤(sk+1

i − s∗i )
(98)

From (5) and (65h), we have that the vectors ski , s
k+1
i , s∗i ∈ Ci. Using the relationship (R4) (i.e.,

(45)), the above equation gives us the following.

(λk+1
i − λk

i )
⊤((2− αk)sk+1

i − (1 + (1− αk)2)ski − αk(1− αk)s∗i
)

= (λk+1
i − λk

i )
⊤((2− αk)sk+1

i − (2 + (αk)2 − 2αk)ski + (−αk + (αk)2)s∗i
)

= 0 (99)
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Substituting the above result in (97), we get(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i )

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i )

⊤(sk+1
i − (1− αk)ski − αks∗i )

(100)

which proves the relationship (R8).

Lemma 4. For αk ≥ 1,∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
(101)

Proof. We start by combining the relationships (R5) and (R6) (i.e., (63) and (64)) to get the follow-
ing equation.(

yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i )

+

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i )

= −(∇fi(x
k+1
i )−∇fi(x

∗
i ))

⊤(xk+1
i − x∗

i )

(102)

Since fi is convex, the following holds true.

(∇fi(x
k+1
i )−∇fi(x

∗
i ))

⊤(xk+1
i − x∗

i ) ≥ 0 (103)

Using the above inequality, we can rewrite (102) as follows.(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i )

+

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i ) ≤ 0

(104)

Adding the above result over all the agents i ∈ V , we get

∑
i∈V

(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i )

+
∑
i∈V

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i ) ≤ 0

(105)
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Now, we use the relationships (R7) and (R8) (i.e., (79) and (80)) to rewrite the above equation as
following.

0 ≥
∑
i∈V

(
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i )

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i )

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

+
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i )

⊤(−(1− αk)ski + sk+1
i − αks∗i )

)
(106)

Let us now further simplify the terms on the RHS of the above equation. For that, let us start with
the last term on the RHS. We have

(λk+1
i − λ∗

i )
⊤(−(1− αk)ski + sk+1

i − αks∗i ) = (λk+1
i − λ∗

i )
⊤(sk+1

i − s∗i )

− (1− αk)(λk+1
i − λ∗

i )
⊤(ski − s∗i )

(107)

Using the relationship (R4) (i.e., (45)), and (65c), and using the fact that ski , s
k+1
i , s∗i ∈ Ci, we get

(λk+1
i − λ∗

i )
⊤(sk+1

i − s∗i ) ≥ 0, (108)

(λk+1
i − λ∗

i )
⊤(ski − s∗i ) ≥ 0. (109)

Thus, for αk ≥ 1, combining (107), (108), and (109), we get

(λk+1
i − λ∗

i )
⊤(−(1− αk)ski + sk+1

i − αks∗i ) ≥ 0. (110)

Now, the following results hold based on the relationship (R1) (i.e., (42)) and (65d).∑
i∈V

(yk+1
i − y∗

i )
⊤Gi = 0,

∑
i∈V

(yk+1
i − yk

i )
⊤Gi = 0. (111)

By substituting (110) and (111) in (106), and by rearranging the terms, we get

∑
i∈V

(
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2 − ∥Gi(w
k −w∗)∥2)

+
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ −
∑
i∈V

(
(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2 +
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2

+
(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2 +

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

)
(112)
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Since, we consider αk ≥ 1, we can multiply the above equation with 2αk to obtain the following.

∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
(113)

C.3 PROOF OF THEOREM 1

Let us first rewrite the relation (101) derived in Lemma 4 for αk ∈ [1, 2), as follows.

∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
(114)

which can be rearranged to give the following.

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤
∑
i∈V

(
1

µk
i

(
∥yk

i − y∗
i ∥2 − ∥yk+1

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k −w∗)∥2 − ∥Gi(w

k+1 −w∗)∥2)

+
1

ρki

(
∥λk

i − λ∗
i ∥2 − ∥λk+1

i − λ∗
i ∥2
)
+ ρki

(
∥ski − s∗i ∥2 − ∥sk+1

i − s∗i ∥2
))

(115)
For convenience, let us define for each iteration k, the terms ηki , i ∈ V , and ηk such that

ηki + 1 = max

(
ρki

ρk−1
i

,
ρk−1
i

ρki
,

µk
i

µk−1
i

,
µk−1
i

µk
i

)
, ηkmax = max

i∈V
ηki , (116)

and the term V k as

V k =
∑
i∈V

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
.

(117)
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Based on the definition of ηki in (116), we can write

1

µk
i

∥yk
i − y∗

i ∥2 + µk
i ∥Gi(w

k −w∗)∥2 + 1

ρki
∥λk

i − λ∗
i ∥2 + ρki ∥ski − s∗i ∥2

≤ (ηki + 1)

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

) (118)

Further, by adding the above result over all the agents i ∈ V , and using the fact that ηkmax ≥ ηki for
all i, we get∑

i∈V

(
1

µk
i

∥yk
i − y∗

i ∥2 + µk
i ∥Gi(w

k −w∗)∥2 + 1

ρki
∥λk

i − λ∗
i ∥2 + ρki ∥ski − s∗i ∥2

)
≤
∑
i∈V

(ηki + 1)

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
≤ (ηkmax + 1)

∑
i∈V

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
= (ηkmax + 1)V k

(119)

Substituting the above result in (115), we get

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤ (ηkmax + 1)V k − V k+1

(120)

Now that we have derived the above relation, we need to next prove that V k is bounded. By the
definition of V k, we have that V k is lower bounded by zero. Thus, we now prove that V k is upper
bounded. From (120), we have

V k+1 ≤ (ηkmax + 1)V k, (121)

which leads to the following relation

V k+1 ≤
k∏

l=1

(ηlmax + 1)V 1 (122)

It should be noted that based on the assumption 1, we have (ηkmax + 1) → 1, as k → ∞. Based on
this condition, (122) implies that V k+1 is upper bounded for all k, and there exists Vmax such that

V k ≤ Vmax < ∞, for all k (123)

Let us now consider adding the result (120) over k as follows.

∞∑
k=1

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤

∞∑
k=1

(ηkmax + 1)V k − V k+1

(124)
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The term on the RHS of the above equation can be further simplified as follows.

∞∑
k=1

(ηkmax + 1)V k − V k+1 =

∞∑
k=1

ηkmaxV
k +

∞∑
k=1

(V k − V k+1) = V 1 − V ∞ +

∞∑
k=1

ηkmaxV
k (125)

Based on the assumption 1, we have ηkmax → 0 as k → ∞, which implies the following.

∞∑
k=1

ηkmax < ∞ (126)

Using the above fact and (123), we can upper bound
∑∞

k=1 η
k
maxV

k as follows.

∞∑
k=1

ηkmaxV
k ≤

( ∞∑
k=1

ηkmax

)
Vmax < ∞ (127)

Using the facts that V 1 is upper bounded, and V ∞ is lower bounded by zero, and using the above
equation, we get

V 1 − V ∞ +

∞∑
k=1

ηkmaxV
k ≤ V 1 +

∞∑
k=1

ηkmaxV
k < ∞ (128)

Thus, we can rewrite (124) as following.

∞∑
k=1

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
< ∞

(129)

Since αk ∈ [1, 2), we have (2−αk)
αk > 0 for all k. Further, we have 0 < µk

i , ρ
k
i < ∞ for all k. Thus,

(129) implies the following for all i ∈ V .

As k → ∞, (yk+1
i − yk

i ) → 0, Gi(w
k+1 −wk) → 0 (130)

(λk+1
i − λk

i ) → 0, (sk+1
i − ski ) → 0 (131)

which proves the convergence of the variables yi,λi and si. Further, we have, as k → ∞,

Gi(w
k+1 −wk) → 0 ∀ i ∈ V =⇒ G(wk+1 −wk) → 0 (132)

Since G has full column rank, the above equation implies

(wk+1 −wk) → 0 as k → ∞, (133)

which proves the convergence of the global variable w.

Further, using the relationships (R2) and (R3) (i.e., (43) and (44)), and the convergence results (130)
and (131), we obtain the following.

As k → ∞, (xk+1
i − xk

i ) → 0, (zk+1 − zk) → 0. (134)

Hence, we prove the convergence of the algorithm.

Now that we have proved convergence, we can verify that the limit point of convergence is the
optimal solution to the problem 19. For that, we need to check if the limit point satisfies the KKT
condition (65) for the problem 19. The convergence of the dual variables yi and λi, and the update
steps verify that the limit points have constraint feasibility (65e - 65h). The constraint feasibility of
the limit points and the optimality conditions of (k+ 1)-th update of xi, zi (71) imply that the limit
points satisfy the optimality conditions (65a - 65b). Further, using relations (R1) and (R4) (i.e., (42)
and (45)), we can prove that the limit points also satisfy (65c - 65d).

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D DETAILS ON DEEPDISTRIBUTEDQP FEEDBACK POLICIES

In DeepDistributedQP, the penalty parameters are given by

ρki = SoftPlus
(
ρ̄ki + πk

i,ρ(r
k
i,ρ, s

k
i,ρ; θ

k
i,ρ)︸ ︷︷ ︸

ρ̂k
i

)
, µk

i = SoftPlus
(
µ̄k
i + πk

i,µ(r
k
i,µ, s

k
i,µ; θ

k
i,µ)︸ ︷︷ ︸

µ̂k
i

)
(135)

where ρ̄ki , µ̄k
i are learnable feed-forward parameters and ρ̂ki , µ̂k

i and the feedback parts. The latter
are obtain through the learnable policies πk

i,·(r
k
i,·, s

k
i,·; θ

k
i,·) parameterized by fully-connected neural

network layers with inputs rki,·, s
k
i,· and weights θki,·. The analytical expressions for rki,·, s

k
i,· are

provided as follows:

rki,ρ =

[
∥zk

i − ski ∥2
∥Aix

k
i − ski ∥2

]
, ski,ρ =

[
∥ski − sk−1

i ∥2
∥Qix

k
i + qi +A⊤

i λ
k
i ∥2

]
(136a)

rki,µ = ∥xk
i − w̃k

i ∥2, ski,µ = ∥w̃k
i − w̃k−1

i ∥2, (136b)

being motivated by the primal and dual residuals of ADMM (Boyd et al., 2011, Section 3) and the
ones used in the OSQP algorithm (Stellato et al., 2020).

E THE CENTRALIZED VERSION: DEEPQP

The centralized version of DeepDistributedQP boils down to simply unfolding the iterates of the
standard OSQP algorithm for solving centralized QPs (1), while applying the same principles as in
Section 4.1 for DeepDistributedQP.

For convenience, we repeat the OSQP updates from Stellato et al. (2020) here:

1. Update for (x, z): Solve linear system[
Q+ σI A⊤

A −1/ρkI

] [
xk+1

νk+1

]
=

[
σtk − q

sk − 1/ρkλk

]
(137)

and update
zk+1 = sk + 1/ρk(νk+1 − λk). (138)

As explained in Stellato et al. (2020), as the scale of the system equation 137 increases, it
is often preferrable to solve the following system instead,

(Q+ σI + ρkA⊤A)xk+1 = σxk − q +A⊤(ρkzk − yk), (139)

using a method such as conjugate gradient.

2. Update for (t, s):

tk+1 = αkxk+1 + (1− αk)tk (140a)

sk+1 = ΠC
(
αkzk+1 + (1− αk)sk + λk/ρk

)
(140b)

3. Dual update for λ:

λk+1 = λk + ρk(αkzk+1 + (1− αk)sk − sk+1) (141)

The DeepQP framework then emerges through unfolding the OSQP updates following the same
methodology as in DeepDistributedQP. In particular, its iterations are unrolled for a prescribed
amount of K iterations as shown in Fig. 4.

F PROOF OF INDIRECT METHOD IMPLICIT DIFFERENTIATION

We start by stating the implicit function theorem, whose proof is given in (Krantz & Parks, 2002).
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Lemma 5 (Implicit Function Theorem). Let r : Rn × Rm → Rn be a continuously differentiable
function. Let (x0,θ0) be a point such that r(x0,θ0) = 0. If the Jacobian matrix ∂r

∂x (x0,θ0) is
invertible, then there exists a function x∗(·) defined in a neighborhood of θ0 such that x∗(θ0) = x0,
and

∂x∗

∂θ
(θ) = −

(
∂r

∂x
(x∗(θ),θ)

)−1
∂r

∂θ
(x∗(θ),θ). (142)

Proof of Theorem 2. Let θ = (Q̄k
i , b̄

k
i ) be the concatenation of all the parameters in Eq. (11).

Q̄k
i is always positive definite since Qi is positive definite and the penalty parameters are al-

ways non-negative. Therefore, Eq. (11) has a unique solution xk+1
i satisfying r(xk+1

i ,θ) :=

Q̄k
i x

k+1
i − b̄ki = 0. Applying Lemma 5 to this residual function yields the relationship ∂xk+1

i

∂θ (θ) =

−(Q̄k
i )

−1 ∂r
∂θ (x

k+1
i (θ),θ).

Now, for any downstream loss function L(xk+1
i (θ)), we have that

∇θL(x
k+1
i (θ)) =

∂xk+1
i

∂θ
(θ)∇xL(x

k+1
i (θ)) (143)

= − ∂r

∂θ
(xk+1

i (θ),θ)⊤(Q̄k
i )

−1∇xL(x
k+1
i (θ)) (144)

=
∂r

∂θ
(xk+1

i (θ),θ)⊤dxk+1
i , (145)

where dxk+1
i is the unique solution to the linear system

Q̄k
i dx

k+1
i = −∇xL(x

k+1
i (θ)).

Expanding the matrix multiplication in Eq. (145) yields

∇Q̄k
i
L =

1

2
(xk+1

i ⊗ dxk+1
i + dxk+1

i ⊗ xk+1
i ),

∇b̄k
i
L = −dxk+1

i .

G BACKGROUND ON PAC-BAYES THEORY

Here, we provide a brief overview of PAC-Bayes theory (Alquier (2024)). Consider a bounded loss
function ℓ(ζ; θ). Without loss of generality, we assume that this loss is uniformly bounded between
0 and 1. PAC-Bayes theory aims to providing a probabilistic bound for the true expected loss

ℓD(P) = Eζ∼D Eθ∼P [ℓ(ζ; θ)] , (146)

where D is the data distribution — in our case, this is the distribution optimization problems are
drawn from. The empirical expected loss is given by,

ℓS(P) = Eθ∼P

 1

H

H∑
j=1

(ζj ; θ)

 , (147)

where S = {ζj}Hj=1 is the training dataset consisting of H problem instances.

The PAC-Bayes framework operates by forming a bound that holds in high probability on the true
loss ℓD(P) in terms of the empirical loss and a the deviation between the learned policy P and a
prior policy P0 used to as an initial guess for P . This deviation is measured using the KL divergence.
Importantly, P0 need not be a Bayesian prior but can be any distribution independent of the data used
to train P and evaluate the sample loss. Moreover, ℓ(ζ; θ) need not be the loss used to train P , but
can be any bounded function. This observation is useful because, both in the literature and in the
sequel, it is common to use a loss function modified for practicality during training before evaluating
the bound using the loss function of interest.
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Specifically, the following PAC-Bayes bounds hold with probability 1− δ,

ℓD(P) ≤ D−1
KL

(
ℓS(P)∥

DKL(P∥P0) + log 2
√
H

δ

H

)
≤ ℓS(P) +

√
DKL(P∥P0) + log 2

√
H

δ

2H
, (148)

where the D−1
KL (p∥c) is the inverse of the KL divergence for Bernoulli random variables B(p),B(q):

D−1
KL (p∥c) = sup{q ∈ [0, 1] | DKL(B(p)∥B(q)) ≤ c}. (149)

The probability δ captures the failure case that the data set S is not sufficiently representative of the
data distribution D. In the sequel, both of the above inequalities will be used. As the first bound is
tighter, it is used to evaluate the generalization capabilities of the learned optimizer. The benefit of
the second, loser, bound is that its form is convenient to use during training as a regularizer. Using
both bounds in this manner is a common technique in the PAC-Bayes literature (Majumdar et al.
(2021), Dziugaite & Roy (2017)).

H OPTIMIZING AND EVALUATING GENERALIZATION BOUND

Two important requirements for establishing a tight PAC-Bayes bound are selecting an informative
prior and optimizing the PAC-Bayes bounds in Eq. (148) instead of simply minimizing the loss
function. The choice of prior P0 is particularly important because the KL divergence is unbounded
and can produce a vacuous result Dziugaite et al. (2021). While the distribution P0 need not be a
Bayesian prior, it must be selected independently from the data used to optimize P and evaluate the
bound. To select P0, we follow a common approach in the literature and split our training set S into
two disjoint subsets S0,S1. The prior P0 is first trained using the data set S0 and the loss ℓ(D; Θ)
discussed in Section 4.

Subsequently, the posterior P is trained by minimizing the looser (i.e., rightmost) PAC-Bayes bound
in Eq. (148). This bound is used for training because it is straightforward to evaluate in comparison
to computing the inverse of the KL divergence, and this objective is easily interpreted as minimizing
an expected loss function with a regularizer. To evaluate the loss function in the PAC-Bayes bound,
parameters are sampled from P using the current network weights and an empirical average is used.
Once training is complete, the PAC-Bayes bound is evaluated as described in Theorem 3, i.e., by
using the tighter PAC-Bayes bound in (148) and the sample convergence bound in (15).

I DETAILS ON EXPERIMENTS

This section provides further details on the problems considered in the experiments, the training of
the learned optimizers, as well as the evaluation of both learned and traditional methods.

I.1 PROBLEM TYPES IN CENTRALIZED EXPERIMENTS

Random QPs. We consider randomly generated problems of the following form

min
x

1

2
x⊤Qx+ q⊤x s.t. Ax ≤ b, Cx = d. (150)

For each generated problem, the cost Hessian is given by Q = F⊤F + γI , where each element
of F ∈ Rn×n is sampled through Fij ∼ N (0, 1) and γ = 1.0. The coefficients of q are also
sampled as qi ∼ N (0, 1). The elements of the inequality constraints matrix A ∈ Rm×n are given
by Aij ∼ N (0, 1), while b = Aθ, where each element of θ ∈ Rn is sampled through θi ∼ N (0, 1).
Similarly, the elements of the equality constraints matrix C ∈ Rp×n are given by Cij ∼ N (0, 1),
while d = Cξ, where each element of ξ ∈ Rn is ξi ∼ N (0, 1).

For random QPs without equality constraints, we set n = 50, m = 40 and p = 0. For random QPs
with equality constraints, we set n = 50, m = 25 and p = 20.
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Optimal control. We consider linear optimal control problems of the following form

min
x,u

T−1∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
TQTxT (151a)

s.t. xt+1 = Adxt +Bdut, t = 0, . . . , T − 1, (151b)
Auut ≤ bu, Axxt ≤ bx, t = 0, . . . , T, (151c)
x0 = x̄0. (151d)

where x = {x0, . . . ,xT } is the state trajectory, u = {u0, . . . ,uT−1} is the control trajectory, x̄0

is the given initial state condition, Q and R are the running state and control cost matrices, QT is
the terminal state cost matrix, Ad and Bd are the dynamics matrices, and finally Au, bu and Ax, bx
are the control and state constraints coefficients, respectively.

Both the double integrator and the mass-spring problem setups are drawn from Chen et al. (2022).
For the double integrator system, we have xt ∈ R2 and ut ∈ R, with time horizon T = 20. The
dynamics matrices are given by

Ad =

[
1 1
0 1

]
, Bd =

[
0.5
0.1

]
(152)

The cost matrices are Q = QT = I2 and R = 1.0. The state and control constraint coefficients are
given by

Ax =

[
I2
−I2

]
, bx = [5 1 5 1]

⊤
, Au =

[
1
−1

]
, bu = [0.1 0.1]

⊤
. (153)

Finally, the initial state conditions are sampled from the uniform distribution U [[−1;−0.3], [1; 0.3]].

For the oscillating masses, we have xt ∈ R12 and ut ∈ R3, with time horizon T = 10. The discrete-
time dynamics matrices are obtained from the continuous-time ones through Euler discretization,

Ad = I +Ac∆t, Bd = Ac∆t. (154)
The continuous-time dynamics matrices are given by

Ac =

[
06×6 I6

aI6 + cL6 + cL⊤
6 bI6 + dL6 + dL⊤

6

]
, Bc =

[
06×3

F

]
(155)

with c = 1.0, d = 0.1, a = −2c, b = −2.0. L6 is the 6× 6 lower shift matrix and

F = [e1 −e1 e2 e3 −e2 e3]
⊤ (156)

where e1, e2, e3 are the standard basis vectors in R3.

The timestep is set as ∆t = 0.5. The cost matrices are Q = QT = I12 and R = I3. The state and
control constraints are defined through

Ax =

[
I12
−I12

]
, bx = 4 · 124, Au =

[
I3
−I3

]
, bu = 0.5 · 16. (157)

The initial conditions x̄0 are sampled from U
[
[−1, 1]12

]
.

Portfolio optimization. We consider the same portfolio optimization problem setup as in Stellato
et al. (2020). For completeness, we briefly repeat it here,

max
x

µ⊤x− γ(x⊤Σx) s.t. x1 + · · ·+ xn = 1, x ≥ 0, (158)

where x ∈ Rn is the assets allocation vector, µ ∈ Rn is the expected returns vector, Σ ∈ RN
+ is

the risk covariance matrix and γ > 0 is the risk aversion parameter. The matrix Σ is of the form
Σ = FF⊤+D with F ∈ Rd×n is the factors matrix and D ∈ Rn×n is a diagonal matrix involving
individual asset risks. Using an auxiliary variable t = F⊤x, then problem equation 158 is rewritten
as

min
x,t

x⊤Dx+ t⊤t− 1

γ
µ⊤x s.t. t = F⊤x, 1⊤x = 1, x ≥ 0. (159)

For the problems we are generating, we use n = 250, k = 25 and γ = 1.0. Each element of the
expected return vector µ is sampled through µi ∼ N (0, 1). The matrix F consists of 50% non-zero
elements sampled through Fij ∼ N (0, 1). Finally, the diagonal elements of D are sampled with
Dii ∼ U [0,

√
k].
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LASSO. The least absolute shrinkage and selection operator (LASSO) is a linear regression tech-
nique with an added ℓ1-norm regularization term to promote sparsity in the parameters (Tibshirani,
1996). We again consider the same problem setup as in Stellato et al. (2020), where the initial
optimization problem

min
x

∥Ax− b∥22 + λ∥x∥1 (160)

is rewritten as
min
x,t

(Ax− b)⊤(Ax− b) + λ1⊤t s.t. − t ≤ x ≤ t, (161)

where x ∈ Rn is the vector of parameters, A ∈ Rm×n is the data matrix, λ is the weighting
parameter, and t ∈ Rn are newly introduced variables. The matrix A consists of 15% non-zero
elements sampled through Aij ∼ N (0, 1). The true sparse vector v ∈ Rn to be learned consists of
50% non-zero elements sampled through vi ∼ N (0, 1/n). We then construct b = Av + ξ where
ξi ∼ N (0, 1) represents noise in the data. Finally, we set λ = (1/5)∥A⊤b∥∞. For the problems we
are generating, we set n = 100 and m = 104.

I.2 PROBLEM TYPES IN DISTRIBUTED EXPERIMENTS

Random Networked QPs. In this family of problems, we generate random QPs with an under-
lying network structure. Consider an undirected graph G(V, E), where V and E are the nodes and
edges sets, respectively. Each node i is associated with a decision variable xi ∈ Rni . Then, we
generate problems of the following form

min
{xi}i∈V

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi (162a)

s.t. Aij

[
xi

xj

]
≤ bij , Cij

[
xi

xj

]
= dij , (i, j) ∈ E , (162b)

For each generated problem, a cost Hessian is constructed as Qi = F⊤
i Fi+γI , where each element

of Fi ∈ Rni×ni is sampled through F kl
i ∼ N (0, 1) and γ = 1.0. The elements of the cost

coefficients vectors qi are also sampled through qk
i ∼ N (0, 1). The elements of the inequality

constraints matrix Aij ∈ Rmij×(ni+nj) are given by Akl
ij ∼ N (0, 1). The vectors bij ∈ Rmij are

obtained through bij = Aijθij , where each element of θij ∈ Rni+nj is sampled through θk
ij ∼

N (0, 1). In a similar manner, the elements of the equality constraints matrices Cij ∈ Rpij×(ni+nj)

are generated through Ckl
ij ∼ N (0, 1), while the vectors dij ∈ Rpij are acquired through dij =

Cijξij , where each element of ξij ∈ Rni+nj is generated with ξkij ∼ N (0, 1).

It is straightforward to observe that problems of the form (162) can be cast in the form (2) by
introducing the augmented node variables xaug

i = [xi, {xj}j∈Ni
]⊤. The problem data can then

be augmented based on this new xaug
i to yield the desired problem structure. Most notably, the

constraints can be rewritten as Aaug
i xaug

i ≤ baugi and Caug
i xaug

i = daugi , respectively.

In our experiments, the underlying graph structure is a square grid. For random QPs without equality
constraints, we set ni = 10, mij = 5, and pij = 0. For random QPs with equality constraints, we
set ni = 10, mij = 3, and pij = 2 for the N = 16 training experiment and pij = 1 for the rest of
the testing experiments until N = 1, 024.

Multi-agent optimal control. We adapt the distributed MPC problem from (Conte et al., 2012a;b),
which generalizes to different systems based on the choice of dynamics matrices, as described below.
The optimization problem is given as

min
x,u

∑
i∈V

T−1∑
t=0

(xt
i)

⊤Qix
t
i + (ut

i)
⊤Riu

t
i + (xT

i )
⊤Pix

T
i , (163a)

s.t. xt+1
i = Aiix

t
i +Biu

t
i +

∑
j∈Ni

Aijx
t
j , t = 0, . . . , T − 1, i ∈ V (163b)

Gi
xx

t
i ≤ f i

x, G
i
uu

t
i ≤ f i

u, t = 0, . . . , T, i ∈ V (163c)

x0
i = x̄0

i , i ∈ V, (163d)
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where xt
i and ut

i are the state and control for agent i at time t. Eq. (163b) describes the dynamics
and the coupling between the agents, Eq. (163c) describe local inequality constraints, and Eq. (163d)
describes the initial condition for each of the agents.

For the coupled pendulums, the individual state xt
i ∈ R2 for each agent consists of the angle and

angular velocity of the pendulum and the control ut
i ∈ R1 is the torque. The dynamics matrices are

given as

Aii =

[
1 dt

−( gℓ + nn(i)k
m )dt 1− nn(i)c

m dt

]
, Aij =

[
0 0

k
mdt c

mdt

]
, Bi =

[
0

1
mℓ2 dt

]
,

where dt = 0.1 is the discretization step size, g = 9.81 is the gravitational constant, m = 1.0 is the
mass of each pendulum, ℓ = 0.5 is the length of each pendulum, nn(i) is the number of neighbors of
agent i, k = 0.1 is the spring constant between each pendulum, and c = 0.1 is the damping constant
between each pendulum. We have used the small angle assumption sin θ ≈ θ so the dynamics are
linear and therefore the optimization is convex. There are no inequality constraints for the coupled
pendulums. The initial states are sampled uniformly from U [−π, π]. Finally, we considered N = 10
and T = 30.

For the coupled oscillating masses, we adapt the same benchmark system from Chen et al. (2022)
used in the non-distributed experiments. The individual state xt

i ∈ R2 for each agent consists of the
displacement and velocity of the mass and the control ut

i ∈ R1 is the force acting on the mass. The
dynamics matrices are

Aii =

[
1 dt

− 2k
m dt 1− 2c

mdt

]
, Aij =

[
0 0

k
mdt c

mdt

]
, Bi =

[
0

1
mdt

]
,

where dt = 0.5 is the discretization step size, m = 1.0 is the mass, k = 0.4 is the spring constant
between each mass, and c = 0.1 is the damping constant between each mass. The initial states are
sampled uniformly from U [−2.0, 2.0]. Inequality constraints −4 ≤ xt

i ≤ 4 and −0.5 ≤ ut
i ≤ 0.5

are represented as

Gi
x =

[
I2
−I2

]
, f i

x = 4 · 14, Gi
u =

[
1
−1

]
, f i

u = 0.5 · 12,

For both the distributed MPC problems described above, the cost matrices are taken to be identity
matrices: Qi = I2, Ri = I1, and Pi = I2, for all i ∈ V .

The optimization Eq. (163) can be expressed in the form of Eq. (2) by defining an augmented vector
consisting of the individual agent’s states and controls, as well as the states and controls of its
neighbors. Letting zi = [x0

i ,u
0
i , . . . ,x

T
i ]

⊤, the augmented optimization vector for each agent i is
given as xaug

i = [zi, {zj}j∈Ni
]⊤. The cost, dynamics, and constraint matrices can be augmented

straightforwardly based on this new xaug
i . For all problems, we considered T = 15.

Network flow. The network flow problem is adapted from Mota (2013); Mota et al. (2014). We
consider a directed regular graph with 200 nodes and 1000 directed edges xij ∈ E . Each edge
has an associated quadratic cost function ϕij(xij) = 1

2 (xij − aij)
2, where aij is sampled from

[1.0, 2.0, 3.0, 4.0, 5.0, 10.0] with probabilities [0.2, 0.2, 0.2, 0.2, 0.1, 0.1]. The objective is to opti-
mize the flow through the graph subject to equality constraints on the flow into and out of each
node. Namely, the flow into each node should be equal to the flow out of the node. For node i, the
flow conservation constraint is

∑
j∈E−

i
xji =

∑
k∈E+

i
xik, where E−

i is the set of all incoming edges
to node i, and similarly E+

i is the set of all outgoing edges from node i. 100 nodes are randomly
selected and injected with an external flow fk sampled identically to aij . For each of these nodes,
a reachable descendant is randomly selected and an equivalent amount of flow fk is removed from
those nodes.

This problem is straightforward to express in the form Eq. (2) by considering each node as an
individual agent and defining the local state vector for each agent as

xi =

[{xji}j∈E−
i

{xik}k∈E+
i

]
, (164)
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Table 2: Training and testing details for DeepQP.

Problem Class No of layers K Training dataset size Epochs Training time Test dataset size
Random QPs 30 2,000 125 21min 1,000

Random QPs with Eq. Constraints 30 2,000 125 23min 1,000
Double Integrator 30 500 300 28min 1,000

Osc. Masses 15 500 300 48min 1,000
Portfolio Optimization 30 500 300 1h 14min 1,000

LASSO 10 500 300 20min 1,000

Table 3: Training and testing details for DeepDistributedQP.

Problem Class No of layers K Training dataset size Epochs Training time Test dataset size
Random QPs 50 1,000 300 3h 21min 500

Random QPs with Eq. Constraints 50 500 600 3h 29min 500
Coupled Pendulums 20 500 400 1h 49min 500

Coupled Osc. Masses 20 500 600 2h 29min 500
Network Flow 30 500 600 2h 8min 500

Distributed LASSO 20 500 600 56min 500

consisting of all the incoming and outgoing edges for node i. Each agent is responsible for its own
flow constraint defined by

Ai =

[ {1}j∈E−
i

{−1}k∈E+
i

{−1}j∈E−
i

{1}k∈E+
i

]
, bi = 0, (165)

where bi might instead contain the external injected or removed flow fi for that node i. The aug-
mented cost matrix Qi is zero for all incoming edges and has entries 1/2 on the diagonal of the
outgoing edges. The augmented cost vector qi contains each of the quadratic cost offsets aik:

Qi =

[
{0}j∈E−

i

{ 1
2}k∈E+

i

]
, qi =

[ {0}j∈E−
i

{−aik}k∈E+
i

]
. (166)

Finally, we impose the constraint −fmax · 1 ≤ xi ≤ fmax · 1 on the maximum allowed flow of all
edges, with fmax = 5.

Distributed LASSO. Distributed LASSO (Mateos et al., 2010) extends LASSO to situations
where the training data are distributed across different agents and agents cannot share training data
with each other. It can be formulated as

min
{xi}N

i=1,w

N∑
i=1

∥Aixi − bi∥22 +
λ

N
∥xi∥1 s.t. xi = w, i = 1, ..., N (167)

where w ∈ Rni is a global vector of regression coefficients, xi ∈ Rni is a local copy of w,
Ai ∈ Rmi×ni and b ∈ Rmi are the training data available to agent i, and λ is the weighting
parameter. Similarly to non-distributed LASSO, this formulation is rewritten as

min

N∑
i=1

(Aixi − bi)
⊤(Aixi − bi) +

λ

N
1⊤ti (168a)

s.t. ti ≤ xi ≤ ti, xi = w, ti = g, i = 1, ..., N (168b)

where ti ∈ Rni are newly-introduced variables and g is the global copy of ti.

The matrix Ai consists of 15% non-zero elements sampled through Akl
i ∼ N (0, 1). The true sparse

vector v ∈ Rn to be learned consists of 50% non-zero elements sampled through vi ∼ N (0, 1/n).
We then construct b = Av + ξ where ξi ∼ N (0, 1) represents noise in the data.

Finally, we set λ = (1/5)maxi(∥A⊤
i bi∥∞). For the problems, we have ni = 50 and mi = 5 · 103.

I.3 DETAILS ON TRAINING AND TESTING

Here, we discuss details regarding the training and testing of DeepQP and DeepDistributedQP in the
presented experiments.
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Table 4: List of OSQP penalty parameters used in centralized experiments

Problem Class List of penalty parameters ρ
Random QPs 0.1, 0.3, . . . , 3, 10

Random QPs with Eq. Constraints 0.1, 0.3, . . . , 3, 10
Double Integrator 3, 5, . . . , 100, 300

Osc. Masses 0.1, 0.3, . . . , 3, 10
Portfolio Optimization 3, 5, . . . , 100, 300

LASSO 30, 50, . . . , 1000, 3000

Table 5: List of DistributedQP penalty parameters used in distributed experiments

Problem Class List of penalty parameters ρ
Random QPs 0.1, 0.3, . . . , 3, 10

Random QPs with Eq. Constraints 0.1, 0.3, . . . , 3, 10
Coupled Pendulums 0.1, 0.3, . . . , 3, 10

Coupled Osc. Masses 0.1, 0.3, . . . , 3, 10
Network Flow 0.1, 0.3, . . . , 3, 10

Distributed LASSO 30, 50, . . . , 1000, 3000

Centralized experiments. Table 2 shows the number of layers K, training dataset size, number
of epochs, total training time and testing dataset size for DeepQP in every centralized problem.
The increased dataset size and number of epochs for RandomQPs is motivated by the fact that the
structure in these problems is less clear; learning policies that exploit this structure therefore requires
more examples and takes longer. In all experiments, DeepQP was trained with a batch size of 50
using the Adam optimizer with learning rate 10−3. The feedback layers are set as 2 × 16 MLPs.
DeepQP and OSQP always start with zero initializations in all comparisons. The weights of the
training loss were set to γk = exp ((k −K) /5) in all experiments. Both the training and testing
datasets are contructed after letting OSQP running until optimality.

Distributed experiments. Table 3 shows the number of layers K, training dataset size, number
of epochs, total training time and testing dataset size for DeepDistributedQP in every distributed
problem. In all experiments, DeepDistributedQP was trained with a batch size of 50 using the Adam
optimizer with learning rate 10−3. The feedback layers are set as 2× 16 MLPs. DeepDistributedQP
and DistributedQP always start with zero initializations in all comparisons. In all experiments, the
weights of the training loss were set to γk = exp ((k −K) /5). For the low-dimensional testing
datasets, these datasets are constructed using OSQP. For larger scales, the testing dataset is con-
structed with DistributedQP instead as it is much faster (see Table 6), after ensuring convergence to
optimality.

Generalization bounds experiments. These experiments were performed on a networked random
QPs problem with N = 16, ni = 10,mij = 5, pij = 0 and on a coupled pendulums problem with
N = 10 and the same parameters as described in the previous section. The prior was obtained
through training on a small separate dataset of 500 problems for 50 epochs. The posterior was then
acquired through optimizing for the generalization bound with a dataset of 15, 000 problems for 100
epochs.

I.4 DETAILS ON STANDARD OPTIMIZERS

Details on OSQP. When comparing with OSQP using fixed penalty parameters, we selected the
best-performing subsequence of {..., 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, ...} as the penalty parameters to plot
against. Table 4 shows these parameters for every centralized problem in our experiments. For
equality constraints, we scaled ρ by 103, as in Stellato et al. (2020). For the adaptive version,
we prefered the standard heuristic adaptation rule shown in Boyd et al. (2011) with τ = 2.0 and
µ = 10.0, instead of the OSQP adaptation scheme (Stellato et al., 2020), as it performed better in
our problem instances. We hypothesize that this might be due to the fact that as scale increases the
infinity norm is ignoring more information that the 2-norm. The initial ρ0 was initialized as the
median of the range of fixed penalty parameters.

Details on DistributedQP. The range of fixed penalty parameters to compare with was chosen
using the same methodology as with OSQP. Table 5 shows these parameters for every distributed
problem in our experiments. For the adaptive version, we used the standard heuristic adaptation rule
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Table 6: Wall-clock times and iterations for DeepDistributedQP, DistributedQP, OSQP (in-
direct) and OSQP (direct). This comparison shows the total wall-clock times for DistributedQP
and OSQP (indirect or direct method) required to reach the same accuracy as DeepDistributedQP.
For OSQP with direct method, we only report the time for the first iteration, assuming the best-
case scenario in which the factorized KKT matrix can be reused for all subsequent iterations. Both
DeepDistributedQP and DistributedQP demonstrate orders-of-magnitude improvements compared
to OSQP as scale increases. In additon, DeepDistributedQP maintains a significant advantage over
its standard optimization counterpart in all cases.

DeepDistrQP (ours) DistrQP (ours) OSQP (Indirect) OSQP (Direct)
Networked Random QPs

N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
16 160 120 4,000 33.05 ms 50 141.9 ms 208 46.16 ms 29 0.86 ms 29
64 640 560 17,600 39.11 ms 50 129.2 ms 192 185.1 ms 28 23.8 ms 28

256 2,560 2,400 73,600 50.21 ms 50 128.8 ms 168 514 ms 23 703.5 ms 23
1,024 10,240 9,920 300,800 62.68 ms 50 158.9 ms 165 3.03s 23 8.20 s 23

Networked Random QPs with Equality Constraints
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
16 160 168 4,960 37.21 ms 50 138.9 ms 170 36.52 ms 19 0.76 ms 19
64 640 560 17,600 57.76 ms 50 238.1 ms 172 109.0 ms 17 26.9 ms 17

256 2,560 2,400 73,600 74.54 ms 50 239.5 ms 164 692.5 ms 17 956.0 ms 17
1,024 10,240 9,920 300,800 82.55 ms 50 371.0 ms 172 5.83 s 16 11.60 s 16

Coupled Pendulums Optimal Control
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 470 640 3,690 50.99 ms 20 89.81 ms 35 49.46 ms 8 4.95 ms 8
20 940 1,200 7,500 66.44 ms 20 116.7 ms 35 372.0 ms 8 199.7 ms 8
50 2,350 3,200 18,930 75.9 ms 20 142.1 ms 34 948.8 ms 8 4.38 s 8

100 4,700 6,400 37,980 101.9 ms 20 201.9 ms 35 3.97 s 9 19.91 s 9
200 9,400 12,800 76,080 146.0 ms 20 284.8 ms 34 22.41 s 8 90.07 s 8
500 23,500 32,000 190,380 204.3 ms 20 379.8 ms 36 112.9 s 9 Out of memory

1,000 47,000 64,000 380,880 317.2 ms 20 628.2 ms 34 Out of memory Out of memory
Coupled Oscillating Masses Optimal Control

N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 470 1,580 4,590 48.22 ms 20 73.58 ms 33 79.1 ms 9 178.4 ms 9
20 940 3,160 9,300 67.93 ms 20 91.53 ms 33 641.9 ms 9 2.37 s 9
50 2,350 7,900 23,430 73.92 ms 20 97.34 ms 32 1.07 s 8 28.1 s 8

100 4,700 15,800 46,980 91.93 ms 20 148.8 ms 33 5.45 s 8 132 s 8
200 9,400 31,600 94,080 109.4 ms 20 194.4 ms 34 31.8 s 8 614 s 8
300 28,200 47,400 141,180 132.8 ms 20 304.8 ms 33 243 s 8 Out of memory

Network Flow
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
20 100 140 600 6.80 ms 30 10.68 ms 50 9.51 ms 15 0.59 ms 15
50 250 350 1,500 7.81 ms 30 13.17 ms 48 14.81 ms 16 1.30 ms 16

200 1,000 1,400 6,000 12.08 ms 30 17.61 ms 42 208.19 ms 17 61.93 ms 17
500 2,500 3,500 15,000 13.63 ms 30 19.73 ms 40 425.7 ms 17 745.2 ms 17

1,000 5,000 7,000 30,000 20.51 ms 30 31.62 ms 40 8.73 s 18 11.59 s 18
2,000 10,000 14,000 60,000 29.86 ms 30 47.22 ms 40 51.6 s 18 73.9 s 18
5,000 25,000 35,000 150,000 61.23 ms 30 85.99 ms 39 558 s 18 Out of memory

Distributed LASSO
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 1,100 3,000 29,000 15.06 ms 20 28.57 ms 37 2.04 s 33 148.2 ms 33
50 5,500 15,000 145,000 24.92 ms 20 44.27 ms 38 13.74 s 31 49.21 s 31

100 10,100 30,000 290,000 30.51 ms 20 51.44 ms 35 85.92 s 32 342.9 s 32
200 20,100 60,000 580,000 40.88 ms 20 76.21 ms 36 418.9 s 32 Out of memory
500 50,100 150,000 1,450,000 69.19 ms 20 130.24 ms 35 Out of memory Out of memory

shown in Boyd et al. (2011) with τ = 2.0 and µ = 10.0. The initial value was again always chosen
as the median value of the above lists.

I.5 DETAILS ON WALL-CLOCK TIMES

In Table 6, we list the observed wall-clock times for DeepDistributedQP (ours), DistributedQP (ours)
and OSQP using either the indirect or the direct method. The table presents all six studied prob-
lems with an increasing dimension. As clearly observed, DeepDistributedQP and DistributedQP
demonstrate a substantially more favorable scalability than OSQP. In fact, the two algorithms can
efficiently solve problems that OSQP cannot even handle due to memory overflow on our system.
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Figure 8: Varying training dataset size for DeepQP. The performance of DeepQP remains robust
(for both open-loop and closed-loop policies) even as the training dataset size is reduced.

Finally, DeepDistributedQP also maintains a clear advantage over its standard optimization counter-
part DistributedQP across all experiments which signifies the importance of learning policies for the
algorithm parameters.

J ADDITIONAL EXPERIMENTS

The following experiments are dedicated into providing additional insight on exploring the perfor-
mance of DeepDistributedQP and DeepQP in various testing scenarios.

J.1 VARYING TRAINING DATASET SIZE

This section provides additional insight on the amount of training data required for the proposed
learned optimizers to perform well.

In Fig. 8, we compare the performance of DeepQP on the centralized problems using a training
dataset size of 500, 1000 or 2000. To ensure an “equivalent total training effort”, we train these
three cases for 4e, 2e and e epochs, respectively, where e = 125 for random QPs and e = 75
for the other problems. This comparison highlights the robust performance of DeepQP even with
a limited amount of training data. Interestingly, we also observe that training with less data but
over more epochs had a beneficial effect on two out of six problems. We hypothesize that this
could be attributed to the non-convex nature of training in deep learning, as well as the possibility
that additional epochs might have allowed for further improvements in cases where the training
of the model had not yet fully converged. Overall, we conclude that DeepQP maintains reliable
performance even when training data is limited.

For the training of DeepDistributedQP, a limited training dataset of 500 sample problems was used
for all problems except for the random QPs without equality constraints. For completeness, Fig. 9
presents a performance comparison of the learned optimizer when trained with 500 sample problems
(600 epochs) and 1000 sample problems (300 epochs). While additional training data provides
some improvement, the model trained with less sample problems still significantly outperforms the
standard optimization counterparts.

J.2 CAN POLICIES TRAINED FOR SPECIFIC PROBLEMS BE APPLIED TO OTHER PROBLEMS?

The field of learning-to-optimize primarily focuses on improving the performance of an underlying
optimizer for problems drawn from the same distribution as the training data (Shlezinger et al.,
2022). However, this prompts an interesting question: How does a policy trained on a specific
problem class perform when evaluated on a different class?
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Figure 9: Performance of DeepDistributedQP on random QPs using training dataset size 500
and 1000. While using more training data results in a slight improvement in the performance of
DeepDistributedQP, in both scenarios, the proposed learned optimizer consistently outperforms the
traditional one. The right figure illustrates only the first 50 iterations.

Figure 10: Testing policies on different classes of problems. We evaluate the policy trained on
small-scale random equality-constrained QP problems (N = 16) on two large-scale scenarios of
different problem types: random QPs without equality constraints (N = 1, 024) and coupled pen-
dulums (N = 1, 000). Notably, in the first case (left), the policy demonstrates strong performance
which is attributed on the fact that there is still some similarity between the training and testing
setups. In the second case (right), where the testing problems differ entirely from the training setup,
the performance of the learned optimizer is suboptimal but remains acceptable.

At this point, we wish to emphasize the following fact:

The proposed DeepDistributedQP framework already surpasses the expected capabilities of typi-
cal learning-to-optimize algorithms, as it is trained on small-scale problems and then successfully
deployed on much higher-dimensional ones.

For completeness, we also conducted curiosity-driven experiments by applying the trained policies
to different classes of problems than the ones used for training. In Fig. 10, we test a policy trained
on small-scale random equality-constrained QPs on large-scale random QPs without equality con-
straints and large-scale coupled pendulums problems. In the first case, DeepDistributedQP maintains
remarkable performance compared to DistributedQP due to the existing similarity between the two
classes. In the second setup, where the training and testing problems are entirely different, the per-
formance is suboptimal. Overall, these results highlight that when there is a degree of similarity
between the training and testing setups, DeepDistributedQP is expected to still perform very well.
In future work, we plan to explore extensions trained on a broader variety of problem classes to
improve generalization on entirely different setups.

J.3 VARYING THE NUMBER OF LAYERS IN TESTING DEEPDISTRIBUTEDQP

Another natural question that arises is how DeepDistributedQP can be adapted to run for more
iterations than the number of layers it was originally trained for. A straightforward modification is
to repeat the last layer of the framework for the extra needed iterations. In Fig. 11, we add 30 extra
iterations for the random QPs and 20 for the other problems. For all cases, the closed-loop policies
continue to outperform the standard optimizers. Additionally, the open-loop policies maintain strong
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Figure 11: Varying the number of layers while testing DeepDistributedQP. If additional itera-
tions are needed, DeepDistributedQP maintains strong performance by repeating its last layer for
these extra iterations. Specifically, we explore adding 30 iterations for the random QPs and 20 for
the rest of the problems. In all cases, the closed-loop policies continue to demonstrate superior per-
formance, while in 4 out of 6 problems, the open-loop policies also remain advantageous.

performance in 4 out of 6 problems. In future work, we plan to incorporate the repetition of the last
layer during training to further ensure robust performance when additional iterations are required.
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