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ABSTRACT

Low-Rank Adaptation (LoRA) is a powerful technique for fine-tuning Large Lan-
guage Models (LLMs), offering greater parameter efficiency and improved gen-
eralization in data-constrained settings. While its advantages makes it highly
promising for general transfer learning, its reliance on iterative optimization meth-
ods such as SGD still demands substantial computation and poses a challenge
for theoretical analysis. We propose a novel two-step, closed-form approach for
LoRA in two-layer feedforward neural networks (FNN) that mitigates the reliance
on iterative algorithms. First, by leveraging Stein’s lemma, a classical statistical
tool, we derive an analytical estimator for the first-layer LoRA parameters. Sec-
ond, we solve for the second-layer parameters via reduced-rank ridge regression.
We provide theoretical guarantees for the low-rank parameter estimation under a
projection adaptation assumption: the optimal first layer adaptation removes ir-
relevant directions via subspace projection. This generalizes the concept of rank
pruning, which removes irrelevant low-rank components from a weight matrix.
Crucially, our solution is non-iterative and computationally efficient, computing
the full adaptation in seconds—a fraction of the time required by SGD-based
LoRA. Numerical experiments on MNIST suggest that our method not only signif-
icantly reduces computational cost and achieves prediction performance compa-
rable to that of a fully trained LoRA model, but also serves as a good initialization
for SGD-based LoRA.

1 INTRODUCTION

Low-Rank Adaptation (Hu et al., 2022, LoRA) has become a powerful technique for efficiently fine-
tuning Large Language Models (LLMs). By constraining weight updates to a low-rank subspace,
LoRA reduces the number of trainable parameters, thereby lowering computational demands and
enhancing generalization in data-scarce settings (Lin et al., 2024). While LoRA’s empirical success
in fine-tuning LLMs is evident, its core principle—exploiting low-dimensional structure in param-
eter updates—holds broader promise for transfer learning beyond language models. This paper
explores application of this low-rank update principle to the adaptation of a pre-trained two-layer
neural network.

Transfer learning is a core paradigm in machine learning that leverages knowledge from a data-
rich source domain to improve performance in a data-scarce target domain (Zhuang et al., 2020). Its
applications are broad, ranging from deploying ImageNet-pretrained models for specialized medical
imaging tasks (Morid et al., 2021) to adapting BERT for targeted sentiment classification (Prottasha
et al., 2022). Its importance is growing in modern AI settings that require not only effectiveness but
also flexibility, including personalized modeling that tailors a base model to individual users with
limited data (Yoon et al., 2017) and federated learning, where models are adapted on decentralized
edge devices (Guo et al., 2024). Across these scenarios, training the full model is infeasible due to
limited data. LoRA’s parameter-efficient philosophy is ideally suited to these constraints. Moreover,
LoRA’s philosophy aligns with classical methods in high-dimensional statistics that exploit low-
dimensional structure, such as robust PCA (Candès et al., 2011) and reduced-rank regression (Yuan
et al., 2007), which are known to improve both statistical efficiency and interpretability.
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Despite its practical appeal, standard LoRA implementations depend heavily on iterative optimizers
such as stochastic gradient descent (SGD) and ADAM (Kingma & Ba, 2014), which introduce sev-
eral limitations for transfer learning. First, the iterative process remains computationally demanding,
often requiring multiple epochs over the data. Second, it obscures the statistical properties of the
resulting LoRA estimator, making it difficult to establish theoretical guarantees such as consistency.
Third, the training time constrains rapid adaptation in scenarios that require instant updates, such as
real-time personalization or on-device learning.

To overcome these limitations, we introduce a novel, non-iterative framework for LoRA-style adap-
tation of two-layer feedforward networks. Our method computes a closed-form, two-step estimator
that mitigates the reliance on iterative training algorithms such as SGD. Our method first leverages
Stein’s lemma, a classical tool from statistical estimation, to derive an analytical estimator for the
first-layer low-rank parameters. In the second step, we solve for the second-layer parameters via
a reduced-rank ridge regression (Mukherjee & Zhu, 2011), which has a elegant and interpretable
closed-form solution. This two-step procedure is deterministic, requires no learning rate tuning or
convergence checks, and computes the full model adaptation in a single pass.

We establish theoretical consistency of our estimator under a projection adaptation assumption,
which posits that the optimal first-layer update acts as an orthogonal projection—removing irrel-
evant directions from the pre-trained weight. This generalizes rank pruning and provides a tractable
framework for analysis. We further derive non-asymptotic convergence rates for the estimator and
its excess risk, and characterize the bias-variance trade-off induced by regularization.

The main benefit of our approach is its dramatic computational efficiency. Our closed-form solution
computes the full model adaptation in a matter of seconds—a fraction of the time required by SGD-
based LoRA. In addition, it serves as a better initialization for regular SGD than the traditional
zero initialized LoRA. We validate our method through numerical experiments on MNIST dataset,
demonstrating that it achieves prediction performance comparable to SGD. By providing a fast,
transparent, and theoretically sound alternative to SGD-based adaptation, this work paves the way
for more efficient transfer learning algorithms. Our main contributions are summarized as follows:

1. A closed-form, non-iterative solution to LoRA: we introduce a novel approach that yields
an explicit, closed-form solution to LoRA in two-layer neural networks, mitigating reliance
on iterative algorithms such as SGD.

2. Theoretical consistency guarantees: we establish consistency of our closed-form estima-
tors under a projection adaptation assumption, and provide non-asymptotic error bounds
characterizing their convergence rate.

3. Significant computational gains: adaptation completes in seconds, enabling real-time or
edge-device applications.

4. Improved initialization for Iterative Algorithms: our estimation outperforms zero ini-
tialization, accelerating fine-tuning.

5. Empirical validation on MNIST: our approach attains predictive performance compara-
ble to iterative LoRA, while delivering full transparency and significant speedups.

2 PROBLEM SETUP

We consider a two-layer neural network model:

Yi = (W2 +∆2) a
(
(W1 +∆1)ϕ(Xi)

)
+ ϵi. (1)

Here, Xi ∈ Rp is a high-dimensional input and Yi ∈ Rq is its corresponding output. A key
component of our setup is a fixed feature map ϕ : Rp → Rl1 , which projects the input into a
lower-dimensional representation space (e.g., from a pre-trained encoder). The activation function
a : R → R acts component-wise, and ϵi is an independent zero-mean noise term. The matrices have
dimensions W1,∆1 ∈ Rl2×l1 and W2,∆2 ∈ Rq×l2 . We call (W1,W2) the prior weight matrices,
and (∆1,∆2) the adaptation matrices. The prior weight matrices, which serve as our initialization,
encode knowledge from a source task or a large foundational dataset. Our goal is to adapt this model
to a new target task by learning a pair of low-rank matrices (∆1,∆2), while keeping (W1,W2, ϕ)
fixed. This type of update, famously effective in fine-tuning large language models, is known as
Low-Rank Adaptation (LoRA).
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The rank constraint on (∆1,∆2) offers several key advantages. First, the number of trainable pa-
rameters is reduced, which enhances computational efficiency and mitigates overfitting. Second,
the low-rank update captures the most significant task-specific directions in the parameter space,
promoting generalization in data-constrained settings and mitigating catastrophic forgetting by re-
maining close to the prior model.

Analysis of Model (1) has significant practical implications. The assumption that high-dimensional
data lies on a low-dimensional manifold is foundational to deep learning. The representation map
ϕ : Rp → Rl1 is typically a pre-trained encoder (e.g., from an autoencoder, VAE (Kingma, 2013), or
WAE (Tolstikhin et al., 2017)) that projects raw inputs into a semantically meaningful latent space.
This allows even a shallow network to model complex functions by operating on these distilled
representations. In addition, the latent representations ϕ(Xi) can be regularized to follow a certain
distribution, such as standard gaussian, which can help in downstream tasks. The consideration of
representations as input has practical implications in our model, as will be discussed later.

To handle high-dimensional outputs Yi ∈ Rq , we may similarly introduce an output representation
ψ : Rq → Rd, leading to the generalized model: ψ(Yi) = (W2 +∆2) a

( (
W1 +∆1

)
ϕ(Xi)

)
+ ϵi.

This framework of mapping between two latent spaces is a powerful and common paradigm in
deep learning (Maiorca et al., 2023; Lähner & Moeller, 2024; Insulla et al., 2025). It has found
applications in multi-modal learning (Insulla et al., 2025), domain translation (Lähner & Moeller,
2024) and image generation (Maiorca et al., 2023).

Unlike standard empirical risk minimization, our objective is the exact recovery of the true adap-
tation matrices (∆1,∆2). We show this is theoretically possible under a Projection Adaptation
Assumption, which posits that the optimal adaptation in the first layer primarily involves project-
ing input representations onto a task-relevant subspace. In other words, it suggests there exists an
orthogonal projection matrix P such that E[Y |Pϕ(X)] ≈ f(X). The assumption can formally be
defined as follows:

Assumption 2.1. (Projection Adaptation) Let fθ : Rl1 → Rq be a prior model with parameter θ,
and let Γ be a constrained parameter space. Assume there exists an orthogonal projection matrix
P = V V T ∈ Rl1×l1 , where V ∈ Rl1×k0 has orthonormal columns and k0 < l1, and a parameter
γ ∈ Γ such that

E[Y |ϕ(X)] = fθ+γ (Pϕ(X)) . (2)

An example of Γ is the space of low-rank matrices.

This assumption is frequently justified in practice. For instance, the Linear Representation Hypoth-
esis (Park et al., 2023; Mikolov et al., 2013; Wang et al., 2023) suggests that human-interpretable
concepts are encoded in linear subspaces of representation spaces. Fine-tuning can thus be viewed as
suppressing irrelevant concepts (by projecting them out) and amplifying task-relevant ones (Uppaal
et al., 2024). This perspective provides a geometric interpretation for manipulating model behavior
through linear projections. A special case of this assumption is rank-pruning of a weight matrix.
When P is defined by a subset of the right singular vectors of W1, the update W1P effectively
removes some rank-one components of the weight matrix.

Building upon this observation, our work introduces a consistent method for identifying the optimal
orthogonal projection and updating the low-rank matrices. In the subsequent sections, we will detail
our estimation procedure, provide theoretical guarantees for parameter recovery.

Notation: Suppose A ∈ Rn×m is a rank rA matrix with Singular Value Decomposition (SVD) of
the form A = USV T , where U =

[
Uk, U

⊥
k

]
∈ Rn×rA , Uk ∈ Rn×k, S ∈ RrA×rA is diagonal,

V =
[
Vk, V

⊥
k

]
∈ Rm×rA , and Vk ∈ Rm×k. We write SVDr (A) = V and SVDl (A) = U .

Moreover, we use Pr
k(A) = VkV

T
k to denote the orthogonal projection matrix onto the subspace

spanned by its top-k right singular vectors, P l
k(A) = UkU

T
k for the top-k left singular vectors,

and Rk (A) = [Uk, 0]S[Vk, 0]
T to denote its rank-k approximation. We use ∥A∥F to denote its

Frobenius norm, ∥A∥op to denote its operator norm, and rank(A) to denote its rank. For a vector
v ∈ Rn, we use ∥v∥2 to denote its ℓ2-norm. For two sequences, we say that an ≲ bn (also written
as a = O(bn)) if there exists C > 0 such that an ≤ Cbn.
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3 MODEL ESTIMATION WITH STEIN’S LEMMA AND SUBSPACE PROJECTION

Assume rank(∆i) = ri for i = 1, 2. Denote the j-th element of the target vector Yi as Yij for
notational simplicity. Denote the latent representation as Zi = ϕ(Xi), and its transformed version
as Z̃i = (W1 + ∆1)Zi. We assume Zi is distributed according to a known density p(z), which is
often enforced in practice. For instance, in WAEs, Zi is usually enforced to be ϕ(Xi) ∼ N (0, I).
This allows us to define the known second-order score function:

S(z) = T (z)T (z)T −∇T (z), (3)

where T (z) = ∇p(z)/p(z) is the first-order score function. For a standard Gaussian p(z) =
N (0,Σ), this simplifies to S(z) = Σ−1zzTΣ−1 − Σ−1. In our experiments, we show that us-
ing a Gaussian approximation for the score function when the true score is unknown still delivers
satisfactory performance. Finally, we define the function f : Rl2 → Rq for the adapted second layer
as f(z̃) = (f1(z̃), . . . , fq(z̃))

T
= (W2 +∆2)a(z̃).

Our estimator is grounded in the following identity:
Lemma 3.1. (Second-Order Stein’s Identity) Suppose model (1) holds. For any j ∈ [q], if the expec-

tations E [YijS(Zi)] and E
[
∇2

Z̃i
fj(Z̃i)

]
exists and are well-defined, and lim∥z∥→∞ fj(z̃)p(z) → 0

and lim∥z∥→∞ ∇z̃fj(z̃)p(z) → 0, then

E[YijS(Zi)] = (W1 +∆1)
T E

[
∇2

Z̃i
fj(Z̃i)

]
(W1 +∆1) . (4)

Lemma 3.1 implies that the row space of E[YijS(Zi)] is contained within the row space of (W1+∆1)
for each j. Therefore, a valid estimator for this space can be obtained via the Eigenvalue decom-
position of the empirical mean: V̂j = SVDl

(
1
n

∑n
i=1 YijS(Zi)

)
. Since each V̂j estimates a basis

for the same row space, we combine them for statistical efficiency. We adopt the straightforward
Stack-SVD method (Baharav et al., 2025):

V̂ = SVDl

(
1

n

[
n∑

i=1

Yi1S(Zi), . . . ,

n∑
i=1

YiqS(Zi)

])
. (5)

Let V be a matrix whose columns are the right singular vectors of (W1 + ∆1). From the identity
W1 +∆1 = (W1 +∆1)V V

T , we use below equality to build our estimator of ∆1:

W1

(
I − V V T

)
+∆1

(
I − V V T

)
= 0. (6)

With equation (6) and V̂ in (5), we propose the following problem to estimate ∆1,

min
∆1∈Rl2×l1

∥∥∥W1(I − V̂ V̂ T ) + ∆1(I − V̂ V̂ T )
∥∥∥2
F
+ λ1∥∆1∥2F , (7)

subject to rank(∆1) ≤ k1. (8)

where λ1 > 0 is a regularization parameter, and k1 ∈ Z+ is the rank constraint. A key property of
problem (7) is that it admits an explicit, closed-form solution, as shown in the proposition 3.2.
Proposition 3.2. The global minimizer of the constrained minimization problem (7) is

∆̂1 =
1

1 + λ1
Rk1

(
−W1

(
I − V̂ V̂ T

))
. (9)

An intuitive interpretation follows: without rank constraints or regularization (i.e., λ1 = 0, k1 =

min{l1, l2}), the adapted mapping satisfies
(
W1 + ∆̂1

)
Zi = W1P̂Zi, where P̂ = V̂ V̂ T . In

effect, this projects the input representations onto the estimated task-specific subspace, filtering
out components irrelevant to the new task. Revisiting (6), the term W1V V

T projects the original
weights onto the task-specific subspace, removing features irrelevant to the new task, while ∆1V V

T

encodes the task-specific information that must be learned. Because (6) offers no direct constraint
on ∆1V V

T , the minimum-norm solution drives this term to zero. Notably, when the columns of V
are a subset of W1’s right singular vectors, this reduces to rank pruning.

4
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The regularization parameters control the adaptation strength and structure. The norm regularization
λ1 shrinks the adaptation towards zero, enforcing a soft bias to the original pre-trained weights W1.
In the limit λ1 → ∞, we have ∆̂1 → 0, and the model effectively reverts to the frozen pre-trained
prior. The rank constraint k1 enforces a low-rank structure on ∆1, providing an inductive bias.
When the true adaptation is low-rank (small r1), this constraint improves statistical efficiency. We
analyze this trade-off in Section 4.

With learned ∆̂1, we now consider the problem of estimating the second-layer adaptation ∆2. We
frame this as a regularized regression problem. Define the adapted activation matrix: for each
data point, let Âi = a

(
(W1 + ∆̂1)Zi

)
and stack them into the matrix Â = (Â1, . . . , Ân)

T . Let

Y = (Y1, . . . , Yn)
T be the target matrix. The goal is to find a low-rank ∆2 such that Â(W2 +∆2)

T

approximates Y . This leads to the following optimization problem.

min
∆2∈Rq×l2

∥∥∥Y − Â (W2 +∆2)
T
∥∥∥2
F
+ λ2∥∆2∥2F ,

subject to rank(∆2) ≤ k2, (10)
The problem (10) also has an explicit solution, as demonstrated in the following proposition.
Proposition 3.3. The global minimizer of the constrained minimization problem (10) is

∆̂2 = B̂P̂k2
, (11)

where B̂ = 1
n

(
ÂT Â/n+ λ2I

)−1

ÂT
(
Y − ÂWT

2

)
and P̂k2 = Pr

k2

((
Y − ÂW2

)T
ÂB̂T

)
.

Here, Pr
k2
(·) denotes projection matrix onto subspace spanned by the top-k2 right singular vectors

of its argument.

The estimator ∆̂2 has an intuitive structure. The matrix B̂ is the standard ridge regression coefficient
matrix for predicting the residual targets (Y − ÂWT

2 ) from the adapted features Â. The projection
matrix P̂k2

then projects this solution onto a subspace, ensuring rank(∆̂2) ≤ k2. With learned ∆̂2,
the predictions are Â(W2 + ∆̂2)

T ≈ ÂWT
2 +Rk2

(ÂBT ), where Rk2
(·) denotes the best rank-k2

approximation of its argument. Thus, the adaptation adds the best rank-k2 approximation of the
ridge predictions for the residuals to the original model’s predictions.

We summarize our two-step LoRA estimation procedure as below:

Algorithm 1 LoRA tuning with Stein’s Lemma and subspace projection

Require: (W1,W2, ϕ), S(z), (λ1, λ2, k1, k2), {Xi, Yi}ni=1

1: Subspace estimation via Stein’s Lemma to obtain V̂ as in (5).
2: Compute closed-form solution of ∆̂1 using V̂ as in (9).
3: Compute closed-form solution of ∆̂2 as in (11).
4: return f̂(x) =

(
W2 + ∆̂2

)
a
((
W1 + ∆̂1

)
x
)

.

We conclude this section with a few remarks. First, under the projection adaptation assumption,
when the target function takes the form fW2+γ(x) = (W2 + γ) a (W1Pϕ(x)) with a rank constraint
on γ, our method could recover the target parameters consistently. This includes the identified
orthogonal projection P̂ = V̂ V̂ T and the output adaptation γ = ∆̂2. The assumption, which is
equivalent to ∥∆2V V

T ∥F = 0, asserts that the target task only requires projecting the first-layer
representations ϕ(x). This is reasonable when the source model is well trained on a large, general-
purpose dataset, since W1 likely already captures most of the necessary feature transformations,
making ∥∆2V V

T ∥F small.

Second, our dual regularization is well suited for transfer learning. A central challenge in transfer
learning is mitigating negative transfer, where irrelevant source knowledge degrades target perfor-
mance. Our hyper-parameters λ1 and λ2 provide explicit control over the degree of transfer by
governing the shrinkage strength toward the original pre-trained weights. This allows practitioners
to precisely calibrate how much source information to retain.

5
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4 THEORETICAL ANALYSIS

In this section, we establish theoretical guarantees for the proposed two-step estimator. Our goal is
to establish the consistency of our method and analyze the bias-variance trade-off induced by the
tuning parameters (λ1, λ2, k1, k2).

We begin by defining certain key quantities. Let δ = ∥∆1V V
T ∥F measure the deviation from

the projection adaptation assumption. Recall that Zi = ϕ(Xi) denotes the latent representation,
Z̃i = (W1 +∆1)Zi its transformed version, and f(z̃) = (W2 +∆2)a(z̃) the second layer function.
Let S(z) denote the second-order score function of Zi. Additionally, let ri = rank(∆i), i = 1, 2,
denote the true rank of the adaptation matrix. Our analysis relies on the following assumptions:
Assumption 4.1 (Non-singular Hessian). There exists an output dimension 1 ≤ j ≤ q such that the
expected Hessian E[∇2

z̃fj(Z̃)] is non-singular.
Assumption 4.2 (Boundedness). There exist constants c1, c2, c3 > 0 such that ∥Zi∥2 ≤ c1, ∥ϵi∥2 ≤
c2 and ∥S(Zi)∥op ≤ c3 almost surely.
Assumption 4.3 (Lipschitz activations). The activation function a : R → R is a K-Lipschitz
continuous.

Assumption 4.1 is mild. To see this, let wj,· be the j-th row of W2 + ∆2. The expected Hessian
is diagonal: E[∇2

z̃fj(z̃)] = diag (wj,1E[a′′(z̃1)], . . . , wj,l2E[a′′(z̃l2)]) . For ReLU, E[a′′(z̃k)] cor-
responds to the density at zero, so the assumption holds as long as at least one row of W2 + ∆2

does not contain zeros . Assumption 4.2 is standard in statistical learning and reasonable in practice
for bounded features and noise. Assumption 4.3 holds for common activations including ReLU,
Softplus, and more.

We evaluate the performance of the estimation via the excess risk:

E(∆̂1, ∆̂2) := L(∆̂1, ∆̂2)− inf
∆1,∆2

L(∆1,∆2), (12)

where the population risk is L(∆1,∆2) := E
[
∥y − (W2 +∆2)a((W1 +∆1)ϕ(x))∥22

]
. Our main

result characterizes the convergence rate of the excess risk:
Theorem 4.1. (Excess risk) Assume the data-generating model (1) and Assumptions 4.1 - 4.3 hold.
Then, for any unseen test point (x, y), the excess risk satisfies

E(∆̂1, ∆̂2) ≲ ∆stat +∆first +∆bias, (13)
where

∆stat = k2

(
Kλ2

λ2

)2
(
1

n
+

√
1

n
E∥∆1 − ∆̂1∥2op

)
+

(
1 +

1

λ2n

)
Tr((Σ + λ2)

−1Σ)

n
Tr(E[ϵϵT ]Pk2),

∆first =

((
1 +

1

λ2

)2

+ C2
λ2

+ k2

(
Kλ2

λ2

)2
)
E∥∆1 − ∆̂1∥2op,

∆bias = ∥(I − Pk2)∆2Σ
1
2 ∥2F + λ2

(
1 +

1

λ2n

)2

∥(Σ + λ2)
− 1

2Σ
1
2Pk2∆2∥2F .

Here, Cλ2 =
(

1
λ2

+ 1
λ2
2
+ 1

λ3
2

)
and Kλ2 =

(
1 + 1

λ2

)
are constants depending on λ2, Σ =

Cov [a ((W1 +∆1)ϕ(Xi))], and Pk2 = Pr
k2

(
∆2Σ(Σ + λ2I)

−1Σ∆T
2

)
is the rank-k2 projection

matrix onto the row space of the indicated matrix..

Theorem 4.1 reveals a bias-variance trade-off governed by the second-layer hyper-parameters λ2
and k2. First, ∆first is the error due to the first-layer estimation. It vanishes if ∆̂1 is a consistent
estimation for ∆1. Second, ∆stat is the statistical error. If E∥∆̂1 −∆1∥2op = O(1/n), the first term
is O(1/n). For the case E[ϵϵT ] = I , we have Tr(E[ϵϵ⊤]Pk2

) = k2. As λ2 → ∞, ∆stat → 0,
indicating faster statistical convergence with stronger shrinkage. Last, ∆bias is the regularization-
induced bias. As λ2 → 0, Pk2

→ Pr
k2
(Σ1/2∆T

2 ), and the first term becomes
∑

i>k2
σ2
i (∆2Σ

1/2).
When ∆2 is low-rank with r2 ≤ k2, this term vanishes. The second term, due to λ2-shrinkage,
vanishes as λ2 → 0. This decomposition highlights how λ2 and k2 trade off statistical efficiency
against model bias. We next analyze the consistency of estimating ∆1 and ∆2.

6
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Theorem 4.2 (Estimation Consistency of ∆1). Assume the data-generating model (1) and Assump-
tions 4.1 - 4.3 hold. Then,

E∥∆̂1 −∆1∥F ≲ ∆stat +∆bias,

where ∆stat =
√
k1√

n(1+λ1)
and ∆bias =

δ
1+λ1

+ λ1∥∆1∥F

1+λ1
+ 1

1+λ1

√∑
i>k1

σ2 (W1(V V T − I)).

The statistical error ∆stat decays as O(1/
√
n), with constants depending on λ1 and k1. Stronger

shrinkage (large λ1) or lower rank (small k1) accelerates convergence. The bias ∆bias has three
components. The first term measures the deviation δ = ∥∆1V V

T ∥F from the projection assump-
tion. The second term is the shrinkage bias. As λ1 → ∞, ∆̂1 → 0, and the bias approaches ∥∆1∥F .
The last term is the rank constraint bias, which vanishes if rank(W1(V V

⊤ − I)) ≤ k1.

When the projection adaptation assumption holds exactly, we obtain the following result:
Corollary 1. Suppose there exists a projection matrix P and ∆2 ∈ Rq×l2 such that

Yi = (W2 +∆2)a (W1Pϕ(Xi)) + ϵi (14)

Then, with k1 = min{l1, l2} and λ1 = 0, the estimator ∆̂1 = −W1(I − V̂ V̂ ⊤) is consistent. That
is, E∥∆̂1 −∆1∥F → 0 as n→ ∞.

The corollary follows directly from δ = 0 and Theorem 4.2. We now turn to consistency of ∆2:
Theorem 4.3 (Estimation Consistency of ∆2). Assume the data-generating model (1) and Assump-
tions 4.1 - 4.3 hold. Then,

E∥∆̂2 −∆2∥F ≲ ∆bias +∆stat +∆first, (15)

where

∆bias = ∥(I − Pk)∆2∥F + E∥Pk∆2

(
I − Σn(Σn + λ2I)

−1
)
∥F ,

∆stat =

(
Kλ2

λ2

√
k2 +

1

λ2

√
Tr(E[ϵiϵTi ]Pk2)

)
1√
n
,

∆first =

(
Kλ2

λ2
+ Cλ2

)
E∥∆1 − ∆̂1∥op.

Here, Cλ2
, Kλ2

, and Pk2
are as defined in Theorem 4.1, and Σn is the empirical covariance of

a((W1 + ∆̂1)ϕ(X)).

Interpretation of Theorem 4.3 is similar to Theorem 4.1. The statistical error ∆stat decays faster
under stronger shrinkage (large λ2) or lower rank (small k2). The error due to first layer estimation
∆first vanishes as λ2 → ∞, since ∆̂2 → 0 independently of ∆̂1. The bias ∆bias contains a rank
constraint term (less interpretable than in Theorem 4.1, since Pk2

does not directly project ∆2) and
a shrinkage term vanishing as λ2 → 0.

Combining Theorems 4.1, 4.2, and 4.3, we conclude that when the projection adaptation condi-
tion (14) holds, our estimators (∆̂1, ∆̂2) converge to the true parameters (∆1,∆2) as n → ∞.
Consequently, in the absence of regularization, the excess risk vanishes asymptotically. This estab-
lishes the theoretical validity of our two-step adaptation framework.

5 NUMERICAL EXPERIMENTS

5.1 SIMULATIONS

We conduct simulation experiments under the projection adaptation assumption (Assumption 2.1).
Specifically, we generate responses according to Y = (W2 + ∆2)a(W1PX) + ϵ, where P is a
projection matrix, a(·) is the ReLU activation function, and ϵ ∼ N (0, I100) is the Gaussian noise.
This model suggests that only a lower-dimensional subspace of the input X is relevant to the target.

7
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We consider a two-layer network with input dimension l1 = 200, hidden dimension l2 = 100,
and output dimension q = 50 . Inputs X are drawn i.i.d. from X ∼ N (0, I200), mimicking
standardized feature representations obtained from a pretrained regularized encoder. The weight
matrices (W1,W2,∆2) , are generated with i.i.d. entries from N (0, σ2 = 0.252). While for ∆1, it
is generated according to ∆1 =W1P −W1, where P ∈ Rl1×l1 has rank 75.

We compare the proposed approach with two baselines. The first is the reduced rank ridge (denoted
as RRR) regression, which estimates only ∆2 while keeping the first layer fixed. This baseline iso-
lates the benefit of adapting the first layer via subspace projection. The second baseline implements
LoRA (Hu et al., 2022) using Stochastic Gradient descent (SGD). In this setup, each ∆i is factored
as trainable parameters AiB

T
i with Ai ∈ Rli+1×k, Bi ∈ Rli×k. We train the parameters with a

learning rate of 0.001 , batch size 256, minimizing the mean squared error of a training dataset with
sample size n. The performance of the prior model (i.e., ∆1 = ∆2 = 0) is reported as PT.

Results on a test dataset of sample size 1000 are reported in Table 1. From the result, all three meth-
ods improve the pre-trained models by lowering its MSE over target task. Our proposed method is
comparable to SGD-based LoRA which has been trained for 30 epochs over the train set. More-
over, it uniformly outperforms the baseline RRR across all sample size n and rank constraint k,
suggesting that there is value in updating the first layer parameters. Another observation is that our
method performs better than SGD in low sample size, low rank setting (e.g., n from 5000 to 30000,
k = 5, 7). Finally, we shall note that our method computes in seconds, significantly faster than
SGD-based LoRA.

k=5 k=7 k=10
n PT RRR Proposed SGD RRR Proposed SGD RRR Proposed SGD

5000 36.474 27.071 25.303 27.328 29.304 27.840 29.813 27.071 25.303 27.328
10000 36.617 26.810 24.618 26.368 29.247 27.398 29.339 26.810 24.618 26.368
15000 36.252 26.717 24.417 25.538 29.120 27.112 28.360 26.717 24.417 25.538
25000 36.900 26.958 24.188 24.300 29.160 26.961 27.695 26.958 24.188 24.300
30000 36.630 26.650 23.958 23.587 29.006 26.724 26.788 26.650 23.958 23.587
40000 36.385 26.677 23.744 22.685 29.026 26.614 25.709 26.677 23.744 22.685
50000 36.775 26.683 23.694 22.252 29.144 26.576 25.077 26.683 23.694 22.252
100000 36.374 26.652 22.945 21.044 28.982 26.085 23.422 26.652 22.945 21.044

Table 1: Comparison of MSE under different rank k and training sizes (n).

5.2 MNIST IMAGE INPAINTING

We evaluate the performance of our estimators on the MNIST image inpainting task. Each image
is divided into two parts: the lower-left 14 × 14 region serves as the response Y ∈ R196, and
the remaining 756 pixels form the predictor X ∈ R756. The digit class label is denoted by C ∈
{0, . . . , 9}.

We consider a transfer learning setup where a model is pre-trained to predict Y from X using data
from all digit classes except a held-out target class c ∈ {0, . . . , 9}. The goal is to adapt the pre-
trained model to perform inpainting for class c, despite having never observed any examples from
this class during pre-training.

To obtain a latent representation, we first train a Wasserstein Autoencoder (WAE) (Tolstikhin et al.,
2017), denoted ϕ : R756 → R20, to encode X into a 20-dimensional latent code Z = ϕ(X). During
training, the WAE regularizes the marginal distribution ofZ to approximate N (0, I20). For the target
class c, we estimate the conditional mean µc = E[Z | C = c] and covariance Σc = Cov(Z | C = c)
from target training samples. Using Stein’s lemma, we approximate the second-order score function
of Z | C = c as

S(z) ≈ Σ−1
c (z − µc)(z − µc)

⊤Σ−1
c .

We assume the following generative models:

1. For digits {0, . . . , 9} \ {c}: Y =W2a(W1ϕ(X)) + ϵ,

2. For digit c: Y = (W2 +∆W2)a((W1 +∆W1)ϕ(X)) + ϵ,

8
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where a(·) is ReLU activation function and ϵ is additive noise. The weight matrices have dimension
l1 = 20, l2 = 1024, q = 196. We aim to adapt both layers of the network via low-rank matrices
(∆1,∆2).

As in the simulation study, we focus on full adaptation and thus fix the shrinkage penalties at λ1 =
λ2 = 1 to avoid bias toward the pre-trained weights. Instead, we vary the shared rank constraint k,
enforcing rank(∆W1) = rank(∆W2) ≤ k, and examine its impact on estimation accuracy.

For comparison, we include two baselines. The first, LoRA (Hu et al., 2022), factorizes each ∆i =
AiB

T
i with trainable matrices Ai ∈ Rli+1×k, Bi ∈ Rli×k, initialized as Ai ∼ N (0, I), Bi = 0.

We train using SGD with learning rate 0.01, batch size 32, for 100 epochs on a dataset of size
n = 48,000, minimizing mean squared error. The second baseline, SGD-I, uses the same LoRA
parameterization but initializes AiB

⊤
i = 10e−3 · ∆̂i, where ∆̂i is our proposed estimator. This

tests whether our closed-form estimate provides a better initialization than zero initialization. The
performance of prior model (i.e., ∆1 = ∆2 = 0) is reported as PT.

We evaluate our method across all target classes c ∈ {0, . . . , 9} and report test performance on a test
set of size 10, 000 in Tables 2. As shown in Table 2, our closed-form estimator significantly reduces
prediction error on unseen target classes compared to the pre-trained baseline. Notably, it outper-
forms SGD-based LoRA trained for 100 epochs in the majority of classes — despite using standard,
untuned hyperparameters (learning rate, batch size) for SGD. This suggests that our method is not
only computationally efficient but also robust to hyperparameter sensitivity, a common pitfall of it-
erative optimization. Moreover, our method updates in seconds, significantly faster than SGD which
takes minutes.

Furthermore, initializing SGD-based LoRA with our estimator (SGD-I) consistently improves final
performance over the conventional zero initialization (SGD). This confirms that our analytical solu-
tion provides a high-quality, data-adaptive starting point that accelerates convergence and enhances
final accuracy. This highlights its value both as a standalone adaptation tool and as a warm-start
mechanism for iterative fine-tuning.

k=1 k=2 k=3

target PT Proposed SGD-I SGD Proposed SGD-I SGD Proposed SGD-I SGD

c=0 0.1125 0.0714 0.0696 0.0722 0.0680 0.0669 0.0701 0.0672 0.0660 0.0707
c=1 0.0595 0.0321 0.0340 0.0368 0.0275 0.0305 0.0368 0.0262 0.0274 0.0357
c=2 0.0993 0.0772 0.0773 0.0780 0.0758 0.0763 0.0784 0.0756 0.0759 0.0774
c=3 0.0831 0.0582 0.0587 0.0596 0.0593 0.0585 0.0596 0.0586 0.0585 0.0596
c=4 0.0713 0.0512 0.0526 0.0529 0.0497 0.0524 0.0528 0.0501 0.0522 0.0529
c=5 0.0773 0.0667 0.0662 0.0688 0.0650 0.0653 0.0686 0.0646 0.0651 0.0678
c=6 0.0875 0.0540 0.0549 0.0559 0.0506 0.0531 0.0560 0.0500 0.0527 0.0560
c=7 0.0669 0.0428 0.0435 0.0451 0.0428 0.0426 0.0448 0.0417 0.0425 0.0450
c=8 0.0788 0.0624 0.0632 0.0634 0.0626 0.0626 0.0634 0.0635 0.0625 0.0635
c=9 0.0562 0.0485 0.0485 0.0497 0.0480 0.0482 0.0496 0.0476 0.0481 0.0497

Table 2: Comparison of MSE across update strategies.

6 DISCUSSIONS

We proposed a closed-form, non-iterative approach for solving LoRA in two-layer networks, estab-
lishing its statistical consistency under a projection adaptation assumption — that optimal adaptation
acts as a subspace projection removing irrelevant feature directions. Our method achieves accuracy
comparable to SGD while adapting in seconds, and serves as a good initialization for iterative train-
ing algorithms. The approach can extend to deeper feedforward networks provided second-order
score functions for hidden neuron activations are available, enabling layer-wise analytical adapta-
tion without backpropagation. Its speed make it particularly suited for real-time transfer settings
such as on-device personalization or edge federated learning. While the projection assumption is
theoretically tractable and empirically plausible in semantically aligned tasks, its broader validity
warrants further investigation.
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We have performed the following actions to ensure reproducibility of our work. All experiments
use fixed random seeds to ensure deterministic outcomes. The code to reproduce our results
are provided as supplementary material. The MNIST dataset used in our experiment is publicly
available at https://archive.ics.uci.edu/dataset/683/mnist+database+of+
handwritten+digits. Proofs of theoretical results are included in full in the appendix.
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A APPENDIX

USE OF LARGE LANGUAGE MODELS

We have used large language models (LLMs) as a writing assistance tool during the preparation
of this paper. The LLMs were employed to improve grammar, correct typographical errors, and
enhance sentence clarity and structure. However, they were not involved in generating research
ideas, experimental design or data analysis.

A.1 PROOF OF THEOREMS

Notations: For a matrix A ∈ Rm×n, we use σi(A) to denote its ith largest singular value (i.e,
σ1(A) ≥ σ2(A) ≥ . . . ), and λi(A) to denote its ith largest eigenvalue. We use (A)i,· to denote
the i-th row of A, and (A)·,i to denote the i-th column of A. We define the unit sphere as Sn−1 :=
{x ∈ Rn : ∥x∥2 = 1} ⊂ Rn. We use Col(A) to denote the column space of a matrix A, and
Row(A) to denote its row space. Suppose A ∈ Rn×m is a rank rA matrix with Singular Value
Decomposition (SVD) of the form A = USV T , where U =

[
Uk, U

⊥
k

]
∈ Rn×rA , Uk ∈ Rn×k,

S ∈ RrA×rA is diagonal, V =
[
Vk, V

⊥
k

]
∈ Rm×rA , and Vk ∈ Rm×k. We write SVDr (A) = V

and SVDl (A) = U . Moreover, we use Pr
k(A) = VkV

T
k to denote the orthogonal projection matrix

onto the subspace spanned by its top-k right singular vectors, P l
k(A) = UkU

T
k for the top-k left
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singular vectors, and Rk (A) = [Uk, 0]S[Vk, 0]
T to denote its rank-k approximation. We use ∥A∥F

to denote its Frobenius norm, ∥A∥op to denote its operator norm, and rank(A) to denote its rank.
For a vector v ∈ Rn, we use ∥v∥2 to denote its ℓ2-norm. We say that An ≲ Bn (also written as
A = O(Bn)) if there exists C > 0 such that A ≤ CBn.

A.1.1 LEMMA A.1.1

Let X ∈ Rn×p, Y ∈ Rn×k , B ∈ Rp×k are three matrices, and λ > 0 be a constant. Consider the
optimization problem:

min
{B:rank(B)≤k}

∥Y −XB∥2F + λ∥B∥2F .

The solution is B̂∗
R Pr

k

(
Y TXB̂∗

R

)
, where B̂∗

R =
(
XTX + λI

)−1
XTY .

Proof: This is the result in Mukherjee & Zhu (2011).

A.1.2 PROPOSITION 3.2

For simplicity, we write V = V̂ . X = I − V V T is a projection matrix which satisfies XX =
X,XT = X . Let U be a matrix whose columns form an orthonormal basis for the orthogonal
complement of Col(V ), and it satisfies UTV = V TU = 0. By the uniqueness of orthogonal
projection matrix, X = UUT and I = V V T + UUT .

X + λI = UUT + λV V T + λUUT

= (1 + λ)UUT + λV V T

The inverse is (X + λI)−1 = 1
λV V

T + 1
1+λUU

T . Apply Lemma A.1.1 with X = (I − V V T ) ,
Y = −(I − V V T )WT

1 , and B = ∆T
1 . The solution to the optimization problem (3.2) is

∆̂T
1 =

(
XTX + λI

)−1
XTY Pr

k1

(
Y TX

(
XTX + λI

)−1
XTY

)
Simplifying the terms give

∆̂1 =
1

1 + λ1
Rk1

(
−W1(I − V V T )

)
.

A.1.3 PROPOSITION 3.3

Apply Lemma A.1.1 with target matrix Y − ÂWT
2 , we obtain the optimizer.

A.1.4 LEMMA A.1.4

Let X1, . . . , Xn be independent, mean zero, p× p symmetric random matrices, such that ∥Xi∥op ≤
K almost surely for all i. Then, for every t ≥ 0, we have

P

(
∥

n∑
i=1

Xi∥op ≥ t

)
≤ 2p exp

(
− t2/2

σ2 +Kt/3

)
,

where σ2 = ∥
∑n

i=1 EX2
i ∥op is the operator norm of the matrix variance of the sum.

Proof: This is Theorem 5.4.1 in Vershynin (2018)

A.1.5 LEMMA A.1.5

Suppose model (1), Assumption 4.1 - 4.2 hold. DefineE = 1
n

∑n
i=1 YijS(Zi)−E[YijS(Zi)]. Then,

there exists a constant C > 0 such that ∥E∥op ≤ C. And, for any t ≥ 0,

P (∥E∥op ≥ t) ≤ 2l1 exp

(
−nt2/2

C2 + Ct/3

)
. (16)
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Proof: Define Ei = 1
nYijS(Zi) − 1

nE[YijS(Zi)], then E1, . . . , Enare independent, mean zero,
l1 × l1 symmetric random matrices. By assumption 4.2, ∥S(Zi)∥op ≤ c3 and

|Yij | = |(W2 +∆2)j,·a((W1 +∆1)Zi) + ϵij |
≤ K∥(W2 +∆2)j,·∥2∥W1 +∆1∥op∥Zi∥2 + |ϵij |
≤ K∥(W2 +∆2)j,·∥2∥W1 +∆1∥opc1 + c2.

Thus, there exists a constant c4 such that |Yij | ≤ c4 almost surely. Consequently,

∥Ei∥op ≤ 1

n
∥YijS(Zi)∥op +

1

n
∥E[YijS(Zi)]∥op

≤ 2c3c4
n

.

Let C = 2c3c4, and E =
∑n

i=1Ei, we have σ2 = ∥
∑n

i=1 EE2
i ∥op ≤

∑n
i=1 ∥EE2

i ∥op ≤ n
4c23c

2
4

n2 =
C2

n . By Lemma A.1.4,

P (∥E∥op ≥ t) ≤ 2l1 exp

(
−nt2/2

C2 + Ct/3

)
.

A.1.6 LEMMA A.1.6

Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p respectively.
Fix 1 ≤ r ≤ s ≤ p and assume that min(λr−1 − λr, λs − λs+1) > 0, where λ0 := ∞ and λp+1 :=

−∞. Let d := s−r+1, and let V = (vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d

have orthonormal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Then

∥ sinΘ(V̂ , V )∥F ≤ 2min(d1/2∥Σ̂− Σ∥op, ∥Σ̂− Σ∥F)
min(λr−1 − λr, λs − λs+1)

. (17)

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

∥V̂ Ô − V ∥F ≤ 23/2 min(d1/2∥Σ̂− Σ∥op, ∥Σ̂− Σ∥F)
min(λr−1 − λr, λs − λs+1)

. (18)

Proof: This is Theorem 2 in Yu et al. (2015)

A.1.7 LEMMA: A.1.7

Let A, Â ∈ Rp×q have singular values σ1 ≥ . . . ≥ σmin(p,q) and σ̂1 ≥ . . . ≥ σ̂min(p,q) respectively.
Fix 1 ≤ r ≤ s ≤ rank(A) and assume that min(σ2

r−1 − σ2
r , σ

2
s − σ2

s+1) > 0, where σ2
0 := ∞

and σ2
q+1 := −∞. Let d := s − r + 1, and let V = (vr, vr+1, . . . , vs) ∈ Rq×d and V̂ =

(v̂r, v̂r+1, . . . , v̂s) ∈ Rq×d have orthonormal columns satisfying Avj = σjuj and Âv̂j = σ̂j ûj for
j = r, r + 1, . . . , s. Then, there exists an orthogonal matrix Ô ∈ Rd×d such that

∥V̂ Ô − V ∥F ≤ 23/2(2σ1 + ∥Â−A∥op)d1/2∥Â−A∥op
min(σ2

r−1 − σ2
r , σ

2
s − σ2

s+1)
.

Proof: ATA ∈ Rq×q is a symmetric matrix with eigenvalues σ2
1 ≥ · · · ≥ σ2

q , and ÂT Â ∈ Rq×q is a
symmetric matrix with eigenvalues σ̂2

1 ≥ · · · ≥ σ̂2
q . Moreover, ATAvj = σ2

j vj and ÂT Âvj = σ̂2
j v̂j

for j = r, r + 1, . . . , s. By Lemma A.1.6, there exists an orthogonal matrix Ô ∈ Rd×d such that

∥V̂ Ô − V ∥F ≤ 23/2d1/2∥ÂT Â−ATA∥op
min(σ2

r−1 − σ2
r , σ

2
s − σ2

s+1)
.

And finally,

∥ÂT Â−ATAvj∥op = ∥(Â−A)T Â−AT (A− Â)∥op

≤
(
∥Â∥op + ∥A∥op

)
∥Â−A∥op

≤
(
2σ1 + ∥Â−A∥op

)
∥Â−A∥op

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1.8 LEMMA A.1.8

Let A, Â ∈ Rp×q be two matrices, V be a matrix whose columns are the top k right singular values
of A, and V̂ be that of Â. Consider the orthogonal projection matrices P = V V T and P̂ = V̂ V̂ T .
For any orthogonal matrix R,

∥P̂ − P∥F ≤ 4∥V̂ R− V ∥F
Proof: First, ∥V̂ R− V ∥op ≤ ∥V ∥op + ∥V̂ R∥op = 2. For any orthogonal matrix R,

∥P̂ − P∥F = ∥V̂ V̂ T − V V T ∥F
= ∥(V̂ R− V )(V̂ R− V )T + (V̂ R− V )V T + V (V̂ R− V )T ∥F
≤ ∥(V̂ R− V )(V̂ R− V )T ∥F + ∥(V̂ R− V )V T ∥F + ∥V (V̂ R− V )T ∥F

≤ ∥V̂ R− V ∥F
(
∥V̂ R− V ∥op + 2∥V ∥op

)
≤ 4∥V̂ R− V ∥F

A.1.9 LEMMA A.1.9

Let A, Â ∈ Rp×q be two matrices, V be a matrix whose columns are the top k right singular values
of A, and V̂ be that of Â. Consider the orthogonal projection matrices P = V V T and P̂ = V̂ V̂ T .
If there exists a constant C such that ∥A− Â∥op < C, then,

∥P̂ − P∥F ≲
√
k∥A− Â∥op

Proof: By Lemma A.1.8, for any orthogonal matrix R,

∥P̂ − P∥F ≤ 4∥V̂ R− V ∥F

Let σ1 = σ1(A), σk = σk(A) and σk+1 = σk+1(A). By Lemma A.1.7, there exists an orthogonal
matrix R such that

∥V̂ R− V ∥F ≤ 22/3(2σ1 + ∥A− Â∥op)
√
k∥A− Â∥op

σ2
k − σ2

k+1

≤ 22/3(2σ1 + C)
√
k∥A− Â∥op

σ2
k − σ2

k+1

≲
√
k∥A− Â∥op

A.1.10 LEMMA A.1.10

Let X ∈ Rn×p, E ∈ Rn×k, B∗ ∈ Rp×k and xTi and eTi be the rows of X and E respectively.
Assume there exists constants c1, c2 such that ∥xi∥2 ≤ c1, ∥ei∥2 ≤ c2, ∀i ∈ [n]. For a positive
constant λ > 0, define Σ̂n := 1

nX
TX and B̂λ := 1

n (Σ̂n + λI)−1XT (XB∗ + E). Then,

1. ∥Σ̂n∥op ≤ c21

2. 1
n∥X

TE∥F ≤ c1c2

3. If xi and ei are mutually independent, and Eei = 0, then E∥XTE
n ∥2F ≤ c21c

2
2

n and
E∥XTE

n ∥F ≤ c1c2√
n

.

4. ∥B̂λ∥F ≤ 1
λc1(∥B

∗∥opc1 + c2) ≲ 1
λ (∥B

∗∥op + 1).

Proof:

1. ∥Σ̂∥op = 1
n∥
∑n

i=1 xix
T
i ∥op ≤ 1

n

∑n
i=1 ∥xixTi ∥op ≤ 1

nnc
2
1 = c21

2. 1
n∥X

TE∥F = 1
n∥
∑n

i=1 xie
T
i ∥F ≤ 1

n

∑n
i=1 ∥xieTi ∥F = 1

n

∑n
i=1 ∥xi∥2∥ei∥2 ≤ c1c2

14
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3. E∥XTE
n ∥F = E

√
∥XTE

n ∥2F ≤
√
E∥XTE

n ∥2F . And, E∥XTE
n ∥2F =

1
n2ETr(

∑n
i=1 eix

T
i xie

T
i +

∑
i̸=j eix

T
i xje

T
j ) ≤ 1

n2

∑n
i=1 E∥xi∥22E∥ei∥22 + 0 ≤ c21c

2
2

n .

4. Apply 2 to ∥ 1
nX

T (XB∗ + E)∥F , we have

∥B̂λ∥F ≤ ∥(Σ̂n + λI)−1∥op∥
1

n
XT (XB∗ + E)∥F

≤ 1

λ
c1(∥B∗∥opc1 + c2).

A.1.11 LEMMA: A.1.11

Let X,D ∈ Rn×p and Y, F ∈ Rn×q be four matrices whose rows are xi, di, yi, fi, respec-
tively. Let λ > 0 be a positive constant. Suppose there exists a constant c > 0 such that
∥xi∥2, ∥di∥2, ∥yi∥2, ∥fi∥2 ≤ c, for all i ∈ [n]. Then, for the function

B(t) =

{
(X + tD)T (X + tD)

n
+ λI

}−1
1

n
(X + tD)T (Y + tf). (19)

We have

B′(0) =

(
XTX

n
+ λI

)−1(
XT f

n
− XTDB(0)

n
+
DT (Y −X B(0))

n

)
And, for any fixed constant k > 0, there exists a constant Ck such that ∥B′′(t)∥op ≤
Ck

(
1
λ + 1

λ2 + 1
λ3

)
for all t ∈ [0, k].

Proof: Let A(t) =
(

(X+tD)T (X+tD)
n + λI

)
and b(t) = (X+tD)T (Y+tf)

n . Then, B(t) =

A−1(t)b(t). Apply chain rule with d
dt

(
A(t)−1

)
= −A(t)−1A′(t)A(t)−1, we have B′(t) =

(−A−1(t)A′(t)A−1(t))b(t) + A−1(t)b′(t). Since A−1(t)b(t) = B(t), it simplifies to B′(t) =
A−1(t)[b′(t)−A′(t)B(t)].

Similarly taking derivatives, we have b′(t) = DT (Y+tf)+(X+tD)T f
n and A′(t) =

DT (X+tD)+(X+tD)TD
n . Define g(t) = b′(t) − A′(t)B(t). Apply chain rule again, B′′(t) =

−A−1(t)A′(t)A−1g(t) +A−1(t)g′(t).

Since A−1(t)g(t) = B′(t), we have B′′(t) = A−1(t)[g′(t) − A′(t)B′(t)]. And, g′(t) = b′′(t) −
A′′(t)B(t)−A′(t)B′(t), where b′′(t) = 2DT f

n and A′′(t) = 2DTD
n .

Since ∥xi∥2, ∥di∥2, ∥yi∥2, ∥fi∥2 ≤ c, by Lemma A.1.10, there exists a constant c1 such that
∥b′(t)∥op ≤ c1, ∥A′(t)∥op ≤ c1 , ∥A′′(t)∥op ≤ c1 and ∥b′′(t)∥op ≤ c1, for all t ∈ [0, k]. Combined
with the fact that ∥B(t)∥op ≲ 1

λ , we have ∥B′′(t)∥op ≲ 1
λ + 1

λ2 + 1
λ3 for t ∈ [0, k].

A.1.12 LEMMA A.1.12

Let X,E ∈ Rn×p and Y, F ∈ Rn×q be four matrices, and λ > 0 be a positive constant. Define

B1 =
(

XTX
n + λI

)−1
XTY

n and B2 =
(

(X+E)T (X+E)
n + λI

)−1
(X+E)T (Y+F )

n , Σ̂n = XTX
n .

Fix a positive constant k > 0 , for any ϵ ∈ (0, k), define D = E/ϵ, f = F/ϵ, we have

∥B1 −B2∥ ≤ ϵ

σmin(Σ̂n) + λ

(
∥X

T f

n
∥+ ∥B1∥op∥

XTD

n
∥+ ∥D

T (Y −XB1)

n
∥
)

+

(
1

λ
+

1

λ2
+

1

λ3

)
O(ϵ2).

where ∥ · ∥ is either ∥ · ∥op or ∥ · ∥F .
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Proof:
Consider the function B(t) : R → Rp×q :

B(t) =

{
(X + tD)T (X + tD)

n
+ λI

}−1
1

n
(X + tD)T (Y + tf). (20)

Since (X+tD)T (X+tD)
n + λI is invertible for any t, B(t) is infinitely differentiable, and by Taylor’s

theorem,
B(ϵ) = B(0) + ϵB′(0) +O(ϵ2)

By Lemma A.1.11,

∥B(ϵ)−B(0)∥ ≤ ϵ∥B′(0)∥+O

((
1

λ
+

1

λ2
+

1

λ3

)
ϵ2
)

And,

∥B′(0)∥ ≤ ∥
(
XTX

n
+ λI

)−1
XT f

n
∥+ ∥

(
XTX

n
+ λI

)−1
XTDB(0)

n
∥

+ ∥
(
XTX

n
+ λI

)−1
DT (Y −X B(0))

n
∥

≤ 1

σmin(Σ̂n) + λ

(
∥X

T f

n
∥+ ∥B(0)∥op∥

XTD

n
∥+ ∥D

T (Y −X B(0))

n
∥
)

Combining the above, for any ϵ ∈ (0, k),
∥B1 −B2∥ = ∥B(ϵ)−B(0)∥

≤ ϵ

σmin(Σ̂n) + λ

(
∥X

T f

n
∥+ ∥B1∥op∥

XTD

n
∥+ ∥D

T (Y −XB1)

n
∥
)

+O

((
1

λ
+

1

λ2
+

1

λ3

)
ϵ2
)
.

A.1.13 LEMMA A.1.13

Let Y ∈ Rn×q be a response matrix whose rows are transpose of yi, A ∈ Rn×l2 be a matrix
whose rows are transpose of vi = a((W1 + ∆1)ϕ(xi)), Â ∈ Rn×l2 be a matrix whose rows are
transpose of v̂i = a((W1 + ∆̂1)ϕ(xi)), and E ∈ Rn,q be a matrix whose rows are transpose of ϵi.
Denote the perturbed sample covariance, true sample covariance and the population covariance as
Σ̂n = 1

n Â
T Â, Σn = 1

nA
TA, and Σ = E[vivTi ], respectively. We denote the ridge estimator using

certain design matrix Ã, the true and estimated projection matrices as

B̂(Ã) := (ÃT Ã/n+ λ2I)
−1 1

n
ÃT (Y − ÃWT

2 )

Pk2
:= Pr

k2

(
∆2Σ(Σ + λ2I)

−1Σ∆T
2

)
P̂k2 := Pr

k2

(
(Y − ÂWT

2 )T ÂB̂(Â)
)

Define the terms
∆v := v − v̂ ∆A := A− Â

∆B := B̂(A)− B̂(Â) ∆P := Pk2 − P̂k2

Then, the terms satisfy

E∥∆B∥op ≲ Cλ2
E∥∆1 − ∆̂1∥op,

E∥∆B∥2op ≲ C2
λ2
E∥∆1 − ∆̂1∥2op,

E∥∆P ∥op ≲
√
k2Kλ2

1√
n
+
√
k2Kλ2E∥∆1 − ∆̂1∥op,

E∥∆P ∥2op ≲ k2K
2
λ2

1

n
+ k2K

2
λ2
E∥∆1 − ∆̂1∥2op + k2K

2
λ2

√
1

n
E∥∆1 − ∆̂1∥2op,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where Cλ2
=
(

1
λ2

+ 1
λ2
2
+ 1

λ3
2

)
,Kλ2 = ∥∆2∥op (1 + ∥∆2∥op)

(
1 + 1

λ2

)
.

Proof: First note that ∥∆̂1∥op ≤ ∥W1∥op is bounded. By assumption 4.2, ∥zi∥2 ≤ c1, ∥ϵi∥2 ≤ c2.
By assumption 4.3, the activation function a is K- Lipschitz continuous. Let c4 be a constant such
that ∥v∥2 ≤ K∥W1 +∆1∥op∥z∥2 ≤ c4∥W1∥op and ∥v̂∥2 ≤ K∥W1 + ∆̂1∥op∥z∥2 ≤ c4∥W1∥op.

By Lemma A.1.10, ∥B̂(A)∥op ≲ 1
λ2

. Define ϵ = ∥∆1 − ∆̂1∥op ≤ 2∥∆1∥op = k, D = −∆A/ϵ,
and f = ∆AW

T
2 /ϵ. The 2-norm of D’s rows are bounded by ∥v − v̂∥2/ϵ ≤ Kc1 and that of

f are bounded by K∥W2∥opc1. Apply Lemma A.1.12 with D = −∆A/ϵ, f = ∆AW
T
2 /ϵ, and

ϵ = ∥∆1 − ∆̂1∥op, we have

∥∆B∥op ≤ ∥∆1 − ∆̂1∥op
λ2

(
∥A

T f

n
∥op + 2∥B̂(A)∥op∥

ATD

n
∥op + ∥

DT
(
Y −AWT

2

)
n

∥op

)

+O

((
1

λ
+

1

λ2
+

1

λ3

)
∥∆1 − ∆̂1∥2op

)
,

for all ϵ ∈ (0, k). Since norm of each rows ofD and f are bounded by a constant independent of ϵ, by

Lemma A.1.10, there exists a constant c6 such that ∥AT f
n ∥, ∥ATD

n ∥, ∥DT (Y−AWT
2 )

n ∥, ∥DTA
n ∥ ≤ c6.

Combine with the fact that ∥∆1 − ∆̂1∥op ≤ ∥∆1∥op + ∥W1∥op, we have

∥∆B∥op ≲ ∥∆1 − ∆̂1∥op
(

1

λ2
+

1

λ22
+

1

λ32

)
∥∆B∥2op ≲ ∥∆1 − ∆̂1∥2op

(
1

λ2
+

1

λ22
+

1

λ32

)2

E∥∆B∥op ≲ E∥∆1 − ∆̂1∥op
(

1

λ2
+

1

λ22
+

1

λ32

)
E∥∆B∥2op ≲ E∥∆1 − ∆̂1∥2op

(
1

λ2
+

1

λ22
+

1

λ32

)2

For the term E∥∆P ∥op, let S = ∆2Σ(Σ + λ2I)
−1Σ∆T

2 and Ŝ = 1
n (Y − ÂWT

2 )T ÂB̂(Â). And,
let V be matrix whose columns are the top k2 singular vectors of S, and V̂ be that of Ŝ. We have
Pk2 = V V T and P̂k2

= V̂ V̂ T . By Lemma A.1.8, for any orthogonal matrix R,

∥∆P ∥op = ∥Pk − P̂k∥op
≤ 4∥V̂ R− V ∥op

By Lemma A.1.6, there exists an orthogonal matrix R s.t.,

∥V̂ R− V ∥op ≤ 2
3
2

√
k2∥S − Ŝ∥op

λk2
(S)− λk2+1(S)

Let Ẽ = E +∆A(W2 +∆2)
T , then Y − ÂWT

2 = Â∆T
2 + Ẽ, and

Ŝ =
1

n
(Â∆T

2 + Ẽ)T Â(Σ̂n + λ2I)
−1 1

n
ÂT (Â∆T

2 + Ẽ)

=

(
∆2Σ̂n +

ẼT Â

n

)
(Σ̂n + λ2I)

−1

(
Σ̂n∆

T
2 +

ÂT Ẽ

n

)
We decompose the difference ∥S − Ŝ∥op as follow

∥S − Ŝ∥op ≤ ∥∆2

(
Σ̂n(Σ̂n + λ2I)

−1Σ̂n − Σ(Σ + λ2I)
−1Σ

)
∆T

2 ∥op

+ 2∥ Ẽ
T Â

n
(Σ̂n + λ2I)

−1Σ̂n∆
T
2 ∥op

+ ∥ Ẽ
T Â

n
(Σ̂n + λ2I)

−1 Â
T Ẽ

n
∥op
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By Lemma A.1.10 , there exists a constant c7 such that ∥ ÂT Ẽ
n ∥op ≤ c7, ∥ (W2+∆2)∆

T
AÂ

n ∥op ≤
c7∥∆̂1 −∆1∥op, ∥ET ∆A

n ∥op ≤ c7∥∆̂1 −∆1∥op.

By inequalities ∥Σ̂n∥op ≤ c24, ∥(Σ̂n + λ2I)
−1Σ̂n∥op ≤ c24

c24+λ2
≤ 1, and ∥(Σ̂n + λ2I)

−1∥op ≤ 1
λ2

,
we have

∥ Ẽ
T Â

n
(Σ̂n + λ2I)

−1Σ̂n∆
T
2 ∥op ≤ ∥∆2∥op∥

ẼT Â

n
∥op

∥ Ẽ
T Â

n
(Σ̂n + λ2I)

−1 Â
T Ẽ

n
∥op ≤ c7

λ2
∥ Ẽ

T Â

n
∥op

And,

∥ Ẽ
T Â

n
∥op = ∥E

T Â

n
∥op + ∥ (W2 +∆2)∆

T
AÂ

n
∥op

≤ ∥E
TA

n
∥op + ∥E

T ∆A

n
∥op + ∥ (W2 +∆2)∆

T
AÂ

n
∥op

≤ ∥E
TA

n
∥op + 2c7∥∆̂1 −∆1∥op

Since ϵi and vi are independent, by (3) of Lemma A.1.10, E∥ETA
n ∥op ≲ 1√

n
,E∥ETA

n ∥2op ≲ 1
n .

Hence,

∥S − Ŝ∥op

≲ ∥∆2

(
Σ̂n(Σ̂n + λ2I)

−1Σ̂n − Σ(Σ + λ2I)
−1Σ

)
∆T

2 ∥op

+ ∥∆2∥op
(
1 +

1

λ2

)
∥ Ẽ

T Â

n
∥op

To bound the first term, let Kn = Σ̂n(Σ̂n + λ2I)
−1 and K = Σ(Σ + λ2I)

−1, then

∥Kn −K∥op = ∥Σ̂n(Σ̂n + λ2I)
−1 − Σ(Σ + λ2I)

−1∥op
≤ ∥Σ̂n(Σ̂n + λ2I)

−1 − Σ̂n(Σ + λ2I)
−1∥op

+ ∥Σ̂n(Σ + λ2I)
−1 − Σ(Σ + λ2I)

−1∥op

∥Σ̂n(Σ̂n + λ2I)
−1 − Σ̂n(Σ + λ2I)

−1∥op = ∥Σ̂n

(
(Σ̂n + λ2I)

−1(Σ− Σ̂n)(Σ + λ2I)
−1
)
∥op

≤ 1

λ2
∥Σ− Σ̂n∥op

∥Σ̂n(Σ + λ2I)
−1 − Σ(Σ + λ2I)

−1∥op = ∥(Σ̂n − Σ)(Σ + λ2I)
−1∥op

≤ 1

λ2
∥Σ− Σ̂n∥op

Hence, ∥Kn −K∥op ≲ 1
λ2
∥Σ− Σ̂n∥op. Using ∥Kn∥op ≤ 1, ∥K∥op ≤ 1, ∥Σ̂n∥op ≤ c24, we bound

the first term by

∥∆2

(
Σ̂n(Σ̂n + λ2I)

−1Σ̂n − Σ(Σ + λ2I)
−1Σ

)
∆T

2 ∥op

≤ ∥∆2∥2op∥Σ̂n(Σ̂n + λ2I)
−1Σ̂n − Σ(Σ + λ2I)

−1Σ∥op
≤ ∥∆2∥2op∥KnΣ̂n −KΣ∥op
= ∥∆2∥2op∥(Kn −K)Σ̂n +K(Σ̂n − Σ)∥op

≲ ∥∆2∥2op
1

λ2
∥Σ̂n − Σ∥op + ∥∆2∥2op∥Σ̂n − Σ∥op

≲ ∥∆2∥2op
(
1 +

1

λ2

)
∥Σ̂n − Σ∥op
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To bound the difference in covariance, we decompose as follow

∥Σ̂n − Σ∥op ≤ ∥Σn − Σ∥op + 2∥∆
T
AA

n
∥op + ∥∆

T
A∆A

n
∥op

≲ ∥Σn − Σ∥op + ∥∆1 − ∆̂1∥op + ∥∆1 − ∆̂1∥2op
≲ ∥Σn − Σ∥op + ∥∆1 − ∆̂1∥op

Since ∥vi∥22 are bounded, by Theorem 4.7.1 in Vershynin (2018), E∥Σn − Σ∥op = O
(

1√
n

)
, thus

E∥Σ̂n − Σ∥op ≲
1√
n
+ E∥∆1 − ∆̂1∥op

Let Kλ2
=
(
1 + 1

λ2

)
and apply Cauchy-Schwarz E[ab] ≤

√
E[a2]E[b2] for E∥S − Ŝ∥2op,

E∥S − Ŝ∥op ≲ Kλ2

1√
n
+Kλ2

E∥∆1 − ∆̂1∥op

E∥S − Ŝ∥2op ≲ K2
λ2

1

n
+K2

λ2
E∥∆1 − ∆̂1∥2op +K2

λ2

√
1

n
E∥∆1 − ∆̂1∥2op

Thus,

E∥∆P ∥op ≲
√
k2E∥S − Ŝ∥op

≲
√
k2Kλ2

1√
n
+
√
k2Kλ2

E∥∆1 − ∆̂1∥op

E∥∆P ∥2op ≲ k2K
2
λ2

1

n
+ k2K

2
λ2
E∥∆1 − ∆̂1∥2op + k2K

2
λ2

√
1

n
E∥∆1 − ∆̂1∥2op

A.1.14 THEOREM 4.1

We reuse the definitions of key quantities in A.1.13, and additionally define ỹ := ∆2v + ϵ and
Ỹ := A∆T

2 + E. The prediction given x is ŷ := (W2 + ∆̂2)v̂. We decompose the prediction error
as follow,

∥y − (W2 + ∆̂2)v̂∥22 ≲ ∥y − (W2 + ∆̂2)v∥22 + ∥(W2 + ∆̂2)∆v∥22
= ∥ỹ − ∆̂2v∥22 + ∥W2 + ∆̂2∥2op∥∆v∥22

∥ỹ − ∆̂2v∥22 = ∥ỹ − P̂k2
B̂(Â)T v∥22

≲ ∥ỹ − P̂k2
B̂(A)T v∥22 + ∥P̂k2

∆T
Bv∥22

≲ ∥ỹ − P̂k2B̂(A)T v∥22 + ∥∆B∥2op∥v∥22

∥ỹ − P̂k2
B̂(A)T v∥22 ≲ ∥ỹ − Pk2

B̂(A)T v∥22 + ∥∆P B̂(A)T v∥22
≤ ∥ỹ − Pk2B̂(A)T v∥22 + ∥∆P ∥2op∥B̂(A)∥2op∥v∥22

∥ỹ − Pk2
B̂(A)T v∥22 = ∥Pk2

ỹ + (I − Pk2
)ỹ − Pk2

B̂(A)T v∥22
= ∥Pk2 ỹ − Pk2B̂(A)T v∥22 + ∥(I − Pk)ỹ∥22

By assumption 4.2 and 4.3, ∥zi∥2 ≤ c1, ∥ϵi∥2 ≤ c2. We let c4 be a constant such that ∥v∥2 ≤
K∥W1+∆1∥op∥z∥2 ≤ c4 and ∥v̂∥2 ≤ K∥W1+∆̂1∥op∥z∥2 ≤ c4. By Lemma A.1.10, ∥B̂(A)∥op ≲
1
λ2

. Therefore,

E∥y − (W2 + ∆̂2)v̂∥22 ≲

(
1 +

1

λ2

)2

E∥∆v∥22 + E∥∆B∥2op +
(

1

λ2

)2

E∥∆P ∥2op

+ E∥Pk2
ỹ − Pk2

B̂(A)T v∥22 + E∥(I − Pk2
)ỹ∥22
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By the Lipschitz-continuity of activation function a,

E∥∆v∥22 ≤ K2E∥(∆1 − ∆̂1)z∥22
≲ E∥∆1 − ∆̂1∥2op

By Lemma A.1.13,

E∥∆B∥2op ≲ C2
λ2
E∥∆1 − ∆̂1∥2op

E∥∆P ∥2op ≲ k2K
2
λ2

1

n
+ k2K

2
λ2
E∥∆1 − ∆̂1∥2op + k2K

2
λ2

√
1

n
E∥∆1 − ∆̂1∥2op

where Cλ2
=
(

1
λ2

+ 1
λ2
2
+ 1

λ3
2

)
,Kλ2

=
(
1 + 1

λ2

)
.

For the bias term,

E∥(I − Pk2)ỹ∥22 = E∥(I − Pk2)∆2v + (I − Pk2)ϵ∥22
= E∥(I − Pk2

)∆2v∥22 + E∥(I − Pk2
)ϵ∥22

E∥(I − Pk2)∆2v∥22 = ETr((I − Pk2)∆2vv
T∆T

2 (I − Pk2))

= Tr((I − Pk2)∆2Σ∆
T
2 (I − Pk2))

= ∥(I − Pk2
)∆2Σ

1
2 ∥2F

Finally, consider the term

E∥Pk2 ỹ − Pk2B̂(A)T v∥22 = E∥Pk2 ỹ − Pk2 Ỹ
T 1

n
A(Σn + λ2I)

−1∥22

This is the random design prediction error of ridge regression estimator with response Pk2
ỹ, design

matrix A, and noise term Pk2
ϵ. By Theorem 1 in Mourtada & Rosasco (2022),

E∥Pk2
ỹ − Pk2

B̂(Z)T z∥22 ≤ λ2

(
1 +

c21
λ2n

)2

∥(Σ + λ2)
− 1

2Σ
1
2Pk2

∆2∥2F

+

(
1 +

c21
λ2n

)
Tr((Σ + λ2)

−1Σ)

n
E∥Pk2

ϵ∥22

+ E∥Pk2ϵ∥22

where E∥Pk2ϵ∥22 = Tr(E[ϵϵT ]Pk2). And, E∥(I − Pk2)ϵ∥22 + E∥Pk2ϵ∥22 = E∥ϵ∥22 .Combining the
above,

L(∆̂1, ∆̂2) = E∥y − (W2 + ∆̂2)ẑ∥22

≲

((
1 +

1

λ2

)2

+ C2
λ2

+ k2

(
Kλ2

λ2

)2
)
E∥∆1 − ∆̂1∥2op

+ k2

(
Kλ2

λ2

)2
1

n

+ k2

(
Kλ2

λ2

)2
(√

1

n
E∥∆1 − ∆̂1∥2op

)

+ λ2

(
1 +

1

λ2n

)2

∥(Σ + λ2)
− 1

2Σ
1
2Pk2∆2∥2F

+

(
1 +

1

λ2n

)
Tr((Σ + λ2)

−1Σ)

n
Tr(E[ϵϵT ]Pk2

)

+ ∥(I − Pk2)∆2Σ
1
2 ∥2F

+ E∥ϵ∥22
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Finally, the excess risk is

E(∆̂1, ∆̂2) = L(∆̂1, ∆̂2)− L(∆1,∆2)

= L(∆̂1, ∆̂2)− E∥ϵ∥22
= L(∆̂1, ∆̂2)− Tr(E[ϵϵT ]).

We define

∆stat = k2

(
Kλ2

λ2

)2
(
1

n
+

√
1

n
E∥∆1 − ∆̂1∥2op

)
+

(
1 +

1

λ2n

)
Tr((Σ + λ2)

−1Σ)

n
Tr(E[ϵϵT ]Pk2),

∆first =

((
1 +

1

λ2

)2

+ C2
λ2

+ k2

(
Kλ2

λ2

)2
)
E∥∆1 − ∆̂1∥2op,

∆bias = λ2

(
1 +

1

λ2n

)2

∥(Σ + λ2)
− 1

2Σ
1
2Pk2∆2∥2F + ∥(I − Pk2)∆2Σ

1
2 ∥2F .

Then, E(∆̂1, ∆̂2) ≲ ∆stat +∆first +∆bias

A.1.15 THEOREM 4.2

Suppose model (1), assumption 4.1, and 4.2 holds. Then,

E∥∆̂1 −∆1∥F ≲ ∥∆̂1 −∆1∥F ≲ ∆stat +∆bias

where

∆stat =
1

1 + λ1

√
k1l1√
n

∆bias =
1

1 + λ1
δ +

λ1
1 + λ1

∥∆1∥F +
1

1 + λ1
∥W1(V V

T − I)(I − Pk1
)∥F

Proof:
Let

B =

[
E[Yi1S(Zi)], . . . ,E[YiqS(Zi)]

]
B̂ =

1

n

[
n∑

i=1

Yi1S(Zi), . . . ,

n∑
i=1

YiqS(Zi)

]
V = SVDl (B)

V̂ = SVDl

(
B̂
)

V∗ = SVDr(W1 +∆1)

By 4.2 and model (1), the conditions in Lemma 3.1 hold. By assumption 4.1 and Lemma 3.1,
Col (B) = Row(W1 +∆1). By the uniqueness of orthogonal projection matrices, V V T = V∗V

T
∗ .

We first consider ∆̂∗
1 = −W1(I−V̂ V̂ T ), the first layer estimator with λ1 = 0 and k1 ≥ min{l1, l2}.

From the equality W1 + ∆1 = W1V V
T + ∆1V V

T , we have ∆1 = W1(V V
T − I) + ∆1V V

T .
Recall that ∥∆1V V

T ∥F = δ, so

∥∆̂∗
1 −∆1∥F = ∥∆̂∗

1 −W1(V V
T − I)−∆1V V

T ∥F
≤ ∥∆̂∗

1 −W1(V V
T − I)∥F + ∥∆1V V

T ∥F
= ∥∆̂∗

1 −W1(V V
T − I)∥F + δ

For the first term,

∥∆̂∗
1 −W1(V V

T − I)∥F ≤ ∥W1∥op∥V̂ V̂ T − V V T ∥F

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Let E = B− B̂, rV = rank(B) = rank(W1+∆1). By Lemma A.1.5, there exists a constant C > 0
such that ∥E∥op ≤ C

√
q almost surely. By Lemma A.1.9,

E∥V̂ V̂ T − V V T ∥F ≲ E∥E∥op

And, for any t ≥ 0, P (∥E∥op ≥ t) ≤ 2l1 exp
(

−nt2/2
C2+Ct/3

)
. When t > 3C, C2 < Ct/3 and

exp( −nt2/2
C2+Ct/3 ) ≤ exp(−nt2/2

2Ct/3 ). Otherwise, exp( −nt2/2
C2+Ct/3 ) ≤ exp(−nt2/2

2C2 ). Using the integrated
tail formula,

E∥E∥op =

∫ ∞

0

P (∥E∥op ≥ t) dt

≤
∫ 3C

0

2l1 exp
(
− n

4C2
t2
)
dt+

∫ ∞

3C

2l1 exp

(
− 3n

4C
t

)
dt

≤
∫ ∞

0

2l1 exp
(
− n

4C2
t2
)
dt+

∫ ∞

0

2l1 exp

(
− 3n

4C
t

)
dt

≲
l1√
n
+
l1
n

And so E∥∆̂∗
1 −∆1∥F ≲ l1√

n
+ δ. Now we consider the general estimator ∆̂1 = 1

1+λ1
Rk1

(
∆̂∗

1

)
.

Let Pk1
= Pr

k1
(−W1(I − V V T )) and P̂k1

= Pr
k1
(∆̂∗

1). Then,

∥∆̂1 −∆1∥F = ∥ 1

1 + λ1
∆̂∗

1P̂k1 −∆1∥F

≤ 1

1 + λ1
∥∆̂∗

1P̂k1
−∆1∥F +

λ1
1 + λ1

∥∆1∥F

≤ 1

1 + λ1
∥∆̂∗

1P̂k1
−W1(V V

T − I)∥F +
1

1 + λ1
∥∆1V V

T ∥F +
λ1

1 + λ1
∥∆1∥F

Further decompose the first term,

∥∆̂∗
1P̂k1 −W1(V V

T − I)∥F ≤ ∥∆̂∗
1P̂k1 −W1(V V

T − I)Pk1∥F + ∥W1(V V
T − I)(I − Pk1)∥F

E∥∆̂∗
1P̂k1

−W1(V V
T − I)Pk1

∥F ≤ E∥(∆̂∗
1 −W1(V V

T − I))Pk1
∥F + E∥∆̂∗

1(P̂k1
− Pk1

)∥F
≲ E∥∆̂∗

1 −W1(V V
T − I)∥F ∥Pk1

∥F + E∥∆̂∗
1(P̂k1

− Pk1
)∥F

≲
l1
√
k1√
n

+ ∥W1∥opE∥P̂k1
− Pk1

∥F

Apply Lemma A.1.9 twice, E∥P̂k1
− Pk1

∥F ≲
√
k1E∥E∥op ≲

√
k1l1√
n

. Combining all,

E∥∆̂1 −∆1∥F ≲ ∆stat +∆bias

where

∆stat =
1

1 + λ1

√
k1√
n

∆bias =
1

1 + λ1
δ +

λ1
1 + λ1

∥∆1∥F +
1

1 + λ1
∥W1(V V

T − I)(I − Pk1
)∥F

Finally, by nature of the projection matrix Pk1
, ∥W1(V V

T − I)(I − Pk1
)∥F =√∑

i>k1
σ2
i (W1(V V T − I)).

A.1.16 THEOREM 4.3

Assume the model (1) and assumption (4.2) hold. And ∆̂2 be in (11), then

E∥∆̂2 −∆2∥F ≲ ∆bias +∆stat +∆first.
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where

∆bias = ∥(I − Pk)∆2∥F + ∥Pk∆2

(
I − Σn(Σn + λ2I)

−1
)
∥F

∆stat =

(
Kλ2

λ2

√
k2 +

1

λ2

√
Tr(E[ϵiϵTi ]Pk)

)
1√
n

∆first =

(
Kλ2

λ2
+ Cλ2

)
E∥∆1 − ∆̂1∥op

Cλ2
=
(

1
λ2

+ 1
λ2
2
+ 1

λ3
2

)
and Kλ2

=
(
1 + 1

λ2

)
.

Proof: We reuse the definitions of key quantities in A.1.13, and decompose the error as follow

∥∆2 − ∆̂2∥F = ∥∆2 − P̂k2
B̂(Ẑ)T ∥F

≤ ∥(I − Pk2
)∆2∥F + ∥Pk2

∆2 − P̂k2
B̂(Ẑ)T ∥F

By Lemma A.1.10, ∥B̂(A)∥F ≲ 1
λ2

. The remaining term can be bounded as

∥Pk2∆2 − P̂k2B̂(Â)T ∥F ≤ ∥Pk2∆2 − P̂k2B̂(A)T ∥F + ∥P̂k2∆B∥F
≤ ∥Pk2

∆2 − Pk2
B̂(A)T ∥F + ∥∆P B̂(A)∥F + ∥P̂k2

∆B∥F
≤ ∥Pk2

∆2 − Pk2
B̂(A)T ∥F + ∥∆P ∥op∥B̂(A)∥F + ∥∆B∥op∥P̂k2

∥F

≲ ∥Pk2
∆2 − Pk2

B̂(A)T ∥F + ∥∆P ∥op
1

λ2
+
√
k2∥∆B∥op

Using Y −AWT
2 = A∆T

2 + E, the first term can be bounded as

∥Pk2∆2 − Pk2B̂(A)T ∥F = ∥Pk2
∆2 − Pk2

(
∆2A

T + ET
) 1
n
A(Σn + λ2I)

−1∥F

≤ ∥Pk2
∆2

(
I − Σn(Σn + λ2I)

−1
)
∥F + ∥Pk2E

TA

n
(Σn + λ2I)

−1)∥F

∥Pk2E
TA

n
(Σn + λ2I)

−1∥F ≤ ∥(Σn + λ2I)
−1∥op∥

Pk2E
TA

n
∥F

≤ 1

σmin(Σn) + λ2
∥Pk2

ETA

n
∥F

≤ 1

λ2
∥Pk2E

TA

n
∥F

By (3) of Lemma A.1.10,

E∥Pk2
ETZ

n
∥F ≤

√
E∥Pk2

ETZ

n
∥2F

≤ c1
√
E∥Pk2

ϵi∥22√
n√

E∥Pk2ϵi∥22 =
√

Tr(E[ϵiϵTi ]Pk2)

By Lemma A.1.13,

E∥∆B∥op ≲ Cλ2E∥∆1 − ∆̂1∥op

E∥∆P ∥op ≲
√
k2Kλ2

1√
n
+
√
k2Kλ2E∥∆1 − ∆̂1∥op
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where Cλ2
=
(

1
λ2

+ 1
λ2
2
+ 1

λ3
2

)
,Kλ2 =

(
1 + 1

λ2

)
. Finally, we let

∆bias = ∥(I − Pk)∆2∥F + E∥Pk∆2

(
I − Σn(Σn + λ2I)

−1
)
∥F

∆stat =

(
Kλ2

λ2

√
k2 +

1

λ2

√
Tr(E[ϵiϵTi ]Pk)

)
1√
n

∆first =

(
Kλ2

λ2
+ Cλ2

)
E∥∆1 − ∆̂1∥op

And,

E∥∆̂2 −∆2∥F ≲ ∆bias +∆stat +∆first.

24


	Introduction
	Problem Setup
	Model Estimation with Stein's Lemma and Subspace Projection
	Theoretical Analysis
	Numerical Experiments
	Simulations
	MNIST Image Inpainting

	Discussions
	Appendix
	Proof of Theorems
	Lemma A.1.1 
	Proposition 3.2
	Proposition 3.3
	Lemma A.1.4
	Lemma A.1.5
	Lemma A.1.6
	Lemma: A.1.7
	Lemma A.1.8
	Lemma A.1.9
	Lemma A.1.10
	Lemma: A.1.11
	Lemma A.1.12 
	Lemma A.1.13 
	Theorem 4.1 
	Theorem 4.2
	Theorem 4.3



