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ABSTRACT

Low-Rank Adaptation (LoRA) is a powerful technique for fine-tuning Large Lan-
guage Models (LLMs), offering greater parameter efficiency and improved gen-
eralization in data-constrained settings. While its advantages makes it highly
promising for general transfer learning, its reliance on iterative optimization meth-
ods such as SGD still demands substantial computation and poses a challenge
for theoretical analysis. We propose a novel two-step, closed-form approach for
LoRA in two-layer feedforward neural networks (FNN) that mitigates the reliance
on iterative algorithms. First, by leveraging Stein’s lemma, a classical statistical
tool, we derive an analytical estimator for the first-layer LoORA parameters. Sec-
ond, we solve for the second-layer parameters via reduced-rank ridge regression.
We provide theoretical guarantees for the low-rank parameter estimation under a
projection adaptation assumption: the optimal first layer adaptation removes ir-
relevant directions via subspace projection. This generalizes the concept of rank
pruning, which removes irrelevant low-rank components from a weight matrix.
Crucially, our solution is non-iterative and computationally efficient, computing
the full adaptation in seconds—a fraction of the time required by SGD-based
LoRA. Numerical experiments on MNIST suggest that our method not only signif-
icantly reduces computational cost and achieves prediction performance compa-
rable to that of a fully trained LoRA model, but also serves as a good initialization
for SGD-based LoRA.

1 INTRODUCTION

Low-Rank Adaptation (Hu et al.| 2022, LoRA) has become a powerful technique for efficiently fine-
tuning Large Language Models (LLMs). By constraining weight updates to a low-rank subspace,
LoRA reduces the number of trainable parameters, thereby lowering computational demands and
enhancing generalization in data-scarce settings (Lin et al., 2024). While LoRA’s empirical success
in fine-tuning LLMs is evident, its core principle—exploiting low-dimensional structure in param-
eter updates—holds broader promise for transfer learning beyond language models. This paper
explores application of this low-rank update principle to the adaptation of a pre-trained two-layer
neural network.

Transfer learning is a core paradigm in machine learning that leverages knowledge from a data-
rich source domain to improve performance in a data-scarce target domain (Zhuang et al.| [2020). Its
applications are broad, ranging from deploying ImageNet-pretrained models for specialized medical
imaging tasks (Morid et al.,2021) to adapting BERT for targeted sentiment classification (Prottasha
et al.| 2022). Its importance is growing in modern Al settings that require not only effectiveness but
also flexibility, including personalized modeling that tailors a base model to individual users with
limited data (Yoon et al.,|2017) and federated learning, where models are adapted on decentralized
edge devices (Guo et al.l [2024). Across these scenarios, training the full model is infeasible due to
limited data. LoRA’s parameter-efficient philosophy is ideally suited to these constraints. Moreover,
LoRA’s philosophy aligns with classical methods in high-dimensional statistics that exploit low-
dimensional structure, such as robust PCA (Candes et al.,|2011) and reduced-rank regression (Yuan
et al.,[2007), which are known to improve both statistical efficiency and interpretability.
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Despite its practical appeal, standard LoRA implementations depend heavily on iterative optimizers
such as stochastic gradient descent (SGD) and ADAM (Kingma & Ba, 2014), which introduce sev-
eral limitations for transfer learning. First, the iterative process remains computationally demanding,
often requiring multiple epochs over the data. Second, it obscures the statistical properties of the
resulting LoRA estimator, making it difficult to establish theoretical guarantees such as consistency.
Third, the training time constrains rapid adaptation in scenarios that require instant updates, such as
real-time personalization or on-device learning.

To overcome these limitations, we introduce a novel, non-iterative framework for LoRA-style adap-
tation of two-layer feedforward networks. Our method computes a closed-form, two-step estimator
that mitigates the reliance on iterative training algorithms such as SGD. Our method first leverages
Stein’s lemma, a classical tool from statistical estimation, to derive an analytical estimator for the
first-layer low-rank parameters. In the second step, we solve for the second-layer parameters via
a reduced-rank ridge regression (Mukherjee & Zhu, 2011)), which has a elegant and interpretable
closed-form solution. This two-step procedure is deterministic, requires no learning rate tuning or
convergence checks, and computes the full model adaptation in a single pass.

We establish theoretical consistency of our estimator under a projection adaptation assumption,
which posits that the optimal first-layer update acts as an orthogonal projection—removing irrel-
evant directions from the pre-trained weight. This generalizes rank pruning and provides a tractable
framework for analysis. We further derive non-asymptotic convergence rates for the estimator and
its excess risk, and characterize the bias-variance trade-off induced by regularization.

The main benefit of our approach is its dramatic computational efficiency. Our closed-form solution
computes the full model adaptation in a matter of seconds—a fraction of the time required by SGD-
based LoRA. In addition, it serves as a better initialization for regular SGD than the traditional
zero initialized LoRA. We validate our method through numerical experiments on MNIST dataset,
demonstrating that it achieves prediction performance comparable to SGD. By providing a fast,
transparent, and theoretically sound alternative to SGD-based adaptation, this work paves the way
for more efficient transfer learning algorithms. Our main contributions are summarized as follows:

1. A closed-form, non-iterative solution to LoRA: we introduce a novel approach that yields
an explicit, closed-form solution to LoRA in two-layer neural networks, mitigating reliance
on iterative algorithms such as SGD.

2. Theoretical consistency guarantees: we establish consistency of our closed-form estima-
tors under a projection adaptation assumption, and provide non-asymptotic error bounds
characterizing their convergence rate.

3. Significant computational gains: adaptation completes in seconds, enabling real-time or
edge-device applications.

4. Improved initialization for Iterative Algorithms: our estimation outperforms zero ini-
tialization, accelerating fine-tuning.

5. Empirical validation on MNIST: our approach attains predictive performance compara-
ble to iterative LoRA, while delivering full transparency and significant speedups.

2 PROBLEM SETUP

We consider a two-layer neural network model:
Vi = (Wa+ Ag) a((W1 + A1)o(X))) + €. (1)

Here, X; € RP is a high-dimensional input and Y; € R? is its corresponding output. A key
component of our setup is a fixed feature map ¢ : R? — R!, which projects the input into a
lower-dimensional representation space (e.g., from a pre-trained encoder). The activation function
a : R — R acts component-wise, and ¢; is an independent zero-mean noise term. The matrices have
dimensions Wy, A; € R2XI and Wy, Ay € R9%!2, We call (Wy, W5) the prior weight matrices,
and (A1, Ay) the adaptation matrices. The prior weight matrices, which serve as our initialization,
encode knowledge from a source task or a large foundational dataset. Our goal is to adapt this model
to a new target task by learning a pair of low-rank matrices (A1, As), while keeping (W1, Wa, ¢)
fixed. This type of update, famously effective in fine-tuning large language models, is known as
Low-Rank Adaptation (LoRA).
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The rank constraint on (A1, Ay) offers several key advantages. First, the number of trainable pa-
rameters is reduced, which enhances computational efficiency and mitigates overfitting. Second,
the low-rank update captures the most significant task-specific directions in the parameter space,
promoting generalization in data-constrained settings and mitigating catastrophic forgetting by re-
maining close to the prior model.

Analysis of Model (I)) has significant practical implications. The assumption that high-dimensional
data lies on a low-dimensional manifold is foundational to deep learning. The representation map
¢ : RP — R is typically a pre-trained encoder (e.g., from an autoencoder, VAE (Kingma, 2013), or
WAE (Tolstikhin et al.| |2017)) that projects raw inputs into a semantically meaningful latent space.
This allows even a shallow network to model complex functions by operating on these distilled
representations. In addition, the latent representations ¢(X;) can be regularized to follow a certain
distribution, such as standard gaussian, which can help in downstream tasks. The consideration of
representations as input has practical implications in our model, as will be discussed later.

To handle high-dimensional outputs Y; € R?, we may similarly introduce an output representation
¥ : R? — RY, leading to the generalized model: (Y;) = (Wy + Ay) a( (Wl + Al)gb(Xi)) + €.
This framework of mapping between two latent spaces is a powerful and common paradigm in
deep learning (Maiorca et al.| 2023; [Lihner & Moeller, 2024 [Insulla et al.| 2025). It has found
applications in multi-modal learning (Insulla et al.| [2025), domain translation (Lahner & Moeller,
2024) and image generation (Maiorca et al., 2023).

Unlike standard empirical risk minimization, our objective is the exact recovery of the true adap-
tation matrices (A1, As). We show this is theoretically possible under a Projection Adaptation
Assumption, which posits that the optimal adaptation in the first layer primarily involves project-
ing input representations onto a task-relevant subspace. In other words, it suggests there exists an
orthogonal projection matrix P such that E[Y|P#(X)] ~ f(X). The assumption can formally be
defined as follows:

Assumption 2.1. (Projection Adaptation) Let fy : R'* — RY be a prior model with parameter 0,
and let T be a constrained parameter space. Assume there exists an orthogonal projection matrix
P =VVT e Rhxl ywhere V € R1 %k has orthonormal columns and ko < 13, and a parameter
v € I such that

E[Y[¢(X)] = forry (PO(X)). (2)
An example of I is the space of low-rank matrices.

This assumption is frequently justified in practice. For instance, the Linear Representation Hypoth-
esis (Park et al.| |2023; [Mikolov et al.l [2013; [Wang et al) [2023) suggests that human-interpretable
concepts are encoded in linear subspaces of representation spaces. Fine-tuning can thus be viewed as
suppressing irrelevant concepts (by projecting them out) and amplifying task-relevant ones (Uppaal
et al.| 2024)). This perspective provides a geometric interpretation for manipulating model behavior
through linear projections. A special case of this assumption is rank-pruning of a weight matrix.
When P is defined by a subset of the right singular vectors of W7, the update W, P effectively
removes some rank-one components of the weight matrix.

Building upon this observation, our work introduces a consistent method for identifying the optimal
orthogonal projection and updating the low-rank matrices. In the subsequent sections, we will detail
our estimation procedure, provide theoretical guarantees for parameter recovery.

Notation: Suppose A € R"*™ is a rank r 4 matrix with Singular Value Decomposition (SVD) of
the form A = USVT, where U = [Uy, U] € R U, € R"**, S € R"4*"4 js diagonal,
V = [V, V-] € R™*74 and Vi, € R™**. We write SVD, (4) = V and SVD; (A) = U.
Moreover, we use Pj(A) = VkaT to denote the orthogonal projection matrix onto the subspace
spanned by its top-k right singular vectors, PL(A) = U,U! for the top-k left singular vectors,
and Ry, (A) = [Ug,0]S[Vi,0]T to denote its rank-k approximation. We use || Al to denote its
Frobenius norm, ||A]|,, to denote its operator norm, and rank(A) to denote its rank. For a vector

v € R™, we use ||v||2 to denote its 5-norm. For two sequences, we say that a,, < b, (also written
as a = O(b,,)) if there exists C' > 0 such that a,, < Cb,,.
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3 MODEL ESTIMATION WITH STEIN’S LEMMA AND SUBSPACE PROJECTION

Assume rank(A;) = r; for ¢ = 1,2. Denote the j-th element of the target vector Y; as Y;; for
notational simplicity. Denote the latent representation as Z; = ¢(X;), and its transformed version

as Z = (W1 4+ A1)Z;. We assume Z; is distributed according to a known density p(z), which is
often enforced in practice. For instance, in WAEs, Z; is usually enforced to be ¢(X;) ~ N (0, I).
This allows us to define the known second-order score function:

S(z) = T(:)T(2)" = VT (2), 3)

where T'(z) = Vp(z)/p(z) is the first-order score function. For a standard Gaussian p(z) =
N(0,X), this simplifies to S(z) = Y 7122T7%~! — ¥~ In our experiments, we show that us-
ing a Gaussian approximation for the score function when the true score is unknown still delivers
satisfactory performance. Finally, we define the function f : R’ — RY for the adapted second layer

as f(2) = (/1) fo(3)" = (Wo + Ao)a(2).

Our estimator is grounded in the following identity:

Lemma 3.1. (Second-Order Stein’s Identity) Suppose model (1) holds. For any j € |q), if the expec-
tations E[Y;;5(Z;)] and E {VQZ f](Z)] exists and are well-defined, and lim .|, f;(Z)p(z) — 0
and im0 Vzfj(Z)p(2) — 0, then

E[YiyS(Z:)] = (W + M) E [V £5(Z0)] W+ Ay). o)

Lemma|[3.1]implies that the row space of E[Y;;S(Z;)] is contained within the row space of (W1 +A1)
for each j. Therefore, a valid estimator for this space can be obtained via the Eigenvalue decom-
position of the empirical mean: ‘7] = SVD; (% S Y8 (ZZ)) Since each ‘7j estimates a basis
for the same row space, we combine them for statistical efficiency. We adopt the straightforward
Stack-SVD method (Baharav et al., 2025):

) : ®)

Let V be a matrix whose columns are the right singular vectors of (W; + A;). From the identity
Wi+ A = (W + A)VVT, we use below equality to build our estimator of Aj:

V =SvVD, (71] > YaS(Zi),.... Y YigS(Z:)
1=1 =1

Wi(I-VVTh)y+A, (I-VVT)=0. (6)
With equation (@) and V in , we propose the following problem to estimate A,
o~ e |12
min ||[WA(T = PVT) + a1 = PTT)|| 4+ Al 0
AleRl2 X1y F
subject to  rank(A;) < k. (8)

where A\; > 0 is a regularization parameter, and k; € Z7V is the rank constraint. A key property of
problem ({7) is that it admits an explicit, closed-form solution, as shown in the proposition
Proposition 3.2. The global minimizer of the constrained minimization problem (7)) is

1

A, = TR (—W1 (I - f/f/T)) . )

An intuitive interpretation follows: without rank constraints or regularization (i.e., Ay = 0,k; =
min{ly, lo}), the adapted mapping satisfies (Wl + 31) Z; = W113Zi, where P = VVT. In

effect, this projects the input representations onto the estimated task-specific subspace, filtering
out components irrelevant to the new task. Revisiting (@), the term W, V'V7 projects the original
weights onto the task-specific subspace, removing features irrelevant to the new task, while A,V V7T
encodes the task-specific information that must be learned. Because (€) offers no direct constraint
on A1V VT, the minimum-norm solution drives this term to zero. Notably, when the columns of V'
are a subset of W7 ’s right singular vectors, this reduces to rank pruning.
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The regularization parameters control the adaptation strength and structure. The norm regularization
A1 shrinks the adaptation towards zero, enforcing a soft bias to the original pre-trained weights W7 .

In the limit \; — oo, we have 31 — 0, and the model effectively reverts to the frozen pre-trained
prior. The rank constraint k; enforces a low-rank structure on A;, providing an inductive bias.
When the true adaptation is low-rank (small 1), this constraint improves statistical efficiency. We
analyze this trade-off in Section 4]

With learned 31, we now consider the problem of estimating the second-layer adaptation A,. We
frame this as a regularized regression problem. Define the adapted activation matrix: for each
data point, let ;11 =a ((W1 + ﬁl)Zlv) and stack them into the matrix A = (ﬁh .. ,EH)T. Let

Y = (Y1,...,Y,)7 be the target matrix. The goal is to find a low-rank A, such that E(Wg +Ag)T
approximates Y. This leads to the following optimization problem.

min HYfﬁ(WngAg)T‘r | Ag)2,
Ay €ERaX12 F
subject to  rank(As) < ko, (10)
The problem (I0) also has an explicit solution, as demonstrated in the following proposition.
Proposition 3.3. The global minimizer of the constrained minimization problem (I0) is

A, = BP,,, (11)
where B = 1 (ATAn+ 1) AT (Y = AWF) and B, = Py, ((Y —awm)” ;@T).

Here, Py, (+) denotes projection matrix onto subspace spanned by the top-ko right singular vectors
of its argument.

The estimator A, has an intuitive structure. The matrix B is the standard ridge regressmn coefficient
matrix for predicting the residual targets (Y — AW2 ) from the adapted features A. The prO_]CCthIl
matrix sz then prOJects this solution onto a subspace ensuring rank(Az) < ko. With learned Ag,

the predictions are A(Ws + Ap)T ~ AW + Ry, (ABT), where Ry, (+) denotes the best rank-k;
approximation of its argument. Thus, the adaptation adds the best rank-ko approximation of the
ridge predictions for the residuals to the original model’s predictions.

We summarize our two-step LoRA estimation procedure as below:

Algorithm 1 LoRA tuning with Stein’s Lemma and subspace projection
Require (Wla WQ; ¢)’ S( ) ()‘17 A27 kl) kQ) {Xﬂ Y}'L 1

: Subspace estimation via Stein’s Lemma to obtain V as in

: Compute closed-form solution of Al using V asin

: Compute closed-form solution of A, asin 1.}

return f(m) = (Wz + 32) a ((Wl + 31) x)

2w

We conclude this section with a few remarks. First, under the projection adaptation assumption,
when the target function takes the form fyy,~(z) = (W2 + ) a (W1 P¢(x)) with a rank constraint
on v, our method could recover the target parameters consistently. This includes the identified
orthogonal projection P = VVT and the output adaptation v = 32. The assumption, which is
equivalent to ||A,VV || = 0, asserts that the target task only requires projecting the first-layer
representations ¢(x). This is reasonable when the source model is well trained on a large, general-
purpose dataset, since W likely already captures most of the necessary feature transformations,
making |A2VVT| p small.

Second, our dual regularization is well suited for transfer learning. A central challenge in transfer
learning is mitigating negative transfer, where irrelevant source knowledge degrades target perfor-
mance. Our hyper-parameters A; and A, provide explicit control over the degree of transfer by
governing the shrinkage strength toward the original pre-trained weights. This allows practitioners
to precisely calibrate how much source information to retain.
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4 THEORETICAL ANALYSIS

In this section, we establish theoretical guarantees for the proposed two-step estimator. Our goal is
to establish the consistency of our method and analyze the bias-variance trade-off induced by the
tuning parameters (A1, A2, k1, ko).

We begin by defining certain key quantities. Let 6 = ||A;VV 7| r measure the deviation from
the projection adaptation assumption. Recall that Z; = ¢(X;) denotes the latent representation,

Z; = (W1 + Aq)Z; its transformed version, and f(2) = (W3 + As)a(Z) the second layer function.
Let S(z) denote the second-order score function of Z;. Additionally, let r; = rank(4;), i = 1,2,
denote the true rank of the adaptation matrix. Our analysis relies on the following assumptions:

Assumption 4.1 (Non-singular Hessian). There exists an output dimension 1 < j < q such that the
expected Hessian E[V2 f; (Z)] is non-singular.

Assumption 4.2 (Boundedness). There exist constants c1, ca, cg > 0suchthat || Z;||2 < ¢, ||€il2 <
e and ||S(Z;)||op < c3 almost surely.

Assumption 4.3 (Lipschitz activations). The activation function a : R — R is a K-Lipschitz
COntinuous.

Assumption [E] is mild. To see this, let w; . be the j-th row of W5 + A,. The expected Hessian
is diagonal: E[VZf;(z)] = diag (w;1E[a”(z1)],...,wj,E[a”(Z,)]) . For ReLU, E[a” (%)) cor-
responds to the density at zero, so the assumption holds as long as at least one row of Wy + Ag
does not contain zeros . Assumption[4.2]is standard in statistical learning and reasonable in practice
for bounded features and noise. Assumption {f.3] holds for common activations including ReLU,
Softplus, and more.

We evaluate the performance of the estimation via the excess risk:
E(A1,Ay) == L(A1,Ap) — inf L(A1, Ay), (12)
JASRYAD

where the population risk is L(A1, Ag) := E [|ly — (W2 + Az)a((Wi + Aq)é(x))]|3]. Our main
result characterizes the convergence rate of the excess risk:

Theorem 4.1. (Excess risk) Assume the data-generating model (1) and Assumptions 4.1 -H.3| hold.
Then, for any unseen test point (x,y), the excess risk satisfies

6(317 32) 5 Astat + Aﬁrst + Abiasy (13)

where

Ko \2 (1 1 N 1\ Tr((Z + X)) 1%
Ak( ) <+\/E|A1A1||zp)+(1+) B+ 22) 7 5) 1y e ),
Ao n n Aan n
1)\?2 Ky \2 N
D= | (14 ) +C3 +ko [ 522) | E[A - A2,
)\2 2 )\2

1 2
A = (I = Pr)AsSH 3 + Ao (1 " M) 15+ Aa) 228 Py Ao 2.

Here, Cy, = (%2 + % + %) and Ky, = (1 + i) are constants depending on o, ¥ =
2 2

Cov[a (W1 + A1)¢(X3))], and P, = Pp (AS(S + AoI)"rSATL) is the rank-ky projection
matrix onto the row space of the indicated matrix..

Theorem [A.1] reveals a bias-variance trade-off governed by the second-layer hyper-parameters Ao
and ko. First, Ag is the error due to the first-layer estimation. It vanishes if 31 is a consistent
estimation for A;. Second, Ay is the statistical error. If E[|A; — Ay [2, = O(1/n), the first term
is O(1/n). For the case Elee’] = I, we have Tr(E[ee"|Py,) = ka. As g — 00, Agar — 0,
indicating faster statistical convergence with stronger shrinkage. Last, Ay, is the regularization-
induced bias. As Ay — 0, P, — Py (21/2AT)), and the first term becomes sk, 02 (A2,
When A, is low-rank with 79 < ko, this term vanishes. The second term, due to Ao-shrinkage,
vanishes as Ao — 0. This decomposition highlights how Ay and ks trade off statistical efficiency
against model bias. We next analyze the consistency of estimating A; and A,.
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Theorem 4.2 (Estimation Consistency of Ay). Assume the data-generating model ([I)) and Assump-
tions {.1|-@.3| hold. Then,

E|A; — Avllr S Agar + Apias,

MllA
where Ay = 7\/5‘(/1§)\1) and Apigs = 1_5)\1 + 11H+A11HF + 1+1>\1 \/Zi>k1 a2 (WL (VVT —1)).

The statistical error Ay, decays as O(1/4/n), with constants depending on A; and k;. Stronger
shrinkage (large A1) or lower rank (small k1) accelerates convergence. The bias Ay, has three
components. The first term measures the deviation § = ||A; V'V 1|z from the projection assump-

tion. The second term is the shrinkage bias. As A\; — oo, ﬁl — 0, and the bias approaches ||A1 || ¢.
The last term is the rank constraint bias, which vanishes if rank(W(VV' T —I)) < k.

When the projection adaptation assumption holds exactly, we obtain the following result:
Corollary 1. Suppose there exists a projection matrix P and Ay € R7*% such that

Then, with k; = min{ly,l2} and Ay = 0, the estimator 81 =-Wi(I - ‘7‘7T) is consistent. That
— Ayllr = 0asn — oo

The corollary follows directly from 6 = 0 and Theorem #.2] We now turn to consistency of A:
Theorem 4.3 (Estimation Consistency of Ay). Assume the data-generating model ({I) and Assump-
tions E.1|-E.3| hold. Then,

E|As — Dollr S Aias + At + Ay (15)
where

Apias = |(I = Py)As||p + E[|Pels (I — S0 (S + X2D) 71 ||

K 1 1
DNgar = ( Az \/E_|_ )Q,/Tr(E[EiE?]PkQ)) %,

K —~
Aﬁm = ( )\)\2 + C)xz) EHAl - AlHOP'

Here, Cy,, K»,, and Py, are as defined in Theorem and %, is the empirical covariance of
a((W1 + Ar)o(X)).

Interpretation of Theorem @] is similar to Theorem @ The statistical error Ay, decays faster
under stronger shrinkage (large A2) or lower rank (small k5). The error due to first layer estimation
Agrst Vanishes as Ay — oo, since Ag — 0 1ndependently of A1 The bias Ap;as contains a rank
constraint term (less interpretable than in Theorem [4.1} since P, does not directly project Ay) and
a shrinkage term vanishing as Ao — 0.

Combining Theorems [@.1] {.2] and E], we conclude that when the projection adaptation condi-
tion (T4) holds, our estimators (A1, As) converge to the true parameters (A, As) as n — o0.
Consequently, in the absence of regularization, the excess risk vanishes asymptotically. This estab-
lishes the theoretical validity of our two-step adaptation framework.

5 NUMERICAL EXPERIMENTS

5.1 SIMULATIONS

We conduct simulation experiments under the projection adaptation assumption (Assumption [2.1)).
Specifically, we generate responses according to Y = (W 4+ Ag)a(W1PX) + ¢, where P is a
projection matrix, a(-) is the ReLU activation function, and € ~ N(0, I199) is the Gaussian noise.
This model suggests that only a lower-dimensional subspace of the input X is relevant to the target.
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We consider a two-layer network with input dimension /; = 200, hidden dimension /5 = 100,
and output dimension ¢ = 50 . Inputs X are drawn ii.d. from X ~ N/(0, Ioq0), mimicking
standardized feature representations obtained from a pretrained regularized encoder. The weight
matrices (W7, Wa, As) , are generated with i.i.d. entries from A (0, 02 = 0.252). While for Ay, it
is generated according to A, = W, P — Wy, where P € R ! has rank 75.

We compare the proposed approach with two baselines. The first is the reduced rank ridge (denoted
as RRR) regression, which estimates only Ao while keeping the first layer fixed. This baseline iso-
lates the benefit of adapting the first layer via subspace projection. The second baseline implements
LoRA (Hu et al.| 2022) using Stochastic Gradient descent (SGD). In this setup, each A, is factored
as trainable parameters A; B with A; € Rli+1** B, € RI«** We train the parameters with a
learning rate of 0.001 , batch size 256, minimizing the mean squared error of a training dataset with
sample size n. The performance of the prior model (i.e., Ay = Ay = 0) is reported as PT.

Results on a test dataset of sample size 1000 are reported in Table (1| From the result, all three meth-
ods improve the pre-trained models by lowering its MSE over target task. Our proposed method is
comparable to SGD-based LoRA which has been trained for 30 epochs over the train set. More-
over, it uniformly outperforms the baseline RRR across all sample size n and rank constraint &,
suggesting that there is value in updating the first layer parameters. Another observation is that our
method performs better than SGD in low sample size, low rank setting (e.g., n from 5000 to 30000,
k = b5,7). Finally, we shall note that our method computes in seconds, significantly faster than
SGD-based LoRA.

k=5 k=7 k=10
n PT RRR Proposed SGD RRR Proposed SGD RRR Proposed SGD

5000 36474 27.071 25303 27.328 29304 27.840 29.813 27.071 25303 27.328
10000 36.617 26.810 24.618 26368 29.247 27398 29339 26810 24.618 26.368
15000 36.252 26.717 24.417 25538 29.120 27.112 28360 26.717 24.417 25.538
25000 36.900 26958 24.188 24.300 29.160 26961 27.695 26958 24.188 24.300
30000 36.630 26.650 23.958 23.587 29.006 26.724 26.788 26.650 23.958 23.587
40000 36.385 26.677 23.744 22.685 29.026 26.614 25709 26.677 23.744  22.685
50000 36.775 26.683 23.694 22252 29.144 26.576 25.077 26.683 23.694 22.252
100000 36.374 26.652 22945 21.044 28982 26.085 23.422 26.652 22945 21.044

Table 1: Comparison of MSE under different rank & and training sizes (n).

5.2 MNIST IMAGE INPAINTING

We evaluate the performance of our estimators on the MNIST image inpainting task. Each image
is divided into two parts: the lower-left 14 x 14 region serves as the response Y € R'%, and
the remaining 756 pixels form the predictor X € R, The digit class label is denoted by C' €

{0,...,9}.

We consider a transfer learning setup where a model is pre-trained to predict Y from X using data
from all digit classes except a held-out target class ¢ € {0,...,9}. The goal is to adapt the pre-
trained model to perform inpainting for class ¢, despite having never observed any examples from
this class during pre-training.

To obtain a latent representation, we first train a Wasserstein Autoencoder (WAE) (Tolstikhin et al.
2017), denoted ¢: R7%6 — R2°, to encode X into a 20-dimensional latent code Z = ¢(X). During
training, the WAE regularizes the marginal distribution of Z to approximate N (0, I2). For the target
class ¢, we estimate the conditional mean p. = E[Z | C = ] and covariance X, = Cov(Z | C = ¢)
from target training samples. Using Stein’s lemma, we approximate the second-order score function
of Z|C=cas

S(2) ~ S — o) (2 — pe) TS

c

We assume the following generative models:

1. For digits {0,...,9} \ {c}: ¥ = Waa(W1¢(X)) + ¢,
2. Fordigitc: Y = (Wa + AWs)a((Wh + AW1) (X)) + €,
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where a(-) is ReLU activation function and € is additive noise. The weight matrices have dimension
Iy = 20,13 = 1024,q = 196. We aim to adapt both layers of the network via low-rank matrices
(A1, Ag).

As in the simulation study, we focus on full adaptation and thus fix the shrinkage penalties at A\; =
Ao = 1 to avoid bias toward the pre-trained weights. Instead, we vary the shared rank constraint k,
enforcing rank(AW; ) = rank(AW;) < k, and examine its impact on estimation accuracy.

For comparison, we include two baselines. The first, LoORA (Hu et al.| [2022)), factorizes each A; =
A; BT with trainable matrices A; € Rli+1*k B, € RLi*F initialized as A; ~ N(0,1), B; = 0.
We train using SGD with learning rate 0.01, batch size 32, for 100 epochs on a dataset of size
n = 48,000, minimizing mean squared error. The second baseline, SGD-I, uses the same LoRA
parameterization but initializes A; B, = 10e=3 - 3,;, where 32 is our proposed estimator. This
tests whether our closed-form estimate provides a better initialization than zero initialization. The
performance of prior model (i.e., A; = Ay = 0) is reported as PT.

We evaluate our method across all target classes ¢ € {0, ..., 9} and report test performance on a test
set of size 10,000 in Tables[2] As shown in Table[2] our closed-form estimator significantly reduces
prediction error on unseen target classes compared to the pre-trained baseline. Notably, it outper-
forms SGD-based LoRA trained for 100 epochs in the majority of classes — despite using standard,
untuned hyperparameters (learning rate, batch size) for SGD. This suggests that our method is not
only computationally efficient but also robust to hyperparameter sensitivity, a common pitfall of it-
erative optimization. Moreover, our method updates in seconds, significantly faster than SGD which
takes minutes.

Furthermore, initializing SGD-based LoRA with our estimator (SGD-I) consistently improves final
performance over the conventional zero initialization (SGD). This confirms that our analytical solu-
tion provides a high-quality, data-adaptive starting point that accelerates convergence and enhances
final accuracy. This highlights its value both as a standalone adaptation tool and as a warm-start
mechanism for iterative fine-tuning.

k=1 k=2 k=3
target PT  Proposed SGD-I SGD Proposed SGD-I SGD Proposed SGD-I SGD

c=0 0.1125 0.0714 0.0696 0.0722 0.0680 0.0669 0.0701 0.0672 0.0660 0.0707
c=1 0.0595 0.0321 0.0340 0.0368 0.0275 0.0305 0.0368 0.0262 0.0274 0.0357
c=2 0.0993 0.0772 0.0773 0.0780 0.0758 0.0763 0.0784 0.0756 0.0759 0.0774
c=3 0.0831 0.0582 0.0587 0.0596 0.0593 0.0585 0.0596 0.0586 0.0585 0.0596
c=4 0.0713 0.0512 0.0526 0.0529 0.0497 0.0524 0.0528 0.0501 0.0522 0.0529
c=5 0.0773 0.0667 0.0662 0.0688 0.0650 0.0653 0.0686 0.0646 0.0651 0.0678
c=6 0.0875 0.0540 0.0549 0.0559 0.0506 0.0531 0.0560 0.0500 0.0527 0.0560
c= 0.0669 0.0428 0.0435 0.0451 0.0428 0.0426 0.0448 0.0417 0.0425 0.0450
c=8 0.0788 0.0624 0.0632 0.0634 0.0626 0.0626 0.0634 0.0635 0.0625 0.0635
c=9 0.0562 0.0485 0.0485 0.0497 0.0480 0.0482 0.0496 0.0476 0.0481 0.0497

Table 2: Comparison of MSE across update strategies.

6 DISCUSSIONS

We proposed a closed-form, non-iterative approach for solving LoRA in two-layer networks, estab-
lishing its statistical consistency under a projection adaptation assumption — that optimal adaptation
acts as a subspace projection removing irrelevant feature directions. Our method achieves accuracy
comparable to SGD while adapting in seconds, and serves as a good initialization for iterative train-
ing algorithms. The approach can extend to deeper feedforward networks provided second-order
score functions for hidden neuron activations are available, enabling layer-wise analytical adapta-
tion without backpropagation. Its speed make it particularly suited for real-time transfer settings
such as on-device personalization or edge federated learning. While the projection assumption is
theoretically tractable and empirically plausible in semantically aligned tasks, its broader validity
warrants further investigation.
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A APPENDIX

USE OF LARGE LANGUAGE MODELS

We have used large language models (LLMs) as a writing assistance tool during the preparation
of this paper. The LLMs were employed to improve grammar, correct typographical errors, and
enhance sentence clarity and structure. However, they were not involved in generating research
ideas, experimental design or data analysis.

A.1 PROOF OF THEOREMS

Notations: For a matrix A € R™*™, we use 0;(A) to denote its ith largest singular value (i.e,
01(A) > 02(A) > ...), and \;(A) to denote its ith largest eigenvalue. We use (A); . to denote
the i-th row of A, and (A). ; to denote the i-th column of A. We define the unit sphere as S"~! :=
{z € R"” : ||z|]]2 = 1} C R™. We use Col(A4) to denote the column space of a matrix A, and
Row(A) to denote its row space. Suppose A € R™ ™ is a rank r4 matrix with Singular Value
Decomposition (SVD) of the form A = USVT, where U = [Uy,Uj-] € R™ "4 U, € R™*F,
S € R4Xr4 js diagonal, V = Vi, V] € R™*"4, and V;, € R™**. We write SVD, (A) =V
and SVD; (A) = U. Moreover, we use Py (A) = Vi VI to denote the orthogonal projection matrix
onto the subspace spanned by its top-k right singular vectors, P}C(A) = U, ,? for the top-k left
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singular vectors, and Ry, (A) = [Uy, 0]S[Vi, 0]T to denote its rank-k approximation. We use || A|| ¢
to denote its Frobenius norm, ||A||,, to denote its operator norm, and rank(A) to denote its rank.
For a vector v € R™, we use ||[v||2 to denote its £3-norm. We say that A,, < B, (also written as
A = O(By,,)) if there exists C' > 0 such that A < CB,,.

A.1.1 LemMMA[AT1]

Let X € R™*P| Y € R"** B € RP*F are three matrices, and A > 0 be a constant. Consider the
optimization problem:

i Y — XB|% + \|B|%.
{Brag(l(lg)gk} || ||F+ H ||F

The solution is Bj, Py, (Y7 X B, ), where Bj, = (XX + A1)~ X7

Proof: This is the result in Mukherjee & Zhu| (2011)).

A.1.2 PROPOSITION[3.2]

For simplicity, we write V' = V.X=I-VVTisa projection matrix which satisfies XX =
X,XT = X. Let U be a matrix whose columns form an orthonormal basis for the orthogonal

complement of Col(V), and it satisfies UV = VTU = 0. By the uniqueness of orthogonal
projection matrix, X = UUT and I = VVT 4+ UUT .

X+ M =v0UT +xvvT + xvUT
=1 +NUUT AV VT

The inverse is (X + A)~' = $VVT + 5UU”. Apply LemmalA.1.1|with X = (I — VVT),
Y =—(I-VVT)W{, and B = AT. The solution to the optimization problem (3.2) is

AT = (XTX + 1) XTY P, (YIX (XTX 4+ A1) XTY)

Simplifying the terms give

A.1.3  PROPOSITION[3.3]
Apply Lemma with target matrix ¥ — XWQT , we obtain the optimizer.

A.1.4 LEMMA[A T

Let X1, ..., X, be independent, mean zero, p x p symmetric random matrices, such that || X;||op <
K almost surely for all 4. Then, for every ¢t > 0, we have

. t2/2
P Xillop >t] <2 SRS
(n; lop > ) < 2o (- o)
where 02 = || Y27 | EX?||,p is the operator norm of the matrix variance of the sum.
Proof: This is Theorem 5.4.1 in|Vershynin| (2018))

A.1.5 LEMMAIA.1J

Suppose model , Assumption 4.2/hold. Define E = 2 3" | Y;;5(Z;) —E[Y;;5(Z;)). Then,
there exists a constant C' > 0 such that [[E||,, < C. And, for any ¢ > 0,

—nt?/2
P([|E|lop >t) <2 — . 1
(1B > 0 < 20 exp (e 16

12
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Proof: Define E; = %YijS(ZZ—) — %]E[YijS(Zi)], then F1,..., F,are independent, mean zero,
Iy x Iy symmetric random matrices. By assumption[t.2] |S(Z;)||op < c5 and

Yijl = |(Wa + Az)j.a((W1 + A1) Z;) + €
< K|[[(Wa + Ag)j [l2Wi + Adllopl Zill2 + €]
< K|[(Wa 4+ A2)j l2[Wh 4+ Ay l|oper + 2.

Thus, there exists a constant ¢4 such that |Y;;| < ¢4 almost surely. Consequently,

1 1
HEi”on < ﬁHY;jS(Zi)Hop + ﬁllE[YijS(Zi)]”op

2c3c
< 23

n
Let C = 2c3cs, and E = 3" | Fj, we have 02 = | S0 EE2|,p < S0, [EE2,p < niSi =
%2. By Lemma ,

—nt?/2
IP(HEHOP Z t) S 2l1 exp (M) .

A.1.6 LEMMAIA.1.6|

Let X2, 3} € RPXP be symmetric, with eigenvalues A\; > ... > A, and ;\1 >...> S\p respectively.

Fix 1 <r < s < pand assume that min(A,_1 — A\r, As — Asy1) > 0, where Ao := oo and Ay =
—o0. Letd := s—r+1,andlet V = (v,,v,41,...,vs) € RP*%and V= (O, Dpg1, ..., 05) € RPXI
have orthonormal columns satisfying Xv; = A\jv; and ¥0; = A\;0; for j = 7,7 +1,...,s. Then

2min(d'||E — Sllop, [|£ — Bllr)

in@(V,V)|r < 17
|| - ( ’ )HF N min()\rfl - )\r; )\s - )\erl) ( )
Moreover, there exists an orthogonal matrix O € R%*¢ such that
. 23/2 min(d'/?||% - % DIy

min()\rfl - )\’I“u )\s - )\s+1)
Proof: This is Theorem 2 in|Yu et al.| (2015)

A.1.7 LeEmMMA:[A T

Let A, A € RPX? have singular values 01 > ... > Opnin(p,q) a0d 01 > ... 2> Gpin(p,q) rESPectively.

Fix 1 < r < s < rank(A) and assume that min(o2_; — 02,02 — ¢2,;) > 0, where o} := o0
and 02, = —o0. Letd := s —r+ 1L, andlet V = (v,,0r41,...,05) € R and V =
(O, Dps1, ..., 0s) € RI*? have orthonormal columns satisfying Av; = oju; and Av; = 6;4; for
j=rmrr+1,...,s Then, there exists an orthogonal matrix O € R%*¢ such that
o 23/2(201 + | A — Allop)d /2| A — Allop
IVO - V] < — 3 .
mln(ar—l — 07,05 — Us+l)

Proof: AT A € R9*7 is a symmetric matrix with eigenvalues 02 > - . > 03, and ATA € R isa
symmetric matrix with eigenvalues 67 > - -- > 2. Moreover, A" Av; = o7v; and AT Av; = 537,

forj =r,r+1,...,s. By Lemmal|A.1.6| there exists an orthogonal matrix O € R%<? such that

23/2d1/2| ATA — AT Alop

: 2 _ 42 -2 _ 2 '
mll’l(O'T71 0y, 0% Us+1)

HVO -V]r <

And finally,
IATA — A Av|lop = [|(A— A)TA = AT(A = A)|oy
< (11 4llop + 1 41lop ) 14 = Alloy
< (201 + 1A= Allop) 14 = Allop

13
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A.1.8 LEMMA[A TS

Let A, A € RP*4 be two matrices, V be a matrix whose columns are the top k right singular values

of A, and V be that of A. Consider the orthogonal projection matrices P = VV7 and P=VVT,
For any orthogonal matrix R,

|P~Plr <4|VR-V|r
< |[Vllop + [V R]|op = 2. For any orthogonal matrix R,

1P = Ple=VVT —VVT|p
= (VR=V)(VR-WVT+ (VR=V)VT+V(VR-V)T||p
<VR-VYVR=V)|p + [(VR=V)VT|p + |[V(VR—V)T|p
<IVR=VIr (IVR=Vop +21Vllap)
<4|VR-V]|p

A.1.9 LeMMA[AT9

Let A, A € RPX4 be two matrices, V be a matrix whose columns are the top k right singular values
of A, and V be that of A. Consider the orthogonal projection matrices P = VV? and P = VVT.
If there exists a constant C' such that ||A — Al|,, < C, then,

1P = Pllr S VE[A = Allop
Proof: By Lemma[A.1.8] for any orthogonal matrix R,
|P~Plr <4[VR-V|r

Let 01 = 01(A), 0 = 0(A) and 041 = o411(A). By Lemmal[A.1.7] there exists an orthogonal
matrix R such that

22/3(20) + || A — Allop)VE| A — Aoy

=il < oF 0t
22/3(201 +C f||A Allop
‘713 C’k+1
S VE[IA = Alop

A.1.10 LEMMAIA.1.10

Let X € R™P E € R B* € RP** and 27 and e be the rows of X and E respectively.
Assume there exists constants ¢1, ¢z such that ||acl||2 < ¢, |leill2 < ca, Vi € [n]. For a positive

constant A > 0, define ,, ;= 2 X7 X and By := 1(£, + AI)"'XT(XB* + E). Then,

L. ||§n||017 < C%
2. l||AX‘TE1||F S C1C2

3. If z; and e; are mutually independent, and Ee; = 0, then IE||X B2 < % and
E|X5E|r < 22
n - Vn'

4. |Brllr < xe1(B*[loper + ¢2) S 5 (1B [lop + 1)
Proof:
L. ||2H0p == || Zz 1 %4 xTHop > 7112?:1 ||33ixzr||op < %”C% = C%

2. YXTE|p =LY el |lp < 2500 lziel |r = 2300 ll@illzlleill2 < cice
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LEIXE, = EIXE)Z < (JEIEE|Z . And, E|XE|R =

A BT (300 einl wiel + 30, einf wje]) < 57 301 El|wil|3E ] esl|3 + 0 < da,
4. Apply 2 to |1 XT(XB* + E)| ¢, we have

~ ~ B 1 .
[Ballr < [[(3n + AI) 1||OI)||EXT(XB + E)|lr

1
< sallBlloper + c2).

N

A.1.11 LeEmMMA: [ATI]

Let X,D € R" P and Y, ' € R"*9 be four matrices whose rows are x;,d;,y;, f;, respec-
tively. Let A > 0 be a positive constant. Suppose there exists a constant ¢ > 0 such that
lz:ll25 1dill2, llyill2, | fill2 < ¢, for all ¢ € [n]. Then, for the function

T
B(t) = { (X + tD)n(X +tD)

-1
+ )\I} %(X +tD)T(Y +tf). (19)

We have

n n n n

B(0) = (XTX +M) - <XTf _XTDB(O) , DY —XB(O))>

And, for any fixed constant k& > 0, there exists a constant Cj such that ||B”(¢)|lop, <
Cr ( + 5= + ) forall t € [0, k.

Proof: Let A(t) = (MHJ) and b(t) = XHLUOHE) - hen B(4) =

n

( )b(t). Apply chain rule with % (A(t)™') = —A( YTLA(t)A(t)"!, we have B'(t) =
( 1() () La)b(t) + A~ ()b’( ). Since A7L(t)b(t) = B(t), it simplifies to B'(t) =
O () - A'(H)B())-
Similarly taking derivatives, we have b'(t) = DT(YHf)HXHD) I oand A'(t) =

DT(XHD):(XHD)TD. Define g(t) = b'(t) — A'(t)B(¢). Apply chain rule again, B"(t) =
—ATH A (AT g(t) + A7) (1)

Since A71(t)g(t) = B'(t), we have B"(t) = A=Y(t)[¢'(t) — A'(t
A"(6)B(t) — A'(t)B'(t), where b (t) = 22 f and A" (t) = 222D,
Since ||z;l|2, |dill2, llyill2 || fill2 < ¢, by Lemma [A.1.10] there exists a constant ¢; such that
16" (E)]lop < c1, 1A' (E)]Jop < €15 [JA”(E)|lop < ¢1 and [[7(L)||op < 1, forall ¢ € [0, k]. Combined
with the fact that || B(t)||op < +, we have | B”(t)|lop S 5 + 12 + 55 fort € [0, k).

)B(t)]. And, ¢'(t) = b"(¢) —

A.1.12 LEMMAIA.1.12

Let X, E € R"*P and Y, F € R™"*7 be four matrices, and A > 0 be a positive constant. Define
B, — (x;xﬂlfﬁ and B, = (HENCHE) BT R & XTX

n

Fix a positive constant k£ > 0, for any € € (0, k), define D = E/¢, f = F/e, we have

¢ XTf XD, DT (Y XB)
|B1 — Ba| < = < |+ [1B1llopl I+ : >
1 1 1 )
+(>\+)\2+)\3)O< )
where || - || is either || - ||op O || - || 7
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Proof:
Consider the function B(t) : R — RP*9 ;

T
B(t) = { (X + tD)n(X +tD

-1
) + AI} %(X +tD)T (Y +tf). (20)

Since w + Al is invertible for any ¢, B(t) is infinitely differentiable, and by Taylor’s
theorem,

B(e) = B(0) + ¢ B'(0) + O(é?)

By Lemma[AT.1T]
1 1 1\ o
156 - 5Ol <501 +0 (5 + 33+ 3 ) )
And,
1 —1
XTx XTDB
1B'(0)]| < | X + AT JII
n n

XxXT XTD DT(Y — X B(0
f||+HB Ol 21+ 1 22 EO) )

o (XTX +M> 'DT(y - XB(O))

I
O-m'Ln
Combining the above, for any S (0, k),
1B — Bzl = [ B(e ) BO)l

<

11 1),
A.1.13 LemMA[AT.13|

Let Y € R™*Y be a response matrix whose rows are transpose of y;, A € R™*!2 be a matrix
whose rows are transpose of v; = a((W; + Ay)¢(x;)), A € R™*!2 be a matrix whose rows are

transpose of v; = a((W1 + A1)¢(x;)), and E € R™? be a matrix whose rows are transpose of ;.
Denote the perturbed sample covariance, true sample covariance and the population covariance as

s, = %ETA\, Y = iATA, and ¥ = E[v;v]], respectively. We denote the ridge estimator using
certain design matrix A, the true and estimated projection matrices as
B(A) = (ATA/n + M)—%AT(Y AWl
Py, i= Py, (AaS(E + Mo I)'EAT)
e, = Pr, (Y = AWF)TAB(4))

XT XTpD DT (Y — XB
( 1Bl 2 ) 2 1))

Define the terms
Ay =v—-0 Ay =A—-A

~ ~

Ap = B(A) - B(A) Ap =Py, — Py,
Then, the terms satisfy
E[ABllop S CrEl A1 = Adllop,

EHAB”op ~ C)\ZEHAl - A1||op)

ElApllop S V kQKAz% + VI K\ E[ A — Adlop,

1 -~ 1
E|Apl2, S szi?ﬁ + ko KRB AL — Ay]f2, + k2 K3, 4/ ﬁEHAl Adl2,,
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where Cy, = (4 + 5 + 5 ) Ko = [182llop (1+ 182 ]l0p) (1+ 25 ).

Proof: First note that ||A1||Op < ||W1]|op is bounded. By assumptlonu lzill2 < e1, J€i]l2 < co.
By assumption 4.3} the activation function a is K- Lipschitz continuous. Let ¢4 be a constant such

that [[v]l2 < K|[W1 + Aullopl|z]l2 < cal|[Willop and 3]l < K|[W1 + Adlopllzll2 < cal|Willop.

By Lemma[A.1.10} [ B(A)]lop < 1. Define € = A1 — Ao < 2[|A1]lop = k. D = —Aa/e,

and f = Aa W /e. The 2-norm of D’s rows are bounded by ||[v — ©|2/¢ < Kc; and that of
[ are bounded by K ||W2||,pc1. Apply Lemma with D = —Ay/e, f = Aa W] /e, and

e=|A — leops we have

Anly < 180= Bl (A1 ATD, DI —AWE)
185y < = || ——lop

lop + 20 B(A)llopll ——lop + |

1 1 1 ~
ro((5+m+ A) 180 - Bl ).

forall e € (0, k). Since norm of each rows of D and f are bounded by a constant independent of €, by

AT T Y —-AWT T
ATE) AR | 2RO AWE) ) DAy < g

Lemmal|A.1.10} there exists a constant cg such that ||
Combine with the fact that ||A; — A1||Op < ||A1llop + [[W1|op, We have

1 1 1
I8lr % 181~ Bully (3 +A2 +5)

1 1\2
IABI2, S 1AL - A2, N /\2 + X

1 1 1
Bl Aplor S ElIA; - A|op( +32+31)
2

11 1)\?
E|Agl2, SEIAL — A3, " A2+>\3

For the term E[|Ap|op, let S = AoX (X + Aol)"'SAT and § = L(Y — AWT)TAB(A). And,
let V be matrix whose columns are the top ko singular vectors of .S, and V' be that of S. We have
P, =VVT and P, = VVT. By Lemma , for any orthogonal matrix R,

[APlop = 1P = Prllop

<AIVR = Vo
By Lemma([A.T.6] there exists an orthogonal matrix R s.t.,
TR, < 2SSl
PE 2(8) = Akpt1(S)

Let E = E+ Ay (Wy+ Ay)T, then Y — AVV2 = AAg + E, and

~

5= L(AAT 4 BYTAS, 1+ Aon) ' LAT(AAT + B
n n

. ETA\ -~ - ATE
:<A22n+ - )(Zn+)\21)—1 (znA2T+ - )

We decompose the difference ||S — S ||lop as follow

15 = Sllop < 182 (Ea(Sa + XD 780 = BT+ 2D)7'T) Al

ETA -

+2H (EnJF)\ZI)ilEnATHop
ETA VATE

+ == En 22 D) o

17
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SO .

By Lemma |A.1.10/, there exists a constant ¢; such that ||ATTEHOP < ey, HWHOP <
o~ T o~

c7l| A1 = At llops 1 E524 op < e7[| A1 = Adlop-

By inequalities ||y, [|lop < 2. [[(Sn + Ao) 18, | <1, and ||[(E 4 Ad) " Hfop <

P — +)\
we have
ETA ~ - ETA
||7(E +)‘2 ) 1EHAT||OP < ||A2||0p||7||0p
ETA - VATE c; ETA
||7(E +Ad)” Tllop_ QHTH”’
And,
1By, - [ EEA), 4 et A)ARA,
n op — op n op
ET ET AA (Wa + Ag)ALA
<|l— ||op + |l llop + || - llop
ET

< n ||0p+207|‘£1_A1”0p

Since ¢; and v; are independent, by (3) of Lemma [A.1.10} E|| EZAHOP S f’EH ETA||Op < L
Hence,
15 = Sllop
< A, ( W(En +XD)TIE, - 2(2 + AQI)*E) A7 llop
ETA
#8allop (145 ) 15 2

To bound the first term, let K, = En(Zn +Xl)"tand K = (X + A1) 7L, then
1K = Kllop = 1E0(En + X2D) ™ = (S + AaD) " op
<0 (En + AD) ™ = B0 (B + A2) "o
HEn (4 AD) T = BB+ A2 ) o
180 (S0 + 22D = Za(E+ 2D op = 180 (En + 2D 7HE = Za)(E + 22D ™) llop
< 1= = Sl
IS0 (S + XD) ™ = S+ XaD) Hlop = [(Sn = Z)(E + AaD) 7 lop

1 ~
<7E*2no
< 312 Sl

Hence, [|K; — Kl[op < %2”2 - ijn”op Using || Knllop < 1, [|K|lop < 1, Hinnop < ¢}, we bound
the first term by

182 (Sa(Sn+ 20D 7180 = B + X1 7'E) ATy
=S Vi poRIO SEEDYS SR S {0 JED Y § R of P
<ol [ Kn S = KZlop

= [1A,| pH(Kn — K)S0 + K (50 = %) [lop

S ||A2||op)\ 120 = Sllop + 14202, 1E0 — Zllop

1\ ~
S8, (14 ) 180 - 2l

18
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To bound the difference in covariance, we decompose as follow

ARA L ARAL

=0 = Zllop < 50 = Sllop + 2| llop +

llop
S IEn = Efop + ||A1 = Aillop + 1181 — Ay,
§ ”En - Z”010 + ||A1 - A1”010

Since ||v;]|3 are bounded, by Theorem 4.7.1 in[Vershynin| (2018), E||%,, — ||,, = O ( 1 ) thus

E||S, +EA; — Ao

2”0 ~
P f
Let K, = (1 + %) and apply Cauchy-Schwarz E[ab] < \/E[a?]E[b?] for E||S — S||Op,

E|IS - Sllop S + KLE[AL = A

Ky,—
f

~ 1 ~
E|S - 8|2, < KAQ + KB AL = Ay, + K3,/ SE[A - Ag,

El|Ap]lop S VEE[S = Sllop
1 ~
SV sz}Q% + VE KOLE[ AL — Ayllop

. 1 ~
E|Apl2, S kQKAz + ke K3 EAL — Aql2, + szfg\/ EEHAl —Aqlf3,

A.1.14 THEOREM[A.]]

Thus,

We reuse the definitions of key quantities in |A.1.13] and additionally define y := Asv + € and

Y = AAT + E. The prediction given x is § := (Wy + AQ)U We decompose the prediction error
as follow,

ly — (Wa + A2)3113 < [ly — (Wa + Ao)vl3 + [(Wa + Ag)A, |13
= 17— Bovl3 + IWa + AallZ, 1 A3

17— Azv]3 = 1§ — Po, B(A) 0l
S5 = Piy BLA) |3 + (| P, A ol[3
ST = P, B 5 + 1AB]3, 110113

17— Pio B(LA) 0|13 S (17— Pro B(LA) 0[5 + | Ap B(A) 0|3
<7 = Pro B 5+ |APZ I BAIE, 0113

17— Pro B(A) 0[5 = || Pioy + (I = Pr,)y — P B(A) T3
= || Proy — Pe BA) |3 + (1 = Po)l3
By assumption [£.2) and 8.3] [|z;]|2 < c1, ||€i]|2 < co. We let ¢4 be a constant such that |||y <

K| Wi+Axopllzll2 < csand [[7]]2 < K|[Wi+A1opl2ll2 < 1. By LemmalA.1.10} [| B(A)|lop <
%2. Therefore,

- 1\? 1\?2
Elly — (Wa + Ra)ill2 < (”Q E||Av||§+E||AB||3p+(A2> E|AR2,

+ B[ Pr,§ — Pr, B(A) 0[5 + EIl(I = Pr,)7l5
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By the Lipschitz-continuity of activation function a,

E||A, |3 < K2E|[(A; — Ay)2|3
SE[A, -

2
115,

By Lemma[A.T.13]

E|Asl3, < CAQ]EIIM Adllz,

1 ~
E|Ap|2, S kK3, + ko K3 E| Ay — A2, + k2K§2\/ E]EHAl — A2,

where Oy, = (& + &+ ) K, = (1+5).
For the bias term,
E|(I = Pr,)yll5 = E||(I = Pe,)A2v + (I — Py, )ell3
= E[(I = Pr;) D203 + E[(I — Pr, )ell
E|(I — Py,)Av||2 = ETr((I — Py,)Agvo? AT(I — P,))
= Tr((I — Pp,)AsXAT (I — Py,))
= [[(I - Pr,) 2255 |3

Finally, consider the term
~ 5 ~ Srl _
B[Py, — Pio BA) 0[5 = El|Pi i = Pi, YT —A(S0 + Ao ) 3

This is the random design prediction error of ridge regression estimator with response Py, y, design
matrix A, and noise term Py, e. By Theorem 1 in[Mourtada & Rosasco| (2022),

_ ~ 2\ 11
BIPLT -~ PB)T el < %0 (14 51 ) 15+ 20 40t Pl

Tr((Z + X2) 1Y) 9
1 E|| Py
( + Agﬂ) n 1Pzl

+E Pryell3

where E|| Py, ¢||3 = Tr(E[ee?]Py,). And, E||(I — Pi,)e||3 + E||Px,¢€l|2 = E||¢||? .Combining the
above,

L(A1,Az) = Elly — (Wa + Ag)7]3

Ky, \2 N
< << + ) +C>\2+k2( e ) >E|A1_A1”f22p
21
n
( *EHAl A1||op>

E—l—)\g) 22 szAQHF

+>\2(
Aam

2+)\2
(1 + )\QH) )TI'(E[EET]P]CQ)
+ (I = Piy) 2022 |3
+Elfell3

20
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Finally, the excess risk is

E(A1,Ay) = L(Ay, Ay) — L(A1, Ay)
= L(A1,As) — E|e|3
= L(Aq, Ay) — Tr(EleeT]).

We define

K, \2 (1 1 . 1\ Tr((Z + X))~ 18
Ak( ) <+\/E||A1A1|zp>+<1+> HEH2)” D)y gpee) ),
A2 n n Ao n
1)? K\ "
Afirt = <(1+ )\2) +O§2 + k2 ( Ao ) )E”Al 7A1H§P’

1 2
Avpias = Ao (1+ A) (S + A2) 282 Py, Ao|2 + [|( — Piy) A0 S22

Th@l’l, 5(31; 32) ,S Astalt + Aﬁrst + Abias

A.1.15 THEOREMH4.2]
Suppose model (I)), assumption 4.1} and [4.2] holds. Then,
E|Ar = Arllr S 1A = Atllr S A+ Dpias

where
1 Vkily
Astat =
1+X1 Vn
1 A1
A ias — A T NI - p
b 1+A15 T | 1||F+1+)\ [Wi(VV ) oo ) ||
Proof:
Let
B = [EVaS(Z)], .. ElViS( )1}
~ 1|
B=— Z;YHS qus
V =SVD, (B)
V =svD, (B)

V. = SVD, (W7 + Ay)

By f.2] and model (I), the conditions in Lemma [3.] hold. By assumption f.I] and Lemma @
Col (B) = Row(W; + Aj). By the uniqueness of orthogonal projection matrices, VV1 = V, V..

We first consider 3’{ =-Wi(I- VVT) the first layer estimator with A\; = 0 and k1 > min{l, 12;
From the equality Wy + Ay = WiVVT + AyVVT, we have Ay = W (VVT — 1) + A, VVT,
Recall that |AVVT | p =4, so

IAT = Adllp = |2 = WA(VVT = 1) = A VYT p
<[1AT = Wi(VVT = D)lp + [0 VVT ||
= |Ar =W (VVT = D) +0

For the first term,

1A =W (VVT = D)lr < [WallopVVT = V15
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Let E=B—B,ry = rank(B) = rank(W; + A;). By LemmalA.1.5| there exists a constant C' > 0
such that || E||,, < C'/q almost surely. By Lemma|A.1.9,

E[VV" = VV"|r SE|Ellop

And, for any t > 0, P(||Ellop > t) < 2l;exp (%) When t > 3C, C? < (Ct/3 and

2 2 /9 . —nt?2/2 —nt2/2 . .
exp(m) < exp( e /3 ). Otherwise, exp(%cém) < exp( gtcz/ ). Using the integrated

tail formula,

E|lE]lp = / P(IE]p > ) dt

3C o
3n
< P - 2 -2
_/O llexp< Czt )dt—!—/c llexp< 4Ct> dt
< 42 _
_/O 2llexp( 40215 )dt—i—/ ZZleXp( 4Ct> dt

L h

VAR

Andso E||AT — Aq|lr < f + 6. Now we consider the general estimator A; = 1+1/\1 R, (3’{)
Let Py, = P;;l(—wl(l —VVT))and P, = Pr, (A}). Then,

N

1AL = Asllp = H A*Pkl Aqllp
< *
< 1+)\ ||A Pk1 Ayllp+ —+— 1+)\ 1AL 7
1
< — |A*P T_71 A T Ay
< 1+/\ 1A ey = WA (VVE = Dllp + 3= 1AVV L + 1+/\ 1A1]lF

Further decompose the first term,

I1A; Py = Wi (VVT = D)|p < A1 Py = Wi(VVT = DPy e + [Wi(VVT = DI = Py

B A1 Py — Wi(VVT = DP e (A = Wa(VVT = D)Py llr + EA{(Py = Pyl
SEIR] - W(VVT = D)2 Pyl + BB (P = Pu)llr
R
~ \/ﬁ

+ IWillopE[ Py = Pr [ 7

Apply Lemmatwice, E|| P, — P, llr S VEIE|Ellop < rll . Combining all,

Enﬁl - A1||F 5 AStat + Abias

where
1 VK
Astatzii
1+/\1 Vn
Apias = 6+ A+ e [WA(VVT = 1)(I — Pyy)]
blas—1+>\ 1+>\1 1{|F 1+)\1 1 ki )| F

Finally, by nature of the projection matrix Py, [[W1i(VVT — DI — Py)llr =
Vi, 02 (W(VVT = D)),

A.1.16 THEOREM[ZJ|

Assume the model (EI) and assumption (4.2) hold. And Aj be in , then
E||£2 - A2HF 5 Abias + Astat + Aﬁrst~
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where

Apigs = ||({ — Pk)A2||F + |1 Puls (I — 0 (0 + D)) ||k

Bw = (B2 V4 £yl -

K ~
B = (B2 4 c&) 241 - Al

(11 _ 1
C)\Q = (Eﬂ-g-‘rfg) ElIld.K,\2 = (1+ E)
Proof: We reuse the definitions of key quantities in[A.1.13] and decompose the error as follow

1As = As|lp = Az — P, B(Z)" ||
< |[(I = Puy)AallF + || Pry A2 — P, B(Z)" ||

By Lemmam IB(A)||lr < /\ . The remaining term can be bounded as

|Piy As — Py BAA) || 5 < || Piy A2 — Piy B(A) |7 + || Po, AB | P
< ||Ph, Ay — Po, B(A) || + | Ap B(A) || + || Ph, Apllr
< [|PhyAs = Po, B(A) || + | Apllop| BA) |7 + |25 [lopl| Prs || 7
(A)

~ 1
SN PryAo — Po, B(A)" || 7 + ||AP||op>T2 + Vk2||ABllop

Using Y — AW = AAT + FE, the first term can be bounded as

| PiyAs — Py BLA)T|| 5 = || Pry Ag — Pr, (22AT + ET) A(Z + D)7 F

P, ETA
< [Pry Do (1 = S (S + A1) )||F+||'“2T(En+/\zf)’l)llF
P, ETA P, ETA
1= (En + 220)” Hie < NS+ X20)” 1IIc)pllzillF
1 HP;QETA”
o UnLin(En) + )\2 n F
1 P, ETA
< )=k T
< I
By (3) of Lemma[A.T.10}
P.ETZ P.,ETZ
B2 < (B 2

- aVEPLalR
\/>
VEIPuel = |/ Tr(Elesel)PL,)

By Lemma[AT.13]

EHABHOP CA2E||A1 AlHOP
E[[Apllop S vsz&ﬁ + VE K\ E[ A1 — Ay lop
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where C), = (%2 + )\1? + %) K, = (1 + %2) Finally, we let
Apias = |(I = Pr) A2l + E||PeAs (I — 20 (S, 4+ X2D) ) || p
K 1 1
Agar = ( )\22 V ko + )\*2\/ Tr(E[eiQT]Pk)> ﬁ

K ~
B = (524 €3, ) BIAL - By

And,
E”£2 - AQHF ,S Abias + Aslal + Aﬁrst-
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