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Abstract
In this paper, we introduce DIGRAF, a novel framework leveraging Continuous
Piecewise-Affine Based (CPAB) transformations, which we augment with an
additional GNN to learn a graph-adaptive diffeomorphic activation function
in an end-to-end manner. In addition to its graph-adaptivity and flexibility,
DIGRAF also possesses properties that are widely recognized as desirable for
activation functions, such as differentiability, boundness within the domain and
computational efficiency. We show the consistent and superior performance of
DIGRAF across a variety of graph benchmarks, highlighting its effectiveness as
an activation function for GNNs.

1 Introduction
Recent advancements in GNN research have predominantly focused on exploring the design space of
key architectural elements, ranging from expressive GNN layers [1–5], to pooling layers [6–9], and
positional and structural encodings [10–12]. Despite the exploration of these architectural choices, a
common trend persists where most GNNs default to employing standard activation functions, such as
ReLU [13], among a few others. Therefore, our objective is to design a flexible activation function
tailored for graph data, offering consistent performance gains. This activation function should
possess many, if not all, of the properties recognized as beneficial for activation functions, with an
emphasis on blueprint flexibility, as well as task and input adaptivity.

We leverage the success of learning diffeomorphisms, particularly through Continuous Piecewise-
Affine Based transformations (CPAB) [14, 15], to devise an activation function tailored for graph-
structured data. Diffeomorphisms, characterized as bijective, differentiable and invertible mappings
with a differentiable inverse, inherently possess many desirable properties of activation functions, like
differentiability, boundedness within the input-output domain, and stability to input perturbations. To
augment our activation function with graph-adaptivity, we employ an additional GNN to derive the
parameters of the learned diffeomorphism. This yields our node permutation equivariant activation
function that dynamically adapts to different graphs, dubbed DIGRAF – DIffeomorphism-based
GRaph Activation Function, illustrated in Figure 1. We conduct an extensive set of experiments
comparing DIGRAF with widely used activation functions on several graph learning benchmarks
and consistently show improved performance over all the baselines.

2 Background and Notations
In this paper, we utilize the definitions from CPAB — a framework for efficiently learning flexible
diffeomorphisms [14, 15], alongside basic graph learning notations, to develop activation functions for
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Figure 1: Illustration of DIGRAF. Node features H(l−1) and adjacency matrix A are fed to a
GNN(l)

LAYER to obtain updated intermediate node features H̄(l), which are passed to our activation
function layer, DIGRAF. First, an additional GNN network GNNACT takes H̄(l) and A as input to
determine the activation function parameters θ(l). These are used to parameterize the transformation
T (l), which operates on H̄(l) to produce the activated node features H(l).

GNNs. Consequently, this section outlines the essential details needed to understand the foundations
of our DIGRAF. We defer the interested reader to Appendix E for a more gradual introduction to
CPAB.

2.1 CPAB Diffeomorphisms

Let Ω = [a, b] ⊂ R be a closed interval, where a < b. We discretize Ω using a tessellation P with
NP intervals, which, in practice, is oftentimes an equispaced 1D meshgrid with NP segments [15].
Our goal in this paper is to learn a diffeomorphism f : Ω → Ω that we will use as an activation
function.
Definition 2.1 (CPAB Diffeomorphism). Given a continuous and piecewise affine (CPA) velocity
field vθ parameterized by θ ∈ RNP−1, the CPAB diffeomorphism f at point x ∈ Ω, is defined as:

fθ(x) ≜ ϕθ(x, t = 1) (1)

such that ϕθ(x, t = 1) solves the integral equation:

ϕθ(x, t) = x+

t∫
0

vθ
(
ϕθ(x, τ)

)
dτ. (2)

In arbitrary dimensions, the computations in Definition 2.1 require using an ordinary differential
equation solver and can be expensive. However, for 1D diffeomorphisms, as in our DIGRAF, there
are closed-form solutions to the CPAB diffeomorphism and its gradients [15], offering an efficient
framework for learning activation functions.

2.2 Graph Learning Notations

Consider a graph G = (V,E) with N ∈ N nodes, where V = {1, . . . , N} is the set of nodes
and E ⊆ V × V is the set of edges. Let A ∈ {0, 1}N×N denote the adjacency matrix of G, and
X ∈ RN×F the node feature matrix, where F is the number of input features. The input node features
X are transformed into the initial node representations H(0) ∈ RN×C , obtained by applying an
embedding function emb : RF → RC to X, where C is the hidden dimension, that is

H(0) = emb(X). (3)

The initial features H(0) are fed to a GNN comprised of L ∈ N layers, where each layer l ∈
{1, . . . , L} is followed by an activation function σ(l)(·;θ(l)) : R → R, and θ(l) is a set of possibly
learnable parameters of σ(l). Specifically, the intermediate output of the l-th GNN layer is denoted
as:

H̄(l) = GNN(l)
LAYER(H

(l−1),A) (4)
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where H̄(l) ∈ RN×C . The activation function σ(l) is then applied element-wise to H̄(l), yielding
node features h(l)

u,c = σ(l)(h̄
(l)
u,c;θ(l)) ∀u ∈ V , ∀c ∈ [C] . Therefore, the application of σ(l) can be

equivalently written as follows:
H(l) = σ(l)(H̄(l);θ(l)). (5)

In the following section, we will show how this abstraction is translated to our DIGRAF.

3 DIGRAF
In this section, we formalize our approach, DIGRAF, illustrated in Figure 1, which leverages
diffeomorphisms to learn adaptive and flexible graph activation functions. We defer the theoretical
analysis of DIGRAF to Appendix D, emphasizing on its attributes that account for it as a strong
GNN activation function.

3.1 A CPAB Blueprint for Graph Activation Functions

Our approach builds on the highly flexible CPAB framework [14, 15] and extends it by incorporating
Graph Neural Networks (GNNs) to enable the learning of adaptive graph activation functions. While
the original CPAB framework was designed for grid deformation and alignment tasks, typically in
1D, 2D, or 3D spaces, we propose a novel application of CPAB in the context of learning activation
functions, as described below.

Formally, we define the transformation T (l) as the element-wise application of the diffeomorphism
fθ from Equation (1).

T (l)(h̄(l)
u,c;θ

(l)) ≜ fθ(l)

(h̄(l)
u,c), (6)

where θ(l) denotes learnable parameters of the diffeomorphism fθ(l)

, that parameterize the underlying
CPA velocity field as discussed in Appendix E. In Section 3.2 , we discuss the learning of θ(l) in
DIGRAF.

The transformation T (l) : Ω → Ω described in Equation (6) is based on CPAB and therefore takes as
input values within a domain Ω = [a, b], and outputs a value within that domain, where a < b are
hyperparameters. In practice, we take a = −b, such that the activation function can be symmetric
and centered around 0, a property known to be desirable for activation functions [16]. For any entry
in the intermediate node features H̄(l)(Equation (4)) that is outside the domain Ω, we use the identity
function. Therefore, a DIGRAF activation function reads:

DIGRAF(h̄(l)
u,c,θ

(l)) =

{
T (l)(h̄

(l)
u,c;θ(l)), If h̄(l)

u,c ∈ Ω

h̄
(l)
u,c, Otherwise

(7)

In practice, DIGRAF is applied element-wise in parallel over all entries, and we use the following
notation, which yields the output features post the activation of the l-th GNN layer:

H(l) = DIGRAF(H̄(l),θ(l)). (8)

3.2 Learning Diffeomorphic Velocity Fields

DIGRAF, defined in Equation (7), introduces graph-adaptivity into the transformation function T (l)

by employing an additional GNN, denoted as GNNACT, that returns the diffeomorphism parameters
θ(l):

θ(l)(H̄(l),A) = POOL
(

GNNACT(H̄
(l),A)

)
, (9)

where POOL is a graph-wise pooling operation, such as max or mean pooling. The resulting vector
θ(l) ∈ RNP−1, which is dependent on the tessellation size NP , is then used to compute the output of
the l-th layer, H(l), as described in Equation (8). We note that Equation (9) yields a different θ(l)

for every input graph and features pair (H̄(l),A), which implies the graph-adaptivity of DIGRAF.
Furthermore, since GNNACT is trained with the other network parameters in an end-to-end fashion,
DIGRAF is also adaptive to the task of interest. In Appendix C, we provide and discuss the
implementation details of GNNACT and POOL.
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Figure 2: Convergence analysis of DIGRAF compared to baseline activation functions for Cora
(left) and ZINC (right). The plot illustrates the training loss over epochs, showcasing overall faster
convergence of DIGRAF.

Variants of DIGRAF. Equation (9) describes an approach to introduce graph-adaptivity to θ(l)

using GNNACT. An alternative approach is to directly optimize the parameters θ(l) ∈ RNP−1,
without using an additional GNN. Note that in this case, input and graph-adaptivity are sacrificed
in favor of a computationally lighter solution. We denote this variant of our method by DIGRAF
(W/O ADAP.). Considering this variant is important because it allows us to: (i) offer a middle-ground
solution in terms of computational effort, and (ii) it allows us to directly quantify the contribution of
graph-adaptivity in DIGRAF. In Section 4, we compare the performance of the methods.

4 Experiments

Baselines. We compare DIGRAF with three categories of relevant and competitive baselines:
(1) Standard Activation Functions, namely Identity, ReLU [13], LeakyReLU [17], Tanh [18],
GeLU [19], ELU [20] and Sigmoid [21] to estimate the benefit of learning activation functions pa-
rameters; (2) Learnable Activation Functions, specifically PReLU [22], Maxout [23] and Swish [24],
to assess the value of graph-adaptivity; and (3) Graph Activation Functions, such as Max [25],
Median [25] and GReLU [26], to evaluate the effectiveness of DIGRAF’s design.

Table 1: A comparison of DIGRAF to natural
baselines, standard, and graph activation layers
on ZINC and MOLHIV datasets. The top three
methods are marked by First, Second, Third.

Method ZINC MOLHIV
MAE ↓ ROC-AUC ↑

STANDARD ACTIVATIONS
GIN + Identity 0.2460±0.0214 75.12±0.77
GIN + ReLU [27] 0.1630±0.0040 75.58±1.40
GIN + LeakyReLU [17] 0.1718±0.0042 74.75±1.20
GIN + Tanh [18] 0.1797±0.0064 75.22±2.03
GIN + GeLU [19] 0.1896±0.0023 74.15±0.79
GIN + ELU [20] 0.1741±0.0089 75.09±0.65
GIN + Sigmoid [21] 0.3839±0.0058 73.87±0.80

LEARNABLE ACTIVATIONS
GIN + PReLU [22] 0.1798 ±0.0067 73.56±1.63
GIN + Maxout [23] 0.1587±0.0057 72.75±2.10
GIN + Swish [24] 0.1636±0.0039 72.95±0.64

GRAPH ACTIVATIONS
GIN + Max [25] 0.1661±0.0035 73.44±2.08
GIN + Median [25] 0.1715±0.0050 72.80±2.21
GIN + GReLU [26] 0.3003±0.0086 73.45±1.62

GIN + DIGRAF (W/O ADAP.) 0.1382±0.0080 79.19±1.36
GIN + DIGRAF 0.1302±0.0090 80.28±1.44

Discussion. Our results, summarized in Table 1,
and further detailed in Appendix G, highlight the
following key points:

(R1) Overall Performance: DIGRAF consis-
tently outperforms competing activation
functions. It achieves an MAE of 0.1302
on ZINC, a 18% relative improvement over
Maxout. On MOLHIV, DIGRAF’s ROC-
AUC of 80.28% surpasses ReLU by 4.7%.

(R2) Graph-Adaptivity: DIGRAF surpasses
non-graph-adaptive functions like PReLU,
Maxout, and Swish, and its non-adaptive
variant, DIGRAF (W/O ADAP.), demon-
strating the critical role of graph adaptivity
in GNN activation functions.

(R3) Flexibility: DIGRAF exceeds graph-
adaptive functions such as Max, Me-
dian, and GReLU by leveraging a
diffeomorphism-based framework, effec-
tively modeling complex non-linearities.

(R4) Efficiency: As illustrated in Figure 2, DI-
GRAF accelerates training convergence and enhances downstream task performance.
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5 Conclusion
In this work, we introduced DIGRAF, a novel activation function tailored for graph-structured
data. By leveraging Continuous Piecewise-Affine Based (CPAB) transformations, DIGRAF adapts
to the unique structural features of input graphs, significantly enhancing performance in graph
learning tasks. DIGRAF offers key properties such as differentiability, boundedness, computational
efficiency, and permutation equivariance, making it highly suitable for graph-based applications.
Extensive experiments show that DIGRAF consistently outperforms existing activation functions
and accelerates training convergence, advancing the state-of-the-art in GNN activation design.
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A Related Work
Diffeomorphisms in Neural Networks. A bijection mapping function f : M → N , given two
differentiable manifolds M and N , is termed a diffeomorphism if its inverse f−1 : N → M is
also differentiable. The challenge in learning diffeomorphisms arises from their computational
complexity: early research is often based on complicated infinite dimensional spaces [28], and later
advancements have turned to Markov Chain Monte Carlo methods, which still suffer from large
computational complexity [29–31]. To address these drawbacks, Freifeld et al. [14, 15] introduced
the Continuous Piecewise-Affine Based transformation (CPAB) approach, offering a more pragmatic
solution to learning diffeomorphisms by starting from a finite-dimensional space, and allowing for
exact diffeomorphism computations in the case of 1D diffeomorphisms – an essential trait in our case,
given that activation functions are 1D functions. CPAB has linear complexity and is parallelizable,
which can lead to sub-linear complexity in practice [15]. Originally designed for alignment and
regression tasks by learning diffeomorphisms, in recent years, CPAB was found to be effective
in addressing numerous applications using neural networks, posing it as a suitable framework for
learning transformation. For instance, Detlefsen et al. [32] learns CPAB transformations to improve
the flexibility of spatial transformer layers, Martinez et al. [33] combines CPAB with neural networks
for temporal alignment, Weber and Freifeld [34] introduces a novel loss function that eliminates the
need for CPAB deformation regularization in time-series analysis, and Wang et al. [35] utilizes CPAB
to model complex spatial transformation for image animation and motion modeling.

Graph Neural Networks. Graph Neural Networks [36] (GNNs) have emerged as a transformative
approach in machine learning, notably following the popularity of the message-passing scheme [37].
GNNs enable effective learning from graph-structured data, and can be applied to different tasks,
ranging from social network analysis [38] to bioinformatics [39]. In recent years, various GNN
architectures were proposed, aiming to address various aspects, from alleviating oversmoothing [40],
concerning attention mechanisms in the message passing scheme [41–43], or focusing on the expres-
sive power of the architectures [1–5, 44], given that message-passing based architectures are known
to be bounded by the WL graph isomorphism test [27, 45].

Despite advancements, the poor performance of deep GNNs has led to a preference for shallow
architecture GCNs [46]. To enhance performance, techniques such as pooling functions have been
proposed, introducing generalization by reducing feature map sizes [47]. Methods such as HGP-
SL [47], GraphUNet [48], and LaPool [49] introduce pooling layers specifically designed for GNNs.
Beyond node feature, the importance of graph structure and positional features is increasingly
recognized, with advancements such as GraphGPS [11] and SAN [50] integrating positional and
structural encodings through attention-based mechanisms.

General-Purpose Activation Functions. In the last decades, the design of activation functions has
seen extensive exploration, resulting in the introduction of numerous high-performing approaches,
as summarized in Dubey et al. [16], Kunc and Kléma [51]. The focus has gradually shifted from
traditional, static activation functions such as ReLU [13], Sigmoid [21], Tanh [18], and ELU [52],
to learnable functions. In the landscape of learnable activation functions, the Maxout [23] unit
selects the maximum output from learnable linear functions, and PReLU [22] extends ReLU by
learning a negative slope. Additionally, the Swish function [24] augments the SiLU function [53],
a Sigmoid-weighted linear unit, with a learnable parameter controlling the amount of non-linearity.
The recently proposed AdAct [54] learns a weighted combination of several activation functions.
However, these activation functions are not input-adaptive, a desirable property in GNNs.

Graph Activation Functions. Typically, GNNs are coupled with conventional activation func-
tions [27, 38, 41], which were not originally tailored for graph data, graph tasks, or GNN models.
These activation functions do not inherently adapt to the structure of the input graph. This lack of
graph adaptivity extends to other GNN components as well. However, graph adaptivity was shown to
be an important property for several graph learning components, from pre-defined yet graph adaptive
activation functions as discussed below, to the normalization layer Eliasof et al. [55] of node features
in GNNs. In the context of graph activation functions, early works such as Scardapane et al. [56]
propose learning activation functions based on graph kernels, and Iancu et al. [25] introduces Max
and Median filters, which operate on local neighborhoods in the graph, thereby offering adaptivity to
the input graphs. A notable advancement in graph-adaptive activation functions is GReLU [26], a
parametric piecewise affine activation function achieving graph adaptivity by learning parameters
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Figure 3: Approximation of traditional activation functions using CPAB and Piecewise ReLU with
varying segment counts K ∈ {1, 2, 3} on a closed interval Ω = [−5, 5], demonstrating the advantage
of utilizing CPAB and its flexibility to model various activation functions.

through a hyperfunction that takes into account the node features and the connectivity of the graph.
While these approaches demonstrate the potential to enhance GNN performance compared to stan-
dard activation functions, they are constrained by their blueprint, often relying on piecewise ReLU
composition, which can be performance-limiting [57]. Moreover, a fixed blueprint limits flexibility,
i.e., the ability to express a variety of functions. As we show in Figure 3, attempts to approximate
traditional activation functions such as ELU and Tanh using piecewise ReLU composition with
different segment counts (K = 1, 2, and 3), reveal limited approximation power. On the contrary,
our DIGRAF, which leverages CPAB, yields significantly better approximations. Furthermore,
we demonstrate the approximation power of activations learned with the CPAB framework in our
DIGRAF in Appendix G.1.

Evaluation of Rectified Activation Functions. Rectified activation functions, represented by the
Rectified Linear Unit (ReLU), have been widely applied and studied in various neural network
architectures due to their simplicity and effectiveness [51, 58, 59]. The prevalent assumption that
ReLU’s performance is predominantly due to its sparsity is critically examined by Xu et al. [60],
suggesting introducing a non-zero slope in the negative part can significantly enhance network
performance. Extending this, Price et al. [61] investigates sparsity-inducing activation functions,
such as the shifted ReLU, in network initialization and early stages of training. These functions can
mitigate overfitting and boost model generalization capabilities. Conversely, it was shown that in
overparameterized networks, smoother activation functions, like Tanh and Swish, can enhance the
convergence rate, in contrast to the non-smooth characteristics of ReLU [62]. However, the fixed
nature of ReLU and many of its variants restricts their ability to adapt the input, resulting in limited
power to capture dynamics in learning.

Advancements in Learnable Activation Functions. Recent research has increasingly focused on
adaptive and learnable activation functions, which are optimized alongside the learning process of
the network. The AdAct framework [54] introduces learnability by combining multiple activation
functions into a single module with learnable weighting coefficients. However, these coefficients
are fixed after training, limiting the framework’s adaptability to varying inputs. A concurrent work
by Liu et al. [63] introduces Kolmogorov-Arnold Networks (KAN), a novel architecture that diverges
from traditional Multi-Layer Perceptron (MLP) configurations, which applies activation functions
to network edges instead of nodes. Unlike our current work, which focuses only on the design of
activation functions for GNNs, their research extends beyond this scope and considers a fundamental
architecture design. Finally, the recently proposed TAFS [64] learns a task-adaptive (but not graph-
adaptive) activation function for GNNs through a bi-level optimization.

B Contrasting with Grid Deformations
In DIGRAF, we treat a node feature (single channel) as a one-dimensional (1D) point. Given
the node features matrix H̄ ∈ RN×C , we apply DIGRAF per entry in H̄, in accordance with
the typical element-wise computation of activation functions. We mention that, while CPAB was
originally designed to learn grid deformations, it can be utilized as an activation function blueprint by
considering a conceptual shift that we demonstrate in Figure 4.
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Given an input function (shown in red in the figure), CPAB deforms grid coordinates, i.e., it transforms
it along the horizontal axis, as shown in the blue curve. In contrast, DIGRAF transforms the original
data points along the vertical axis, resulting in the green curve. This conceptual shift can be seen
visually from the arrows showing the different dimensions of transformations. We therefore refer to
the vertical transformation of the data as their activations.

C Implementation Details of DIGRAF
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Figure 4: Different transformation strate-
gies. The input function (red), CPAB transfor-
mation (blue), and DIGRAF transformation
(green), within Ω = [−5, 5] using the same
θ. While CPAB stretches the input, DIGRAF
stretches the output, showcasing the distinc-
tive impact of each approach.

Multiple Graphs in one Batch. Consider a set of
graphs S = {G1, G2, · · · , GB} with a batch size of
B. Let NS = N1 + N2 + · · · + NB represent the
cumulative number of nodes across the graph dataset.
The term Nmax

∆
= max(N1, N2, · · · , NB) denotes

the largest node count present in any single graph
within S.

To create a unified feature matrix for S that en-
compasses all graphs in the batch, we standard-
ize the dimension by padding each feature matrix
Xi ∈ RNi×C , i ∈ [B] for graph Gi ∈ S from Ni to
Nmax with zeros. The combined feature matrix XS

is constructed by concatenating the transposed fea-
ture matrices X⊺

i ∀i ∈ [B], resulting in a matrix that
lies in the domain R(B·C)×Nmax . This matrix is per-
mutation invariant; while relabeling nodes changes
the row indices, it does not affect the overall trans-
formation process. Therefore, DIGRAF can handle
multiple graphs in a batch. In practice, to avoid the
overhead of padding, we use the batching support
from Pytorch-Geometric [65].

Implementation Details of GNNACT. In Section 3.2, we examined two distinct approaches to learn
the diffeomorphism parameters θ(l), either directly or through GNNACT. As shown in Appendix E,
θ(l) determines the velocity field vθ

(l)

. Predicting a graph-dependent θ(l) adds graph-adaptivity to
the activation function T (l). In DIGRAF we achieve this by employing another GNN i.e., GNNACT,
described below.

The backbone of GNNACT utilizes the same structure as the primary network layers GNN(l)
LAYER, that

is, GCN [38] or GIN [27]. It is important to note, that while GNNACT has a similar structure to the
primary network GNN, it has its own set of learnable weights, and it is shared among the layers,
unlike the primary GNN layers GNN(l)

LAYER. The hidden dimensions and the number of layers of
GNNACT are hyperparameters. The weight parameters of GNNACT are trained concurrently with the
main network weights. As described in Equation (9), after the computation of GNNACT, a pooling
layer denoted by POOL is placed to aggregate node features. This aggregation squashes the node
dimension such that the output is not dependent on the specific order of nodes, and it yields the vector
of parameters θ(l).

Rescaling H̄(l). Following the implementation of Freifeld et al. [14], the default 1D domain for
CPAB is set as [0, 1]. To enhance the flexibility of T (l) and ensure its adaptability across various
input datasets, DIGRAF extends the domain to Ω = [a, b] ⊂ R with a < b as shown in Section 2.1.
To match the two domains, we rescale the intermediate feature matrix H̄(l) from Ω to the unit
interval [0, 1] before passing it to T (l). Let r = b−a

2 , then rescaling is performed using the function
f(x) = (x+ r)/(2r). Data points outside this range will retain their original value, effectively acting
as an identity function outside the domain Ω.

Velocity Field Regularization. To ensure the smoothness of the velocity field, which will encourage
training stability [34], we incorporate a regularization term in the learning procedure of θ(l). Namely,
we follow the Gaussian smoothness prior on the CPA velocity field from Freifeld et al. [14], which
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was shown to be effective in maintaining smooth transformations. The regularization term is defined
as follows:

R({θ(l)}Ll=1) =

L∑
l=1

θ(l)⊤Σ−1
CPAθ

(l), (10)

where ΣCPA represents the covariance of a zero-mean Gaussian smoothness prior defined as in Freifeld
et al. [14]. This function is parameterized by two hyperparameters: λΣ and λsmooth, which control
the overall variance and the smoothness respectively.

We further maintain the boundedness of θ(l) by employing a hyperbolic tangent function (Tanh). In
this way, θ(l) remains in [−1, 1] when applied in T (l) in Equation (7), ensuring that the velocity field
parameters remain bounded, encouraging the overall training stability of the model.

Training Loss Function. As described in Equation (10), we employ a regularization term for
the velocity field to maintain the smoothness of the activation function. To control the strength
of regularization, we introduce a hyperparameter λ. We denote LTASK as the loss function of the
downstream task (i.e. cross-entropy loss in case of classification and mean absolute error in case of
regression tasks), and the overall training loss of DIGRAF, denoted as LTOTAL is given as

LTOTAL = LTASK + λR({θ(l)}Ll=1). (11)

D Properties of DIGRAF
In this section, we focus on understanding the theoretical properties of DIGRAF, highlighting the
compelling attributes that establish it as a performant activation function for GNNs.

DIGRAF yields differentiable activations. By construction, DIGRAF learns a diffeomorphism,
which is differentiable by definition. Being differentiable everywhere is considered beneficial as it
allows for smooth weight updates during backpropagation, preventing the zigzagging effect in the
optimization process [66].

DIGRAF is bounded within the input-output domain Ω. We point out in Remark F.3 that the
diffeomorphism T (l)(·;θ(l)) is a Ω → Ω transformation. Any diffeomorphism is continuous, and by
the extreme value theorem, T (l)(·;θ(l)) is bounded in Ω. This prevents the activation values from
becoming excessively large, a property linked to faster convergence [16].

DIGRAF can learn to be zero-centered. Benefiting from its flexibility, DIGRAF has the capacity
to learn activation functions that are inherently zero-centered. As an input-adaptive activation function
governed by a parameters vector θ(l), DIGRAF can be adjusted through θ(l) to maintain a zero-
centered nature. This property is associated with accelerated convergence in neural network training
[16].

DIGRAF is efficient. DIGRAF exhibits linear computational complexity, and can further achieve
sub-linear running times via parallelization in practice [15]. Moreover, with the existence of a
closed-form solution for fθ(l)

and its gradient in the 1D case [14], the computations of CPAB can
be done efficiently. Additionally, the measured runtimes, detailed in Appendix I, underscore the
complexity comparability of DIGRAF with other graph activation functions.

In addition to the above properties, which follow from our design choice of learning diffeomorphisms
through the CPAB framework, we briefly present the following properties, which are formalized and
proven in Appendix F.

DIGRAF is permutation equivariant. We demonstrate in Proposition F.4 that DIGRAF exhibits
permutation equivariance to node numbering, ensuring that its behavior remains consistent regardless
of the ordering of the graph nodes, which is a key desired property in designing GNN components
[67].

DIGRAF is Lipschitz continuous. We show in Proposition F.2 that DIGRAF is Lipschitz continu-
ous and derive its Lipschitz constant. Since it is also bounded, we can combine the two results, which
leads us to the following proposition:
Proposition D.1 (The boundedness of T (·;θ(l)) in DIGRAF). Given a bounded domain Ω = [a, b] ⊂
R where a < b, and any two arbitrary points x, y ∈ Ω, the maximal difference of a diffeomorphism
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T (·;θ(l)) with parameter θ(l) in DIGRAF is bounded as follows:

|T (x;θ(l))− T (y;θ(l))| ≤ min(|b− a|, |x− y| exp(C
vθ(l) )) (12)

where C
vθ(l) is the Lipschitz constant of the CPA velocity field vθ

(l)

.

DIGRAF extends commonly used activation functions. CPAB [14, 15], which is used as a
framework to learn the diffeomorphism in DIGRAF, is capable of learning and representing a wide
range of diffeomorphic functions. When used as an activation function, the transformation T (l)(·;θ(l))
in DIGRAF adapts to the specific graph and task by learning different θ(l) parameters, rather than
having a fixed diffeomorphism. Examples of popular and commonly used diffeomorphisms utilized
as activations include Sigmoid, Tanh, Softplus, and ELU, as we show in Appendix F. Extending
this approach is our DIGRAF that learns the diffeomorphism during training rather than selecting a
pre-defined function.

E Overview of CPA Velocity Fields and CPAB Transformations
In this Section, we drop the layer notations l for simplicity. Throughout this section we will use
the definitions presented in CPAB, a framework that allows to efficiently learn flexible diffeomor-
phisms [14, 15].

Let Ω = [a, b] ⊂ R be a closed interval, where a < b. We discretize Ω using a tessellation P with
NP intervals, which, in practice, is oftentimes an equispaced 1D meshgrid with NP segments [15].
Definition E.1 (Tessellation of a closed interval [14]). A tessellation P of size NP subintervals
of a closed interval Ω = [a, b] in R is a partitioning {[xi, xi+1]}NP−1

i=0 that satisfies the following
properties:

(1) x0 = a and xNP = b

(2) Each point x ∈ Ω lies in at least one subinterval [xi, xi+1]

(3) The intersection of any two subintervals [xi, xi+1] and [xi+1, xi+2] is exactly {xi+1}

(4)
NP−1⋃
i=0

[xi, xi+1] = Ω

Our goal in this paper is to learn a diffeomorphism f : Ω → Ω that we will use as an activation
function. Formally, a diffeomorphism is defined as follows:
Definition E.2 (Diffeomorphism on a closed interval Ω). A diffeomorphism on a closed interval
Ω ⊂ R is any function f : Ω → Ω that is (1) bijective, (2) differentiable, and (3) has a differentiable
inverse f−1.

To instantiate a CPAB diffeomorphism f , we define a continuous piecewise-affine (CPA) velocity field
vθ parameterized by θ ∈ RNP−1. We display examples of velocity fields vθ for various instances
of θ in Figure 5a to demonstrate the distinct influence of θ on vθ. Formally, a velocity field vθ is
defined as follows:
Definition E.3 (CPA velocity field vθ on Ω). Given a tessellation P with NP intervals on a closed
domain Ω, any velocity field vθ : Ω → R is termed continuous and piecewise-affine if (1) vθ is
continuous, and (2) vθ is an affine transformation on each interval of P .

The CPA velocity field vθ defines a differentiable trajectory ϕθ(x, t) : Ω× R → Ω for each x ∈ Ω.
The trajectories are computed by integrating the velocity field vθ to time t, and are used to construct
the CPAB diffeomorphism. We visualize the resulting diffeomorphism in Figure 5b with matching
colors denoting corresponding pairs of vθ and fθ(x).

We now discuss how the velocity fields are computed following the methodologies presented
by Freifeld et al. [14, 15] and highlight the relations between vθ, θ and P .

The vector of parameters θ is linked to the subintervals in P , whose dimension is determined by the
number of intervals NP . Similar to Freifeld et al. [14], we impose boundary constraints that mandate
the velocity at the boundary of the tessellation to be zero, i.e., vθ(0) = vθ(1) = 0. This boundary
condition allows us to compose the diffeomorphism in the domain Ω with an identity function for any
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Figure 5: An example of CPA velocity fields vθ defined on the interval Ω = [−5, 5] with a tessellation
P consisting of five subintervals. The three different parameters, θ1, θ2, and θ3 define three distinct
CPA velocity fields (Figure 5a) resulting in separate CPAB diffeomorphisms fθ(x) (Figure 5b).

values outside the domain. Under this constraint, the degrees of freedom (number of parameters) for
θ is NP − 1.

The velocity field is then defined as follows:
Definition E.4 (Relation between θ and vθ, taken from Freifeld et al. [15]). Given a tessellation P
with NP intervals on a closed domain Ω = [a, b], as defined in Definition E.1. Given a parameter
θ ∈ RNP−1 and an arbitrary point x within the domain, a continuous piecewise-affine velocity field
vθ can present as follows:

vθ(x) =

NP−2∑
j=0

θjbj x̃, (13)

where {bj}NP−2
j=0 is an orthonormal basis of the space of velocity fields V , such that vθ ∈ V , and

x̃ =

[
x
1

]
.

F Proofs For Properties of DIGRAF

Similar to Appendix E, for simplicity, in this section, we drop the layer notations l.

In this section, we present the propositions and proofs for the properties outlined in Appendix D. We
begin by remarking that as shown in Appendix D, DIGRAF is bounded within the domain Ω = [a, b],
where a < b by construction. We then present Proposition F.1 that outlines the Lipschitz constant of
the velocity field vθ , followed by Proposition F.2, showing that DIGRAF is also Lipschitz continuous,
and provide an upper bound on its Lipschitz constant.
Proposition F.1 (The Lipschitz Constant of vθ). Given two arbitrary points x, y ∈ R, and velocity
field parameters θ ∈ RNP−1 that define the continuous piecewise-affine velocity field vθ , there exists
a Lipschitz constant Cvθ =

∑NP−2
j=0 |θj | such that∣∣vθ(x)− vθ(y)

∣∣ ≤ Cvθ∥(x̃− ỹ)∥2, (14)

where | · | and ∥ · ∥2 denote the absolute value of a scalar and the ℓ2 norm of a vector, respectively.

Proof. First, we note that it was shown in Freifeld et al. [14, 15] that vθ is Lipschitz continuous, and
now we provide a derivation of that Lipschitz constant. Following Definition E.4, the velocity field
vθ is defined as vθ(x) =

∑NP−2
j=0 θjbj x̃, where {bj}NP−2

j=0 is an orthonormal basis of the velocity
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space. By the definition of vθ(x) and vθ(y), we have the following:

∣∣vθ(x)− vθ(y)
∣∣ =

∣∣∣∣∣∣
NP−2∑
j=0

θjbjx̃−
NP−2∑
j=0

θjbj ỹ

∣∣∣∣∣∣ (15)

=

∣∣∣∣∣∣
NP−0∑
j=0

θjbj(x̃− ỹ)

∣∣∣∣∣∣ (16)

≤
NP−2∑
j=0

|θj |∥bj∥2∥(x̃− ỹ)∥2 (17)

=

NP−2∑
j=0

|θj |∥(x̃− ỹ)∥2 (18)

= ∥(x̃− ỹ)∥2
NP−2∑
j=0

|θj | (19)

= Cvθ∥(x̃− ỹ)∥2, (20)
where the transition between Equation (16) and Equation (17) follows from the triangle inequality,
and the transition between Equation (17) and Equation (18) follows from bj being an orthonormal
vector.

From the derivation above, and the fact that we know from Freifeld et al. [14, 15] that the velocity
field is Lipschitz continuous, we conclude that the Lipschitz constant Cvθ of vθ reads Cvθ =∑NP−2

j=0 |θj |.

Given the Lipschitz constant Cvθ for vθ, we proceed to demonstrate that the transformation T (·;θ)
in DIGRAF is Lipschitz continuous, as well as bounding its Lipschitz constant.
Proposition F.2 (The Lipschitz Constant of DIGRAF). The diffeomorphic function T (·;θ) in
DIGRAF is defined in Equation (6) for a given set of weights θ, which in turn define the velocity
field vθ. Let x, y ∈ R be two arbitrary points, then the following inequality is satisfied:

|T (x;θ)− T (y;θ)| ≤ |x− y| exp(Cvθ ) (21)

where Cvθ is the Lipschitz constant of vθ.

Proof. We begin by substituting T (·;θ) with Equation (1) and Equation (6). Utilizing Proposition F.1,
we then establish an upper bound for |T (x;θ)− T (y;θ)| as follows:

|T (x;θ)− T (y;θ)| = |x+

1∫
0

vθ
(
ϕθ(x, τ)

)
dτ − y −

1∫
0

vθ
(
ϕθ(y, τ)

)
dτ | (22)

≤ |x− y|+ Cvθ

1∫
0

∣∣(ϕθ(x, τ)− ϕθ(y, τ))
∣∣ (23)

≤ |x− y| exp(Cvθ ), (24)

where Cvθ is the Lipschitz constant of vθ (Proposition F.1) and the last transition follows from
Grönwall’s inequality [68]. Consequently, the Lipschitz constant of DIGRAF is bounded from above
by exp(Cvθ ).

Now that we established that T (·;θ) is Lipschitz continuous and presented an upper bound, we
investigate what is the maximal difference in the output of T (·;θ) with respect to two arbitrary inputs
x, y ∈ Ω, and whether it can be bounded. To address this, we present the following remark:
Remark F.3. Given a bounded domain Ω = [a, b], a < b, by construction, the diffeomorphism T (·;θ)
with parameter θ in DIGRAF, as in Equation (7), is a Ω → Ω transformation [14, 15]. Therefore,
by the max value theorem, the maximal output discrepancy for arbitrary x, y ∈ Ω is |b − a|, i.e.,
|T (x;θ)− T (y;θ)| ≤ |b− a|.
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Combining the Proposition F.1, Proposition F.2 and Remark F.3, we formalize and prove the following
proposition:
Proposition D.1 (The boundedness of T (·;θ(l)) in DIGRAF). Given a bounded domain Ω = [a, b] ⊂
R where a < b, and any two arbitrary points x, y ∈ Ω, the maximal difference of a diffeomorphism
T (·;θ(l)) with parameter θ(l) in DIGRAF is bounded as follows:

|T (x;θ(l))− T (y;θ(l))| ≤ min(|b− a|, |x− y| exp(C
vθ(l) )) (12)

where C
vθ(l) is the Lipschitz constant of the CPA velocity field vθ

(l)

.

Proof. In Proposition F.2 we presented an upper bound on the Lipschitz constant of T (·;θ), and in
F.3 we also presented an upper bound on the maximal difference between the application of T (·;θ)
on two inputs x, y. Combining the two bounds, we get the following inequality:

|T (x;θ)− T (y;θ)| ≤ min(|b− a|, |x− y| exp(Cvθ )). (25)

The result in Proposition D.1 gives us a tighter upper bound on the boundedness of the transformation
T (·;θ) in our DIGRAF that is related both to the hyperparameters a, b, as well as the learned velocity
field parameters θ.

Next, we discuss another property outlined in Appendix D, demonstrating that DIGRAF is permuta-
tion equivariant – a desirable property when designing a GNN component [67].
Proposition F.4 ( DIGRAF is permutation equivariant.). Consider a graph encoded by the adjacency
matrix A ∈ RN×N , where N is the number of nodes. Let H̄(l) ∈ RN×C be the intermediate
node features at layer l, before the element-wise application of our DIGRAF. Let P be an N ×N
permutation matrix. Then,

DIGRAF(PH̄(l),θ
(l)
P ) = P DIGRAF(H̄(l),θ(l)) (26)

where θ
(l)
P and θ(l) are obtained by feeding PH̄(l) and H̄(l), respectively, to Equation (9).

Proof. We break down the proof into two parts. First, we show that GNNACT outputs the same θ
under permutations, that is we show

θ
(l)
P = θ(l).

Second, we prove that the activation function T (l) is permutation equivariant, ensuring the overall
method maintains this property.

To begin with, recall that Equation (9) is composed by GNNACT, which is permutation equivariant,
and by a pooling layer, which is permutation invariant. Therefore their composition is permutation
invariant, that is θ(l)

P = θ(l).

Prior to the activation function layer T (l), H̄(l) undergoes rescaling as described in Appendix C,
which is permutation equivariant as it operates element-wise. Finally, since activation function T (l)

acts element-wise, and given that θ remains unchanged, the related CPA velocity fields are identical,
resulting in the same transformed output for each entry, despite the entries being permuted in PH̄(l).
Therefore, DIGRAF is permutation equivariant.

F.1 Diffeomorphic Activation Functions

In this section, we provide several examples of popular and well-known diffeomorphic functions,
contributing to our motivation to utilize diffeomorphisms as a blueprint for learning graph activation
functions. We remark that, differently from standard activation functions, our DIGRAF does not
need to follow a predefined, fixed template, but can instead learn a diffeomorphism best suited for the
task and input, as T (l) within CPAB can represent a wide range of diffeomorphisms [14, 15].

We recall that, as outlined in Definition E.2, a function is classified as a diffeomorphism if it is
(1) bijective, (2) differentiable, and (3) has a differentiable inverse.
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Sigmoid. We denote the Sigmoid activation function as σ : R → (0, 1), defined by

σ(x) =
1

1 + e−x
.

To prove that σ is a diffeomorphism, we first establish its bijectivity. Injectivity follows from observing
that for any distinct points x1 and x2 in R, σ(x1) =

1
1+e−x1

can only equal σ(x2) =
1

1+e−x2
if and

only if x1 = x2. For surjectivity, we represent x as a function of y, such that y = 1
1+e−x =⇒ x =

− ln
(

1−y
y

)
, ensuring that for every y ∈ (0, 1) there is an element x ∈ R such that σ(x) = y.

To demonstrate differentiability, we examine the derivative of σ. The derivative

d

dx
σ(x) = σ(x)(1− σ(x)),

which is continuous. Additionally, the inverse function

σ−1(y) = − ln

(
1− y

y

)
is also bijective and differentiable. Thus, with all these requirements satisfied, σ is indeed a diffeo-
morphism.

Tanh. The hyperbolic tangent function

tanh(x) =
ex − e−x

ex + e−x

is a diffeomorphism from R to (−1, 1). To establish this, we demonstrate that tanh is bijective and
differentiable, with a differentiable inverse function.

Firstly, tanh is injective because if tanh(x1) = tanh(x2), then x1 = x2. It is also surjective because
for any y ∈ (−1, 1), there exists x = 1

2 ln
(

1+y
1−y

)
such that tanh(x) = y.

The derivative
d

dx
tanh(x) = 1− tanh2(x)

is continuous and positive. Additionally, the inverse function

tanh−1(y) =
1

2
ln

(
1 + y

1− y

)
is continuously differentiable. Therefore, tanh qualifies as a diffeomorphism.

Softplus. To establish the Softplus function

softplus(x) = ln(1 + ex)

as a diffeomorphism from R to (0,∞), we first demonstrate its injectivity and surjectivity.

Assuming softplus(x1) = softplus(x2), we obtain ex1 = ex2 , implying x1 = x2, hence establishing
injectivity. For any y ∈ (0,∞), we find an x ∈ R such that y = ln(1 + ex), ensuring surjectivity.

The derivative of the Softplus function,

d

dx
softplus(x) =

ex

1 + ex
= σ(x),

where σ(x) is the Sigmoid function, known to be continuous and differentiable. Therefore, softplus(x)
is continuously differentiable.

Considering the inverse of the Softplus function,

softplus−1(y) = ln(ey − 1),

its derivative is
d

dy
softplus−1(y) =

ey

ey − 1
,
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Figure 6: The approximation error of the Peaks function (Equation (27)) with ReLU, Tanh, and
DIGRAF.

which is continuous for all y > 0, indicating that softplus−1(y) is continuously differentiable for all
y > 0. Therefore, we conclude that the softplus function qualifies as a diffeomorphism.

ELU. The ELU activation function [52] is defined as below:

ELU(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0

where α ∈ R is a constant that scales the negative part of the function. To demonstrate that ELU is
bijective, we analyze its injectivity and surjectivity. For x > 0, ELU acts as the identity function,
which is inherently injective. For x ≤ 0, α(ex1 − 1) = α(ex2 − 1), implies x1 = x2. The inverse
function for ELU is given by:

ELU−1(y) =

{
y if y > 0

ln( yα + 1) if y ≤ 0

This inverse maps every value in the codomain back to a unique value in the domain, proving that
ELU is surjective.

Next, we examine the continuity of ELU. At x = 0, ELU(x = 0) = α(e0 − 1) = 0. Next, we check
the limits for both sides of 0. For x > 0, limx→0+ ELU(x) = limx→0+ x = 0, while for x ≤ 0, we
have limx→0− ELU(x) = limx→0− α(ex − 1) = 0. Since both limits are equal, the ELU function is
continuous at x = 0. For the derivative of ELU, i.e.,

d

dx
ELU(x) =

{
1 if x > 0

αex if x ≤ 0

at x = 0, we have d
dxELU(x) = αe0 = α. By setting α = 1, the derivative at x = 0 matches the

derivative for x > 0, making the derivative continuous.

The derivative for the inverse function is

d

dy
ELU−1(y) =

{
1 if y > 0

1
y+α if y ≤ 0

which is also continuously differentiable. Hence, ELU is a diffeomorphism.

G Additional Results
G.1 Function Approximation with CPAB

The combination of learned linear layers together with non-linear functions such as ReLU and
Tanh are well-known to yield good function approximations [69, 70]. Therefore, when designing
an activation function blueprint, i.e., the template by which the activation function is learned, it
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Table 2: Comparision of node classification accuracy (%) ↑ on different datasets using various
baselines with DIGRAF. The top three methods are marked by First, Second, Third.

Method ↓ / Dataset → BLOG CATALOG FLICKR CITESEER CORA PUBMED

STANDARD ACTIVATIONS
GCN + Identity 74.8±0.5 53.5±1.1 69.1±1.6 80.5±1.2 77.6±2.1
GCN + ReLU [38] 72.1±1.9 50.7±2.3 67.7±2.3 79.2±1.4 77.6±2.2
GCN + LeakyReLU [17] 72.6±2.1 51.0±2.0 68.4±1.8 79.4±1.6 76.8±1.6
GCN + Tanh [18] 73.9±0.5 51.3±1.5 69.1±1.4 80.5±1.3 77.9±2.1
GCN + GeLU [19] 75.8±0.5 56.1±1.3 67.8±1.7 79.3±1.9 77.1±2.7
GCN + ELU [20] 74.8±0.5 53.4±1.1 69.1±1.7 80.7±1.2 77.5±2.2
GCN + Sigmoid [21] 39.7±4.5 18.3±1.2 27.9±2.1 32.1±2.3 52.8±6.6

LEARNABLE ACTIVATIONS
GCN + PReLU [22] 74.8±0.4 53.2±1.5 69.2±1.5 80.5±1.2 77.6±2.1
GCN + Maxout [23] 72.4±1.4 54.0±1.8 68.5±2.2 79.8±1.5 77.3±2.9
GCN + Swish [24] 76.0±0.7 55.7±1.4 67.7±1.8 79.2±1.1 77.3±2.8

GRAPH ACTIVATIONS
GCN + Max [25] 72.0±1.0 47.5±0.9 59.7±2.9 76.0±1.8 75.0±1.4
GCN + Median [25] 77.7±0.7 58.3±0.6 61.3±2.7 77.1±1.1 75.7±2.5
GCN + GReLU [26] 73.7±1.2 54.4±1.6 68.5±1.9 81.8±1.8 78.9±1.7

GCN + DIGRAF (W/O ADAP.) 80.8±0.6 68.6±1.8 69.2±2.1 81.5±1.1 78.3±1.6
GCN + DIGRAF 81.6±0.8 69.6±0.6 69.5±1.4 82.8±1.1 79.3±1.4

is important to consider its approximation power. In Figure 3, we demonstrate the ability of the
CPAB framework to approximate known activation functions. We now show additional evidence
for the flexibility and power of CPAB as a framework for learning activation functions, leading to
our DIGRAF. To this end, we consider the ability of a multilayer perceptron (MLP) with various
activation functions (ReLU, Tanh, and DIGRAF) to approximate the well-known ‘peaks’ function
that mathematically reads:

g(x, y) = 3(1−x)2 exp(−(x2)−(y+1)2)−10(
x

5
−x3−y5) exp(−x2−y2)−1

3
exp(−(x+1)2−y2).

(27)
The peaks function in Equation (27) is often times used to measure the ability of methods to
approximate functions [71], where the input is point pairs (x, y) ∈ R2, and the goal is to minimize the
mean-squared-error between the predicted function value g and the actual function value x. Formally,
we consider the following MLP:

ĝ(x, y) = (σ(σ([x, y]W1)W2)W3), (28)

where σ is the activation of choice (ReLU, Tanh, or DIGRAF), and W1 ∈ R2×64, W2 ∈ R64×64,
W3 ∈ R64×1 are the trainable parameter matrices of the linear layers in the MLP. The goal, as
discussed above, is to minimize the loss ∥ĝ(x, y) − g(x, y)∥2, for data triplets (xi, yi, g(xi, yi))
sampled from the peaks function. In our experiment, we sample 50,000 points, and report the
obtained approximation error in terms of MSE in Figure 6. As can be seen, our DIGRAF, based
on the CPAB framework, allows to obtain a significantly lower approximation error, up to 10 times
lower (better) than ReLU, and 3 times better than Tanh. This example further motivates us to harness
CPAB as the blueprint of DIGRAF.

G.2 Results on Node Classification

Our results are summarized in Table 2, where we consider the BLOGCATALOG [72], FLICKR [72],
CITESEER [73], CORA [74], and PUBMED [75] datasets. As can be seen from the table, DIGRAF
consistently outperforms all standard activation functions, as well as all the learnable activation
functions. Additionally, DIGRAF outperforms other graph-adaptive activation functions. We
attribute this positive performance gap to the ability of DIGRAF to learn complex non-linearities
due to its diffeomorphism-based blueprint, compared to piecewise linear or pre-defined functions as
in other methods. Finally, we compare the performance of DIGRAF and DIGRAF (W/O ADAP.).
We remark that in this experiment, we are operating in a transductive setting, as the data consists of a
single graph, implying that both DIGRAF and DIGRAF (W/O ADAP.) are adaptive in this case.
Still, we see that DIGRAF slightly outperforms the DIGRAF (W/O ADAP.) and we attribute this
performance gain to the GNN layers within DIGRAF that are (i) explicitly graph-aware, and (ii)
can facilitate the learning of better diffeomorphism parameters θ(l) (Equation (9)) due to the added
complexity.
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Table 3: A comparison of DIGRAF to natural baselines, standard, and graph activation layers on
OGB datasets, demonstrating the advantage of our approach. The top three methods are marked by
First, Second, Third.

Method ↓ / Dataset → MOLESOL MOLTOX21 MOLBACE MOLHIV
RMSE ↓ ROC-AUC ↑ ROC-AUC ↑ ROC-AUC ↑

STANDARD ACTIVATIONS
GIN + Identity 1.402±0.036 74.51±0.44 72.69±2.93 75.12±0.77
GIN + ReLU [27] 1.173±0.057 74.91±0.51 72.97±4.00 75.58±1.40
GIN + LeakyReLU [17] 1.219±0.055 74.60±1.10 73.40±3.19 74.75±1.20
GIN + Tanh [18] 1.190±0.044 74.93±0.61 74.92±2.47 75.22±2.03
GIN + GeLU [19] 1.147±0.050 74.29±0.59 75.59±3.32 74.15±0.79
GIN + ELU [20] 1.104±0.038 75.08±0.62 76.10±3.29 75.09±0.65
GIN + Sigmoid [21] 0.884±0.043 69.15±0.52 68.70±3.68 73.87±0.80

LEARNABLE ACTIVATIONS
GIN + PReLU [22] 1.098±0.062 74.51±0.92 76.16±2.28 73.56±1.63
GIN + Maxout [23] 1.109±0.045 75.14±0.87 76.83±3.88 72.75±2.10
GIN + Swish [24] 1.113±0.066 73.31±1.01 77.23±2.35 72.95±0.64

GRAPH ACTIVATIONS
GIN + Max [25] 1.199±0.070 75.50±0.77 77.04±2.81 73.44±2.08
GIN + Median [25] 1.049±0.038 74.39±0.90 77.26±2.74 72.80±2.21
GIN + GReLU [26] 1.108±0.066 75.33±0.51 75.17±2.60 73.45±1.62

GIN + DIGRAF (W/O ADAP.) 0.9011±0.047 76.37±0.49 78.90±1.41 79.19±1.36
GIN + DIGRAF 0.8196±0.051 77.03±0.59 80.37±1.37 80.28±1.44
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Figure 7: Activation function learned by DIGRAF after the last GNN layer on two randomly
selected graphs from ZINC. Different node colors indicate different node features. DIGRAF yields
different activation for different graphs.

G.3 Results on OGB

We evaluate DIGRAF on 4 datasets from the OGB benchmark [76], namely, MOLESOL, MOLTOX21,
MOLBACE, and MOLHIV. The results are reported in Table 3, where it is noted that DIGRAF achieves
significant improvements compared to standard, learnable, and graph-adaptive activation functions.
For instance, DIGRAF obtains a ROC-AUC score of 80.28% on MOLHIV, an absolute improvement
of 4.7% over the best performing activation function (ReLU).

G.4 Visualization of DIGRAF

To illustrate the learned activation function DIGRAF after the last GNN layer on different graphs,
we randomly selected two graphs from the ZINC dataset, as shown in Figure 7. The original graphs
are presented in the lower right section, with each color representing a feature. Nodes with the same
color share the same feature. The comparison of the figures clearly demonstrates that different graphs,
with varying features and structures, learn distinct activation functions. This provides clear evidence
that DIGRAF is adaptive to the input graph.
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Table 4: Statistics of the node classification datasets [72–75].

Dataset #nodes #edges #features #classes

PLANETOID
CORA 2,708 10,556 1,433 7
CITESEER 3,327 9,104 3,703 6
PUBMED 19,717 88,648 500 3

SOCIAL NETWORKS
FLICKR 7,575 479,476 12,047 9
BLOGCATALOG 5,196 343,486 8,189 6

Table 5: Hyperparameter configurations for the Planetoid datasets [73–75].

Hyperparameter Search Range / Value

Learning rate for GNN(l)
LAYER [10−5, 10−4, 10−3, 5 × 10−3, 5 × 10−2]

Learning rate for θ(l) / GNNACT [10−6, 5 × 10−6, 10−5, 10−4, 10−3, 5 × 10−3]

Weight decay [10−5, 10−4, 5 × 10−3, 0.0]
C [64, 128, 256]
CACT [64, 128]
LACT [2, 4]
p [0.0, 0.5]
NP [2, 4, 8, 16]

λ [0.0, 10−3, 10−2, 1.0]

H Experimental Details

We implemented DIGRAF using PyTorch [77] (offered under BSD-3 Clause license) and the PyTorch
Geometric library [65] (offered under MIT license). All experiments were conducted on NVIDIA
RTX A5000, NVIDIA GeForce RTX 4090, NVIDIA GeForce RTX 4070 Ti Super, NVIDIA GeForce
GTX 1080 Ti, NVIDIA TITAN RTX and NVIDIA TITAN V GPUs. For hyperparameter tuning
and model selection, we utilized the Weights and Biases (wandb) library [78]. We used the difw
package [14, 15, 33, 79] (offered under MIT license) for the diffeomorphic transformations based on
the closed-form integration of CPA velocity functions. In the following subsections, we present the
experimental procedure, dataset details, and hyperparameter configurations for each task.

Hyperparameters. The hyperparameters include the number of layers L and embedding dimension
C of GNN(l)

LAYER, learning rates and weight decay factors for both GNN(l)
LAYER and GNNACT, dropout

rate p, tessellation size NP , and regularization coefficient λ. We additionally include the number of
layers LACT and embedding dimension CACT of GNNACT. We employed a combination of grid search
and Bayesian optimization. All hyperparameters were chosen according to the best validation metric.

Node Classification. For each dataset, we train a 2-layer GCN [38] as the backbone architecture,
and integrate each of the activation functions into this model. Following Zhang et al. [26], we
randomly choose 20 nodes from each class for training and select 1000 nodes for testing. For each
activation function, we run the experiment 10 times with random partitions. We report the mean and
standard deviation of node classification accuracy on the test set. Table 4 summarizes the statistics of
the node classification datasets used in our experiments. All models were trained for 1000 epochs
with a fixed batch size of 32 using Adam optimizer. Tables 5 and 6 lists the hyperparameters and
their search ranges or values.

Graph Classification. The statistics of various datasets can be found in Table 7. We consider the
following setup:

• ZINC-12K: We consider the splits provided in Dwivedi et al. [80]. We use the mean absolute
error (MAE) both as the loss and evaluation metric and report the mean and standard deviation
over the test set calculated using five different seeds. We use the Adam optimizer and decay the
learning rate by 0.5 every 300 epochs, with a maximum of 1000 epochs. In all our experiments,
we adhere to the 500K parameter budget [80]. We use GINE [81] layers both for GNN(l)

LAYER

and within GNNACT, and we fix CACT = 64 and LACT = 2. We report the hyperparameter search
space for all the other hyperparameters in Table 8.
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Table 6: Hyperparameter configurations for the social network datasets [72].

Hyperparameter Search Range / Value

Learning rate for GNN(l)
LAYER [10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−2, 10−2]

Learning rate for θ(l) / GNNACT [10−6, 10−5, 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2]

Weight decay for GNNLAYER [10−5, 10−4, 5 × 10−3, 0.0]

Weight decay for θ(l) / GNNACT [10−6, 10−5, 10−4, 5 × 10−3, 0.0]
C [64, 128, 256]
CACT [16, 32, 64, 128]
L [2, 4]
LACT [2, 4]
p [0.0, 0.4, 0.5, 0.6, 0.7]
NP [2, 4, 8, 16]

λ [0.0, 10−3, 10−2, 1.0]

Table 7: Statistics of the graph classification datasets[76, 80].

Dataset #graphs #nodes #edges #features #classes

ZINC-12K 12,000 ∼23.2 ∼49.8 1 1

OGB
MOLESOL 1,128 ∼13.3 ∼13.7 9 1
MOLTOX21 7,831 ∼18.6 ∼19.3 9 2
MOLBACE 1,513 ∼34.1 ∼36.9 9 2
MOLHIV 41,127 ∼25.5 ∼27.5 9 2

• OGB: We consider 4 datasets from the OGB repository, with one, namely MOLESOL, being a
regression problem, while the others are classification tasks. We run each experiment using five
different seeds and report the mean and standard deviation of RMSE/ROC-AUC. We use the
Adam optimizer, decaying the learning rate by a factor of 0.5 every 100 epochs, and train for a
maximum of 500 epochs. We use the GINE model with the encoders prescribed in Hu et al. [76]
both for GNN(l)

LAYER and within GNNACT, and we set CACT = 64 and LACT = 2. We present the
hyperparameter search space for all other parameters in Table 8

I Complexity and Runtimes
Time Complexity. We now provide an analysis of the time complexity of DIGRAF. Let us recall
the following details: (i) As described in Equation (8), DIGRAF is applied element-wise in parallel
for each dimension of the output of GNN(l)

LAYER. (ii) As described in Equation (9), we employ an
additional GNN denoted by GNNACT to compute θ(l). In all our experiments, both the backbone GNN
and GNNACT are message-passing neural networks (MPNNs) [37]. (iii) As described in Theorem
2 of Freifeld et al. [15], for 1-dimensional domain, there exists a closed form for T (l)(·;θ(l)), and
the complexity for the CPAB computations are linear with respect to the tesselation size, which is a
constant of up to 16 in our experiments. Therefore, using DIGRAF with any linear complexity (with
respect to the number of nodes and edges) MPNN-based backbone maintains the linear complexity of
the backbone MPNN. Put precisely, each MPNN layer has linear complexity in the number of nodes
|V | and |E|. We use LACT layers in GNNACT, the computational complexity of a DIGRAF layer is
O(LACT · (|V |+ |E|)). Since we have L layers in overall GNN, the computational complexity of an
MPNN-based GNN coupled with DIGRAF is O(L · LACT · (|V |+ |E|)). In our experiments, we fix
the hyperparameter LACT = 2, resulting in O(L · (|V |+ |E|)) computational complexity in practice.

Runtimes. Despite having linear computational complexity in the size of the graph, DIGRAF
performs additional computations to obtain θ(l) using GNNACT. To understand the impact of these
computations, we measured the training and inference times of DIGRAF and present it in Table 9.
Specifically, we report the average time per batch and standard deviation of the same measured on an
NVIDIA A5000 GPU, using a batch size of 128. For a fair comparison, we use the same number of
layers, batch size, and channels in all methods. Additionally, for our DIGRAF, we set the number
of layers within GNNACT to LACT = 2, and the embedding dimension to CACT = 64. Our analysis
indicates that while DIGRAF requires additional computational time, it yields significantly better
performance. For example, compared to the best activation function on the dataset, namely Maxout,
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Table 8: Hyperparameters and search ranges/values for OGB [76], and ZINC-12K [80] datasets.

Hyperparameter OGB ZINC

Learning rate for GNN(l)
LAYER [10−5, 10−4, 10−3, 5 × 10−3]

Learning rate for θ(l)/GNNACT [5 × 10−6, 10−5, 10−4, 10−3, 5 × 10−3]

Weight decay for GNN(l)
LAYER [10−5, 10−4, 5 × 10−3, 0.0]

Weight decay for θ(l)/GNNACT [10−5, 10−4, 5 × 10−3, 0.0]
C [64, 128] [64, 128, 256]
L [2, 4, 6] [2, 4]
p [0.0, 0.5]
NP [2, 4, 8, 16]

λ [0.0, 10−3, 10−2, 1.0]
Graph pooling layer [sum, mean]
Batch size [64, 128] [64, 128]

Table 9: Batch runtimes on a NVIDIA RTX A5000 GPU of DIGRAF and other activation functions,
with 4 GNN layers, batch size 128, 64 embedding dimension, and GNNACT with LACT = 2 layers
and CACT = 64 embedding dimension, on ZINC-12K dataset.

Method ZINC
Training time (ms) Inference time (ms) (MAE ↓)

GIN + ReLU [27] 4.18±0.10 2.47±0.08 0.1630±0.0040

GIN + Maxout [23] 4.71±0.13 2.41±0.12 0.1587±0.0057
GIN + Swish [24] 4.55±0.12 2.30±0.24 0.1636±0.0039

GIN + Max [25] 9.19±0.25 4.50±0.93 0.1661±0.0035
GIN + Median [25] 14.54±1.35 10.13±1.20 0.1715±0.0050
GIN + GReLU [26] 20.63±0.99 11.69±2.79 0.3003±0.0086

GIN + DIGRAF (W/O ADAP.) 13.76±0.65 4.97±1.72 0.1382±0.0080
GIN + DIGRAF 19.37±1.28 8.62±0.18 0.1302±0.0090

DIGRAF requires an additional ∼ 6.21ms at inference, but results in a relative improvement in the
performance of ∼ 17.95%.

J Ablation Studies of Parameter Count

J.1 Parameter Count Comparison

GNNACT is a core component of DIGRAF, which ensures graph-adaptivity by generating the
parameters θ(l) of the activation function conditioned on the input graph. While the benefits of graph-
adaptive activation functions are evident from our experiments in Section 4, as DIGRAF consistently
outperforms DIGRAF (W/O ADAP.), the variant of our method that is not graph adaptive, it comes
at the cost of additional parameters to learn GNNACT (Equation (9)). Specifically, because in all our
experiments GNNACT is composed of 2 layers and a hidden dimension of 64, DIGRAF adds at most
approximately 20K additional parameters. The number of added parameters in DIGRAF (W/O
ADAP.) is significantly lower, counting at NP − 1, where NP is the tessellation size. Note in our
experiments, the tessellation size does not exceed 16. To further understand whether the improved
performance of DIGRAF is due to the increased number of parameters, we conduct an additional
experiment using the ReLU activation function where we increase the number of parameters of the
model and compare the performances. In particular, we consider following settings: (1) The standard
variant (GIN + ReLU), (2) The variant obtained by doubling the number of layers, and (3) The variant
is obtained by doubling the number of hidden channels.

We present the results of the experiment described above on the ZINC-12K and MOLHIV datasets in
Table 10. We observed that adding more parameters to the ReLU baseline does not produce significant
performance improvements, even in cases where the baselines have ∼4 times more parameters than
DIGRAFand its baseline. On the contrary, with DIGRAF significantly improved performance is
obtained compared to the baselines.
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Table 10: Performance Comparison of DIGRAF with ReLU variants of increased parameter budget.
The number of parameters is reported within the parenthesis adjacent to the metric. We use GINE [81]
as a backbone. Increasing the parameter count with ReLU does not yield significant improvements,
and DIGRAF outperforms all variants, even those with a higher number of parameters. Note that,
DIGRAF (W/O ADAP.) has only NP − 1 additional parameters, where NP is the tessellation size.

Method ↓ / Dataset → ZINC (MAE ↓) MOLHIV (ACC. % ↑)

GIN + ReLU (standard) 0.1630±0.0040 (∼ 308K) 75.58±1.40 (∼ 63K)
GIN + ReLU (double #channels) 0.1578±0.0014 (∼ 1207K) 75.73±0.71 (∼ 240K)
GIN + ReLU (double #layers) 0.1609±0.0033 (∼ 580K) 75.78±0.43 (∼ 116K)

DIGRAF (W/O ADAP.) 0.1382±0.0080 (∼ 308K) 79.19±1.36 (∼ 63K)
DIGRAF 0.1302±0.0090 (∼ 333K) 80.28±1.44 (∼ 83K)

Table 11: Results on ZINC and MOLHIV datasets along with number of parameters in paranthesis.

Method ZINC (MAE) ↓ MOLHIV (ROC AUC) ↑
GIN + DIGRAF (W/O ADAP.) with larger GNNLayer 0.1388 ± 0.0071 (337K) 79.22 ± 1.40 (85K)
GIN + DIGRAF (W/O ADAP.) (Original) 0.1382 ± 0.0086 (308K) 79.19 ± 1.36 (63K)
GIN + DIGRAF 0.1302 ± 0.0094 (333K) 80.28 ± 1.44 (83K)

J.2 Comparison of DIGRAF and DIGRAF (W/O ADAP.) with Equal Parameter Budget

To demonstrate the efficacy of graph adaptivity provided by GNNACT, we conduct an experiment
where we increase the number of layers and channels of GNNLAYER in DIGRAF (W/O ADAP.)
to match the total number of parameters in DIGRAF. As shown in Table 11, the increase in the
number of parameters does not translate to better performance. Rather, the effective usage of the
extra parameters as done by GNNACT is the reason behind the performance boost of DIGRAF.
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