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ABSTRACT

In recent years, much speech separation research has focused primarily on im-
proving model performance. However, for low-latency speech processing sys-
tems, high efficiency is equally important. Therefore, we propose a speech separa-
tion model with significantly reduced parameters and computational costs: Time-
frequency Interleaved Gain Extraction and Reconstruction network (TIGER).
TIGER leverages prior knowledge to divide frequency bands and compresses fre-
quency information. We employ a multi-scale selective attention module to extract
contextual features, while introducing a full-frequency-frame attention module
to capture both temporal and frequency contextual information. Additionally, to
more realistically evaluate the performance of speech separation models in com-
plex acoustic environments, we introduce a dataset called EchoSet. This dataset
includes noise and more realistic reverberation (e.g., considering object occlusions
and material properties), with speech from two speakers overlapping at random
proportions. Experimental results showed that models trained on EchoSet had bet-
ter generalization ability than those trained on other datasets to the data collected
in the physical world, which validated the practical value of the EchoSet. On
EchoSet and real-world data, TIGER significantly reduces the number of param-
eters by 94.3% and the MACs by 95.3% while achieving performance surpassing
state-of-the-art (SOTA) model TF-GridNet.

1 INTRODUCTION

Humans possess the ability to focus on a specific speech signal in noisy environments, a phenomenon
known as the “cocktail party effect” (Cherry, 1953). In speech processing, the corresponding chal-
lenge is accurately separating different sound sources from mixed audio signals, a task referred to as
speech separation. Speech separation is typically used as a preprocessing step for speech recogni-
tion, as it helps enhance recognition accuracy (Haykin & Chen, 2005). Consequently, it is crucial to
ensure that speech separation not only produces clear and distinct outputs on real-world audios but
also meets the demands of low latency and computational efficiency (Divenyi, 2004). Therefore, in
practical applications, optimizing the parameters and computational costs of separation models to
reduce resource consumption becomes particularly important.

In recent years, the application of deep learning methods to the speech separation task has received
widespread attention (Wang et al., 2023; Li et al., 2023; 2022; Li & Luo, 2023; Subakan et al.,
2021). Although many high-performing speech separation methods have been proposed, two key
issues remain insufficiently addressed.

First, when designing a separation model, we should fully take into account the actual application
scenarios of the speech processing system, which require low latency and low computational com-
plexity. However, many approaches have primarily focused on improving speech separation perfor-
mance. For example, TF-GridNet (Wang et al., 2023) utilizes bidirectional LSTMs and self-attention
mechanisms in an alternating manner, achieving good results on benchmark datasets but have large
model sizes. To make the model more applicable in computationally constrained real-world scenar-
ios, it is critical to make the model more lightweight while maintaining high performance. TDANet
(Li et al., 2023) introduces an efficient lightweight architecture using top-down attention, achieving
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competitive performance with lower computational costs than SepFormer (Subakan et al., 2021).
However, as a time-domain method, TDANet struggles to leverage frequency-domain information.
On the other hand, time-frequency domain approaches like TF-GridNet (Wang et al., 2023) model
both time and frequency dimensions but require higher computational resources. BSRNN (Luo &
Yu, 2023), which is the SOTA model for music separation, reduces the computational burden by
focusing on frequency bands, but the band-split strategy is under-explored in speech separation.
How to balance computational efficiency and separation quality by effectively utilizing frequency
characteristics in speech separation is still a big challenge.

Second, the commonly used speech separation datasets still exhibit a significant gap from real-world
scenarios. Many methods relied on the WSJ0-2mix dataset (Hershey et al., 2016) for evaluation,
which only contains clean audio without noise or reverberation. In addition, the speech signals
from two speakers are fully overlapping. Models trained on this kind of dataset are subject to weak
generalization and robustness in real-world environments (Kadıoğlu et al., 2020; Cosentino et al.,
2020). Although the WHAMR! dataset (Maciejewski et al., 2020) introduces noise and reverberation
to WSJ0-2mix, the generated reverberation fails to fully take into account factors such as object
occlusion and material properties, and the diversity of acoustic scenarios remains limited. Therefore,
to more accurately train and evaluate speech separation models for practical use, a dataset that more
closely resembles real-world environments is necessary. Specifically, this dataset should include
different noise types, cover a wide range of realistic acoustic environments, and have speech overlap
ratios that are randomly distributed.

To address the aforementioned two issues, we propose a novel time-frequency domain speech
separation model called Time-frequency Interleaved Gain Extraction and Reconstruction network
(TIGER), along with a speech separation dataset containing reverberation and noise (EchoSet).

Our main contributions are as follows:

1. We propose a novel lightweight separation model named TIGER. TIGER adopts a band-split
strategy to reduce computational costs by leveraging prior knowledge in the frequency do-
main. Furthermore, TIGER introduces the frequency-frame interleaved (FFI) block, composed
of two key submodules: multi-scale selective attention (MSA) and full-frequency-frame atten-
tion (F3A). These submodules enable efficient integration of temporal and frequency features.

2. We propose a speech separation dataset called EchoSet. It is a high-fidelity dataset bridging the
gap between model training and real-world applications.

Experiments show that models trained on EchoSet generalized better on real-world data than those
trained on benchmark dataset LRS2-2Mix (Li et al., 2023) and Libri2Mix (Cosentino et al., 2020),
validating that audio in EchoSet are closer to the physical world. We then comprehensively eval-
uated TIGER on Libri2Mix, LRS2-2Mix and EchoSet. As the dataset becomes more complex,
TIGER’s superiority in performance becomes more significant. On EchoSet, which is the most com-
plicated among the three datasets, TIGER improved the performance by about 5% compared with
TF-GridNet, while reducing the parameters and MACs by 94.3% and 95.3% respectively. When
tested on real-world data, TIGER also achieved the best separation performance. The remarkable
result shows that TIGER provides a new solution for the design of lightweight speech separation
models for practical use in the time-frequency domain.

2 RELATED WORK

Speech separation. Speech separation methods can be divided into time domain and time-frequency
domain. Time domain methods directly process the original audio signal. Conv-TasNet (Luo &
Mesgarani, 2019) is the cornerstone of time domain separation models. It extracts features by tem-
poral convolutional network (Lea et al., 2016). To improve the performance on long sequence data,
DPRNN (Luo et al., 2020) divides the temporal sequence into small blocks and alternately per-
forms intra-block and inter-block modeling, which becomes a common paradigm for many follow-
ing works (Wang et al., 2023; Subakan et al., 2021). The time-frequency domain methods apply
a Short-Time Fourier Transform (STFT) to transform the waveform into a joint representation of
time and frequency. TF-GridNet (Wang et al., 2023) enhances the temporal context information by
a full-band self-attention module. Although TF-GridNet achieved SOTA performance, it involves
huge computational costs.
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Lightweight models. Some models (Wang et al., 2023; Yang et al., 2022; Subakan et al., 2021)
with high computational complexity are difficult to be applied to real-time speech processing on
edge devices. To reduce computational costs, TDANet (Li et al., 2023) draws on the attention
mechanism of human brains and designs a lightweight structure. In music separation, BSRNN (Luo
& Yu, 2023) uses prior knowledge to split band, performing band merging on less important bands
to compress the feature while retaining key frequency band information.

Datasets for speech separation. WSJ0-2mix (Hershey et al., 2016) is an early and commonly used
fully-overlapping clean speech separation dataset. WHAM! (Wichern et al., 2019) added environ-
mental noises to WSJ0-2mix, and furthermore WHAMR! (Maciejewski et al., 2020) added simple
reverberation. Libri2Mix (Cosentino et al., 2020) was proposed based on the observation (Kadıoğlu
et al., 2020) that the test performance of Conv-TasNet trained on WSJ0-2mix dropped sharply on
other separation datasets. The utterances in Libri2Mix were mixed with sparse overlap, and noises
were added to the mixed audio, but reverberation was not considered in Libri2Mix. LRS2-2Mix (Li
et al., 2023) was mixed by video clips acquired through BBC. The audio was recorded in real acous-
tic scenarios, thus containing much noise and reverberation. However, due to the different recording
environments of the clips, such as the shapes and materials of the room and objects, the reverberation
obtained when the clips were directly mixed is still unrealistic.

3 TIGER

Encoder Band-split
Module Separator Band-restoration

Module

Decoder

Decoder

Figure 1: The overall pipeline for TIGER. We focus on scenarios with only two speakers.

3.1 OVERALL PIPELINE

Let L be the sequence length of an audio. Given a monaural mixture audio SSS ∈ R1×L containing
utterances of C speakers and noise nnn ∈ R1×L:

SSS =

C∑
i

PPP i +nnn, (1)

the speech separation task is to recover the clean speech of each speaker PPP i ∈ R1×L.

The TIGER system (Figure 1) can be divided into five main components: the encoder, the band-
split module, the separator, the band-restoration module, and the decoder. Specifically, we first
use STFT as the encoder to convert the mixed audio signal SSS ∈ R1×L into its time-frequency
representationXXX ∈ CF×T , where F and T represent the number of frequency bins and time frames,
respectively. Next, we apply a frequency band-split strategy, dividing the frequency bands into K
sub-bands of varying widths based on their importance. Each sub-band is transformed into a uniform
channel size N using 1D convolutions, and these are then stacked along the frequency dimension to
produce the feature representation ZZZ ∈ RN×K×T . Thirdly, ZZZ serves as the input to the separator,
which uses FFI blocks with shared parameters to model the acoustic characteristics of each speaker.
Subsequently, the band-restoration module restores the sub-bands to the full frequency range using
separator output JJJB ∈ RN×K×T (B denotes number of blocks in separator), and the mask for each
speaker MMM i ∈ CF×T is applied element-wise product to XXX , producing the separated representation
for each speaker HHHi ∈ CF×T . Finally, the inverse STFT is used to generate the clean speech signal
P̄PP i ∈ R1×L for each speaker.

3.2 BAND-SPLIT MODULE

Given a time-frequency representation XXX , we first apply a frequency band-split strategy to divide
the frequency dimension into K frequency sub-bands {BBBk ∈ CGk×T |k = [1,K]} :

F =

K∑
k=1

Gk. (2)
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The widths of the sub-bands Gk are not necessarily the same. For each frequency sub-band BBBk,
we merge its real Re(·) and imaginary Im(·) parts into the frequency dimension to generate ḂBBk ∈
R2Gk×T . We denote the concatenation operation as ||, then:

ḂBBk = Re(BBBk)||Im(BBBk). (3)

Next, we transform the frequency dimension 2Gk of ḂBBk to the feature dimension N using a group
normalization layer followed by a 1D convolution, which utilizes a kernel size of 1 and does not
share parameters across different ḂBBk. In this way, we obtain feature ZZZk ∈ RN×T of the same
shape for each sub-band. We then stack the features ZZZk from the K frequency sub-bands along the
frequency dimension to yield the input feature ZZZ ∈ RN×K×T for the separator.

3.3 SEPARATOR

MSA module

F3A module

Layernorm

MSA module

F3A module

Layernorm

Frequency path Frame path

Frequency-frame interleaved block        times

FFI block FFI block FFI block

(a) Pipeline of separator

(b) Detail of FFI block

Figure 2: The separator of TIGER, consists of several FFI blocks which share parameters. Residual
connections are used to retain original features and reduce learning difficulty.

In the separator, the input featureZZZ passes sequentially through B frequency-frame interleaved (FFI)
blocks with shared parameters, as shown in Figure 2. In each FFI block, the frequency path is first
used to extract contextual information between different sub-bands, producing ZZZb,f ∈ RN×K×T .
Next, we feedZZZb,f into the frame path to further model the contextual information between different
time frames, generating ZZZb,t ∈ RN×K×T .

The structures are identical in both the frequency path and the frame path, modeling along the fre-
quency dimension and the time dimension respectively. Each path consists of two main modules: the
multi-scale selective attention (MSA) module and the full-frequency-frame attention (F3A) module.
As illustrated in Figure 3, taking the frequency path as an example, we first apply the MSA module
along the frequency dimension K to selectively extract features from ZZZb, which results in enhanced
frequency features Z̄ZZb ∈ RN×K×T . Then, the F3A module is used to integrate information across
different sub-bands of Z̄ZZb, followed by layer normalization, to produce the output feature of the
frequency path ZZZb,f .

3.3.1 MSA MODULE

The MSA module enhances important features through a selective attention mechanism and is di-
vided into three stages: encoding, fusion, and decoding, as shown in Figure 3(a). Taking the MSA
module in the frequency path as an example, the input to the module is ZZZb.

The encoding stage. This stage aims to capture multi-scale acoustic features. Specifically, we
first use multiple 1D convolutional layers (with a stride of 2 and channel of H) to progressively
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SA module
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Conv2d

Conv2d

Conv2d

Self-
attention Conv2d

(a) MSA module

(b) F3A module

MLC

Figure 3: The structure of the MSA module and the F3A module. The structures of frequency and
frame paths are the same.
downsample the frequency dimension to K

2D
, resulting in a set of multi-scale acoustic features

{EEEd ∈ RH× K

2d
×T |d = [0, D]}, where d denotes the d-th layer of downsampling. Next, we ap-

ply average pooling layers, denoted as λ(·), to downsample all EEEd to the same frequency resolution
K
2D

. Subsequently, the features with different frequency resolutions are fused into global features

GGG =
∑D

d=0 λ(EEEd),GGG ∈ RH× K

2D
×T by summing. Finally, a multi-layer convolutional (MLC) net-

work is used to transform GGG into GGG′ ∈ RH× K

2D
×T .

The fusing stage. In this stage, we fuse the local EEEd and global GGG′ information using the selective
attention (SA) module. Specifically, for the d-th layer, we first use two 1D convolutions to map GGG′

into τ ∈ RH× K

2D
×T and ρ ∈ RH× K

2D
×T , respectively. Then, we also use one 1D convolution to

map EEEd into ϕ ∈ RH× K

2d
×T . To match the resolution of ϕ, τ and ρ are upsampled through inter-

polation µ(·), and selective attention weights are generated using a sigmoid function σ(·). Finally,
the attention weights are multiplied element-wise with ϕ, and µ(ρ) is added to the result to obtain
LLLd ∈ RH× K

2d
×T . The above process can be expressed as follows:

LLLd = f(µ(τ), ϕ, µ(ρ)). (4)

The function of f is defined as follows:

f(x, y, z) = σ(x)⊙ y + z, (5)

where x and z represent global features, y represents local features, and ⊙ denotes element-wise
multiplication. This function describes the mathematical process of SA mechanism. We first apply
sigmoid function to x, generating a value between 0 and 1. Then, the value is used to extract
effective feature from local information by calculating element-wise product of σ(x) and y. Finally,
we add the product to z, fusing global information and filtered local information. In this way,
{LLLd ∈ RH× K

2d
×T | d = [0, D]} contains both local and global information, which helps the model

better extract the acoustic feature in the audio mixture.

The decoding stage. In the d-th layer, where d ∈ [0, D−1], the input consists of the decoding result
from the previous layer d+ 1 (denoted as DDDd+1 ∈ RH× K

2d+1 ×T ) and the output LLLd from the fusion
stage at the d-th layer. DDDd+1 is processed through the SA module to produceDDDd. Specifically,DDDd+1

is transformed using two 1D convolutions to obtain α ∈ RH× K

2d+1 ×T and β ∈ RH× K

2d+1 ×T , while

5
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LLLd is transformed through a 1D convolution to produce γ ∈ RH× K

2d
×T . We then compute:

DDDd = f(µ(α), γ, µ(β)), (6)

where f is defined in equation 5. This formulation integrates the decoding result with the output from
the fusion stage to generate the next layer of decoded features. In particular, for the layer where d =

D, DDDD = LLLD ∈ RH× K

2D
×T . For the layer where d = 0, we use one 1D convolution to restore the

hidden dimension H in DDD0 ∈ RH×K×T to the feature dimension N , obtaining Z̄ZZb ∈ RN×K×T as
the output of the MSA module. In the MSA module of the frequency path, the frequency dimension
K is considered the processing dimension. In the frame path, the time dimension T is considered
the processing dimension.

3.3.2 FULL-FREQUENCY-FRAME ATTENTION MODULE

In the frequency path, the F3A module is used to aggregate features across different sub-bands,
as shown in Figure 3(b). Given the input Z̄ZZb and the number of attention heads A, we first use
separate 1 × 1 2D convolutional layers with distinct parameters to transform Z̄ZZb into query QQQ ∈
R(A×E)×K×T , key KKK ∈ R(A×E)×K×T , and value VVV ∈ R(A×N

A )×K×T .

To obtain the information of full time length on each sub-band and apply self-attention mechanism,
frame dimension T and the channel dimension E are merged in order of time step, so we get query
QQQi ∈ RK×(E×T ) and key KKKi ∈ RK×(E×T ) for the i-th attention head. Similarly, we get value
VVV i ∈ RK×(N

A ×T ). KKKi is transposed and then multiplied with QQQi to calculate the attention map of
size K×K, which indicates the similarity between each sub-band and acts as the weight information
of the frequency context. Then the attention map is multiplied with VVV i to obtain the output matrix.
For the i-th attention head, the output OOOi ∈ RK×(N

A ×T ) is calculated as follows:

OOOi = Softmax
(

QQQiKKK
T
i√

E × T

)
VVV i, (7)

The output matrix of each attention head is concatenated to get OOO ∈ RK×(N×T ), and the full-time
length is split into T time steps and transformed by 2D convolutional layer, generating the output
ZZZb,f ∈ RN×K×T . The process of the F3A module in the frame path is similar.

3.4 BAND RESTORATION MODULE

After going through the separator, the sub-bands need to be converted back to their original width
during mask estimation. Specifically, JJJB ∈ RN×K×T denotes the output of the separator. For
the k-th sub-band feature JJJB,k ∈ RN×T (k ∈ [1,K]), the PReLU activation function and 1D
convolutions are used to transform the number of channels to twice the original dimension 2Gk,
corresponding to the real and the imaginary part. The complex feature is restored to generate a mask
for each sub-band MMMk ∈ CGk×T using the ReLU activation function. Then they are merged on the
frequency dimension to get the mask for the whole band MMM ∈ CF×T . Similar to band-split, the 1D
convolutions of different sub-bands do not share parameters.

4 ECHOSET

To develop models that perform better in daily scenarios, we need a dataset close to the real world.
We create EchoSet, a speech separation dataset with various noise and realistic reverberation, based
on SoundSpaces 2.0 (Chen et al., 2022) and Matterport3D (Chang et al., 2017). An analysis of the
dataset is shown in Table 1.

SoundSpaces 2.0 is an audio rendering platform in 3D environments. Given the mesh of a 3D sce-
nario, it can simulate the acoustic effects of any sound captured from microphones. We followed the
steps below to generate mixed speech. (1) Choose the scenario. We selected rooms where daily con-
versations often occur (such as office, living room, bedroom, dining room, etc.) from Matterport3D,
a large RGB-D dataset containing 90 diverse multi-floor and multi-room indoor scenes. (2) Define
or sample the position. We defined a microphone at a suitable position, like next to a table or sofa,
and sampled two sound sources in the same room. (3) Sample the direction. The angle between
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the microphone and the sound source must be obtuse, meaning that the speaker and listener face
each other. (4) Sample the height. The microphone and sound sources were randomly generated at
a vertical height of 1.5 m to 1.9 m from the floor, which is about a person’s height. (5) Generate the
audio. With SoundSpaces 2.0, mixed audio files were generated based on bidirectional path tracking
algorithm (Cao et al., 2016), which can simulate various effects in the sound propagation process,
including reverberation, diffraction, and absorption. Materials of the room wall and the objects were
annotated by Matterport3D and considered during the generation of the audio mixture.

Based on the SoundSpaces 2.0 platform and the Matterport 3D scene dataset, we can simulate rever-
berant audio from different speakers in LibriSpeech (Panayotov et al., 2015) to build a new dataset,
EchoSet. In total, EchoSet includes 20,268 training utterances, 4,604 validation utterances, and
2,650 test utterances. Each utterance lasts for 6 seconds. We mixed the speech of the two speakers
at a random overlap ratio and added some noises from WHAM! noise (Wichern et al., 2019). The
two different speakers were mixed with signal-to-distortion ratio (SDR) sampled between -5 dB and
5 dB. The noises were mixed with SDR sampled between -10 dB and 10 dB. The code for building
the dataset is available at: https://anonymous.4open.science/r/TIGER-ICLR2025/
echoset-sim.py.

Dataset Noise Reverb Overlapping

WSJ0-2mix (Hershey et al., 2016) × × Full
WHAM! (Wichern et al., 2019) √

× Full
WHAMR! (Maciejewski et al., 2020) √ Only room Full

Libri2Mix (Cosentino et al., 2020) √
× Sparse but fixed

LRS2-2Mix (Li et al., 2023) √ Room and objects (different scenes) Full

EchoSet (ours) √ Room and objects (same scene) Random

Table 1: Features of datasets for speech separation.

5 EXPERIMENTAL SETUP

Dataset. We report the performance of TIGER on EchoSet. For fair comparison with previous
speech separation methods (Li et al., 2023; Wang et al., 2023; Hu et al., 2021), we also used two
benchmark datasets LRS2-2Mix (Li et al., 2023) and Libri2Mix train-100 min (Cosentino et al.,
2020). All of these datasets are at a sampling rate of 16 kHz.

To validate the gap between EchoSet and real-world environments, we constructed real-world data
by selecting 10 real-world environments and recording audio from 40 speakers from the LibriSpeech
(Panayotov et al., 2015) test set. The two audio used for mixing were recorded in the same acoustic
scene (e.g., the shape and material of the walls and objects in the room) and followed the same
mixing method as LRS2-2Mix (Li et al., 2023). The duration of each audio is 60s, and the sampling
rate is 16 kHz. For more details of these datasets, please refer to Appendix A.

Training and evaluation. During training, we utilized 3-second audio segments for EchoSet and
Libri2Mix, and 2-second segments for LRS2-2Mix. The negative SI-SDR was adopted as the train-
ing loss (Le Roux et al., 2019). Adam optimizer (Kingma & Ba, 2014) was employed with an initial
learning rate of 0.001, adjusted based on validation performance. Evaluation metrics included SDRi
and SI-SDRi (Vincent et al., 2006), with higher values indicating better performance. We report
parameters and MAC operations for complexity, which are calculated for one second of audio at
16 kHz. Inference speed was measured on NVIDIA RTX 4090 and Intel Xeon Gold 6326. De-
tailed training and evaluation configurations can be found in Appendix B and Appendix C. Code is
available at: https://anonymous.4open.science/r/TIGER-ICLR2025.

6 RESULTS AND DISCUSSION

6.1 ECHOSET IS MORE CLOSE TO THE REAL-WORLD DATA

We trained different models on Libri2Mix, LRS2-2Mix and EchoSet, and then tested them on the
data collected in the real world. The results are presented in Figure 4. Compared to models trained
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on Libri2Mix and LRS2-2Mix, the models trained on EchoSet produced higher-quality separated
speech, confirming that the gap between EchoSet and real-world audio is relatively small.

Figure 4: SI-SDRi results of different models on the real-world data. Models were trained on
Libri2Mix, LRS2-2Mix and EchoSet respectively.

6.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Methods Libri2Mix LRS2-2Mix EchoSet
SDRi SI-SDRi SDRi SI-SDRi SDRi SI-SDRi

Conv-TasNet (Luo & Mesgarani, 2019) 12.50 12.10 11.0 10.6 7.69 6.89
DualPathRNN (Luo et al., 2020) 11.64 11.26 13.0 12.7 5.87 5.06

SudoRM-RF1.0x (Tzinis et al., 2020) 13.58 13.16 11.4 11.0 7.70 6.84
A-FRCNN-16 (Hu et al., 2021) 16.73 16.32 13.3 13.0 9.64 8.76
TDANet Large (Li et al., 2023) 16.11 15.64 14.5 14.2 10.14 9.21

BSRNN (Luo & Yu, 2023) 17.38 16.96 14.4 14.1 12.75 12.23
TF-GridNet (Wang et al., 2023) 19.56 19.24 15.7 15.4 13.73 12.85

TIGER (small) 17.09 16.67 14.2 13.9 13.15 12.58
TIGER (large) 18.34 17.97 15.3 15.1 14.22 13.73

Table 2: Performance comparison of TIGER and other separation models on Libri2Mix, LRS2-
2Mix, and EchoSet. Models are trained and tested on corresponding datasets. Bold denotes the
best performance, and underline indicates the second-best.

Methods Paras MACs Training Inference
(M) (G/s) GPU Time GPU Memory CPU Time GPU Time GPU Memory

Conv-TasNet 2019 5.62 7.19 92.96 1436.94 64.21 13.17 28.78
DualPathRNN 2020 2.72 45.01 67.23 1813.55 723.13 30.38 298.09

SudoRM-RF1.0x 2020 2.72 4.65 118.46 1353.43 104.32 20.66 24.42
A-FRCNN-16 2021 6.13 81.28 230.53 2925.83 478.58 82.65 163.82
TDANet Large 2023 2.33 9.19 263.43 4260.36 434.44 74.27 136.96

BSRNN 2023 25.97 98.70 258.55 1093.11 897.27 78.27 130.24
TF-GridNet 2023 14.43 323.75 284.17 5432.94 2019.60 94.30 491.73

TIGER (small) 0.82 7.65 160.17 2049.46 351.15 42.38 122.23
TIGER (large) 0.82 15.27 229.23 3989.59 765.47 74.51 122.23

Table 3: Efficiency comparisons of TIGER and other models. GPU Time and CPU Time are
recorded in ms, and GPU Memory is recorded in MB.
We compared TIGER with previous SOTA models including Conv-TasNet (Luo & Mesgarani,
2019), DualPathRNN (Luo et al., 2020), SudoRM-RF1.0x (Tzinis et al., 2020), A-FRCNN-16 (Hu
et al., 2021), TDANet Large (Li et al., 2023), BSRNN (Luo & Yu, 2023) and TF-GridNet (Wang
et al., 2023) in terms of performance and efficiency. TIGER (small) and TIGER (large) denote the
models with the number of FFI blocks B = 4 and B = 8, respectively.

Separation performance. TIGER obtained competitive separation performance on the three
datasets compared with previous SOTA models (see Table 2). On Libri2Mix, which is relatively
simple for lack of noise and reverberation, TIGER (large) was second only to the current SOTA
model TF-GridNet, with a 6% drop in performance. On LRS2-2Mix, a more complicated dataset
with reverberation recorded in different scenes, the drop in performance of TIGER (large) was only
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2% compared with TF-GridNet. On EchoSet, the only dataset with the most realistic reverberation
among the three, TIGER (large) achieved an SDRi of 14.22 dB, surpassing other existing methods.
On this dataset, TIGER (small) also achieved the performance that was only slightly lower than
TF-GridNet. From the above experimental results, we can see that the more complex the acoustic
scenarios are, the better performance TIGER will produce. Similarly, based on the results in Fig-
ure 4, we observed that TIGER also outperforms existing models in real-world test scenarios. This
demonstrates that TIGER is applicable to complex real-world acoustic scenarios including diverse
noise and reverberation. To visualize the separation result, we present the spectrogram differences
between the audio separated by TIGER and TF-GridNet (Appendix H), demonstrating that TIGER
is capable of effectively reconstructing both low-frequency and high-frequency features.

TIGER also demonstrates advanced performance on cinematic sound separation, which aims to
extract different audio elements from a film’s soundtrack. See Appendix D for details. As for demos
of speech and cinematic sound separation, please refer to the project page1.

Separation effciency. The parameters of TIGER were only 0.82 M, and the MACs were only 7.65
G/s and 15.27 G/s for the small and large versions respectively. Compared with TF-GridNet, the
parameters of TIGER (large) dropped by 94.3%, and the MACs were reduced by 95.3%. For in-
ference of one-second audio, TIGER (large) took about 1/3 of the CPU Time and 3/4 of the GPU
Time compared with TF-GridNet, demonstrating a significant calculation compression effect. Be-
sides, TIGER took up less memory during training and inference, making TIGER more suitable for
deployment on devices with limited computational resources.

6.3 ABLATION STUDY

We adopted the small version of TIGER (B = 4) in the ablation studies. All the models were trained
and tested on EchoSet. The training configuration of TIGER and other models was the same.

Schemes Sub-band Number SDRi SI-SDRi Paras MACs GPU Time
(dB) (dB) (M) (G/s) (ms)

NonSplit 321 11.53 11.12 0.56 40.89 72.91
NormalSplit 47 12.94 12.37 0.82 5.29 40.78

EvenSplit 67 12.80 12.24 0.82 7.65 43.06

LowFreqNarrowSplit (ours) 67 13.15 12.58 0.82 7.65 42.38

Table 4: Comparison of performance and efficiency of models with different band-split schemes.

MSA module F3A module SDRi (dB) SI-SDRi (dB) Params (M) MACs (G/s)

×
√

7.58 7.22 0.33 2.74√
× 12.34 11.87 0.75 4.95√ √

13.15 12.58 0.82 7.65

Table 5: Importance of MSA and F3A modules on the EchoSet test set.

Replacement structures SDRi (dB) SI-SDRi (dB) Params (M) MACs (G/s) GPU Time (ms)

LSTM 13.92 13.41 2.05 49.38 83.16
Mamba 13.02 12.59 1.33 21.03 59.91

SRU 12.87 12.43 1.00 20.30 53.26

MSA (ours) 13.15 12.58 0.82 7.65 42.38

Table 6: Comparison of performance with different structures to replace MSA module.
Band-split schemes. To verify the effectiveness of the band-split method on the speech separation
task, we designed several experiments of different band-split schemes (see Table 10 in Appendix).
For these experiments, we kept the feature channel N the same. For the model NonSplit that did not
adopt band-split, each frequency point was treated as a sub-band and the real and imaginary channels
were transformed to the feature dimension N . For the other models, the same method as TIGER
was used. A detailed description of the different band-split schemes can be found in Appendix E.

1
https://anonymous.4open.science/w/TIGER-ICLR2025/
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Replacement structures SDRi (dB) SI-SDRi (dB) Params (M) MACs (G/s)

LSTM 12.64 12.05 2.46 51.59
Mamba 12.20 11.78 1.74 25.43

SRU 12.48 11.97 1.41 22.71

F3A (ours) 13.15 12.58 0.82 7.65

Table 7: Comparison of performance with different structures to replace F3A module.

Table 4 shows the performance and efficiency of models using different band-split schemes. While
adopting band-split increased the number of parameters due to non-shared 1D convolutions, it sig-
nificantly reduced overall computational costs by decreasing the total number of sub-bands. This
approach allowed the model to focus on important frequency bands, low and medium bands for
speech since human speech typically ranges from 85 Hz to 1100 Hz (Loizou, 1998). The LowFreq-
NarrowSplit scheme offered finer splits in low-frequency bands compared to NormalSplit, resulting
in enhanced performance. In contrast, EvenSplit maintained the same number of sub-bands with an
even distribution, leading to a drop in SDRi and SI-SDRi compared to LowFreqNarrowSplit, which
highlights the effectiveness of band-split in capturing critical frequency information.

Importance of MSA and F3A modules. We investigated the role of the MSA and F3A modules
in model performance. To this end, we constructed two controlled models, removing each of these
modules. As shown in Table 5, removing the MSA module resulted in the worst results, which
validates the effectiveness of the MSA module in speech separation, as it fully integrates multi-scale
features. The performance also decreased after the F3A module was removed, indicating that the
global integration of time and frequency helps TIGER extract relevant auditory features. Overall,
the results show the MSA and F3A modules play an important role in improving performance.

Furthermore, MSA module and F3A module can be replaced by other structures for sequence data
modeling, such as LSTM (Graves & Graves, 2012), SRU (Lei et al., 2018), and Mamba (Gu &
Dao, 2023). We then evaluated the impact of replacing the MSA and F3A modules with different
sequence modeling structures. We first replaced the MSA module in TIGER with LSTM, SRU,
and Mamba, with detailed replacement methods provided in Appendix F. The experimental results
are shown in Table 6. We observed that the MSA module significantly reduced the computational
load while maintaining strong performance. Although LSTM demonstrated better performance in
sequence data modeling, the iterative nature of RNN computations resulted in the GPU inference
time being twice as long as that of the MSA-based separator. While linear RNN structures like SRU
and Mamba sped up inference to some extent, there remained a gap in separation performance and
efficiency compared to the MSA module. This highlights the importance of leveraging multi-scale
information for both temporal and frequency modeling.

Next, we replaced the self-attention mechanism in the F3A module with LSTM, SRU, and Mamba
to evaluate the effect of different structural replacements. The experimental results are presented
in Table 7. We found that the F3A module produced the best results among the four experiments,
mainly because long-range dependencies captured by the self-attention module help enhance the
global context of frequency and temporal features.

We also verified the impact of alternating the frequency path and frame path on model performance
(Appendix G). The results show that the time-frequency interleaved structure captures acoustic in-
formation of audio better than modeling only time or only frequency.

7 CONCLUSION

In this paper, we present TIGER, an efficient time-frequency domain speech separation model with
significantly reduced parameters and computational costs. TIGER effectively extracts key acous-
tic features through frequency band-split, multi-scale and full-frequency-frame modeling. We also
introduce the EchoSet dataset that simulates realistic acoustic scenarios. Experiments showed that
TIGER outperformed existing SOTA models in complex acoustic environments, with 94.3% fewer
parameters and 95.3% less computational costs, and demonstrated good generalization ability in
the task of movie audio separation. TIGER provides new ideas for designing lightweight speech
separation models suitable for devices with limited resources.
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A DATASET DETAILS

EchoSet. This dataset includes 20268 training utterances, 4604 validation and 2650 test utterances.
The length of each audio is 6 seconds. The target speech was selected from LibriSpeech (Panayotov
et al., 2015), mixed with SDR ranging from -5 dB to 5 dB. The speech and noise which was sampled
from WHAM! were mixed with SDR sampled between -10 dB and 10 dB. This dataset contains
realistic reverberation. The sampling rate is 16 kHz.

LRS2-2Mix (Li et al., 2023). Each audio in this dataset lasts for 2 seconds, at the sampling rate of 16
kHz. The training set, validation set and test set are about 11.1, 2.8 and 1.7 hours, respectively. The
utterances were selected from the LRS2 (Afouras et al., 2018) corpus, which consists of video clips
acquired through BBC, and were mixed with SDR sampled between -5 dB and 5 dB. Since the audio
files were recorded in real acoustic scenarios, LRS2-2Mix contains much noise and reverberation.

Libri2Mix (Cosentino et al., 2020). Each audio in this dataset lasts for 3 seconds. The target
speech for each audio mixture was randomly chosen from LibriSpeech (Panayotov et al., 2015)
(train-100) and combined with a uniformly sampled Loudness Units relative to Full Scale (Series,
2011) between -25 and -33 dB. We adoped the 16 kHz version with no noise or reverberation in our
experiments.

Real-world data. We collected a small-scale dataset from the physical world to test the performance
of models trained on different datasets in real-world scenarios, with each audio clip 60 seconds long.
Its data collection process is described as follows. First, we selected 10 rooms of varying sizes and
shapes as distinct acoustic environments. Then, we randomly sampled approximately 1.5 hours of
16 kHz speech audio from the LibriSpeech test set (Panayotov et al., 2015), and sampled noise
data from the WHAM! noise dataset (Wichern et al., 2019). During the recording process, audio
content was played using the speakers of a 2023 MacBook Pro and recorded via a Logitech Blue
Yeti Nano omnidirectional microphone placed in a fixed position. The distance between the speaker
and the microphone was randomly selected from 0.3 m to 2 m. The recording parameters were set
to a 16 kHz sampling rate and 32-bit depth. This setup ensured that both speech and noise were
recorded in the same room, preserving the authenticity of the reverberation effects. Finally, we
processed the collected audio by mixing the recordings. Specifically, audio from different speakers
was mixed using signal-to-noise ratios (SNRs) randomly sampled between -5 dB and 5 dB. Noise
data was added using SNRs randomly sampled between -10 dB and 10 dB. Since the propagation
paths of sounds in the air are independent of one another, mixing these components is considered
a reasonable approach. This design ensures the realism and diversity of the evaluation dataset,
effectively capturing the complexity of speech separation in real-world conditions.

B TRAINING CONFIGURATION

In the encoder and decoder, the window and hop size of STFT and iSTFT were set to 640 (40 ms)
and 160 (10 ms). We use the Hanning window to mitigate spectrum leakage. According to the
Nyquist sampling theorem, the frequency range represented was 0-8 kHz for audio with a sampling
rate of 16 kHz. In this way, each frame was represented by 321-dimensional complex spectra, and
the frequency resolution was 25 Hz. We adopt the band-split scheme LowFreqNarrowSplit in Table
10. The number of total sub-bands K was 67. For each sub-band, the bandwidth was uniformly
transformed into N = 128. In the separator, the FFI blocks which share parameters were repeated
B = 4 times for the small version and B = 8 times for the large version. Each MSA module’s
features were downsampled for D = 4 times, and the hidden layer dimension H was set to 256.
For F3A module, the number of attention heads was set to 4. When calculating the query and key in
each head of the F3A module, the hidden channel E was set to 4.
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During training, We used a 3-second audio segment for EchoSet and Libri2Mix, and a 2-second for
LRS2-2Mix. We used the maximization of SI-SDR as the training loss (Le Roux et al., 2019). The
maximum training round was 500. We used Adam as the optimizer (Kingma & Ba, 2014), with the
initial learning rate set to 0.001. If the loss on the validation set did not decrease further within 10
consecutive rounds, the learning rate was halved. When the performance on the validation set did
not improve further within 20 consecutive rounds, the training was stopped.

C EVALUATION CONFIGURATION

In all experiments, we reported the quality of separated audio on SDRi (Vincent et al., 2006) and
SI-SDRi (Le Roux et al., 2019):

SDRi = SDR(P̄PP i,PPP i)− SDR(SSS,PPP i), (8)
SI-SDRi = SI-SDR(P̄PP i,PPP i)− SI-SDR(SSS,PPP i), (9)

When evaluating model performance on real-world data, we used the training lengths (Libri2Mix:
3s, LRS2-2Mix: 2s, EchoSet: 3s) of the respective datasets to inference the 60-second audio with
a 50% overlap sliding scale. This approach to some extent mitigates the problem of model per-
formance degradation that may be caused by the difference in training and inference lengths, thus
ensuring fairness in the model’s performance comparison on the real-world data.

To measure the complexity of the model, we used parameters and multiply-accumulate operations
(MACs) for theoretical analysis. In the speech separation task, since the audio length is not fixed,
we used MACs for separating one-second audio as an indicator for complexity evaluation. We used
ptflops 0.7.32 to calculate parameters and MACs. For actual evaluation, we performed the backward
process (training) and forward process (inference) 1000 times, respectively, on one second of audio
at a 16 kHz sampling rate, then took the average to indicate the training and inference speed. We
reported the GPU time and GPU memory usage during the training process, as well as the CPU
time, GPU time, and GPU memory usage during the inference process. To simulate the limited
computational conditions of mobile devices on which the speech separation model is deployed in
real-world situations, we fixed the number of threads to 1 when calculating CPU (Intel(R) Xeon(R)
Gold 6326) time and only used a single card when calculating GPU (GeForce RTX 4090) time.

D CINEMATIC SOUND SEPARATION TASK

The cinematic sound separation task (Uhlich et al., 2024) is to separate different signals from mixed
audio, including speech, music and sound effects. We migrated TIGER to cinematic sound separa-
tion to test the generalization ability of the model on similar tasks.

We tested TIGER’s performance on the DnR dataset, which consists of three tracks: speech, music,
and sound effects. The length of each audio is 60 seconds. Each track does not completely overlap,
and the sampling rate is 44.1 kHz. The dataset is composed of 3295 training audio, 440 validation
audio, and 652 test audio.

Range (Hz) Width (Hz) Total sub-band number

0-1000 50 20
1000-2000 100 10
2000-4000 250 8
4000-8000 500 8

8000-16000 1000 8
16000-20000 2000 2
20000-44100 22100 1

Table 8: Band-split scheme on DnR

According to the composition of the mixed audio, the band-split scheme was adjusted as shown in
Table 8. Since the frequency of human hearing ranges from 20 Hz to 20000 Hz, there was no need

2
https://pypi.org/project/ptflops/0.7.3/
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to split the high-frequency band above 20000 Hz. The window size W of STFT was set to 2048,
and the stride J was set to 512. The feature dimension was set to N = 132. In the separator, the FFI
blocks were repeated for B = 8 times. Other settings remained unchanged.

As for the training configuration, in order to improve the speed of the training phase, each 60-second
training audio in DnR was segmented using Voice Activity Detection (VAD). Then 3 seconds of
audio was randomly sampled from each component to synthesize the mixed audio. The sum of the
mean absolute error (MAE) in the frequency domain and the time domain was used as the training
loss, which was the same as (Uhlich et al., 2024):

L =
1

C

C=3∑
i=1

|P̄PP i −PPP i|+
1

C

C=3∑
i=1

|STFT(P̄PP i)− STFT(PPP i)|. (10)

The maximum training epochs were 500. AdamW was used as the optimizer, and the initial learning
rate was set to lr = 0.001. If the loss on the validation set did not decrease further within 5
consecutive rounds, the learning rate was reduced by half. When the performance on the validation
set did not improve further within 10 consecutive rounds, the training process was stopped.

During inference, we employed a sliding window approach, dividing the 60-second audio into 6-
second overlapping segments with a 50% overlap, and then reassembling the segments back to their
original length after processing.

Structures Music (dB) Speech (dB) Sound Effect (dB) Paras (M) MACs (G/s)

Conv-TasNet* 0.3 8.5 2.0 5.3 19.82
MRX* 4.2 12.3 5.7 30.51 10.59

BSRNN 5.5 13.8 1.8 52.8 18.2
TIGER 7.4 15.5 6.5 1.40 4.07

Table 9: Comparison of performance and efficiency of cinematic sound separation models on DnR.
‘*’ means the result comes from the original paper of DnR (Petermann et al., 2022).

The experimental results are shown in Table 9. TIGER demonstrated outstanding reconstruction
performance across the three audio tracks. Specifically, for the tasks of separating music, speech,
and sound effects, TIGER achieved SI-SDR scores of 7.4 dB, 15.5 dB, and 6.5 dB, respectively,
significantly outperforming BSRNN. This indicates that TIGER has a stronger capacity for capturing
audio features.

Moreover, TIGER’s parameters were only 1.40 million, and its computational costs were 4.07 G
MACs per second, which kept resource usage at a low level and was very efficient. These results
further validated TIGER’s effectiveness in the domain of cinematic sound separation, providing a
strong foundation for practical applications.

E DETAILS OF DIFFERENT BAND-SPLIT SCHEMES

In Table 10, we list several band-split schemes. For datasets of 16 kHz, the full band ranges from 0-8
kHz. Because real-to-complex STFT satisfies the conjugate symmetry, the result can be expressed
using only one side. According to the implementation of the torch.stft3, when the window size was
set to 640, the encoding dimension was ⌊640/2⌋+ 1 = 321.

For the NonSplit scheme, we didn’t apply band-split and kept the original frequency samples 321.
The width of each sub-band was 25 Hz. The total sub-band number was 321. We write the mixed
audio after STFT asXXX ∈ CF×T . The real and imaginary part ofXXX were treated as two channels and
stacked on the channel dimension to obtain feature ẊXX ∈ R2×F×T . Then a 2D convolutional layer
was applied to ẊXX to expand the channel dimension to N . In this way, we got the inputZZZ ∈ RN×K×T

for the separator (K = F = 321 in this case).

For the NormalSplit scheme, we split finer in the low-frequency part. Specifically, we split 0-1000
Hz by a 50 Hz bandwidth. Since the resolution was 25Hz, 2 frequency samples were treated as one

3https://pytorch.org/docs/stable/generated/torch.stft.html
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Scheme Range (Hz) Width (Hz) Number Total number

NonSplit 0-8000 25 321 321

NormalSplit

0-1000 50 20

47
1000-2000 100 10
2000-4000 250 8
4000-8000 500 8

8000 - 1

LowFreqNarrowSplit

0-1000 25 40

67
1000-2000 100 10
2000-4000 250 8
4000-8000 500 8

8000 - 1

EvenSplit 0-6600 100 66 676600-8000 1400 1

Table 10: Different frequency band-split schemes and their corresponding frequency ranges, band-
widths, and numbers of sub-bands.

band. The total sub-band number in 0-1000 Hz was 20. Accordingly, Gk = 2 when k ∈ [1, 20].
Similarly, we split 1000-2000 Hz by a 100 Hz bandwidth. 4 frequency samples were treated as
one sub-band and the total sub-band number in 1000-2000 Hz was 10, i.e. Gk = 4 when k ∈
[21, 30]. For 2000-4000 Hz and 4000-8000 Hz, 10 frequency samples and 20 frequency samples
were treated as one band, respectively. Therefore Gk = 10 when k ∈ [31, 38] and Gk = 20
when k ∈ [39, 46]. Since there were 321 frequency points in total, there was one endpoint left,
corresponding to 8000 Hz. Thus Gk = 1 when k = 47. There were 47 sub-bands in total. When
adopting band-split strategy, the real part Re(·) and imaginary part Im(·) of the frequency sub-band
BBBk are no longer treated as two channels, but are merged into the frequency dimension. Then
we obtain ḂBBk ∈ R2Gk×T . Group normalization layers and 1D convolutions are used to map the
frequency dimension 2Gk to the feature dimension N , and then K sub-bands are stacked to obtain
the input feature ZZZ ∈ RN×K×T for the separator.

For the LowFreqNarrowSplit scheme, we split the low-frequency area less roughly. In the range of
0-1000 Hz, we split the band by 25 Hz for each sub-band. This way, 1 frequency sample was treated
as a sub-band, and the total sub-band number in 0-1000 Hz was 40. Other bands remained the same
as NormalSplit. Therefore, we had Gk = 1 when k ∈ [1, 40]; Gk = 4 when k ∈ [41, 50]; Gk = 10
when k ∈ [51, 58]; Gk = 20 when k ∈ [59, 66]; Gk = 1 when k = 67. The implementation kept
the same as the NormalSplit scheme.

For EvenSplit, 0-6600 Hz was split evenly by 100 Hz sub-bands. Each sub-band consisted of 4
frequency samples. The remaining part was treated as one sub-band. Accordingly, we had Gk = 4
when k ∈ [1, 66]; Gk = 57 when k = 67. The band-split detail was also the same as the NormalSplit
scheme.

F DIFFERENT STRUCTURES IN MSA AND F3A MODULES

In the experiments where we replaced the MSA and F3A modules, we used LSTM (Graves &
Graves, 2012), SRU (Lei et al., 2018), and Mamba (Gu & Dao, 2023) as the alternative model struc-
tures. When we substituted LSTM for the MSA module, the inputZZZb ∈ RN×K×T is first normalized
by group normalization. Then we apply a bi-directional LSTM with the hidden size the same as the
hidden layer dimension H in the MSA module, generating the hidden feature ZZZ ′

b ∈ R2H×K×T .
Next we restore the hidden layer dimension to the input dimension using linear projection. The out-
put of LSTM is Z̄ZZb ∈ RN×K×T . The configuration for SRU was consistent with that of LSTM. For
Mamba, since it is a causal model and cannot access future information, we utilized the BMamba
layer, as proposed in SPMamba (Li et al., 2024), to model sequence information bidirectionally,
followed by a linear layer to compress the feature channels.
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Structure SDRi SI-SDRi Paras MACs GPU Time
(dB) (dB) (M) (G/s) (ms)

T-T 12.91 12.32 0.82 7.75 42.72
F-F 10.57 9.69 0.82 7.53 41.39

F-T (ours) 13.15 12.58 0.82 7.65 42.38

Table 11: Comparison of performance and efficiency of models with different modeling paths in the
FFI block. T-T means the FFI block consists of two frame paths, while F-F means the FFI block
consists of two frequency paths.

G ABLATION STUDY: TIME-FREQUENCY INTERLEAVING

In the separator of TIGER, we model time and frequency features of the mixed audio alternately. To
demonstrate the effect of time-frequency interleaved structure, we tested the performance of F-F and
T-T structures. For F-F, we replace the frame path with the frequency path in the FFI blocks. In other
words, each FFI block only includes two frequency paths which process the input ZZZb ∈ RN×K×T

and ZZZb,f ∈ RN×K×T in the same way but don’t share parameters. All FFI blocks still share
parameters. The implementation is similar for T-T.

According to the result shown in Table 11, compared with only modeling time or only modeling fre-
quency, the time-frequency interleaved structure can better capture time and frequency information
of audio, which facilitates improving performance while keeping the model lightweight.

H VISUALIZATION

In order to intuitively demonstrate the separation performance of TIGER, we provide some examples
for visualization, as shown in Figure 5. The following spectrograms show the inference results of
TIGER (large) and TF-GridNet on the same audio, and the ground truth. Sample I and II show
that TIGER produces finer reconstruction results at high frequencies compared with TF-GridNet.
TIGER also has better effects in noise reduction and spectrum leakage prevention, as illustrated in
Sample III and IV.
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Ground truth TIGER TF-GridNet

Ground truth TIGER TF-GridNet

Ground truth TIGER TF-GridNet

Ground truth TIGER TF-GridNet

(a) Sample I

(b) Sample II

(c) Sample III

(d) Sample IV

Figure 5: Comparison of the spectrograms of the ground truth, audio separated by TIGER and by
TF-GridNet.
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