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ABSTRACT

Tuning hyperparameters and exploring the suitable training schemes for the self-
supervised models are usually expensive and resource-consuming, especially on
large-scale datasets like ImageNet-1K. Critically, this means only a few establish-
ments (e.g., Google, Meta, etc.) have the ability to afford the heavy experiments
on this task, which seriously hinders more engagement and better development in
this area. An ideal situation is that there exists a subset from the full large-scale
dataset, the subset can correctly reflect the performance distinction' when per-
forming different training frameworks, hyper-parameters, etc. This new training
manner can substantially decrease resource requirements and improve the com-
putational performance of ablations without compromising accuracy using subset
discovered configuration to the full dataset. We formulate this interesting problem
as the dataset lottery ticket hypothesis and the target subsets as the winning tickets.
In this work, we analyze this problem through finding out partial empirical data on
the class dimension that has a consistent Empirical Risk Trend as the full observed
dataset. We also examine multiple solutions, including (i) a uniform selection
scheme that has been widely used in literature; (ii) subsets by involving prior
knowledge, for instance, using the sorted per-class performance of the strong su-
pervised model to identify the desired subset, WordNet Tree on hierarchical se-
mantic classes, etc., for generating the target winning tickets.

We verify this hypothesis on the self-supervised learning task across a variety of
recent mainstream methods, such as MAE, DINO, MoCo-V1/V2, etc., with differ-
ent backbones like ResNet and Vision Transformers. The supervised classification
task is also examined as an extension. We conduct extensive experiments for train-
ing more than 2K self-supervised models on the large-scale ImageNet-1K and its
subsets by 1.5M GPU hours, to scrupulously deliver our discoveries and demon-
strate our conclusions. According to our experimental results, the winning tickets
(subsets) that we find behave consistently to the original dataset, which generally
can benefit many experimental studies and ablations, saving 10x of training time
and resources for the hyperparameter tuning and other ablation studies.

1 INTRODUCTION

In the recent years, large deep neural networks, such as Convolutional Neural Networks (CNNs) (Le-
cun & Bengio, 1995; He et al., 2016) and Transformers (Vaswani et al., 2017) have achieved break-
throughs in the fields of supervised learning (Tan & Le, 2019; Dosovitskiy et al., 2020) and self-
supervised learning (Kenton & Toutanova, 2019; Brown et al., 2020; Caron et al., 2021; 2020; He
et al., 2022) empowered by the large-scale datasets. Naturally, the computational resources required
for training these models on the large data are increasing accordingly. A dilemma is that many
researchers do not have such resources to conduct experiments on the large datasets directly, espe-
cially on the expensive self-supervised learning by tuning the hyperparameters and exploring the
proper training settings and frameworks. A commonly-used practice in the vision domain is to con-
duct ablations on relatively smaller datasets like CIFAR (Krizhevsky, 2009) and MNIST (Lecun
et al., 1998), and then transfer the tuned optimal configurations to the large datasets like ImageNet-
1K (Deng et al., 2009). While in many cases, it is observed that the models’ behaviors and properties

'In this work, we focus on the performance trend or relative accuracy trend trained on the subset and full
data across different train/eval configurations. The absolute accuracy on the individual subset is not necessary.
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Figure 1: Ilustration of the loss curves from self-supervised pre-training on full data, random subsets
and winning ticket subset. ViT-Small and ViT-Base models are used as the backbone networks.

on the small datasets are quite different from the ones learned on the large dataset, making it im-
proper to directly transfer hyperparameters found on small data to the large one. Considering that
self-supervised learning does not use human-annotated labels for training models, another popu-
lar solution emerged by randomly choosing a subset from the full dataset, for example, randomly
selecting 100 classes among 1,000 in ImageNet-1K for self-supervised ablations and exploring ex-
periments (Tian et al., 2020; Kalantidis et al., 2020; Ermolov et al., 2021). Such a scheme has shown
great advantages in lower resource demand of costly learning frameworks for fast hyperparameter
tuning and model exploration with large backbone architectures.

However, according to the learning rule of Empirical Risk Minimization (ERM) (Vapnik, 1991;
1999) principle, the training convergence of ERM is guaranteed when the number of parameters of
the neural networks scales linearly with the number of training examples. Under this principle, it
is challenging to only leverage a subset of data to model the properties of the full larger number
of training data, since in both of the settings, models are trained to minimize their average error
over the current training samples. Moreover, ERM is unable to provide generalization on unseen
distributions from the subset to the whole, making this strategy full of uncertainty. Consequently,
a natural concern has been raised in this work: What kind of subset is qualified for evaluating self-
supervised/supervised methods on full data?

Goal of Dataset Lottery Ticket Hypothesis (DLTH): The goal of DLTH is to find out a subset as
the winning ticket from a large-scale dataset, this subset has the same or similar empirical behaviors
and performance trends as the original full dataset when performing different training approaches
and hyper-parameters on it, meaning that it can truly reflect the performance changes according
to different training settings. Different from (i) data pruning (Zhang et al., 2021; Sorscher et al.,
2022) that removes low-contribution and forgetting data to replace the full dataset, (ii) dataset dis-
tillation (Wang et al., 2018; Cazenavette et al., 2022) and condensation (Zhao et al., 2020) that will
generate a new compressed data, the proposed DLTH will not predict the accuracy of full data but
select a proper subset from the original data and the models trained on the subset under various con-
figurations have a consistent performance trend to the models trained on the full data. Thus, we can
further use this subset for fast hyper-parameter tuning, frameworks exploration or time-consuming
tasks. More detailed discussions with the related tasks are provided in Appendix G.

Overfitting Issue on the Subset: The key observed issue of using subset data is that the self-
supervised pre-training on the smaller training data (subset) will frailly suffer from overfitting. To
reveal this, we visualize the pre-training losses in Fig. 1. Following DINO protocol (Caron et al.,
2021), we train with 400 epochs for ViT-Base and 800 epochs for ViT-Small. On the full data,
the evolution of training loss first drops rapidly, then slowly rises a little bit, and finally continues
to descend on both small and base models. While on the randomly selected subsets (RS—ID), the
losses of base and small models are dropping constantly with a plateau. It is interesting to see on
our identified winning ticket, the rebounding phenomenon on loss has emerged again at around 400
epoch of blue curve and the magnitude of loss value is generally larger than those on the random
subsets, which is also more aligned to the trend of the full data.
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Identifying Winning Tickets (Subsets). The most common practice is to randomly select sub
classes among the full data’s categories as the subset (Tian et al., 2020), however, it is natural that
arandomly selected subset is not guaranteed for reflecting the true accuracy change on the full data
when imposing different training settings. To this end, we propose to fix the learned hypothesis or
models on the full observed dataset, and identify the winning ticket which has the approximating
distribution as the full observed data empirical distribution. We argue that the subset categories
should have the consistency on performance similar to that of the full dataset. For instance, the
overall linear probing performance of DINO (Caron et al., 2021) is better than MAE (He et al.,
2022) with the same ViT-B/16 backbone, while on the specific class such as toy poodle, MAE has the
better accuracy than DINO, meaning that this class has an inconsistency on the two self-supervised
models and will not be selected. The consistency indicates that the individual per-class accuracy
should match the global accuracy across different frameworks”. We also empirically examine other
policies on determining the proper winning ticket subsets, including: (i) randomly generated lists as
the baselines; (ii) incorporating prior knowledge (e.g., performance-driven scheme according to the
pre-trained supervised models, semantic hierarchy on WordNet Tree, etc.).

The practice of randomly selecting a subset to evaluate different methods is more popular in self-
supervised learning task. Thus, it is more crucial to clarify and understand this manner in self-
supervised domain. While, supervised learning is also eligible to explore the dataset lottery ticket
hypothesis and we provide the results on supervised learning in Appendix due to the limited space.
All of our models are trained on large-scale ImageNet-1K and its subsets instead of MNIST, CIFAR,
etc., with 3 runs for each, to avoid potential mis-observations and deliver more reliable conclusions.

Contributions:

* Our experimental results indicate that a randomly selected subset without any prior knowledge is
unstable and generally not qualified for reflecting the properties of self-supervised models on the
full data, and might further deliver misleading observations and conclusions. This is fairly risky
if the studies rely heavily on such a kind of subset, instead of the original full dataset.

* We propose the Dataset Lottery Ticket Hypothesis (DLTH), a novel problem that studies the pos-
sibility of identifying the subset which can reflect the performance consistency with the full data.
Moreover, we propose the policies of Empirical Risk Trend and incorporating prior knowledge to
generate the winning tickets. To our best knowledge, this is the first work to study the feasibility
of dataset lottery ticket hypothesis, and it can be a starting point for exploration on this problem.

* We provide comprehensive experiments on ImageNet-1K and its subsets with a variety of ad-
vanced self-supervised frameworks, such as DINO (Caron et al., 2021), MAE (He et al., 2022),
MoCo series (He et al., 2020; Chen et al., 2020b). to verify the effectiveness and superiority
of our proposed dataset winning ticket policies. We will make our found winning ticket subset
publicly available to benefit other research in this field.

2  FROM EMPIRICAL RISK MINIMIZATION TO DATASET LOTTERY TICKET
HYPOTHESIS

In the learning problem, a model is used to learn a conditional probability distribution or decision
function. The hypothetical or mapping space of the model contains all the conditional probability
distributions or decision functions. The goal of learning is to find an ideal hypothesis or mapping
function h € H with its parameter 6 by observing the properties of the hypothesis space. Assume
the input X and target Y of the model are random variables, which follow the joint probability
distribution P(X,Y"), we define a loss function £ that measures the differences between predictions
h(zx) and corresponding targets y, i.e.,(x,y) ~ P. Usually, the smaller the value of the loss
function £ on validation set, the better the model learned by the optimization. The expectation of
the loss function is formulated as:

Rewp(h) = Ep[L(h(x:0). )] = /X  £lh(:0).y)Pla.y)izdy )

The learning perspective usually treats the optimization problem as simply minimizing the expected
loss or called risk function. The distribution P is unknown in most practical situations. Instead, we

2As shown in Fig. 3, on the linear probing evaluation, it is intriguing to see that DINO has the better overall
accuracy, while MAE is more stable on individual accuracy across different categories.
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Figure 2: Illustration of the motivation on the proposed DLTH. We aim to identify a subset from
the original data through leveraging prior knowledge as the dataset winning ticket, meanwhile, the
subset should have the property that the observed model performance on it is consistent with the
performance on full data across different training frameworks, settings and hyperparameter choices.

have access to a set of training data D={(z;,y;)} (i = 1,2, ..., m), we can leverage the empirical

distribution 13(X ,Y') on the available training data D to approximate the true distribution P. Thus,
we further can approximate the expected risk according to the empirical risk:

Remp (b Zﬁ (%:;0) , i) 2)

Through a proper optimizer, a set of parameters is found on the training set so that the function can
approximate the real mapping relationship. The next step is to learn such a function h* (i.e., finding
the learnable parameters 8*) that the empirical risk (ER) is minimal:

h* = argmin Remp(h) 3)

heH
According to the learning process of empirical risk, in this paper, we study the problem of whether
there exist smaller available subsets as the winning tickets for training self-supervised models with
similar performance trends to the full data. Training on the subsets is faster since the data size is
significantly smaller than of the original data. Fig. 2 shows the motivation that we aim to identify a
winning ticket on the dataset dimension. Here, we formally state the dataset lottery ticket hypothesis.

Definition 1 (Dataset Lottery Ticket Hypothesis). A large-scale, naturally-collected dataset con-
tains a subset that has the same or similar empirical behaviors and performance trends as the
original full dataset when performing different training approaches and hyper-parameters on it.

Formally, in our Dataset Lottery Ticket Hypothesis setting, we have the learned risk function h*
(such as MAE (He et al., 2022), DINO (Caron et al., 2021), SWAV (Caron et al., 2020), etc.) together
with their parameters 8 (trained models) from the full training data, our goal is to identify a subset
of training data D, = {(x,¥:)},, as a winning ticket that the ER is minimal and consistent to

different risk functions. We can leverage the subset data’s empirical distribution PS(X ,Y) as the
available empirical risk:

R()Dmp Z‘C h‘* 1132, )7y2) (4)
|T| €T

Where T is the sample index of dataset winning ticket. Different from the usual learning goal that is
to find an optimal function h*, identifying the winning ticket on the dataset is an i/l-formed problem
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Figure 3: Tllustration of per-class Top-1 accuracy of different trained models on full ImageNet-1K
validation set. In each subfigure, the black lines above the bubbles are the winning classes. From
top to bottom subfigures, there are 367, 155 and 44 classes with particular distribution density that
meet the conditions of accuracy trend on different frameworks. The specific names of targeted class
IDs are provided in Appendix. More details are in Sec. 3.1.

with uncertainty and randomness, our idea is to make it inevitable by considering that the individual
selected class (ticket) should have the consistent performance behaviors as it on the full data. Note
that the pre-trained parameters 6* are always fixed during this procedure. Thus, we identify the
targeting class according to the consistency on the individual class empirical risk, we can find out
the winning classes by maximizing the consistency metric which is defined as follows:

D; = arg mgx CCOHS([ReDmp(h; )]jEP) )]
where Cc.ons is the consistency policies for discovering dataset winning tickets. P is the set of
hypothesis functions, i.e., the learning methods. Eq. 5 indicates that when given the learned models
(hypothesis functions and their parameters) on the observed full dataset D, the dataset lottery ticket
hypothesis is to find a subset D, as the winning ticket that meets the consistency relationship among
different hypothesis functions. So that we can use this subset for different usages, such as fast
tuning hyperparameters. We also examined the generalizability of the winning ticket for assessing
new learning functions.

Algorithm 1 Per-class Empirical Consistency

After acquiring the desired dataset winning
ticket (subset), we can tune the hyperpa-
rameters and re-train the model following:

Input: {h;(j € P)} is the pre-trained model pool
with linear probing classifiers to identify the desired
classes based on the consistency of per-class empiri-
min £(6, DY) = min Z ((h(z,0),y) cal accuracy, C is the number of classes in the dataset,
6 o S is the validation samples in class c. T'is the thresh-
(6) oldif the identified size of w1nn1ng ticket is too large.
M, s the desired size of winning ticket after a ran-
dom selection operation.
Output: Selected winning ticket p*

1: forc=1:Cdo

(z,y)€ED;

We also provide a brief explanation from
the theory perspective in Appendix F.1.

3  WINNING TICKETS POLICIES

2 if Céons([ZiGSC Remp(h’j (wi’ 0))]]677) is True
then
3.1 PER-CLASS 3- p.append(c)
EMPIRICAL RISK CONSISTENCY 4 endif
In this section, we introduce the policy of 2 f;l I(el:rf?r)> T then
identifying the winning ticket by leverag- 7: N i Random_Selection (41, Migrget)
ing the per-class empirical risk consistency. ¢ ng it - Ho P targer
9: return p*

5
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The procedure is as follows:

(i) Train standard self-supervised backbone models P on the original full data.

(ii) Train supervised linear probing classifiers or finetune above trained backbones on the full dataset.
(iii) Calculate per-class prediction using the above classifiers and test the models on the validation
set to match the result on the full data across frameworks. This is to identify that the particular class
has the same accuracy trend as that on the full data, i.e., consistency condition between per-class
accuracy and global accuracy on different models.

Specifically, there exists a well learned model/hypothesis pool P, the criterion of consistency follows
their empirical risk on the full dataset. For instance, if we consider three self-supervised methods:
DINO, MAE and MoCo V3 with ViT-B/16 as the backbone network under linear probing evaluation,
the consistency metric C.ons Will be True only if it meets the following condition (the higher of the
model accuracy, the lower Repmp):

Ceons = [Remp (h’DlNOViT—B/](w) < Remp (hMOCO V3ViT—B/1(1) < Remp (hMAEViT—BIIG )] (7)

For class ¢, if C¢

cons

gons = [ Z Remp(hDINOViT»B/IG (wl)) < Z Remp (h’MOCO V3virsiis (331)) < Z Remp (h’MAEViT-B/ls ((L'Z))](S)
i€Se i1€Se 1€Se

is True, we will select it as one class of the winning ticket. We formulate it as:

The results on linear probing eval of the per-class empirical risk consistency is shown in Fig. 3.
In practice, we use per-class validation accuracy as the consistency indicator. We examine three
pre-trained model pools: (1) RDINOvrgis — FEMoCo V3vrsis — FEMAEvrse @S 10 Fig. 3 (upper sub-
figure). The black lines above the bubbles are the targeted winning classes, it is observed that 367
classes meet the requirement in ImageNet-1K; (2) RDINOyirgs — FEDINOvirsis — F8MoCo V3virsie
- RMAEViT—B/lG as in Fig. 3 (middle subfigure); (3) RDINOViT-BIS - RDINOViT—B/lﬁ — RMoco V3viteie
RswAVienaso — FEMAEvrss as in Fig. 3 (bottom subfigure). The full lists of classes are provided in
the Appendix.

3.2 UNIFORM SAMPLING

90| e = —— DINO_Base/16_Linear
Uniform sampling, a.k.a. random sam- g - DINO_Small/16_Linear
pling, is an ordinary baseline to gener- =80 — MoCoV2_ResNet50_Linear
ate the subsets. Previous literature has § |~ —~—— - mi-:::ig—;::znmg
been following this scheme to generate the 70~  —— ——— B B

subset with a uniform probability density o2 A 8
function, e.g., randomly sample N classes

from the 1000 classes on ImageNet-1K. In
Fig. 4, we exhibit the results of RS-ID
from different self-supervised methods,
and derive the following discoveries: (i) It can be observed that the discriminability of weak and
strong backbones is absent on DINO, as illustrated in Fig. 4 of black curves. (ii) Some trends are
inconsistent, for instance, from subset RS—3 to RS—4, the accuracy increases on DINO ViT-Base/16
while decreases on MAE and MoCo. These unreliabilities are as expected and inevitable since these
subsets are randomly selected without any guidance or restriction.

Figure 4: Illustration of accuracy comparison on differ-
ent RS subsets. Each model is trained by three trials on
both pre-training and linear probing/finetuning stages.

3.3 PRIOR KNOWLEDGE

There are multiple prior knowledge that can be utilized as the policies to find out the winning tickets:

Performance-Driven: The performance of each class has a significant influence on reflecting the
difficulties of classification, also showing the similarity measure on the latent feature space, so that
it is crucial for leveraging the performance criterion of selecting the potential tickets. As shown in
Fig. 5 (1), we use the pre-trained EfficientNet-L2 (Tan & Le, 2019) to sort the accuracy of per-class
and select with four patterns: PD-Top (easiest), PD-Mid, PD-Bottom (hardest), and
PD-Uniform. Some selected categories of images are shown in the ellipses of Fig. 5.

WordNet Hierarchy: In WordNet, the concepts are linked together in a hierarchy. This makes it
easy to navigate between concepts. For instance, given a concept like motorcar, we can find out the
concepts that are more specific, i.e., the immediate hyponyms. As shown in Fig. 5 (2), since the
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Figure 5: Tllustration of the policies for Performance Driven (left) and WordNet Hierarchy (right).
We also visualize images in the selected classes to reflect the difficulty level of the selected subsets.

classes of ImageNet-1K are the leaf nodes in the WordNet tree, we can merge leaf nodes that have a
common parent and repeat this operation until obtaining enough coarse classes as the winning ticket.

Word-embedding Clustering: In this strategy, we aim to obtain the word-level embeddings of
ImageNet-1K human-readable labels® and perform an unsupervised clustering method on them.
Firstly, a pre-trained CLIP model (Radford et al., 2021) with ViT-L/14 (Dosovitskiy et al., 2020)
backbone* with the property of context-dependency is employed to represent semantic labels
through word embedding vectors. Next, both k-medoids an kmeans clustering algorithms are tested
to group semantically similar labels in order to reduce the overlapping. Finally, different quality
label features are utilized as the candidates in different clusters, and then the high-ranked semantic
labels are picked out from all clusters to form the winning ticket.

Semantic-embedding Clustering: Instead of using the word-level embeddings of ImageNet-1K
human-readable labels, we use the embedding by taking the average feature from a pre-trained
DINO (Caron et al., 2021) model of ViT-B/8 for all images of that class in the validation set. Other
procedures are the same as the above word-embedding clustering. This strategy is also applicable if
the label is not available in the dataset.

Policies Subset Pool Abbreviation

Random Sampling {Rs-1ID} (ID€ {0,1,2,... kzs})
Empirical Risk Consistency {ERC-ID} (ID€ {0,1,2,...,kgrc})
Performance Driven PD-Top | PD-Mid [ PD-Bottom [ PD-Uniform
WordNet Hierarchy {wNH-ID} (ID€ {0,1,2,..., kuu})

Word Embedding Clustering WEC

Semantic Embedding Clustering SEC

Number Image Reduction {NiR-ID} (ID€ {0,1,2,...,kyir})

Table 1: Left column is different policies for identifying the desired dataset winning ticket. Right
column is the abbreviations of the corresponding policies in the main text.

4 EXAMINING WINNING TICKETS ON VARIOUS ARCHITECTURES

We employ both Pearson Correlation Coefficient (PCC) (Pearson, 1895) (p,) and Spearman’s Rank
Correlation (Spearman, 1961) (ps) to examine the correlation of the performance between the full
set and the selected winning ticket. The former metric focuses on the linear correlation of two input
sets of variables, the latter one reflects the monotonic correlation of them. Here, we study the dataset
lottery ticket hypothesis on different architectures and strategies used in practice. Specifically, we

3https ://github.com/anishathalye/imagenet-simple—-labels/blob/master/
imagenet-simple—labels. json.
“BERT (Kenton & Toutanova, 2019) model is also tested in our ablation experiments.
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Table 2: Overview of accuracy trends and correlation values (higher is better) across different frame-
works. The first row represents the accuracy on full data, in other rows, each is corresponding to
one subset. As limited by the pages, more subsets’ results will be provided in the Appendix.

consider the typical deep neural architectures of residual networks (He et al., 2016) and vision
transformers (Dosovitskiy et al., 2020).

ResNet. We examine the dataset lottery ticket hypothesis as applied to the typical ConvNet of
ResNet-50 (He et al., 2016). We use MoCo V1, V2 as the training methods with 200 and 800
epochs. All of our training settings follow their default design, as well as the following vision
transformer models.

Vision Transformer. We assess the dataset lottery ticket hypothesis on ViT models. We use the ViT-
Base and ViT-Small architectures with MAE and DINO frameworks. The MAE model is trained
with 800 epochs and DINO ViT-Base, ViT-Small are trained with 400, 800 epochs, respectively.

Results. As shown in Table 2, PD-Top indicates that we choose the best-performed classes accord-
ing to a pre-trained model, i.e., the easiest categories. Our results show that this subset has the worst
consistency on linear correlation. We can also see the first two subsets have the same p,, which
means that they enjoy the same property of ranked performance. Moreover, choosing the hardest
classes (PD-Bottom) has good correlations to the full data and is one of our winning tickets. The
correlation among the 7 framework configurations in Table 2 is the most crucial indicator for eval-
uation to reflect the quality of the selected subset, as our goal of this paper is to identify the proper
subset that has the same correlation or performance trend as on the full data. Thus, for some heavy
and costly tasks like ablation study, architecture search, etc., it is more practical and efficient for us
to employ the selected subset instead of the full data to explore the best configuration that we de-
sired. The results of WEC, SEC and WNH are similar to PD-Uni form so they are omitted in Table 2
and given in Appendix.

4.1 CONSISTENCY

Consistency on Data Augmentation. To assess the consistency of performance on different data
augmentations, we use MoCo V1 and V2 which only contain the difference on data augmentation.
The results are shown in Fig. 6 (1), it is surprising to see that nearly all the subsets are not sensitive
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to the data augmentation factor, obtaining similar accuracy on MoCo V1 and V2, but are generally
still consistent on performance.

Consistency on Training Budgets. On the self-supervised task, it is known that more training
budget can substantially achieve better performance. In this subsection, we examine whether this
property still exists on the dataset winning ticket. The results are shown in Fig. 6 (2).

Consistency on Evaluation Strategies. To assess the consistency of performance on different eval-
uation strategies, we employ MAE with finetuning and linear probing evaluations. The results are
shown in Fig. 6 (3), it can be observed that the performance on all subsets is consistent.

go T b Te | e oo
-l a ¢, .0 < |® S
& [ " N 530 * e 79 Iy
e ‘ g ’ €80
. . . ®
8 60 W MoCo V2 8 60 ’ ‘ 800 epochs 8 @® Finetuning
< ] MoCo V1 < 200 epochs < 60 Linear Probing
0123456738 0123456738 0123 45%6 738
Model ID Model ID Model ID

(1) Consistency on Data Augmentations (2) Consistency on Training Budgets ~ (3) Consistency on Evaluation Strategies

Figure 6: Illustration of the consistency conditions for Data Augmentation (left), Training Budgets
(middle) and Evaluation Strategies (right). In each subfigure, the abscissa axis represents the used
subsets: CMC subset; PD-Top; PD-Mid; PD-Bottom; PD-Uniform; RS-1; RS-2; RS-3; RS-4.

4.2 GENERALIZABILITY
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Figure 7: Illustration of the polygon radar chart for random sampling, PD-Uniform and our lottery
ticket on several indicator approaches. Our lottery ticket has the best ability across these indicators.

It is interesting to see the generalizability of the identified winning tickets on those training methods
outside the selection policies. Our conducted experiments above actually involved this verification:
The per-class empirical risk consistency does not employ MoCo V1 and V2 but from our results in
Table 2 it seems the winning tickets can still handle them well. Since MoCo V2 performs heavier
data augmentation and maintains the other training settings the same as V1, this result demonstrates
that the winning ticket is still a good indicator and can reflect the performance trend on input dimen-
sion when the transformations are changed. Besides the input transformations, i.e., MoCo V1 to V2,
we also include two more factors: (i) batch size effect, and (ii) stochastic regularization enabled by
DropPath (Huang et al., 2016). We study how these subtle changes could affect the generalizability
on winning ticket of the self-supervised models, the results and discussions are in our Appendix. To
assess the generalizability beyond the visual datasets, we further provide the preliminary results on
the AG’s News Topic Classification Dataset (Zhang et al., 2015) with the comparison between the
random subset and lottery ticker subset in Appendix I.

5 DISCUSSIONS AND FUTURE WORK

We have introduced dataset lottery ticket hypothesis (DLTH), an initial study to investigate whether
there exists winning tickets (subsets) that can reflect the consistency on performance when perform-
ing different self-supervised approaches and hyperparameters. Through extensive empirical evalu-
ations, we conclude that the randomly generated subset is not qualified for indicating the training
settings and configurations of full data. We proposed several policies by incorporating prior knowl-
edge to find out the desired winning tickets. In our experiments, the following trends are consistent:
(i) Random subsets are not guaranteed to obtain consistent results, in most cases they are unreliable.
(ii) Prior knowledge (e.g., the difficulties of classes) can substantially improve the quality of the
selected winning tickets which makes the selected ticket more aligned to the full data.
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(iii) Two drawbacks of subsets are noticed, even on the winning tickets: (1) subsets are not sensitive
to different backbones if the training frameworks are strong, such as DINO; (2) subsets are not much
sensitive to data augmentations, such as the case from MoCo V1 to V2.

Limitations and Future Work. Currently, we only verified our hypothesis on the vision domain
of ImageNet-1K modality, we do not investigate it on more modalities such as video, text, etc.
Considering that different disciplines may have different characteristics or properties, for the future
work, we hope our hypothesis can be proven in other domains such as NLP and speech datasets.

POTENTIAL ETHICAL IMPACT

As machine learning algorithm has been well studied in data-intensive applications, such as the
large-scale ImageNet-1K classification, but is often hampered when the training data is small, this
work leveraging subset of data may have the following potential positive and negative impacts in
the society. For the positive impacts, the proposed dataset lottery ticket scheme can significantly
help save training time, computational resources and energy for tuning hyperparameters of heavy
models, which is highly eco-friendly. However, for the negative impacts, as this work tackles this
problem through involving prior knowledge for identifying dataset winning tickets, the model may
be biased on the training subset if the full data is unbalanced. Thus, we should be cautious on the
result of failure from the system which could cause unreliable conclusions, such as the unbalanced
dataset like medical images and further was misleading in some particular domains.
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APPENDIX

In the appendix, we provide details omitted in the main text, including:

* Section A: Exploration experiments of more classes or more samples in per-class. (Section 4
“Examining Winning Tickets on Various Architectures” of the main paper.)

* Section B: Results of dataset lottery ticket hypothesis on supervised learning. (Section 4 “Exam-
ining Winning Tickets on Various Architectures” of the main paper.)

* Section C: An introduction of experimental settings. (Section 4 “Examining Winning Tickets on
Various Architectures” of the main paper.)

* Section D: Full lists of winning tickets on ImageNet-1K. (Section 3 “Winning Tickets Policies” of
the main paper.)

* Section E: More results of different subsets. (Table 2 “Overview of accuracy trends and correlation
values.” of the main paper.)

* Section F: More results and discussions on the study of generalizability. (Section 4.2 “Generaliz-
ability” of the main paper.)

* Section G: Background of our work. (Section 3 “Winning Tickets Policies” of the main paper.)

* Section H: Implementation details and experimental settings. (Section 4 “Examining Winning
Tickets on Various Architectures” of the main paper.)

* Section I: Results on AG’s news topic classification dataset. (Section 4.2 “Generalizability” of the
main paper.)

A  MORE CLASSES OR MORE SAMPLES IN PER-CLASS?

Instead of selecting a subset along with the
class, we can also keep all categories and (PD-Bottom) DING amall16 mear
reduce the number of images in each class —— (PD-Bottom) MoCoV2_ResNet50 linear
(NiR). This strategy will make the sub- MMT——- (NiR) DINO_Small/16_linear

set more diverse but the same category has 7 = = (NiR) MoCoV2_ResNet50_linear
fewer training samples. In this section, we 0 Epath 10

examine the influence of number of im-  pjgyre 8: Comparison of linear probing accuracy on
ages in each class for the self-supervised g;11 set.PD-Bottom and NiR subsets.
learning. To study this, we keep the set of

original classes and randomly select 1/10 of the images in each class. We illustrate the loss evolution
of self-supervised pre-training and linear probing in Fig. 8. It can be observed that the strategy of
NiP has low accuracy of 38% on MoCo V2 and 46% on DINO (we use Full Set and the low
absolute performance subset PD—Bottom as comparisons.). Though it is not necessary the perfor-
mance is low since we focus more on the trend across the frameworks, the model is concerned to be
“dull” and may be biased to some particular classes that contain few samples since samples in each
class are insufficient.
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B DATASET LOTTERY TICKET HYPOTHESIS ON SUPERVISED LEARNING

We examine the dataset lottery ticket hypothesis on supervised learning with the following net-
works: ResNet-50, ResNeXt50 (32x4d), RegNet_Y_3_2GF, DenseNet121, MobileNet_V3_Large,
ConvNext_Small on the subsets of NiR, PD-Top, PD-Mid, PD-Bottom, PD-Uniform, ERC
and RS. We did not use ViT here as it is hungry for data in supervised learning. The results are
shown in Table 3, which are aligned with those on self-supervised learning task. The slight dif-
ference we observe is that on supervised learning, PD-Uniform performs much better than it on
self-supervised learning. The common conclusion is that the subset from the dimension of sample’s
number NiR and random sampling subset RS are mediocre with a weak alignment to the full data.

14
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Training Data Accuracy Trend (Top-1) values
e ResNet-50  ResNeXt50_.32X4D  RegNet_.Y 3 2GF DenseNet121 MobileNet_ V3 L ConvNext_S Pp> Ps i
NiR 5112 52.34 53.42 5245 4571 29.47 pp =0.637, p, = 0.886
RS 81.04 85.36 85.52 84.84 79.94 81.27 pp = 0.922, p, = 0.886
PD-Top 90.36 91.75 93.83 93.33 89.87 91.03 pp = 0.926, p, = 0.943
PD-Mid 83.53 83.12 86.97 86.14 83.73 83.11 pp = 0.885, p, = 0.943
PD-Bottom 62.29 61.84 64.71 65.01 60.21 60.00 pp = 0.918, p, = 0.829
PD-Uniform 83.27 84.51 87.49 86.53 82.05 83.19 pp = 0.959, p, = 0.943
ERC-100 84.79 85.81 89.31 88.32 83.75 84.65 pp = 0.945, p, = 1.000
ERC-155 82.37 85.19 87.53 86.21 80.75 82.49 pp =0.971, p, = 0.943

Table 3: Accuracy trends and correlation values (higher is better) on supervised learning across
different backbone networks.

C MORE DETAILS OF SUBSET GENERATION EXPERIMENTS

Considering that if the size of the subset is too large, the subset will lose its role and advantage of
fast hyperparameter searching. To this end, in the policy of per-class empirical consistency, T is set
to 200 and M, 18 set to 100. It means that if the size of selected subset is large than 200, we
will randomly choose 100 classes among them as the new subset, so that we can guarantee the final
scales of subsets will not be larger than T'. Otherwise, the subset will keep the originally identified

classes.

D FULL NAMES OF SUBSET LISTS ON IMAGENET-1K

D.1

n01667778
n01756291
n02096294
n02119022
n02395406
n02443484
n02776631
n02999410
n03249569
n03710637
n03793489
n03976657
n04285008
n04392985
n04560804
n07584110
n09399592

D.2 ERC

n01484850
n01669191
n01755581
n01914609
n02002556
n02088238
n02097209
n02110806
n02177972
n02445715
n02786058
n02843684
n03000684
n03388183
n03482405

PD-BoTTOM

n01693334
n01773549
n02106030
n02123045
n02403003
n02493793
n02808440
n03016953
n03461385
n03710721
n03832673
n04008634
n04286575
n04428191
n04589890
n07734744
n09428293

n01498041
n01685808
n01770393
n01978287
n02007558
n02090721
n02098105
n02111277
n02190166
n02481823
n02797295
n02865351
n03018349
n03394916
n03538406

n01729977
n01773797
n02107908
n02123159
n02412080
n02497673
n02895154
n03045698
n03485407
n03770679
n03866082
n04081281
n04355933
n04443257
n04591157
n07860988
nl2144580

(WINNING TICKET 2)

n01580077
n01688243
n01824575
n01981276
n02012849
n02091032
n02099849
n02111500
n02346627
n02484975
n02799071
n02892201
n03062245
n03445924
n03584829

(WINNING TICKET 1)

n01740131
n01775062
n02109961
n02124075
n02415577
n02669723
n02974003
n03125729
n03642806
n03773504
n03871628
n04152593
n04356056
n04493381
n04592741
n07892512
nl13133613

n01601694
n01694178
n01829413
n01983481
n02056570
n020914¢67
n02100583
n02111889
n02356798
n02486261
n02804414
n02948072
n03110669
n03447721
n03595614

15

n01744401
n02088466
n02110185
n02167151
n02441942
n02749479
n02979186
n03146219
n03657121
n03782006
n03895866
n04239074
n04357314
n04525038
n04599235
n07930864

n01608432
n01698640
n01855032
n01985128
n02074367
n02093859
n02101006
n02114548
n02363005
n02641379
n02807133
n02977058
n03131574
n03450230
n03598930

n01753488
n02089973
n02114712
n02229544
n02443114
n02769748
n02988304
n03179701
n03658185
n03787032
n03950228
n04264628
n04380533
n04557648
n07579787
n09332890

n01622779
n01728920
n01873310
n01990800
n02077923
n02096437
n02108089
n02128385
n02444819
n02690373
n02823428
n02992211
n03207941
n03459775
n03649909
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n03697007
n03877845
n03938244
n04039381
n04251144
n04367480
n04467665
n04517823
n04579432
n07693725
n07875152

E MORE

More results of accuracy trends and correlation values are shown in Fig. 4.

n03764736
n03888605
n03967562
n04041544
n04273569
n04371774
n04482393
n04523525
n04589890
n07697537
n09229709

RESULTS

n03786901
n03891251
n03977966
n04099969
n04277352
n04417672
n04485082
n04532106
n04597913
n07717556
nl2620546

n03873416
n03903868
n03998194
n04153751
n04311174
n04418357
n04487394
n04542943
n04604644
n07718472
nl2768682

n03876231
n03929855
n04005630
n04209133
n04336792
n04442312
n04509417
n04553703
n07565083
n07753275
nl3052670

n03877472
n03935335
n04033901
n04238763
n04355338
n04465501
n04515003
n04554684
n07615774
n07873807

Training Data Accuracy Trend Pp> Ps Values
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Table 4: More accuracy trends and correlation values (higher is better) across different frameworks.

F MORE ANALYSES ON GENERALIZABILITY

Settings: (i) Batch size effect. On this factor, we employ MAE_Base/16_Linear as the baseline
and examine the consistency between the winning ticket and full data. The default batch size in
MAE framework is 4,096, we test 2,048 and 1,024 respectively for studying the generalizability
of our selected winning ticket. (ii) Stochastic regularization with DropPath. On this factor, we
employ DINO_Small/16_linear as the baseline, the default DropPath ratio in DINO framework is
0.1, we test additional 0.3, 0.5, respectively. Our results indicate that the selected subsets have good

generalizability on slightly different training settings.

F.1

Inspired by (Sorscher et al., 2022), we also use a teacher-student perceptron scheme to explain our
DLTH theoretically. We consider select the subset training dataset (the subset has P examples with
{x',y"},_1 _p» where x" ~ N (0, Iy)) by keeping only the examples with the smallest margin
|2#| = |Sprobe - x*| along a probe student Sprone , Which matches one of our proposed selection
policies. The selected subset will follow the distribution p(z) along the direction of Sprope . Similarly,
we can obtain the generalized theory for an arbitrary data distribution p(z) for the small-margin
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selection strategy. Sprope contains overlap with the teacher that is determined by the angle 6 =

—1 Sprobe -T
COS T -
S QmmwwﬂTm

After the subset has been selected, we train a new student S from scratch on the selected subset. The
typical learning algorithm is to train a classifier for the training data with the maximal margin x =
min,, S-(y"x*) to find the optimized S. Different from data pruning of computing the generalization
error ¢4 of this student, which is governed by the overlap between the student and teacher, £, =
cos Y(R)/m, where R = S - T/||S||2||T||2. we focus on the consistency of test error es across
different configurations for the final perceptron as a function.

G BACKGROUND

Self-supervised Learning. Self-supervised pre-training has been recognized as a promising tech-
nique in various fields, such as Computer Vision (Caron et al., 2021; 2020; He et al., 2022),
NLP (Kenton & Toutanova, 2019; Yang et al., 2019; Liu et al., 2019; Brown et al., 2020),
Speech (Hsu et al., 2021; Liu et al., 2021; Chen et al., 2022) and Multimodality (Radford et al.,
2021; Ramesh et al., 2021; 2022). The major drawback of this technique is the costly training
overhead, which dramatically impedes more investigation and exploration. For instance, GPT-3
model (Brown et al., 2020) contains 175 billion parameters and is trained roughly requiring 1,024
A100 GPUs for more than one month, the estimated training cost of it is at least $4.6 million. In the
vision domain, DINO ViT-B/8 (Caron et al., 2021) is also trained on 176 GPUs which is inaccessible
for most research institutions.

Efficient Hyperparameter Tuning. The most common hyperparameter tuning method is the grid
search. While it is always in low-efficiency when the number of hyperparameters is large, as well as
the big training data and model size. Random search with human experience and Bayesian optimiza-
tion (Bergstraetal.,2011; Snoek et al., 2012; Hutter et al., 2019) are two popular fast hyperparameter
tuning methods and have been successfully applied to many applications in practice. In this study,
we focus on finding a proper subset (winning ticket) from the full data, which is orthogonal to these
black-box strategies and can be utilized with them simultaneously. Moreover, a suitable subset is
more efficient if the model’s training cost is high.

Model-level Lottery Ticket Hypothesis. The original lottery ticket hypothesis (Frankle & Carbin,
2019) and its follow-ups (Zhou et al., 2019; Evci et al., 2020; Wang et al., 2020; Chen et al., 2020a;
Morcos et al., 2019; You et al., 2019; Savarese et al., 2020) are proposed on the neural network
dimension as the model pruning technique. The core of this hypothesis is that a randomly-initialized
neural network contains a subnetwork that can match the test accuracy of the original model after
training for the same number of iterations. PrAC (Zhang et al., 2021) observed that a sparse model
can be explored with training and pruning the dense network on the compact PrAC set, which has
a different goal from the proposed DLTH. In this work, we study the lottery ticket hypothesis on
the datatset dimension to reflect the consistency of performance trend, and propose several practice
ways to identify the dataset winning tickets.

Active Learning and Dataset Pruning. Active learning (Settles, 2009) is similar to the semi-
supervised learning strategy by involving the human participation, and the process of selecting suit-
able candidate sets for manual labeling through machine learning algorithms. The idea of active
learning is to obtain the sample that is more difficult to classify through ML approach, then, let
human reconfirm and review them. After that, we can re-use the manually labeled data with a su-
pervised learning or semi-supervised learning model. There are many recent literature following
this interesting paradigm (Ash et al., 2019; Mirzasoleiman et al., 2020; Citovsky et al., 2021). In
contrast, DLTH focuses on selecting a subset with consistent performance trends as the full data.
For the dataset pruning, Sorscher et al. (Sorscher et al., 2022) focused on the scaling of testing error
with dataset size and proposed a self-supervised pruning metric to demonstrate comparable results
to the supervised metrics. Different from the dataset pruning setting, in our scenario, we do not care
about the absolute accuracy of the individual model trained on the subset but the consistency to the
models trained on full data. The two tasks essentially have different goals, and our pruning ratio on
the original dataset is also much higher than dataset pruning.
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H IMPLEMENTATION DETAILS AND EXPERIMENTAL SETTINGS

H.1 DINO (CARON ET AL., 2021) PRETRAINING AND LINEAR PROBING

We conduct experiments two configurations of DINO framework (Caron et al., 2021): (D)
DINO.Base/1l6_linear and (II) DINO_.Small/1l6_linear. The pre-training settings are

provided in Table 5. The linear probing settings are in Table 6.

arch. vit_small vit_base
optimizer AdamW AdamW
patch_size 16 16
out_dim 65,536 65,536
norm_last_layer false true
warmup_teacher_temp 0.04 0.04
teacher_temp 0.07 0.07
warmup_teacher_temp_epochs 30 50
momentum_teacher 0.996 0.996
use_bn_in_head false false
drop_path_rate 0.1 0.1
use_fpl6 false false
weight_decay 0.04 0.04
weight_decay_end 0.4 0.4
clip_grad 0.0 0.3
batch_size 1024 1024
epochs 800 400
freeze_last_layer 1 3
Ir 0.0005 0.00075
warmup_epochs 10 10
min_Ir 2e-05 2e-06
global _crops_scale [0.25, 1.0] [0.25, 1.0]
local_crops_scale [0.05, 0.25] | [0.05, 0.25]
local_crops_number 10 10
seed 0 0

Table 5: DINO (Caron et al., 2021) pre-training setting on subsets.

arch. vit_small vit_base
patch_size 16 16
n_last_blocks 4 1
avgpool_patchtokens false true
checkpoint_key teacher teacher
epochs 100 100
Ir 0.001 0.001
batch_size 1,024 1,024
optimizer SGD SGD
weight_decay 0.0 0.0
optimizer_momentum 0.9 0.9
learning_rate_schedule | cosine decay | cosine decay

Table 6: DINO (Caron et al., 2021) linear probing setting on subsets.

H.2 MoCo (HE ET AL., 2020) PRETRAINING AND LINEAR PROBING

We conduct experiments with three configrations on MoCo V1&V2 (He et al., 2020; Chen et al.,
2020b) frameworks: (I) MoCoV1-ResNet50-200ep, (II) MoCoV2-ResNet50-200ep and
(III) MoCoV2-ResNet 50-800ep. The details of pre-training and linear probing settings are
provided in Table 7 and Table 8, respectively.
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config. Cc1l Cc2 C3
arch. ResNet50 ResNet50 ResNet50
batch_size 256 256 256
epochs 200 200 800
Ir 0.03 0.03 0.03
learning_rate_schedule | cosine decay | cosine decay | cosine decay
optimizer SGD SGD SGD
momentum 0.9 0.9 0.9
weight_decay le-4 le-4 le-4
moco-dim 128 128 128
moco-k 65,536 65,536 65,536
moco-m 0.999 0.999 0.999
moco-t 0.07 0.2 0.2
mlp_head false true true
aug_plus false true true
Table 7: MoCo (He et al., 2020) pre-training setting on subsets.
config. Cl c2 C3
arch. ResNet50 ResNet50 ResNet50
batch_size 256 256 256
epochs 100 100 100
Ir 30 30 30
learning_rate_schedule [60, 80] [60, 80] [60, 80]
optimizer SGD SGD SGD
momentum 0.9 0.9 0.9
weight_decay 0 0 0
augmentation RandomResizedCrop | RandomResizedCrop | RandomResizedCrop

Table 8: MoCo (He et al., 2020) linear probing setting on subsets.

H.3 MAE (HE ET AL., 2022) PRETRAINING, FINETUNING AND LINEAR PROBING

We conduct experiments on MAE (He et al., 2022) with one pretraining configuration and two
evaluation protocols: (I) MAE Base/16_Linear and (II) MAE Base/16_Finetuning.

Pre-training: The setting used for our experiments is in Table 9. Following the default protocal,
we do not use color jittering, drop path, or gradient clip. We also use the linear /r scaling rule: [r =
base_Irxbatchsize / 256. End-to-end fine-tuning: The setting used in our experiments is provided
in Table 10. Linear probing: Our linear classifier training setting is provided in Table 11.

arch.
optimizer
base_learning_rate
weight_decay
optimizer_-momentum
batch_size
learning_rate_schedule
warmup_epochs
augmentation

vit_base
AdamW
1.5e-4
0.05

B, B2=0.9,0.95

4,096
cosine decay
40

RandomResizedCrop

Table 9: MAE (He et al., 2022) pre-training setting on subsets.

I RESULTS ON AG’S NEWS ToPIC CLASSIFICATION DATASET

Training and Evaluation Settings. To further examine the generalizability of the proposed DLTH,
we extend our method to the NLP domain to see whether this hypothesis still holds using AG’s news
topic classification dataset (Zhang et al., 2015). This dataset is widely used as a text classification
benchmark. It consists of 4 coarse classes from the original corpus. Each class contains 30K training
samples and 1.9K testing samples. The total number of training samples is 120K and testing 7.6K.
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arch. vit_base
optimizer AdamW
base_learning_rate le-3
weight_decay 0.05
optimizer_momentum | (31, $2=0.9,0.999
layer-wise_Ir_decay 0.75
batch_size 1,024
learning_rate_schedule cosine decay
warmup_epochs 5
training_epochs 100
augmentation RandAug (9, 0.5)
label_smoothing 0.1
mixup 0.8
cutmix 1.0
drop_path 0.1
Table 10: MAE (He et al., 2022) end-to-end fine-tuning setting on subset.
arch. vit_base
optimizer LARS
base_learning_rate 0.1
weight_decay 0
optimizer_-momentum 0.9
batch_size 16,384
learning_rate_schedule cosine decay
warmup_epochs 10
training_epochs 90
augmentation RandomResizedCrop

Table 11: MAE (He et al., 2022) linear probing setting on subsets.

Configurations and Results. We explore four configurations as shown in Table 12. The results are
provided in Table 13. For the lottery ticket subset, we simply select consistent samples across four
configurations until reaching 10% of the full data. We do this twice to construct different lottery
ticket subsets to mitigate variance in different runs. We can observe that the models trained on
lottery ticket subsets are much more robust with higher correlation values to the full data than the
modles trained on the random subset baselines.

config. | c1 | c2 | c3 | «c4
batch_size 64 64 128 64
epochs 10 10 10 10
Ir 5 5 5 10
learning_rate_schedule | StepLR | CosineAnnealingl. R | StepLR | StepLR
optimizer SGD SGD SGD SGD

Table 12: Training configurations on AG’s news topic classification dataset.

.. Accuracy Trend
Training Data c1 oo y c3 ca pp value
Full 0.910 0.905 0.896 0.909 -
RS-0 0.864 0.862 0.862 0.863 0.764
RS-1 0.863 0.867 0.863 0.871 0.437
RS-2 0.863 0.870 0.859 0.868 0.589
RS-3 0.870 0.868 0.863 0.864 0.617
RS-4 0.861 0.862 0.860 0.867 0.555
Lottery Ticket-0 | 0.871 0.864 0.863 0.867 | 0.814
Lottery Ticket-1 | 0.870 0.865 0.864 0.871 | 0.863

Table 13: Accuracy trends and correlation values on AG’s news classification dataset.
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