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ABSTRACT

Identifying the principles that determine neural population activity is paramount
in the field of neuroscience. We propose the Principle of Isomorphism (PIso):
population activity preserves the essential mathematical structures of the tasks it
supports. Using grid cells as a model system, we show that the neural metric task
is characterized by a flat Riemannian manifold, while path integration is charac-
terized by an Abelian Lie group. We prove that each task independently constrains
population activity to a toroidal topology. We further show that these perspectives
are unified naturally in Euclidean space, where commutativity and flatness are
intrinsically compatible and can be extended to related systems including head-
direction cells and 3D grid cells. To examine how toroidal topology maps onto
single-cell firing patterns, we develop a minimal network architecture that ex-
plicitly constrains population activity to toroidal manifolds. Our model robustly
generates hexagonal firing fields and reveals systematic relationships between net-
work parameters and grid spacings. Crucially, we demonstrate that conformal
isometry—a commonly proposed hypothesis—alone is insufficient for hexagonal
field formation. Our findings establish a direct link between computational tasks
and the hexagonal-toroidal organization of grid cells, thereby providing a general
framework for understanding population activity in neural systems and designing
task-informed architectures in machine learning.

1 INTRODUCTION

Neuroscience has shifted from analyzing the tuning of individual neurons to understanding compu-
tation through population activity (Yuste, 2015} Vyas et al.l 2020; |[Kriegeskorte & Wei|, 2021} Perich
et al.| 2025)). This transition, enabled by large-scale neural recordings (Urai et al.| |2022), highlights
that the functional unit of computation is the collective dynamics of neural populations (Church-
land et al., 2012} |Saxena & Cunningham, 2019} [Langdon et al.| [2023)). Yet a central open question
remains: how neural population activity is formed and organized.

In this work, we move beyond descriptive characterizations of neural activity to propose a principled
account: population activity is determined by the mathematical structure of computational tasks it
supports. More specifically, we introduce the Principle of Isomorphism, PIso, which posits that the
mathematical structure inherent in a task is preserved in the structure of neural population activity.

We illustrate the power of this framework through a case study of grid cells in the mammalian
entorhinal cortex, a system with well-characterized organization at both single-cell and population
levels. At the single-cell level, grid cells exhibit distinctive hexagonal firing fields in physical space
(Fyhn et al., |2004; Hafting et al.l 2005} |Sargolini et al.| | 2006)). At the population level, cells within
the same module collectively form a toroidal topology (Gardner et al.,[2022). This dual-organization
makes grid cells an ideal system for linking computational tasks to neural representations.

Grid cells are known to support two primary tasks: /. path integration (PI)(Hafting et al., [2005}; |Mc-
Naughton et al.,|2006; |Burak & Fiete| 2009;|Gil et al.,|2018), which computes position by integrating
self-motion cues, and 2. neural metric (NM) (Moser & Moser, 2008; |Ginosar et al., [2023)), which
provides an intrinsic metric for spatial representation. Under the principle of isomorphism, we show
that each of these tasks imposes distinct structural constraints on population activity.
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The seminal studies of grid cells reflect two major conceptual shifts in computational neuroscience.
The first is a move from mechanistic to normative models, which explain single-cell firing patterns
as solutions to optimization problems (Stachenfeld et al., 2017} |Banino et al.,|2018}; |Cueva & Wei,
2018 [Sorscher et all [2019; Whittington et al., 2020} Gao et al.l 2021} Xu et al., [2022; |Dorrell
et al.l|2022). The second is a recognition that a complete account must explain not only single-cell
tuning but also the population activity (Schaeffer et al., 2022} |Schgyen et al.||2023)). Network studies
have shown that reproducing grid-like firing at the single-cell level requires strong inductive biases
(Schaeffer et al.,[2022)), while numerical experiments demonstrate that path integration relies on the
toroidal organization of population activity rather than hexagonal fields of single cell alone (Schgyen
et al.,|2023)). This shift has led recent computational modeling efforts to analyze both single-cell and
population representations jointly (Sorscher et al., | 2023;|Schaeffer et al., 2023; |Pettersen et al.,[2024;
Xu et al., 2024).

The contributions of this work are threefold (Figure [T):

* A unifying theoretical framework: We propose the Principle of Isomorphism, which
states that neural population activity preserves the mathematical structure of tasks it sup-
ports.

» Applications and mathematical unification: Applying the Principle of Isomorphism, we
show that Neural Metric and Path Integration correspond to flat Riemannian and Abelian
Lie group structures, which independently yield toroidal population codes but naturally
unify within Euclidean space. This reveals a shared representational basis that extends
from grid cells to head-direction cells and 3D grid cells.

* Architectural insights: We design a minimal network architecture that enforces a toroidal
latent manifold, enabling a systematic study of how population-level structure relates to
single-cell-level hexagonal firing. With this model, we demonstrate that the previously
proposed conformal isometry loss function alone is insufficient to generate hexagonal firing
fields.

By applying the Principle of Isomorphism, this work provides a unified theoretical foundation for
understanding grid cell representations and, more broadly, offers a general framework for linking
computational function to the mathematical structure of neural population activity.
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Figure 1: The principle of isomorphism applied to grid cells. Both path integration and neural
metric task can be unified as the Euclidean representation task, while each independently determines
the toroidal organization of population activity. Moreover, conformal isometry is not a sufficient
condition for projecting toroidal population activity into hexagonal firing fields.

2 THE PRINCIPLE OF ISOMORPHISM (PIS0O)

To understand the origins of structured population activity, we introduce a theoretical framework
built on two pillars: the structure of the computational task and the structure of neural population
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activity. The central idea is that population activity reflects and preserves the structure of the task.
We formalize this relationship through the Principle of Isomorphism.

Task Structure: This denotes the abstract mathematical structure embedded in a computational
objective. For example, Path Integration (PI) is fundamentally defined by the addition of displace-
ment vectors, an operation that forms an Abelian Lie group characterized by smoothness and com-
mutativity. Neural Metric (NM) requires encoding distances and angles in physical space, which
corresponds to a flat Riemannian manifold (zero curvature).

Representational Structure: This refers to the mathematical structure of the organization—
geometric, topological, algebraic, etc.—inherent in the neural population activity. For instance,
the activity of grid cells within a single module lies on a low-dimensional manifold with toroidal
topology.

Principle of Isomorphism (PIso): Subject to biological constraints (e.g., finite neural resources),
the essential structural features of a computational task are preserved in the representational structure
of the neural population. In other words, task structure and representational structure are isomorphic.

Computational tasks are defined by diverse mathematical structures, such as group algebra or met-
rics. Therefore, the isomorphisms that map these tasks to neural representations—such as homo-
morphisms or isometries—must be specifically tailored to each case, all while operating within
biological limits.

PIso synthesizes ideas that have appeared across neuroscience and artificial intelligence. In neuro-
science, normative theories view neural activity as evolutionarily optimized for ecological demands
(Attneavel |1954} Barlow et al.,|1961]), early work on representational geometry emphasized preserv-
ing similarity relations (Shepard & Chipman, |1970; [Edelman, [1998), and recent studies highlight
encoding transformations as well as variables (Dorrell et al., 2022} (Gao et al., 2021} Xu et al.,
2022). In Al, related notions appear as inductive biases (Wolpert & Macready, |1997; |Bengio et al.,
2013)), with geometric deep learning enforcing equivariance to task-defined groups (Bronstein et al.,
2021)), and representational alignment showing convergence across systems solving similar tasks
(Sucholutsky et al., 2023).

In the following, we apply this framework to grid cells, while emphasizing that PIso is broadly
applicable across neuroscience and machine learning as a general tool for analyzing population
activity and guiding architecture design.

3 PISO IN GRID CELLS

3.1 NEURAL METRIC IN THE PISO FRAMEWORK

Task Structure of NM: The core of the NM task is that grid cells provide the brain with an intrin-
sic representation of physical space that preserves its geometry—specifically, distances and angles.
Mathematically, such a geometry is formalized as a Riemannian manifold, defined by a metric ten-
sor that specifies how lengths and angles are measured locally. In practice, most mammals live in
a flat physical environment, so the NM task structure can be modeled as a two-dimensional flat
Riemannian manifold with zero curvature everywhere.

Representational Structure of NM: Under the Plso framework, the representational structure of
grid cells must preserve the essential features of the task structure of NM. In conjunction with basic
biological constraints, this leads to the following requirements:

Proposition 1 (Constraints of NM). The representational structure, as a manifold M, must satisfy:

1. Two-dimensional, admitting a flat metric: The manifold must admit a flat Riemannian
metric, reflecting the two-dimensionality and local flatness required by NM under Plso.

2. Compact: Neural activity is bounded, excluding infinitely extended manifolds.

3. Boundaryless: Boundaries would create discontinuities that are incompatible with contin-
uous spatial navigation Fiete et al.|(12008).
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These conditions strongly restrict the global structure, such as geometry and topology, of the neural
manifold M. We then consider the Gauss-Bonnet theorem, a fundamental result in differential
geometry which links the the manifold’s geometry to its topology (Needham, 2021)). It states that
for a compact, boundaryless 2D manifold, the total curvature is a topological invariant:

K dA =2nx (M),
M

where x (M) is the Euler characteristic.

Theorem 1 (Topology implied by NM). For a manifold that admits a flat metric (where K = 0
everywhere), this immediately implies x (M) = 0.

/KdA:/ 0dA =27nx(M) = x(M)=0 (1)
M M

The classification of all compact 2D surfaces reveals that only two have an Euler characteristic
of zero: the torus and the Klein bottle (Hatcher, 2002). Because spatial representation must be
orientable—preserving consistent notions of left/right and forward/backward—the Klein bottle is
excluded, leaving the torus as the unique solution.

The arguments above show that topology, rather than geometry or single-cell tuning, is the funda-
mental invariant for the NM task.

3.2 PATH INTEGRATION IN THE PISO FRAMEWORK

The Path Integration (PI) of grid cells has been extensively studied (Fiete et al.| 2008} |Sreenivasan
& Fietel 201 1; Whittington et al.,|2020; |Gao et al., 2021; Xu et al.,|2022)). Restating this within our
PIso framework provides a unifying perspective:

* Task Structure: Path integration is defined by the summation of displacement vectors,
which satisfies the algebraic structure of the Abelian Lie group (R?, +).

 Isomorphic Constraint: The representational structure must therefore be a connected,
two-dimensional Abelian Lie group.

* Biological Constraint: Neural activity is bounded, so the Lie group must be compact.

According to the theory of compact Lie group, the only possible topology of this Lie group is
torus (Dwyer & Wilkerson, [1998). Thus, from the PI perspective, the toroidal topology emerges
directly from the requirement that the neural population acts as a commutative group for integrating
displacements. This confirms that, as in NM, topology is an invariant underlying PI.

3.3 UNIFYING NM AND PI: EUCLIDEAN REPRESENTATION

Having shown that NM and PI, each independently constrain the patterns of grid cell neural pop-
ulation activity to a toroidal structure, we now turn to their formal relationship. Within Euclidean
space, these two tasks can be unified through the intrinsic compatibility between flatness (Rieman-
nian structure) and commutativity (group structure). This perspective reveals Euclidean representa-
tion as the deeper task structure that subsumes both NM and PI under the PIso framework (Figure

1.

Specifically, this unifying can be understood at both the task-structure as well as the representa-
tional level. At the task-structure level, NM’s Riemannian structure and PI’s group structure are
jointly realized in two-dimensional Euclidean space. As a vector space, Euclidean space supports
the Abelian addition required for PI, and as an inner product space it admits the flat Riemannian
metric required for NM. Therefore, group actions preserve the inner product structure within Eu-
clidean space, ensuring that translations and rotations are isometries. This yields two fundamental
symmetries: Homogeneity, no privileged locations—geometric properties are invariant across all
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positions. Isotropy, no privileged directions—geometric properties are invariant across all orien-
tations. Together, these symmetries reflect the structure of Euclidean representation, within which
NM and PI emerge as complementary facets of a single unified task.

At the representational level, the only compact manifolds compatible with Abelian group and flat
Riemannian structures in any dimension are tori. Thus, the unification naturally extends beyond
2D grid cells to related spatial navigation systems (Rank} |1984; |Ginosar et al., 2021} |Grieves et al.,
2021)). Head-Direction Cells can be viewed as computing a one-dimensional version of PI and NM,
with an intrinsically circular task structure rather than an unbounded Euclidean line. 3D grid cells
would be expected to form a 3D torus. However, the lack of robust periodicity in recordings suggests
either additional neural mechanisms that distort this canonical structure, or fundamentally different
computational demands in volumetric navigation (Grieves et al., 2021).

This unification also constrains plausible physiological mechanisms underlying grid cell formation.
It explains why successful Continuous Attractor Neural Network models rely on synaptic connectiv-
ity that enforces translational invariance—a biological implementation of the homogeneity required
by the Euclidean task (Skaggs et al.| |1994; |Zhang] |1996} Burak & Fiete, [2009).

4 EXPERIMENTS

The above PIso framework demonstrate that the representational topology—not single-cell tun-
ing—is functional invariant of spatial computation. Many of previous network simulations have
consistently revealed toroidal manifolds but differ in their single-cell projections: some models pro-
duce band-like firing fields, while others yield hexagonal patterns (Schgyen et al., 2023} |Pettersen
et al., [2024). These observations have been interpreted as evidence that bands and hexagons firing
fields support distinct computations (PI vs. NM). In contrast, our framework suggests that both
computations arise from the shared toroidal substrate. Topology determines whether a task is pos-
sible at all, whereas single-cell firing patterns influence performance, providing alternative readout
strategies with different efficiencies.

This raises a central question: why does the entorhinal cortex, when projecting toroidal popula-
tion activity onto individual cells, predominantly produce hexagonal firing fields? To address this,
we developed the Topo-Constrained Network (TopoCN), a computational framework that explicitly
constrains population activity to toroidal manifolds while systematically explores single-cell firing
properties.

4.1 ARCHITECTURE OF THE TOPO-CONSTRAINED NETWORK (TOPOCN)

We designed a minimal feedforward, self-supervised network with a conformal isometry (CI) loss
(Figure[2p). Self-supervised learning has been used in grid-cell modeling (Schaeffer et al.l 2023),
and CI loss was introduced to preserve local metrics (Gao et al.| 2021} Xu et al., 2022). A similar
architecture was explored by |Pettersen et al.| (2024) for NM task. Our approach differs in two
key ways: (1) we explicitly enforce toroidal population activity (Figure 2b, c), and (2) we replace
capacity-related losses (Schaeffer et al., 2023| [Pettersen et al.l |2024) with control of torus size,
which we systematically vary. Thus, our model serves not to replicate NM, but to test how toroidal
topology maps onto single-cell firing patterns. More detailed explanations, including an RNN-
based PI extension of TopoCN and a comparison between torus-size control and capacity-based
regularization, can be found in Appendix [Bland Appendix

Consider a square-shaped 2D arena (see Appendix for details). Each location (z, y) is mapped to
a 4D toroidal embedding n € R*:

ny = Rcos(kix + kay),

no = Rsin(kix + koy),

ng = rcos(ksx + kqy),

ng = rsin(ksx + kay), 2)
where R, 7 k; (i = 1,...,4) are learnable parameters, with R and r setting the major and minor
radii of the torus and k; specifying the linear map from physical coordinates to torus angles. This

guarantees that the network input already lies on a toroidal manifold, from which downstream layers
can perform diverse transformations.
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The embedding n is then passed to a multi-layer perceptron MLP : R* — R, whose output
g = MLP(n) represents the activities of a population of G grid cells. We impose two generic
biological constraints:

lgl* =1, g;>0 Vie{l,...,G}, 3)

where the constant ¢5-norm reflects is supported by empirical observation in the experiment
2024), and non-negativity reflects firing-rate constraints.

To probe how toroidal structure shapes single-cell firing patterns, we systematically vary two hy-
perparameters: (1) Scaling factor p, which controls the mapping between physical space and neural
representation; (2) Torus size s, which quantifies the compactness of the toroidal manifold:

2

1 m
—1_ = (k)
s=1 mZg : 4)
k=1 2

where g(¥) is the output representation of the k-th randomly sampled location in physical space. This
metric ranges from O to 1, with larger values indicating more distributed toroidal representations.

The network is trained with a composite objective that combines a conformal isometry term with a
torus size regularization:

£ =E[(|agl - pllax])* exp (- 1525 ) | + 76 — 50)2, )

with the constraint ||g||?> = 1. Here Ax and Ag denote displacement in physical and the corre-
sponding change of representation vector in the neural space, o controls the locality of conformal
isometry, A = 2 and s € [0, 1] sets the target torus size. In all the numerical results reported in the
main text, G = 32 was used.
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Figure 2: (a). Our minimal network model to explore how to generate hexagonal firing field from
torus population topology. (b) Persistent homology analysis showing the torus structure. (c) Visual-
ization of the torus population topology from numerical simulation (using PCA followed by UMAP
for dimensionality reduction).
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This experimental framework enables us to test whether hexagonal firing patterns emerge naturally
from toroidal constraints or require additional constraints.

4.2 EXPERIMENTAL RESULTS

4.2.1 SPONTANEOUS EMERGENCE OF HEXAGONAL FIELDS

Within our minimal architecture and without additional constraints, toroidal population activity nat-
urally projects to hexagonal grid-like firing fields. These fields exhibit uniform spacing and orien-
tation across neurons, consistent with experimental observations of single grid modules (Figure [3)
(see Appendix [E] for more firing fields). At large torus sizes, spacing variations frequently emerge,
suggestive of spontaneous subdivision into multiple modules—an adaptive mechanism to increase

representational capacity (Schaeffer et al.| [2023)).
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Figure 3: Examples of grid-cell firing fields under different hyperparameters p and sg (left). Dis-
tribution of grid score, spacing, and orientation (right) shows narrow clustering, consistent with a
single grid module.

4.2.2 ROBUSTNESS TO NOISE

To test resilience of the single-neuron firing patterns to noise, we inject Gaussian noise into the
output neural activities and quantify (1) the proportion of active neurons and (2) the fraction of active
neurons that exhibit hexagonal firing fields. As noise increased, the network recruits additional
neurons to enhance robustness, while hexagonal patterns persist across a wide range of noise levels
(Figure[@). This shows that toroidal-to-hexagonal projection is robust to realistic neural variability.

4.2.3 LiMITS OF CONFORMAL ISOMETRY

Systematically varying torus size sy while holding mapping scale p constant reveals a striking re-
lationship between topology and firing patterns (Figure p): (1) the proportion of active neurons
increase with torus size, consistent with coverage of larger manifold areas; (2) the probability of
grid-like cells peaks at intermediate values of sg; (3) excessively large sg produce square-like rather
than hexagonal fields, while small sy generate diffuse, non-localized responses.
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Figure 4: Proportion of active cells and grid cells as a function of (a) noise level and (b) torus
size parameter sg. Hexagonal firing fields are robust to moderate noise, but only emerge within an
intermediate range of torus sizes.

Xu et al.|(2024) showed that conformal isometry can promote toroidal-to-hexagonal projection by
maximally flattening the torus. Our experiments reveal that this outcome occurs only within a re-
stricted range of torus sizes. Thus, CI is not a sufficient condition for hexagonal fields formation,
pointing to the existence of deeper geometric or optimization mechanisms yet to be uncovered.

4.2.4 GRID FIELD SPACING AS A FUNCTION OF p AND §g

The grid spacing—the physical distance between adjacent firing fields—reflects the distance corre-
sponding to one complete traversal around the torus in a given direction. Since the scaling factor
p controls the mapping between physical displacement and neural-space displacement, we predict
that, when the torus size sg is held constant, grid spacing should be inversely proportional to p. This
prediction is clearly confirmed by our simulations (Fig. [Sh) (see Appendix [D] for details). Similar
relationship is also reported in Xu et al.| (2024), where RNNs were trained to perform PI with a
slightly different objective function.

Furthermore, we investigated the influence of the torus size sy while holding the scaling factor p
constant. We observe that grid spacing increases monotonically with torus size (Figure [5|b). This
relationship suggests that larger toroidal manifolds naturally accommodate broader spatial represen-
tations, with individual grid fields covering correspondingly larger regions of physical space. These
findings demonstrate that both parameters p and sg, exert independent and predictable control over
grid spacing.
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Figure 5: Grid spacing is proportional to 1/p and monotonically increases with the torus size pa-
rameter sg.
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5 RELATION TO PAST WORKS

The studies by |Gao et al.| (2021); Xu et al.| (2022)) were among the first to analyze grid cells from
a geometric perspective and to propose the conformal isometry hypothesis. This hypothesis posits
that distances on the neural manifold locally match physical distances up to a scaling factor, thereby
constraining both the geometry and the mapping. However, its strict requirements appear inconsis-
tent with experimental observations of distorted grid patterns (Krupic et al., [2015} 2018 Stensola;
et al., 2015). In contrast, our framework for NM task only requires the existence of a flat metric,
which constrains the population’s topology (to a torus) but allows for flexibility in its precise geome-
try. This topological focus accommodates the observed distortions, as the toroidal structure remains
invariant even when the geometric embedding changes (Gardner et al., [2022)). In cases where dis-
tortions are minimal, population activity may indeed approximate conformal isometry (Xu et al.,
2024])), enabling simple linear decoding (Pouget et al.l [2000; [Burak & Fietel |2009; Sreenivasan &
Fiete, 2011 Stemmler et al.,2015). Our perspective generalizes this, suggesting that for any toroidal
manifold—even a geometrically distorted one—a decoder can recover the flat geometry, though it
may need to be nonlinear. This contrasts with non-toroidal manifolds, for which such a recovery is
fundamentally impossible.

Beyond geometry and NM, another important line of work has focused on PI. Prior studies have
shown that grid cell activity preserves the algebra of displacement during PI (Fiete et al., | 2008;
Sreenivasan & Fiete, |2011)), as well as the commutativity of displacement summation (Whittington
et al.,|2020). Notably, Gao et al.|(2021)); Xu et al.|(2022) highlighted the 2D additive group structure
of displacements (R?, +), interpreting PI as a computational function that naturally gives rise to
a group representation of this structure. Under the requirement that such a representation be both
compact and connected, the neural population activity must therefore take the form of a torus. Our
discussion in can be viewed as a reinterpretation of these prior ideas within the unifying PIso
framework.

6 DISCUSSION

We introduced the principle of isomorphism as a general framework for linking computational tasks
to neural population activity. Applying this framework to grid cells, we showed that PI and neural
metric NM emerge as complementary subcomponents of a unified Euclidean representational task,
each independently constraining population activity to a toroidal topology. This establishes topology
as the functional invariant of spatial computation. Through numerical experiments, we systemati-
cally explored the relationship between toroidal population activity and the emergence of hexagonal
single-cell firing fields. These analyses revealed that conformal isometry loss alone is insufficient to
produce hexagonal patterns.

Our framework generates clear testable predictions. A critical test will be to experimentally probe
the population topology of 3D grid cells to determine if it conforms to a 3-torus (as predicted by a
straightforward extension of 2D systems ) or a different structure, which would indicate fundamen-
tally different computational constraints.

Our work leaves important theoretical questions. While we have established the necessity of a torus
for the computational tasks, a complete formal derivation of why its projection yields hexagonal
firing fields so reliably remains a challenge. Furthermore, we see significant promise in extending
PIso beyond spatial cognition to serve as a general tool for analyzing population codes across neural
systems and artificial networks.

Moreover, PIso suggests a new design principle for artificial intelligence: the use of a Topology
Prior. For tasks with Euclidean structure, constraining latent representations to a torus provides a
natural inductive bias. More generally, when tasks involve non-Euclidean geometries (e.g., spherical
or hyperbolic), the population activity should be constrained to manifolds with the corresponding
topology, as required by mathematical results such as the Gauss—Bonnet theorem. Embedding topol-
ogy directly into network design thus offers a path toward more efficient, robust, and interpretable
neural architectures.
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A NUMERICAL SIMULATION SETUP

Our implementation was partly adapted from the publicly available code of Pettersen et al.| (2024).
We thank the authors for releasing their code. On top of their framework, we explicitly enforced
toroidal population activity, introduced the torus-size regularization and systematically explored its
interaction with conformal isometry loss, as described in the main text.

Environment and data generation. We modeled the environment as a two-dimensional square
plane. During training, batches of positions were uniformly sampled from [—27, 27]?; during eval-
uation, inputs were taken from a regular 64 x 64 meshgrid covering the same domain.

Network details. The input (x, y) was first encoded by a custom ToriActivation layer, which
mapped the environment to a torus, and then passed through a multilayer perceptron with ReLU
activations. Gaussian noise was added to the last layer for regularization, and the final activity
vector was normalized to enforce the ¢ constraint (||g||2 = 1). Non-negativity was guaranteed by
the ReLU nonlinearity. The network therefore implemented a minimal feedforward mapping from
2D coordinates to a d-dimensional neural population vector.

Training procedure. We trained the model using the Adam optimizer with learning rate 1073,
batch size 64, and 50,000 training epochs.

Grid analysis. To quantify the learned representations, we computed grid score, orientation and
spacing of unit rate maps following the procedure of |Pettersen et al.|(2024). Rate maps (64 x 64) were
smoothed with a Gaussian kernel. Grid score was defined as the difference between autocorrelogram
correlations at 60° and 30°; orientation as the smallest angle between the horizontal and the six
innermost peaks (excluding the origin); spacing as the average distance to these peaks; and phase as
the displacement of the nearest peak from the origin.

Hardware. All the models were trained on NVIDIA GeForce RTX 4090 (24 GB). For a single
model, training time was less than 15 minutes.

B RNN-BASED PATH INTEGRATION
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(a) RNN-based TopoCN architecture. (b) Firing fields of RNN-based TopoCN.
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Figure 6: The architecture and firing fields.

To assess robustness of the hexagonal firing patterns, we coupled the Topo-Constrained Network
(TopoCN) with a recurrent neural network that performs path integration (Pettersen et al., [2024;
Xu et al, 2024). Using the same environment and trajectories sampled as in the main experiments,
TopoCN only encodes the starting location on a toroidal manifold, while the RNN receives stepwise
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displacements and iteratively updates the location representation from this initialization. Training
employed the same conformal isometry (CI) loss as in the main text. Remarkably, hexagonal firing
fields emerged reliably in this RNN-PI setting without any explicit torus-size regularization or ca-
pacity penalties (Figure[6). In the next subsection we explain this observation by analyzing how the
dynamics and CI constraint drive the torus size toward an intrinsic stable range.

C ToORUS SI1ZE VERSUS CAPACITY REGULARIZATION

We compared three training regimes on TopoCN: (i) no torus-size regularization; (ii) replacing the
size term (the second term in equation [S) with an L' capacity regularization (Pettersen et al.[,

2024); and (iii) replacing the size term with an L? capacity regularization (Schaeffer et al.,|2023).
The outcomes were consistent across runs (Figure[7):

* No regularization: grid spacing became non-uniform, and fields tended to be more square-
like than hexagonal;

o L': fields were generally more diffuse;

* L?: clear hexagonal grid-like fields emerged.
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Figure 7: Firing fields of TopoCN trained with different regularization schemes.

Formally, the two types of capacity regularization can be written as follows. The L? version (Scha-
effer et al., 2023) penalizes the squared norm of the mean population activity:

1 & ?
L Zg(k)
n

k=1

; (6)
2
which encourages broad, uniform representations on the hypersphere and is closely related to our
torus size measure in equation 4}

r2 — _

cap

The L' capacity constraint promotes maximally correlated activity across neurons, effectively push-
ing the population activity toward the diagonal of the state space where all units are coactive:

Lo = => o (7)

Closer inspection revealed that the apparent success of the L? capacity regularization is not a general
property, but rather a coincidence under our experimental settings: in this case, L? happened to steer
the torus size s into the regime where hexagonal fields emerge. A similar situation arises in the RNN
experiments: under our settings, even without explicit regularization, the interaction between CI and
recurrent dynamics self-organizes the torus size into the hexagon-supporting regime.

These observations point to torus size—not capacity—as the true factor underlying hexagonal grid
formation. To avoid relying on such coincidences, we replace capacity penalties with a more trans-
parent experimental knob: directly controlling and systematically exploring the torus size to
probe how toroidal population topology projects onto single-cell firing patterns.
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D PRACTICAL HANDLING OF p

As shown in the main text, grid spacing decreases with the scale factor p (roughly as 1/p) when
torus size sg is fixed, and increases with sy when p is fixed (Fig. @)

In practice, however, the loss function uses chord length in neural space rather than true geodesic
length. This introduces a small mismatch: the actual scale realized by the trained network, denoted
Pirue, May differ from the nominal p set during training. As a result, spacing measured from neural
activity is determined by pyye, not the nominal value.

To deal with this, we distinguish two cases:

Varying p with fixed so: We compare spacing as a function of the nominal p and the measured
Puues and fit the latter with the predicted hyperbolic law sp o 1/p. This shows that the effective
scale realized by the network follows the theoretical prediction (Fig. [Bh).

Varying sy with fixed p: Even if p is fixed nominally, small deviations in pyye can still affect
spacing. To remove this confound, we normalize spacing to a common reference scale pyr using

Ptrue
?
Pref

®)

SpCOIT = Sp X

which follows from the proportionality sp o< 1/p. We therefore report both the raw spacing—vs-size
curve and the p-corrected version for clarity (Fig. [8p).

a)
mean_spacing_grid_like vs rho (size=0.84) mean_spacing_grid_like vs rho_true_mean (size=0.84)
381 & 1x?  AIC=-10.84, BIC=-10.45, AdjR*=0.988 | | @ 1/x  AIC=-14.56, BIC=-14.17, AdjR?=0.992
—— 1/x  AIC=-0.13, BIC=0.26, AdjR?=0.962 N\, —-+ 1/x2  AIC=-12.70, BIC=-12.30, AdjR?=0.991
36 4 - linear AIC=12.49, BIC=12.89, AdjR*=0.845 | | “>2 —=- linear AIC=0.79, BIC=1.18, AdjR?=0.958
2 N @ data (meanzstd) \\; data (meanzstd)
1344 4 L&
hel Y
5 DN
ol 32 1 1 s
£ L NG
] ~
g 301 1 \,\}\
& ~
| NSy
<' 28 \.}\\
g ~a
26 ] "f\
33
24 4 4 s
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.1 1.2 1.3 1.4 1.5 1.6 1.7
rho rho_true_mean
b) mean_spacing_grid_like vs size (rho=0.8) rho-corrected spacing vs size (hominal rho=0.8)
38 cubic AIC=-43.70, BIC=-40.37, AdjR*=0.996 ? 50 cubic AIC=-33.96, BIC=-30.63, AdjR?=0.999 -
— = linear AIC=13.93, BIC=15.60, AdjR?=0.878 — = linear AIC=28.92, BIC=30.58, AdjR?=0.943 =
36 @ data (meanzstd) g . 451 ® rho-corrected data (mean=std) As <
-
pZ ,.
hel 344 - Z, 40 - N
bl | P |
232 - -7
IS 5 ] 351 g x
g - -
%30 PRy PR |
< Prasly 30 o= |
b5 -~ ! ‘ T
g 5q P
£ 28 s Z= [
. e B 25 1 27
] ® _~ °
26 Pie * /z’
- 201 -
241 T T T T T T T T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8

size

size

Figure 8: (a) Comparison of spacing as a function of nominal versus effective p. (b) Spacing—size
relationship before and after correcting for p.

Interestingly, after correcting for the residual influence of p, the relationship between spacing and
torus size sg follows a clear cubic law. Unlike the inverse dependence on p, which can be derived
analytically, we do not yet have a theoretical explanation for this cubic dependence. Nevertheless,
the fit is highly robust across simulations, suggesting that it reflects a genuine structural property of
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the model rather than a numerical artifact. We leave a full theoretical analysis of this phenomenon
to future work.

E ADDITIONAL FIRING FIELD EXAMPLES

To complement the main text, Figure [9] presents additional examples of firing fields generated by
TopoCN under different training regimes. These visualizations illustrate the variability across runs
while consistently demonstrating the emergence of hexagonal structure under appropriate torus-size
constraints.

p=10.8 size = 0.53 p=0.8 size = 0.69 p=10.8 size = 0.81

Figure 9: Additional Firing Field Examples.

16



	Introduction
	The Principle of Isomorphism (PIso)
	PIso in Grid cells
	Neural Metric in the PIso Framework
	Path Integration in the PIso Framework
	Unifying NM and PI: Euclidean representation

	experiments
	Architecture of the Topo-Constrained Network (TopoCN)
	Experimental Results
	Spontaneous emergence of hexagonal fields
	Robustness to noise
	Limits of Conformal Isometry
	Grid field spacing as a function of  and s0


	Relation to past works
	Discussion
	Numerical Simulation Setup
	RNN-based Path Integration
	Torus Size versus Capacity Regularization
	Practical handling of rho
	Additional Firing Field Examples

