
R+X: Retrieval and Execution from
Everyday Human Videos

Georgios Papagiannis∗ Norman Di Palo∗ Pietro Vitiello Edward Johns

The Robot Learning Lab at Imperial College London

Abstract: We present R+X, a framework which enables robots to learn skills
from long, unlabelled first-person videos of humans performing everyday tasks.
Given a language command from a human, R+X first retrieves short video clips
containing relevant behaviour, and then conditions an in-context imitation learning
technique on this behaviour to execute the skill. By leveraging a Vision Language
Model (VLM) for retrieval, R+X does not require any manual annotation of the
videos, and by leveraging in-context learning for execution, robots can perform
commanded skills immediately, without requiring a period of training on the
retrieved videos. Experiments studying a range of everyday household tasks show
that R+X succeeds at translating unlabelled human videos into robust robot skills,
and that R+X outperforms several recent alternative methods. Videos are available
at this anonymised website https://sites.google.com/view/r-plus-x.

Figure 1: Given a language prompt, R+X first retrieves short relevant video clips extracted from a
long unlabelled video of a human performing everyday tasks, recorded with a wearable camera. With
the use of the retrieved video clips and a VLM, R+X performs in-context imitation learning allowing
it to immediately generate and execute the desired behaviour on the robot.

1 Introduction

Robot learning of diverse, everyday tasks in natural environments, is a significant challenge. Imitation
learning is a promising solution which has been widely adopted in recent years [1, 2], but it remains
difficult to scale up due to the cost of hardware and human demonstration time. If robots could

*Equal contribution, random order.
*Contact at: {g.papagiannis21, n.di-palo20}@imperial.ac.uk

https://sites.google.com/view/r-plus-x


instead learn from data which does not require any robot hardware or dedicated human time, the
difficulty of scaling up data collection would be lowered substantially.

In this work, we study the problem of learning robot skills from long, unlabelled, first-person videos
of humans performing everyday tasks in everyday environments. "Long, unlabelled videos" means
that a human simply goes by their everyday life and passively records videos of themselves without
the need to specify which behaviour is being performed. "Everyday environments" means that videos
contain diversity in tasks, scenarios, objects, distractors, illumination, and camera viewpoints and
motion. It is likely that such videos will become abundant through the adoption of wearable devices
such as AR headsets and glasses [3, 4, 5, 6], and thus offer a significant opportunity for future
scalability if robots could learn from such videos.

Previous approaches to learning from videos of humans have often relied on a set of strong constraints
and assumptions, such as human videos manually aligned with robot videos, human videos manually
labelled with language descriptions or demonstrations on robot or MoCap hardware [7, 8, 2, 9, 10,
11, 12]. In this work, we remove all of these constraints and present a framework that requires only
an unlabelled first-person video depicting tens of tasks.

Our framework, R+X, is a two-stage pipeline of Retrieval and EXecution shown in Figure 1 that
uses Foundation Models for both stages. Upon receiving a language command from a user, a Vision
Language Model retrieves all clips where the human executes the specified task. By extracting the
trajectories of the human’s hand in each clip, we then employ a few-shot in-context imitation learning
method to condition on these trajectories, which enables a robot to ingest, learn from, and replicate
the retrieved behaviours to previously unseen settings and objects. The recent literature demonstrated
that, by finetuning large Vision Language Models on robotics data, they can transfer their common
knowledge and ability to reason and plan to robotics settings [13, 14]. This, however, requires very
expensive finetuning of often intractably large models. With our proposed framework, we can equally
leverage these abilities but now via retrieval and video understanding, thus without the need for
any finetuning. Rather than requiring explicit policy training on the retrieved videos, skills can be
learned, and executed immediately following the language command. In particular, we demonstrate
the benefits that this brings over spatial and language generalization, compared to large monolithic
policy networks.

In summary, the two main properties of R+X are: 1) it enables robots to execute everyday tasks from
language commands, given long, unlabelled, first-person videos collected naturally by recording a
human’s daily activities, and 2) it achieves this without the need for any training or finetuning of
models, allowing it to learn and execute tasks immediately.

2 Related Work

Figure 2: The main assumptions and constraints of
many recent Learning from Observation methods.

Collecting Robotics Data. Scaling data collec-
tion has been proven to be a successful path to-
wards increasingly more general machine learn-
ing models [15, 16, 17, 18]. To collect robotics
data, the most common paradigm is to teleop-
erate robots, collecting datasets of paired obser-
vations and actions [1]. This, however, needs
dedicated teleoperation hardware, and needs hu-
man operators to allocate their time to actively
teach a robot new tasks. In our framework, a
human user interacts with their environments as
usual, completing the tasks they wish, while a
robot passively learns to emulate it, resulting in
a more scalable and time efficient paradigm.

Learning from Human Videos. Many recent works have proposed solutions to teach new skills to
robots by observing a human executing such tasks. However, as we illustrate in Fig. 2, they often

2



Figure 3: Upon receiving a language command, R+X retrieves all the relevant clips from the human
video. Each retrieved clip is transformed from pixels to a sparse 3D points representations of the
hand joints movement and salient parts of the visual observation.

relied on a set of assumptions and constraints that limited their use "in-the-wild". Bahl et al. [8], Wang
et al. [19] require a combination of human data and either robot exploration or teleoperation, therefore
needing active assistance of the user in teaching the robot, and videos are recorded from a fixed,
third-person camera. R+X relies entirely on the videos recorded by the user with a mobile camera in
their natural environments. Heppert et al. [9], Zhu et al. [11], Bahety et al. [10] can learn robot skills
entirely from human videos. Heppert et al. [9], Zhu et al. [11], however, focus on replicating the
object trajectory from the demo, and cannot perform tasks that do not involve grasping and moving,
such as pushing or pressing, that R+X can execute. Bahety et al. [10] can learn a larger repertoire of
skills, but still relies on learning single tasks in isolation from a fixed camera, while R+X can replicate
tasks from a given a language command after receiving a single, long, unlabelled video depicting tens
of tasks, without the need to specify which clip demonstrated which behaviour. Methods like Wang
et al. [12] allow a user to naturally interact with their environment while collecting data that can teach
a robot new skills. However, they require additional hardware to wear, like specialised MoCap gloves.
R+X only needs a single RGB-D camera, and does not require any extrinsics calibration. This means
that data could be recorded using a wearable camera, smart glasses, AR visors, and more.

Language-Conditioned Policy Learning. Robots should learn a wide repertoire of skills, and be able
to execute many different tasks while deployed. Language is considered a viable way to instruct robots
and guide their task execution [1, 14, 13]. The common approach is to train a large, language and
image conditioned policy that can, at test time, receive user commands and camera observations [1].
This, however, presents some criticalities: training such models can require enormous computational
effort [13], and unlike other machine learning applications, robots should learn new skills over time.
Therefore, re-training or finetuning such networks should be avoided. R+X therefore does not train
or finetune any networks, but takes advantage of pre-trained models able to retrieve examples of
tasks [16], and to learn to emulate and execute new behaviour directly at deployment via in-context
learning [20].

Additional papers are discussed in the Supplementary Material.

3 R+X: Retrieval and Execution
We now describe R+X, our proposed method to learn robot skills from long, unlabelled videos of
humans interacting with their environments. We assume R+X has access to a long, unlabelled video
of a user performing a multitude of tasks in many different locations. We call this long, first-person
video of everyday tasks the "human video" H in the rest of the paper. The goal of our method is to
learn to emulate the behaviours recorded in the human video upon receiving a language command
from the user.

Overall, from a high-level perspective, our pipeline takes three inputs: 1) a single, long, unlabelled
video of all the interactions recorded by the humans, H 2) a task to execute in language form, L and

3



Figure 4: The visual 3D keypoints of the first frame of each of the Z videos obtained from the retrieval
phase along with each extracted hand joint trajectory are used as context for KAT. To execute a skill,
visual 3D keypoints are extracted from the live observation and used as input to KAT which generates
a sequence of hand joints. By mapping this sequence to gripper poses the robot executes the task.

3) the current observation of the robot as an RGB-D image, Olive. It then outputs a trajectory of
6-DoF gripper poses, which are executed by the robot to tackle the task at hand.

There are however a set of non-trivial challenges: while receiving a language command to execute at
deployment, the robot receives no language information before deployment: the recorded video con-
tains no more information than the recorded visual frames. Additionally, the robot receives no action
information: unlike the case of teleoperation, no joints or end-effector position/velocity/acceleration
data are recorded, and the correct movements need to be inferred by the videos alone: the problem is
additionally complex due to the cross-embodiment between human videos and final robot actions.
Furthermore, as the user is interacting with their natural environment, the visual observations can
be filled with distractor objects typical of household and offices, unrelated to the task the user is
performing. To tackle these challenges, we leverage the abilities of Foundation Models.

Specifically, at the first phase of R+X, which we call the retrieval phase, we use a VLM to extract
from the human video all the examples of the desired behaviour described in the prompt L as a
list of Z shorter video clips [V1,V2, . . . ,VZ ]. We map the Z videos into a lower dimensional 3D
representation, extracting for each video: (1) a list of K visual 3D keypoints that describe the scene,
[k1, k2, . . . , kK ] where k = (xk, yk, zk), and (2) the movement of the user’s hand as a trajectory
of length T of 21 hand joints that parametrise the MANO hand model [21], J = [j1, j2, . . . , jT ],
where j = [[x0, y0, z0], . . . , [x21, y21, z21]]. Finally, at the second stage of R+X, which we call the
execution phase, to emulate the behaviours observed in the retrieved video clips, we condition
a few-shot in-context imitation learning model on this data that, given a live observation of the
environment, it generates a trajectory of 3D hand joints to execute the desired behaviour described
in the prompt. To map such joints to gripper poses, we designed a heuristic that we describe in the
Supplementary Material.

3.1 Retrieval: Extracting visual examples from a long, unlabelled video

The first main phase of R+X is retrieval, shown in Figure 3. Upon receiving a language command L,
and given the human video H, the goal is to retrieve all video clips from the human video that depict
the execution of the requested task. This is accomplished using a recent Vision Language Model
(VLM), Gemini Pro 1.5 Flash [22]. Gemini, which we denote G, is natively multi-modal and can
take as input images, videos, and text, and outputs text. We prompt the model with the human video,
and ask it to retrieve the starting and ending seconds at which the received task happens. The inputs
of this phase is therefore a language command and the human video, and the output is a list of Z
shorter video clips demonstrating the desired task, G(H,L) → [V1, . . . ,VZ ]. Each clip comprises T
RGB-D frames, where T can vary across different clips. At the time of writing, Gemini can accept
up to 2 hours of videos per call, and longer human videos can be trivially split into 2 hour chunks and
processed in parallel. There is therefore no limit to the length of the human video.

4



3.1.1 Preprocessing Videos into a Sparse 3D Representation
Given the Z extracted video clips, [V1, . . . ,VZ ], we apply a preprocessing step that converts each
video clip from a list of RGB-D frames to a set of 3D points describing the visual scene and the
trajectory of the human’s hand, a representation that we will then feed to our few-shot in-context
imitation learning model.

Visual 3D keypoints. To transform the complex RGB-D observations into a lower-dimensional, easier
to interpret input, we harness the powerful vision representations generated by DINO [23], a recent
Vision Foundation Model. As proposed in [24, 20], given the Z clips retrieved as described before,
we find a set of K common 3D visual keypoints that capture interesting semantic or geometrical
aspects of the scene. We extract these keypoints from the first frame of each of the Z videos only.

Figure 5: Visual keypoints are ex-
tracted autonomously from RGB
via a matching algorithm [24].

We first compute the DINO descriptors for the first frame of
each of the Z videos, obtaining a list of Z different N × 384
outputs, where N is the number of patches of each image
[25, 26, 23]. Via a clustering and matching algorithm [24], we
select from the N × 384 descriptors of the first frame of the
first video, OV1,1, a list of the K descriptors that are the most
common in all the remaining Z−1 frames, as shown in Figure 5.
We denote these descriptors as D ∈ RK×384. Therefore, this
way, we autonomously extract descriptors that focus on the
object of interest, as its appearance is common among videos,
while distractors and overall scene will vary [24, 20].

Finally, for each of the K descriptors in D, we extract keypoints
by finding the K nearest neighbours between the N × 384 de-
scriptors of each the Z frames, and compute their 2D coordi-
nates. We then project these in 3D using each frame’s depth
image and known camera intrinsics. As such, given the re-
trieved clips, we obtain and store a list Λ = [KV1

, . . . ,KVz
] ∈

RZ×K×3 of visual 3D keypoints, K for each clip, where each
KVi = [k1, ..., kK ] and kj = (xj , yj , zj). For a more detailed
description please refer to Amir et al. [24].

Hand Joint Actions. To extract human actions from each retrieved video clip we use the HaMeR
model [27], a recent technique for 3D hand pose estimation from images based on DINO. In particular,
using HaMeR we extract from each video frame OVz,t (where 1 ≤ t ≤ T ) of each of the Z clips the
3D hand pose, represented as a set of 21 3D points, jVz,t, describing the hand joints that parameterise
the MANO hand model, as it is commonly done in the literature [21]. As the camera moves between
frames, we design a stabilisation technique to compute transformations between camera poses that is
robust to dynamic scenes (for more details please see our Supplementary Material). This enables
us to express the extracted hand joints relative to a single reference frame, that of the first camera
frame of each clip. For each video clip Vz , this process results in a sequence of 3D hand joint
actions JVz

= [jVz,1, . . . , jVz,T ], expressed relative to the first frame of each video OVz,1 where the
visual 3D keypoints are also expressed in. As such, at the end of this process we are left with a list
M = [JV1

, ...JVZ
] of Z hand joint action sequences.

In summary, from the Z retrieved video clips, we extracted the list of hand joints actions M, along
with the list of visual 3D keypoints Λ, that will be used as context for our in-context imitation learning
model, as Z input-output pairs.

3.2 Execution: Few-Shot, In-Context Imitation from Video Examples
The second main phase of R+X is execution. Our framework is based on the use of a model capable
of performing few-shot, in-context imitation learning, receiving a few examples of desired inputs and
outputs pairs describing a desired behaviour, and able to replicate such behaviour immediately upon
receiving a new input. We use Keypoint Action Tokens (KAT) to achieve this, a recently proposed
technique that takes 3D visual keypoints as input and outputs a trajectory of 3D points describing

5



Figure 6: We test R+X on 12 everyday tasks, executed by a human user in different rooms and with
different distractors.

the gripper movement. Instead of explicitly training a model on robot data, KAT demonstrates that
recent, off-the-shelf Large Language Models are able to extract such numerical patterns, and behave
as few-shot, in-context imitation learning machines, without the need for any further finetuning.

Given the output of the retrieval phase [Λ,M] and a new, live RGB-D observation collected by the
robot Olive, we extract its visual 3D keypoints representation Klive by first extracting its N × 384
DINO descriptors, and then finding the K nearest neighbours to each of the K descriptors in D,
that we obtained in the retrieval phase. This results into K 2D coordinates, that we project in
3D. We then input to KAT as context [Λ,M], as Z examples of the desired input-output mapping,
and the new visual 3D keypoints, and generate a new trajectory of desired hand joint actions,
KAT([Λ,M],Klive) → Jlive with Jlive = [j1, . . . , jT ], as shown in Figure 4. We then map the
predicted trajectories of hand joints actions into gripper poses as described in our Supplementary
Material, and execute them.

To summarize, given a language command L and a human video H, R+X first retrieves Z videos
depicting the described behaviour using a VLM. From the retrieved videos, a list of [Λ,M] visual
3D points and hand joint actions are extracted. Then, to execute the desired behaviour described in
the prompt L, [Λ,M] along with the visual 3D keypoints of the live observation Klive are used as
context for KAT that performs few-shot in-context imitation learning to generate a trajectory of hand
joints actions, which is mapped to gripper poses and executed on the robot.

4 Experiments

Human Video. We collect the human video H using an Intel RealSense 455, worn by the user on
their chest as shown in Figure 1. To reduce downstream computational time, we filter out each frame
in which human hands are not visible right after recording. As our robot is single-armed, we limit
ourselves to single hand tasks. However, our method could identically be applied to bimanual settings
and dexterous manipulators. The video is collected in many different rooms and buildings. In the
Supplementary Material, we also discuss the use of multiple views beyond a chest-camera.

Robot Setup. At execution, we use a Sawyer robot equipped with a RealSense 415 head-camera. The
robot is equipped with a two-fingered parallel gripper, the Robotiq 2F-85. As the robot is not mobile,
we setup different scenes in front of it with variations of the tasks recorded by the user, placing
several different distractors for each task, while the human video was recorded in many different
rooms. Although we have a wrist-camera mounted, we do not use that in our work.

Tasks. To evaluate our proposed framework, we use a set of 12 everyday tasks, where the user
interacts with a series of common household objects, listed in Fig. 6. We include movements like
grasping, opening, inserting, pushing, pressing, and wiping.

Baselines. We compare R+X, and its retrieval and execution design, to training a single, language-
conditioned policy. To obtain language captions from the human video, we use Gemini to au-
tonomously caption snippets of the video, obtaining a (observation, actions, language) dataset. We
finetune R3M (ResNet-50 version [28]) [29] and Octo [30] on this data. We extend R3M to also
encode language via SentenceBERT and use a Diffusion Policy [31] head to predict actions from

6



Method / Task Plate Push Wipe Beer Wash Box Kettle Micro. Basket Phone Can Light Avg.

R3M-DiffLang 0.5 0.7 0.4 0.7 0.5 0.5 0.4 0.8 0.7 0.4 0.7 0.3 0.55

Octo 0.5 0.8 0.5 0.6 0.5 0.5 0.4 0.7 0.6 0.4 0.6 0.3 0.53

R+X 0.6 0.8 0.7 0.8 0.6 0.7 0.6 0.8 0.7 0.7 0.8 0.6 0.7

Table 1: Result of the various methods on the 12 proposed tasks.
intermediate representations. We denote this version as R3M-DiffLang. More details on all aspects
are provided in the Supplementary Material.

4.1 Results
Can R+X learn robot skills from long, unlabelled videos? How does it perform with re-
spect to a monolithic language-conditioned policy? In these experiments, we evaluate the per-
formance of R+X in learning a set of everyday skills. At deployment, we place the object to
be interacted with in front of the robot, and issue a language command. We then run the re-
trieval and execution pipeline using the human video, the current observation and the language
command. We run 10 episodes per task, randomising 1) the object pose 2) the type and num-
ber of distractors 3) for tasks where it is possible, we swap the object to interact with, with an-
other one from the same class to test for generalisation (e.g. a different can, a different piece
of clothing, a different telephone). More details are provided in the Supplementary Material.

Figure 7: Examples of hard spatial
and language generalisation. Grip-
per moves from red to blue.

In Table 1, we report the performance of R+X on these tasks,
together with the baselines. As we demonstrate, the framework
is able to tackle a wide range of everyday tasks, surpassing the
monolithic policy baselines. These results prove the benefit
of modeling language-conditioned learning from observation
as distinct retrieval and execution phases, to fully leverage the
abilities of recent Foundation Models. In the Supplementary
Material, we investigate more in depth the performance of R+X
on unseen objects and in the presence of distractors.

What are the main sources of difference in performance
between R+X and a monolithic policy? In these experiments,
we investigate more in detail what changes in the inputs lead
to the most noticeable difference in performance between R+X
and the baselines, R3M-DiffLang and Octo. We explored two
aspects, related to two properties of R+X:

Hard Spatial Generalisation: R+X, by retrieving videos of the
desired task, can also extract a series of relevant keypoints Klive

from the current observation Olive, something not possible
when using a single policy network. Going from RGB-D to
a list of 3D points for inputs and outputs allows us to apply
simple geometric data augmentation techniques for KAT, such
as normalisation or random translations and rotations. This
leads to a stronger spatial generalisation: in the "grasp a can"
and "grasp a beer" tasks we test performance of each method
when the objects are on the table, or when they are positioned
on top of other objects (a box, a microwave). By running 5
test episodes for each case, we demonstrate how R+X retains
strong performance, while the performance of the baselines
drop. Results and an example of the predicted actions can be seen in Fig. 7, top.

Hard Language Generalisation: By leveraging the language and video understanding abilities of
recent large Vision Language Models, such as Gemini, R+X can interpret and execute nuanced
commands. To evaluate this, we setup a scene with many objects, and ask the robot to perform three
tasks: "give me something to call my mom", "give me a non-alcoholic drink" and "make the room
less dark". We run 5 test episodes for each of these commands, modifying the position of the objects

7



Figure 8: Left (barplots 1-3): We compare R+X and the baselines’ ability to learn tasks in succession,
and the time needed to learn such new tasks. Rightmost barplot: Gemini’s retrieval performance.

and the distractors. The language-conditioned policies struggle to interpret these commands, that
are strongly out of distribution. R+X, on the other hand, leverages Gemini’s ability to understand
the meaning of these commands, as it is able to retrieve useful video clips from the human video
(respectively, picking up the phone, grasping a Fanta can, and turning on the light). Results and an
example of output gripper trajectories can be seen in Fig. 7, bottom.

Can R+X learn task sequentially over time? In these experiments, we demonstrate how R+X
can learn tasks continually, with no need for any additional training or finetuning, while obtaining
strong performance both on the new task and on the old ones, a desirable ability for a robot learning
from an ever increasing dataset of human experience. To measure this ability, and highlight the
difference behaviour with respect to a single language-conditioned policy, we first collect 10 demos
for 3 tasks. We train the baselines on these tasks (after extracting captions via Gemini as described
for the experiments of Table 1) and evaluate them and R+X. Then, we add 10 demos of 3 new tasks,
finetune the baselines, then measure performance on the 3 new tasks, and on the 3 old tasks for all
methods. In Fig. 8, Left, we see how the performance of R3M-DiffLang and Octo deteriorates on
the old task, due to the well known effect of catastrophic forgetting [32]. On the other hand, R+X
performance does not deteriorate, due to the ability to retrieve from an ever-growing video of tasks
and adapting the behaviour model at test time on the retrieved data.

If instead we train the baselines on all the data each time, the performance does not deteriorate:
however, this leads to a substantial growth in time needed to train. As the dataset grows, those
networks would need an increasing amount of time per each new added task in order to be retrained,
while R+X does not need any training or finetuning.

How does the length of the videos affect the retrieval performance? In this experiments, we first
collect a video with 10 demos of 5 tasks (kettle on stove, cloth in basket, pick up phone, cloth in
washing machine, close microwave), and measure Gemini’s ability to retrieve clips for each task. We
then add 10 demos for 5 additional tasks, and compute again the precision and recall of retrieval of
the original 5 tasks, to study how length of video and number of tasks affects it. The original video is
close to 4 minutes in length, while the second is close to 10. In Fig. 8, Right, we show the mean over
all tasks of retrieval’s precision and recall. Results demonstrate how Gemini’s performance remains
high while increasing the length of the video, allowing to scale R+X as the human records more and
more tasks.
5 Discussion and Limitations
We presented R+X, a method to learn robot skills from long, unlabelled videos of users interacting with
their environments, demonstrating its clear benefits over training monolithic language-conditioned
policy networks. There are, however, still a series of limitations that we here describe, proposing
possible avenues for future work. The method is currently bottlenecked by the performance of
Vision Language Model, that has however seen a drastic improvement in recent time and will likely
still increase. While we can learn a large series of everyday tasks, the errors arising from the hand
pose prediction currently inhibits us from learning precise tasks. Furthermore, while the keypoints
extraction leads to strong spatial generalisation properties, it can become a bottleneck in the presence
of many similar objects: methods that find a dynamic number of keypoints might tackle this issue.
Finally, due to the use of Foundation Models for retrieval and execution, our method has a few seconds
delay between the issuing of the command and execution, that however has reduced dramatically
over the last months with the release of faster models such as GPT-4o [33] or Gemini Flash [22].

8



References
[1] O. X.-E. Collaboration. Open x-embodiment: Robotic learning datasets and rt-x models, 2023.

arXiv:2310.08864.

[2] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning, 2022.

[3] Apple. Apple vision pro. URL https://www.apple.com/apple-vision-pro/.

[4] Meta. Meta quest 3. URL https://www.meta.com/gb/quest/quest-3/.

[5] M. Ray-Ban. Ray-ban smart glasses. URL https://www.ray-ban.com/uk/
ray-ban-meta-smart-glasses.

[6] MagicLeap. Magicleap. URL https://www.magicleap.com/.

[7] V. Jain, M. Attarian, N. J. Joshi, A. Wahid, D. Driess, Q. Vuong, P. R. Sanketi, P. Sermanet,
S. Welker, C. Chan, et al. Vid2robot: End-to-end video-conditioned policy learning with
cross-attention transformers. arXiv e-prints, pages arXiv–2403, 2024.

[8] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022.

[9] N. Heppert, M. Argus, T. Welschehold, T. Brox, and A. Valada. Ditto: Demonstration imitation
by trajectory transformation. arXiv preprint arXiv:2403.15203, 2024.

[10] A. Bahety, P. Mandikal, B. Abbatematteo, and R. Martín-Martín. Screwmimic: Bimanual
imitation from human videos with screw space projection. arXiv preprint arXiv:2405.03666,
2024.

[11] Y. Zhu, A. Lim, P. Stone, and Y. Zhu. Vision-based manipulation from single human video with
open-world object graphs. arXiv preprint arXiv:2405.20321, 2024.

[12] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. arXiv preprint arXiv:2403.07788,
2024.

[13] A. Brohan et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control. arXiv e-prints, art. arXiv:2307.15818, July 2023. doi:10.48550/arXiv.2307.15818.

[14] D. Driess et al. PaLM-e: An embodied multimodal language model. In A. Krause et al.,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 8469–8488. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/driess23a.html.

[15] T. Brown et al. Language models are few-shot learners. In H. Larochelle et al., editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[16] Gemini-Team. Gemini: A family of highly capable multimodal models, 2023.

[17] S. Mirchandani et al. Large Language Models as General Pattern Machines. arXiv e-prints, art.
arXiv:2307.04721, July 2023. doi:10.48550/arXiv.2307.04721.

[18] J. Hoffmann et al. Training Compute-Optimal Large Language Models. arXiv e-prints, art.
arXiv:2203.15556, Mar. 2022. doi:10.48550/arXiv.2203.15556.

[19] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422,
2023.

9

https://www.apple.com/apple-vision-pro/
https://www.meta.com/gb/quest/quest-3/
https://www.ray-ban.com/uk/ray-ban-meta-smart-glasses
https://www.ray-ban.com/uk/ray-ban-meta-smart-glasses
https://www.magicleap.com/
http://dx.doi.org/10.48550/arXiv.2307.15818
https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://dx.doi.org/10.48550/arXiv.2307.04721
http://dx.doi.org/10.48550/arXiv.2203.15556


[20] N. Di Palo and E. Johns. Keypoint Action Tokens Enable In-Context Imitation Learning in
Robotics. arXiv e-prints, art. arXiv:2403.19578, Mar. 2024. doi:10.48550/arXiv.2403.19578.

[21] J. Romero, D. Tzionas, and M. J. Black. Embodied hands: modeling and capturing hands
and bodies together. ACM Transactions on Graphics, 36(6):1–17, Nov. 2017. ISSN 1557-
7368. doi:10.1145/3130800.3130883. URL http://dx.doi.org/10.1145/3130800.
3130883.

[22] G. Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024.

[23] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers, 2021. arXiv:2104.14294.

[24] S. Amir, Y. Gandelsman, S. Bagon, and T. Dekel. Deep vit features as dense visual descriptors,
2022.

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale, 2021.

[26] OpenAI. GPT-4 Technical Report. arXiv e-prints, art. arXiv:2303.08774, Mar. 2023. doi:
10.48550/arXiv.2303.08774.

[27] G. Pavlakos, D. Shan, I. Radosavovic, A. Kanazawa, D. Fouhey, and J. Malik. Reconstructing
hands in 3d with transformers, 2023.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

[29] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation
for robot manipulation, 2022.

[30] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, J. Luo, Y. L. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and
S. Levine. Octo: An open-source generalist robot policy, 2024.

[31] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion, 2023.

[32] L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learning: Theory,
method and application, 2024.

[33] OpenAI. Gpt-4o. URL https://openai.com/index/hello-gpt-4o/.

[34] Y. Zhu, Z. Ou, X. Mou, and J. Tang. Retrieval-augmented embodied agents, 2024.

[35] M. Du, S. Nair, D. Sadigh, and C. Finn. Behavior retrieval: Few-shot imitation learning by
querying unlabeled datasets. arXiv preprint arXiv:2304.08742, 2023.

[36] N. Di Palo and E. Johns. DINOBot: Robot Manipulation via Retrieval and Alignment with
Vision Foundation Models. arXiv e-prints, art. arXiv:2402.13181, Feb. 2024. doi:10.48550/
arXiv.2402.13181.

[37] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. van den Driessche,
J.-B. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan,
S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals,
S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre. Improving language models by
retrieving from trillions of tokens, 2022.

10

http://dx.doi.org/10.48550/arXiv.2403.19578
http://dx.doi.org/10.1145/3130800.3130883
http://dx.doi.org/10.1145/3130800.3130883
http://dx.doi.org/10.1145/3130800.3130883
http://dx.doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/hello-gpt-4o/
http://dx.doi.org/10.48550/arXiv.2402.13181
http://dx.doi.org/10.48550/arXiv.2402.13181


[38] H. Bharadhwaj, R. Mottaghi, A. Gupta, and S. Tulsiani. Track2act: Predicting point tracks
from internet videos enables generalizable robot manipulation, 2024. URL https://arxiv.
org/abs/2405.01527.

[39] C. Yuan, C. Wen, T. Zhang, and Y. Gao. General flow as foundation affordance for scalable
robot learning, 2024. URL https://arxiv.org/abs/2401.11439.

[40] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos
as a versatile representation for robotics, 2023. URL https://arxiv.org/abs/2304.
08488.

[41] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from
"in-the-wild" human videos, 2021. URL https://arxiv.org/abs/2103.16817.

[42] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manip-
ulation concepts from instructions and human demonstrations. The International Journal
of Robotics Research, 40:1419 – 1434, 2020. URL https://api.semanticscholar.
org/CorpusID:220069237.

[43] T. Lüddecke and A. S. Ecker. Image segmentation using text and image prompts, 2022.

[44] H. Matsuki, R. Murai, P. H. J. Kelly, and A. J. Davison. Gaussian splatting slam, 2024.

[45] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, Oct. 2015. ISSN
1941-0468. doi:10.1109/tro.2015.2463671. URL http://dx.doi.org/10.1109/TRO.
2015.2463671.

[46] C. Doersch, Y. Yang, M. Vecerik, D. Gokay, A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.
Tapir: Tracking any point with per-frame initialization and temporal refinement, 2023.

[47] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/
1908.10084.

[48] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation, 2015.

11

https://arxiv.org/abs/2405.01527
https://arxiv.org/abs/2405.01527
https://arxiv.org/abs/2401.11439
https://arxiv.org/abs/2304.08488
https://arxiv.org/abs/2304.08488
https://arxiv.org/abs/2103.16817
https://api.semanticscholar.org/CorpusID:220069237
https://api.semanticscholar.org/CorpusID:220069237
http://dx.doi.org/10.1109/tro.2015.2463671
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2015.2463671
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084


6 Supplementary Material

6.1 Additional Related Work

In this section, we discuss some additional related papers from the literature.

Retrieval in Robotics. Other papers have proposed the use of retrieval in robotics. Zhu et al. [34]
retrieves directly from a bank of policies trained on robotics data. Du et al. [35] retrieves from an
unlabelled data of robotics experience, not human videos, and needs an additional example at test
time to guide the retrieval phase, while we leverage a language command alone. Di Palo and Johns
[36] retrieves a goal observation to then perform visual servoing and replay a pre-recorded demo.
R+X leverages large Vision Language Models to retrieve directly from long videos given a language
query, without requiring pre-trained policies or new demonstrations as queries.

Retrieval Augmented Generation in Language Modelling: Large Language Models, through
extensive pre-training and finetuning on web-scale datasets, are able to implicitly record countless
facts and concepts in their weights [26, 33, 16]. However, it has been proved useful to add to their
implicit knowledge the ability to explicitly access datasets of information, either offline or through
web search [37]. This allows models to be more factually correct. In this work, we do not deal with
factuality or information retrieval, but we take inspiration from these ideas to form a sort of "retrieval
augmented execution", which is the main idea behind R+X.

Further Learning from Observation Papers Recently [38, 39] propose methods to learn skills from
videos, similarly to our paper, but focusing on optical flow between frames. [38] however learns a
visual-goal-conditioned policy, while we focus on language-conditioned skills extracted from a long,
unlabelled video. Additionally, by focusing on optical flow of relevant objects, these methods might
struggle on objects that barely move for some tasks, like pressing, as we show we can do with R+X
by tracking the human hand directly. [40] learns, from in-the-wild human videos, where objects can
generally be grasped and in what directions they can be moved, allowing a robot to passively learn to
push, pick up, pull, etc. However, their method is more limited in the amount of skills it can learn,
focusing on mostly linear movement of objects, while we show we can learn more articulated and
dextereous tasks. [41, 42] show that human videos can be used to learn to guide robot exploration
by extracting a reward function from videos. In our method, we show we can effectively learn skill
without any need for robot teleoperation or autonomous exploration.

6.2 Processing the Long, Unlabelled Human Video

After recording the video of a human performing everyday tasks, we process it to remove unnecessary
frames, i.e., frames that do not contain human hands. We achieve this automatically by leveraging
HaMeR [27] to detect the frames where hands are present. Consequently, we are left with one long,
unlabelled video of smaller video clips, concatenated together, each containing only frames where a
human interacts with various objects with their hands. This video is then passed to Gemini to proceed
with the retrieval phase of R+X, as discussed in section 3.1. Fig. 9 shows a short segment of the uncut
video we recorded. The frames marked with red correspond to frames where no human hands were
detected. The frames where human hands were detected are marked with green. After processing the
video with HaMeR [27] we remove the frames marked with red and are left with one long video of
the green frames concatenated together.

6.3 Stabilisation of First Person Videos

As we record videos using a wearable camera, the point of view of the camera changes substantially
frame by frame. However, our method is based on representing the visual inputs as fixed, 3D
keypoints, and the actions as a series of 3D hand joints actions expressed in the same frame of the
keypoints. Therefore, we need to compute the relative movement of the camera at each step in order
to express everything in the original frame of reference, the first of the recorded video clip.

12



The computer vision literature has proposed several methods to address this problem [44, 45].
However, most of these techniques assume that the scene in front of the camera is fixed, and only
the camera is moving. This is in sharp contrast with our setting, where the arms and hands of the
user move in front of the camera, together with some of the objects. Classic techniques, in our
experiments, failed to achieve a robust estimation of the movement of the camera, a task we hereby

Segment of the Recorded Human Video

Figure 9: A short segment of our recorded long, unlabelled video of a human performing everyday
tasks. The frames marked with red correspond to frames where no human hands were detected, while
the frames marked with green correspond to frames where HaMeR [27] detected human hands. In
practice, we discard the frames where no human hands are present and only retain a long video of
frames concatenated together depicting only the human interacting with various objects.

13



Figure 10: An example of keypoints being tracked in a retrieved video clip. Notice how, thanks to
the segmentation model [43], we can sample keypoints that stick to static parts of the scene, like the
table.

refer has the stabilisation of the camera. In the following section, we describe how we stabilise each
video clip we retrieve from H while using R+X.

In order to tackle the aforementioned problem, we leverage the use of a series of recent computer
vision models. The first one, CLIPSeg [43], is an open-vocabulary image segmentation model. The
model receives an image and a series of language queries as an input, and outputs a segmentation
mask localising the pixels of the desired objects, CLIPSeg(Olive, [Lobj,0, . . . ,Lobj,n]) → Mlive ∈
RH×W×1, where H and W are the height and width of the observation. We query CLIPSeg with
some static parts of any scene, namely "floor", "wall", "table". In addition, we query it with "arm",
"hand", "person" in order to obtain segmentation masks of parts of the user arms, and remove it from
the segmentation mask of the static objects.

Given the segmentation of such static objects, we sample a set of random 2D pixel keypoints in that
area. We then track the movement of such keypoints frame by frame using TAPIR [46], a recent
keypoint-tracking network. The position of these keypoints in 2D at each frame allows us to then
project them in 3D using the depth-channel from the RGB-D camera we use. Given these sparse
point-clouds, we can compute the relative SE(3) rigid transformation between each new frame and
the first one. We perform this process separately for each video clip where human hands where
detected as discussed in section 6.2.

This pipeline, in our experiments, has proven to be better than classic techniques [45], as it can handle
the presence of the moving hands and arms of a person, together with the movement of some objects
the user interacts with, as it learns to only focus on static parts of the environment, ignore the user,
and track the selected keypoints over time.

6.4 Extracting Gripper Actions from Human Hands

To map the human hand joints to gripper actions we deploy different heuristics based on the type of
interaction the human performs in the retrieved video clips. In scenarios where a robot is equipped
with an end-effector with human-like fingers, such as a dexterous 5-fingered hand, such heuristics are
not needed as the hand joints would map directly to the robotic, human-like fingers.

Fig. 11 shows instances of extracted hand joints using HaMeR [27] mapped to different gripper
actions for grasping, pressing, and pushing tasks. For ease of illustration, this figure demonstrates
how human hand joints are mapped to gripper poses from images captured in the human video. In
practice, we deploy the following heuristics on the predictions made by each method. Our heuristics
are applied to the Robotiq Gripper 2F85, but can be adapted accordingly to any other parallel jaw
gripper.

Grasping. (Fig. 11, top) For tasks that require grasping we align spatially the tips of the gripper’s
fingers with the index and thumb tips of the hand. The vector joining the two tips defines an axis of
rotation around which we rotate the gripper such that the bottom of the gripper is as close as possible
to the middle point between the index mcp and the thumb dip. Aligning the gripper to these points
enables us to obtain the gripper’s pose. Consequently, for grasping tasks each method predicts, the
index tip, thumb tip, index mcp and thumb dip joints. To compute the gripper close/open action, we

14



Figure 11: Examples of different human hand interactions and extracted gripper actions based on
three different heuristics for grasping, pressing, and pushing. The blue dots in the third column
correspond to the 21 hand joints extracted using HaMeR [27]. Which heuristic to use is determined by
Gemini at the Retrieval phase based on Gemini’s understanding of the language command provided
by the human. Note that for the pressing and pushing task the gripper is rendered as open, but in
practice the gripper is closed as if it grasping something.

employ an heuristic that measures the distance of the index and thumb tips and compares it to the
robot gripper width.

Pressing. (Fig. 11, middle) For pressing tasks, we assume that the gripper is closed. To obtain the
pose of the gripper we use three points at the point of contact of the two gripper fingers when the
gripper is closed. Specifically, one point is at the tip of the fingers, the other in the middle, and the
last at the bottom of the gripper’s fingers. We align these three points to the index tip, index pip,
index mcp, and index dip of the human hand respectively. Consequently, each method predicts the
index tip, index pip, index mcp, and index dip.

Pushing. (Fig. 11, bottom) Pushing tasks, are similar to pressing tasks, where we use the same three
points on the gripper but to obtain the gripper’s pose, we instead align these points with the joints on
the hand halfway between the index and middle finger tip, pip, mcp and dip.

For all heuristics, we match the pose of the gripper with the joints on the hand using singular value
decomposition.

Detecting which heuristic to use is done automatically by Gemini based on the human’s language
command during task execution. As Gemini exhibits strong semantic language understanding, it can
determine whether the requested task from the human involves grasping, pressing, or pushing.

15



6.5 Tasks Details and Success Criteria

We here list more details about the tasks we use in R+X, the generalisation abilities we study, and the
success criteria.

• Plate in Rack: We randomise the position of the rack on the table in a 40cm by 30cm
(width, height) area and its orientation in a [−30, 30] degrees range. The robot starts with
a plate grasped in its gripper. We place random distractors in half the runs, while half are
distractors free. The task is successful if the plate can stand in one of the slots of the rack
without falling over.

• Push Rack in Dishwasher: Due to the kinematics of the robot, we always put the dishwasher
on the right side of the table, and randomise its position in a 35cm by 20cm area, and its
orientation in a [−20, 20] degrees range. As the object is considerably large, we cannot
randomise excessively its starting point or it will end out of view/out of the robot’s working
area. We place random distractors in half the runs, while half are distractors free. The task is
successful if the rack is no more than 5cm outside of the dishwasher, and starts being around
15cm outside of it.

• Wipe Marker from Table: We draw a random spot with a marker on an horizontally placed
whiteboard, that emulates a mark on a table, some dirt, or something spilled. We randomise
the shape of the spot, that is generally 15cm2 in area, and its position in a 40cm by 30cm
area. The robot starts with a cleaning tool grasped. We place random distractors in half the
runs, while half are distractors free. The task is successful if more than 80% of the spot it
erased and cleaned.

• Grasp Beer: We place a beer in a random spot on the table in a 40cm by 30cm area. In
this case, we also place it 2 out of 10 times on top of other objects to test for hard spatial
generalisation. This setting is better studied in the "Hard Spatial Generalisation" subsection
of the main paper. We place random distractors in half the runs, while half are distractors
free. The task is solved if the robot has grasped and lifted the beer.

• Cloth in Washing Machine: We place the washing machine on the right side of the table,
randomising its position in a 20cm by 20cm area, and its orientation in a [−20, 20] degrees
range. We then place a random piece of clothing (generally clothing for kids/infants) on the
left side of the table, and randomise its position in a 25cm by 25cm area, therefore testing
for both spatial and object generalisation. We place random distractors in half the runs,
while half are distractors free. The task is completed if the robot can place the cloth inside
the hole of the washing machine, also if part is outside: as our toy washing machine is very
small and its receptacle is shallow (around 15cm), it is hard also for a human to fit a cloth
entirely in there.

• Open Box: We place one of two possible boxes of different sizes in a 30cm by 30cm area
on the table, and randomise its orientation in a [−20, 20] degrees range. We place random
distractors in half the runs, while half are distractors free. The task is successful if, during the
episode, the robot has partially opened the box. Opening it completely is often challenging
due to kinematics constraints.

• Kettle on Stove: We place a toy stove on the table, randomising its position in a 30cm
by 20cm area, and its orientation in a [−20, 20] degrees range. We then randomly place a
random kettle in a 20cm by 20cm area and randomise its orientation in a [−30, 30] degrees
range. By placing seen and unseen kettles, we test both for spatial and object generalisation.
We place random distractors in half the runs, while half are distractors free. The task is
successful if the kettle is on top of the stove, which we consider true if the intersection of
the stove area and the kettle base is more than 50% than the stove area.

• Close Microwave: We place a toy microwave on the right side of the table, randomising its
position in a 20cm by 20cm area and its orientation in a [−20, 20] degrees range. Addition-
ally, we open its door in a range between [10, 45] degrees, We place random distractors in

16



Figure 12: Examples of generalisation to distractors. Gripper moves from red to blue.

half the runs, while half are distractors free. We consider the task successful if the microwave
door is completely closed (it has a magnetic system that keeps it closed once it is completely
pushed in position).

• Cloth in Basket: We place a basket on the right side of the table in a 20cm by 20cm area,
and randomise its orientation in a [−20, 20] degrees range. We place a random cloth (same
as for the washing machine task) on the left side of the table, randomising its position in a
25cm by 25cm area.We place random distractors in half the runs, while half are distractors
free. We consider the task successful if the cloth is contained in the basket, i.e. if lifting the
basket, the cloth is lifted as well without falling on the table.

• Pick Up Phone: We randomly place one out of two possible phones on the table, randomis-
ing its position in a 30cm by 30cm area, and its orientation in a [−30, 30] degrees range. By
using different phones, one of which unseen at training, we also test for object generalisation.
We place random distractors in half the runs, while half are distractors free. We consider the
task successful if the robot has grasped and lifted the phone from its base.

• Grasp Can: Same setting as for Grasp Beer. In this case, we also use other unseen cans at
test time to test for object generalisation.

• Turn On Light: We place a light bulb and a socket on the table, randomising their positions
independently in a 30cm by 30cm area, and the socket orientation in a [−20, 20] degrees
range. We place random distractors in half the runs, while half are distractors free. The task
is successful if the robot can press the light bulb’s plug entirely in the socket, turning on the
light.

Further Investigation: What is the performance of R+X on unseen objects? In many of our tasks,
as described before, we test R+X on unseen objects of the same categories, like unseen cans, kettles,
clothes, etc. In this section, we perform a more detailed study on the performance of our method on
seen and unseen objects. For the tasks that can be tested on unseen objects, we run 10 trajectories on
objects seen in the human video, and 10 with unseen objects. Results in Figure 13 demonstrate that
our method is robust to novel, unseen objects of the same category. This is thanks to the keypoint

17



Figure 13: Success rate of R+X on seen and unseen objects from different tasks.

Figure 14: Examples of keypoints extracted for the same tasks, but with different views, settings, and
target objects. Images are grouped in pairs column-wise. Keypoints are extracted between top and
bottom images of each column.

Figure 15: Success rate as a function of the amount of retrieved videos. We plot mean and standard
deviation on 4 tasks, described below.

extraction pipeline, that can extract from images a list of semantically and geometrically meaningful
keypoints, that transfer across objects. Examples of such keypoints can be observed in Figure 14.

18



How does the performance change with the number of retrieved videos? R+X is conditioned
on a set of video clips depicting the requested tasks. How many videos clips need to be retrieved
from the full human video to obtain strong performance? In this experiments, we manually limit the
amount of videos that are retrieved for the "pick up can, pick up telephone, cloth in basket and open
box" tasks, changing it between 1, 5, 10 and 20. We then run 10 test episodes for each of these values
and compute the overall success rate. In Figure 15 we see how R+X can reach a strong performance
also with as few as 10 retrieved videos.

Further Investigation: What are the main sources of difference in performance between R+X
and a monolithic policy? Here we further investigate sources of differences in performance between
R+X and the baselines, extending the experimental investigation of the main paper. In particular, here
we focus on the presence of distractors.

Distractors Generalisation: One of the main differences between R+X and the baselines is that the
former, after retrieving a set of video clips from H depicting the requested task, can extract a set
of keypoints that are semantically and geometrically meaningful for the objects to interact with, as
described in the main paper. These keypoints are generally robust to distractors, as they focus only
on the DINO features that are common in all images, whereas distractors generally through out the
human video H and the execution. The baselines, being monolithic policies, receive as input the
observation as it is, and must learn to generalise to the presence of distractors during the long training
phase.

To evaluate the effect of distractors on the scene, we test R+X and the baselines on two tasks,
"grasp a can" and "put the cloth in the basket", emulating the experimental scenario of the "Hard
Generalisations" sections. We run 10 runs without distractors, and 10 with, explicitly measuring
the performance in the two cases. We can see in the results of Fig. 12 how R+X is more robust to
the presence of random distractor objects, highlighting the advantage of extracting semantically and
geometrically meaningful keypoints after having received a language command and having retrieved
the corresponding video clips.

6.6 Further Details on Baselines:

6.6.1 Octo

One of baselines that we have compared against is a fine tuned version of Octo [30]. We have used
the original code provided by the authors and adapted it for the specific input and output relevant
to this work. More specifically, we designed the input of the model to be the RGB image of size
256× 256 of the live observation, Olive and a language description of the task L. The output, instead,
is Jlive, the trajectory of desired hand joints 3D points to be translated to gripper poses as described
before. Unlike KAT, these methods require a fixed length of the output trajectory. We therefore
pad it to 40 times steps. The output is ultimately a tensor of dimension 480, which corresponds to
a flattened tensor of dimension (40, 4, 3). The 4 predicted hand joints are described in section 6.4
along with how they are mapped to robot actions.

Having set the input and output dimensions, as well as modalities, the model has been fine tuned
starting from the provided checkpoint "octo-small-1.5" and it was trained until convergence.

6.6.2 R3M-DiffLang

The other baseline we have compared against has been the combination of R3M [29] and [31], with
the inclusion of language conditioning. The resulting model leveraged the ResNet-50 variant of
R3M to encode the 256× 256 live observation RGB image Olive and Sentence-BERT [47] to encode
the language description of the task L. The resulting feature vectors for the image and language
description was then concatenated and passed to a UNet [48] trained via diffusion following the
original code of [31]. The output of the diffusion head has the same size as the output of Octo, as
we pad the trajectory Jlive to 40 timesteps. In order to take advantage of the pre-trained vision
knowledge of R3M, the encoder has been initialised with the provided weights and kept frozen, as it

19



has been done for the language encoder. The diffusion policy head has been trained from scratch
using our own dataset of trajectories until convergence was reached.

20


	Introduction
	Related Work
	R+X: Retrieval and Execution
	Retrieval: Extracting visual examples from a long, unlabelled video
	Preprocessing Videos into a Sparse 3D Representation

	Execution: Few-Shot, In-Context Imitation from Video Examples

	Experiments
	Results

	Discussion and Limitations
	Supplementary Material
	Additional Related Work
	Processing the Long, Unlabelled Human Video
	Stabilisation of First Person Videos
	Extracting Gripper Actions from Human Hands
	Tasks Details and Success Criteria
	Further Details on Baselines:
	Octo
	R3M-DiffLang



