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Abstract

While recent advancements in camera-based 3D object de-
tection demonstrate remarkable performance, they require
thousands or even millions of human-annotated frames.
This requirement significantly inhibits their deployment in
various locations and sensor configurations. To address this
gap, we propose a performant semi-supervised framework
that leverages unlabeled RGB-only driving sequences - data
easily collected with cost-effective RGB cameras - to signif-
icantly improve temporal, camera-only 3D detectors. We
observe that the standard semi-supervised pseudo-labeling
paradigm underperforms in this temporal, camera-only set-
ting due to poor 3D localization of pseudo-labels. To ad-
dress this, we train a single 3D detector to handle RGB se-
quences both forward and backward in time, then ensemble
both its forwards and backwards pseudo-labels for semi-
supervised learning. We further improve the pseudo-label
quality by leveraging 3D object tracking to infill missing
detections and by eschewing simple confidence threshold-
ing in favor of using the auxiliary 2D detection head to filter
3D predictions. Finally, to enable the backbone to learn di-
rectly from the unlabeled data itself, we introduce an object-
query conditioned masked reconstruction objective. Our
framework demonstrates remarkable performance improve-
ment on large-scale autonomous driving datasets nuScenes
and nuPlan.

1. Introduction

Camera-driven 3D object detection [17, 28, 46, 67] has seen
remarkable improvement in recent years, even achieving
close to LiDAR-based 3D detection [56, 78, 84] perfor-
mance. Improvements in 2D backbones [15, 41], advance-
ments in query-driven 3D detection [28, 34, 67], and em-
phasis on temporal modeling of objects [16, 30, 36, 46] have
fueled these detectors, making camera-only pipelines an in-
dispensable component of an autonomous driving stack due
to their cost efficiency and semantically accurate predic-
tions. However, these detectors heavily depend on labor-
intensive human annotations of thousands or millions of
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Figure 1. Our proposed semi-supervised learning framework for
temporal camera-driven 3D detection substantially improves over
labeled-only training and a strong pseudo-labeling baseline.

frames [7, 8, 60], which hinders their widespread deploy-
ment to new cities and sensor configurations. For truly scal-
able development of autonomous driving, camera-driven
3D detectors must directly leverage unlabeled data for train-
ing in a semi-supervised pipeline.

While prior work has explored semi-supervised learning
for 2D and 3D detection in autonomous driving, the tem-
poral aspect of camera-driven 3D object detection remains
under-explored. Autonomous vehicles inherently capture
RGB video sequences during operation, and since depth es-
timation is the main bottleneck for camera-based 3D de-
tectors [43, 69], temporal RGB data offers valuable priors
about the 3D world. To advance semi-supervised learning
in this domain, it is crucial to fully leverage the temporal di-
mension of the problem. For instance, DPL [88] proposes a
strong semi-supervised learning (SSL) pipeline for 3D ob-
ject detection. However, they build on MonoFlex [91], a
single-image 3D detector that does not use video, which
places an upper bound on the performance the 3D detec-
tor can achieve. MVC-MonoDet [29] does leverage images
from other timesteps during training for photometric con-
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sistency loss, but it similarly only explores single-image 3D
detectors. Other work [44, 48] use an additional LiDAR
sensor to generate stronger pseudo-labels, but the require-
ment of an expensive LIDAR sensor hinders the scalability
of this approach.

In this work, we propose a novel SSL framework that fo-
cuses on performant, temporal 3D detectors, fully exploits
the video sequence for semi-supervised learning, and works
solely with cost-effective RGB cameras. Our method in-
corporates both pseudo-labeling on unlabeled data as well
as a self-supervised loss term directly on the RGB images.
To derive accurate pseudo-labels, we focus squarely on the
problem of 3D localization, the most significant challenge
of camera-driven 3D detectors. Observing that pseudo-
labeling errors are significantly higher for regions behind
the ego-vehicle compared to regions ahead, we propose to
train a single detector both on forward-running sequences as
well as the reversed backward-running sequences. Without
additional training costs, the detector, conditioned on con-
secutive timestamps, can effectively handle both directions.
Using this detector for pseudo-labeling unlabeled data both
forwards and backwards in time, we observe a remarkable
performance improvement.

We further improve our temporal pseudo-labeling
pipeline by incorporating a lightweight tracking mechanism
that fills in missing detections for tracked objects. Since
tracking and pseudo-labeling heavily depend on the chosen
quality metric for thresholding, we eschew standard 3D de-
tection confidence thresholding in favor of extending a 2D-
3D consistency metric developed by DetMatch [46]. More
specifically, DetMatch leverages separate 2D and 3D detec-
tors trained on RGB and LiDAR, respectively, and pseudo-
labels both modalities by matching 2D and 3D detections.
Observing that camera-driven 3D detection is fundamen-
tally a 2D detection task, with 3D localization and attribute
prediction [68, 94], we leverage the auxiliary 2D detection
head as our separate ‘“2D detector” and match the tempo-
ral 3D predictions with the same model’s 2D predictions.
We find that such 2D-3D consistency, even within the same
model, significantly improves pseudo-label quality.

Finally, to allow our model to learn directly from the
unlabeled data itself, we include a masked reconstruction
task on the RGB images. However, directly adding the
masked autoencoder (MAE) head worsens 3D detection
performance due to conflict between the 3D detection and
reconstruction tasks. Instead, we condition the masked to-
kens on the 3D detection object queries. Intuitively, the
3D object queries not only encode information about the
scene and objects from this timestep, but also from pre-
vious timesteps, facilitating the reconstruction task. Con-
versely, to solve the reconstruction task, the object queries
are encouraged to focus on scene elements for both current
and past timesteps, which is complementary to the tempo-

ral 3D object detection task. We find that this module fur-

ther boosts SSL performance. By fully exploiting tempo-

ral priors for pseudo-labeling and self-supervision, our SSL
pipeline demonstrates significant improvements using unla-
beled data.

Our main contributions are as follows:

* We propose a novel SSL pipeline focusing on improving
the performance of strong temporal 3D detectors.

* Our pipeline leverages forward-backward training and en-
sembling, 3D tracking, 2D-3D Hungarian Matching for
pseudo-labeling, and an object-query conditioned masked
reconstruction objective.

* We evaluate our method on nuScenes and nuPlan driv-
ing datasets, demonstrating improvement over a strong
pseudo-labeling baseline as well as prior work.

* We extensively ablate each component of our pipeline.

2. Related Work
2.1. Camera-Driven 3D Object Detection

Earlier works in RGB-only 3D object detection focus on
the single-view problem, predicting 3D boxes directly from
CNN feature maps [5, 6, 12, 39, 45, 51, 68, 75, 94]. Later
works leverage CAD models [40], formulate 3D box pre-
diction first as keypoint regression [27, 90], leverage depth
predictions before performing 3D detection on the point
cloud [14, 70, 71, 74, 85], or focus on disentangling 3D
box attributes [57, 68]. Many works, especially those fo-
cusing on the multi-camera setup, extract features and de-
tect directly in 3D space. A line of work follows the Lift-
Splat-Shoot (LSS) [49] framework of predicting a proba-
bility distribution over depths, then processing the depth
probability-weighted, outprojected image features in BEV
[17, 24, 53]. Follow-up works have improved the efficiency
of BEV pooling [25, 42] and introduced depth supervision
for more accurate out-projection. Another line of work fol-
lows DETR3D [72] in instantiating 3D queries that attend
to each other and image features before making 3D box pre-
dictions [11, 18, 28, 35]. While most of these methods ef-
fectively handle the ill-posed problem of single-image 3D
detection, their lack of temporal information upper bounds
their absolute performance in large-scale driving datasets
[7, 38, 60].

Recognizing that autonomous vehicles naturally capture
video, follow-up works improve on the temporal aspect
of camera-driven 3D detection. BEVFormer [28] and fol-
lowup work [33, 79] use queries associated with BEV lo-
cations which attend to the image as well as past BEV
features. BEVDet4D [16] proposes a BEV warping op-
eration to fuse consecutive timesteps. BEVStereo [23]
demonstrates the utility of stereo matching for depth pre-
diction in 3D detection, and SOLOFusion [46] extends this
work to incorporate long-term feature fusion. One line of
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Figure 2. Our Proposed Semi-Supervised Learning Framework. Observing that temporal 3D object detectors consistently perform
worse for objects ahead of it compared to objects behind it, we propose training a temporal 3D detector jointly on forwards-running
and reversed backwards-running RGB sequences. To pseudo-label, we ensemble forwards & backwards predictions on unlabeled data,

leverage 2D-3D hungarian matching to derive an accurate and 2D-consistent set of predictions, and perform 3D object tracking and label
propagation. More details are in the text.

work focuses specifically on temporal processing with ob-
ject queries. PETRv2 [36] and Sparse4D [30] fuses multi-
timestep features into object queries through attention. Fol-
low up works StreamPETR [73], Sparse4Dv2 [31], and
Sparse4Dv3 [32] focus on recurrent feature propagation
over time, dramatically accelerating inference speed. In
this work, we use StreamPETR as our base model for its
efficiency and strong performance, reducing the significant
annotation costs of training a camera-based 3D detector.

2.2. Semi-Supervised Learning

To derive training signals from unlabeled data, SSL. meth-
ods either enforce consistency between augmented variants
of a single input [1, 19, 52, 55, 63] or leverage a network
trained on a small amount of labeled data to pseudo-label
the unlabeled data [2, 3, 20, 58, 62, 86]. While most semi-
supervised methods work with image classification, many
recent methods have examined this problem for 2D detec-
tion and 3D LiDAR-based detection.

In 2D detection, STAC [59] pre-trains a model on a
small amount of labeled data, pseudo-labels offline, then
trains the detector on the entire dataset. Instant-Teacher
[93] examines augmentation strategies [4, 87], other works
[22, 76, 77] modify the quality score of predictions to
threshold on for pseudo labels, and a line of work focuses
on exponential moving average (EMA) for predictions or
the pseudo-labeler [37, 61, 82].

Many works have extended SSL to 3D detection on point
clouds. SESS [92] focuses on consistency over strong-weak
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augmentation, 3DIoUMatch [65] improves the threshold-
ing metric for pseudo-labeling with an IoU score, Profi-
cientTeachers [83] improves pseudo-labels by ensembling
predictions from multiple LiDAR views, and PseudoAug-
ment [21] proposes pseudo-labeling driven augmentation.
Leveraging the temporal, 3D nature of the LiDAR-based
detection setting, many works focus on offline labeling
and detection [9, 26, 50, 66]. Notably [50] uses exten-
sive test-time augmentation and LiDAR point cloud aggre-
gation to derive pseudo-labels that approach human annota-
tion quality. While our work is similar in leveraging mul-
tiple timesteps over a driving sequence, effective pseudo-
labeling in camera-driven 3D detection is a more difficult
challenge due to the lack of reliable 3D signals.

2.3. SSL for Camera-Driven 3D Detection

Semi-supervised learning in camera-driven 3D detection is
comparatively less explored. Mix-Teaching [81] uses a
teacher network to assemble a database of background im-
ages and high-confidence object instances and trains a stu-
dent network on mixed images. Other works seek additional
sources of supervision such as LiDAR [44, 48, 89]. While
demonstrating strong performance, these works rely on Li-
DAR to provide precise 3D cues that, in many cases, obviate
the 3D location of an object. DPL [88] explicitly decouples
the 3D and 2D attributes of pseudo-labels, and devises a ho-
mography estimation method for determining the quality of
the 3D attributes. While DPL additionally identifies incor-
rect depth as a major issue in pseudo-labeling, their depth
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gradient projection method necessitates that the 3D detec-
tor separates 3D box prediction into attribute prediction and
depth estimation, which is not the case for most query and
BEV based methods. Furthermore, DPL is a single-view
method, under-utilizing video frames naturally present in
autonomous driving. MVC-MonoDet [29] proposes to use
a photometric loss between consecutive frames as a depth
supervision signal for objects. While demonstrating per-
formance improvement, the base detector is a single-frame
model. To the best of our knowledge, this is the first work
to examine SSL in the context of temporal, camera-driven
3D object detection.

3. Method

Figure 2 provides an overview of our pseudo-labeling
pipeline. In Section 3.1 we first describe the SSL problem
setting and also provide an overview of our base 3D detec-
tor StreamPETR [67]. We then detail our forward-backward
pseudo-labeling algorithm in Section 3.2, provide details on
the 2D-3D Hungarian Matching in Section 3.3, and propose
pseudo-label refinement via tracking in Section 3.4. Finally,
we introduce our object query-conditioned masked recon-
struction pipeline in Section 3.5

3.1. Preliminaries

Task Overview. In semi-supervised learning, we have a
small dataset of labeled samples D; = {(x},y})}!, and a
larger dataset of unlabeled samples D,, = {z%)}¥* , where
N; << N,. In the temporal, camera-driven 3D detec-
tion task, the input x consists of RGB images at a single
timestep I € REXH*XWX3 ‘where K is the number of cam-
eras mounted on the ego-vehicle, the camera intrinsics, and
the extrinsics e; from an IMU or GPU sensor. The label y
is a set of bounding boxes b € RM*9+¢  where each box
has 3D location, dimensions, rotation, BEV velocity, and a
class label between 1 and C'. The goal is to leverage a small
amount of labeled data and a large amount of unlabeled data
to scalably improve 3D detection performance.

Overview of StreamPETR. A strong but efficient 3D de-
tector, StreamPETR [67] propagates a set of object queries
through the driving sequence, aggregating image features
from each timestep to them before predicting 3D boxes.
More specifically, StreamPETR consists of a CNN back-
bone and a custom DETR [10] head. At each timestep,
given images I;, the backbone extracts features f; =
CNN(/l;). Then, the custom DETR head processes both
image features from the current timestep f;, object queries
from the previous timestep ¢;—1, and motion attributes be-
tween the timesteps (ego-movement, predicted object ve-
locity, time difference) and yields refined object queries
for the current timestep ¢ = DETR(f;,q;—1). Finally,
an MLP predicts box parameters from the object queries
9+ = MLP(y;). StreamPETR achieves efficiency by prop-
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Figure 3. Histogram of 3D Detection Confidence Preserved Af-
ter Hungarian Matching. The 2D-3D hungarian matching pre-
serves a large number of low-confidence, yet accurate 3D detec-
tions that would have otherwise been discarded by a 0.4 pseudo-
labeling confidence threshold.

agating temporal information exclusively through object
queries rather than through past feature maps.

3.2. Forward-Backward Pseudo-Labeling

The dominant approach in semi-supervised learning is
pseudo-labeling. However, for temporal 3D detection, we
find that pseudo-labels for objects in front of the vehicle are
consistently worse than those behind. This is because as the
car moves forward and passes objects, the temporal detec-
tor has observed objects that are now behind it for a longer
period of time and can draw from a wider multi-view stereo
baseline for more precise 3D localization. Furthermore, this
observation is symmetric over time - if the driving sequence
is seen backwards in time, the detector would have observed
objects originally in front of it for longer, potentially allow-
ing it to better pseudo-label objects in front of it as well.

Leveraging this insight, we propose to jointly train a
detector on both forward-running and reversed backward-
running sequences. As the temporal DETR head in Stream-
PETR takes as input the timestamp difference between con-
secutive timesteps, the detector can adaptively handle both
temporal directions. After training the detector on the la-
beled data, we pseudo-label the unlabeled set by ensem-
bling predictions from both a forward and backwards pass
of the driving sequences. More specifically, we directly
combine backward detections ahead of the ego-car and for-
ward detections behind it. We find this intuitive method is
enough to substantially improve performance — as shown
in Figure 4, this achieves accurate pseudo-labels both in
front and behind the vehicle.

The detector is able to achieve this level of performance
by effectively leveraging privileged information. The de-
tector’s performance on objects ahead of it — which it
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# Labeled | Method | mAP 1 NDSt | mATE| mASE| mAOE| mAVE| mAAE|
Labeled Only 0.151 0.234 0.924 0.177 1.132 1.263 0.317
800 Pseudo-Labeling | 0.187 0.249 0.916 0.171 1.108 1.192 0.354
Ours 0.222 0.280 0.851 0.160 1.115 1.078 0.294
Labeled Only 0.219 0.293 0.849 0.156 0.936 0.936 0.284
2000 Pseudo-Labeling |  0.269 0.314 0.803 0.151 0.947 1.051 0.300
Ours 0.271 0.330 0.810 0.150 0.934 0.868 0.292
Labeled Only 0.291 0.384 0.807 0.140 0.765 0.693 0.210
4000 Pseudo-Labeling |  0.304 0.405 0.806 0.137 0.726 0.600 0.201
Ours 0.331 0.410 0.778 0.137 0.782 0.672 0.187

Table 1. Comparison of methods on the nuPlan dataset [8] with different labeled sample sizes. Our framework achieves better 3D

localization due to more accurate pseudo-labels.

achieved by moving backwards in time — will always be
ahead of the detector’s forward performance on those re-
gions. This low-cost addition substantially improves the
performance of the final trained model.

3.3. 2D-3D Hungarian Matching

While generating pseudo labels by thresholding on detec-
tion confidence can achieve good performance [38, 47],
we draw inspiration from DetMatch’s Hungarian Matching-
based pseudo-labeling to improve pseudo-label quality for
free. DetMatch proposes to match 2D and 3D detections
from separate RGB and LiDAR models, respectively, and
threshold on their matching cost instead. While DetMatch
had cited agreement between disparate models and modal-
ities as the cause of this method’s success, we find that
using even 2D and 3D detections from the same model
and modality can improve performance. More specifically,
StreamPETR is equipped with an auxiliary 2D detection
head for additional training-time supervision. We find that
in terms of 2D detection performance, the 2D head’s pre-
dictions achieve higher mAP compared to the projections of
the 3D head (53.8 AP@50 vs 40.5 AP@50). Motivated by
this discrepancy, we perform Hungarian Matching between
these 2D and 3D detections, minimizing focal loss, GloU
[54], and 2D box parameter difference. Thresholding on the
matching cost, we see a boost in pseudo-label quality, and
this method retains low-confidence but accurate 3D detec-
tions that would otherwise have been discarded, as shown in
Figure 3. We emphasize that this addition imposes no ad-
ditional cost to training or inference, and it adds negligible
runtime to the pseudo-labeling procedure.

3.4. 3D Tracking and Label Propagation

While the detector is able to maintain most objects through
time, in the presence of uncertainty, distance, or signif-
icant occlusion, we see object detections disappear be-
tween frames. Such missing detections negatively influ-
ence the final trained model and exacerbates the problem
of object impermanence. To address this issue, we pro-

pose a straightforward but effective object tracking-based
fix. More specifically, we use a predicted velocity-based
tracking pipeline [84], where each tracklet from the previ-
ous timestep is matched with the current prediction moved
backwards its predicted velocity. Notably, unlike LiDAR
where object locations, and hence velocities, are more 3D
accurate, camera-based predictions have more significant
per-frame velocity errors. To alleviate this, we maintain a
velocity of each tracklet which we set as the exponential
moving average (EMA) of its associated predictions’ center
location changes over time. Then, to match past tracklets
and current detections, we use velocity estimates to move
tracklets forward and detections backwards a half-timestep.
This robustly handles static initialization and uncertain ve-
locity predictions. We use a greedy, multi-object, distance-
based tracker [84] for its good 3D performance.

3.5. Object Query-Conditioned Masked Recon-
struction

In addition to our pseudo-labeling framework, we also en-
able the network to learn directly from unlabeled sam-
ples. More specifically, we formulate an object query-
conditioned masked reconstruction loss. First, we uni-
formly randomly mask patches in the input images and pro-
cess it with a CNN once more:

firask = CNN(M © I) (1)

At this stage, ftm“k encodes information about the visible
part of the input image. While prior work directly input
fmask into a masked decoder for pre-training, we find that
doing so significantly hurts the performance of our 3D de-
tector. The network focuses on optimizing the auxiliary loss
at the expense of the main task loss. To more explicitly tie
the detector to the reconstruction, we update the masked
features f;"*** by attending onto the object queries output
from the temporal DETR head ¢;. More specifically:

mask

fmask = TransformerDecoder( f;

4t Qt) (2)
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# Labeled | Method | mAP? NDSt | mATE| mASE| mAOE| mAVE| mAAE |
Labeled Only 0.103 0.191 0.953 0.352 1.299 1.359 0.299

800 UniPAD + Pseudo. | 0.116 0.198 0.954 0.359 1.216 1.075 0.286
Ours 0.137 0.221 0.940 0.340 1.339 0.940 0.258
Labeled Only 0.157 0.242 0.894 0.318 0.988 0.916 0.250

2000 UniPAD + Pseudo. |  0.170 0.282 0.896 0.325 0.894 0.685 0.230
Ours 0.194 0.293 0.902 0.315 0.932 0.664 0.226

Table 2. Comparison of methods on the nuScenes dataset [7]. Our framework significantly improves over both the Labeled-Only

baseline as well as UniPAD [80].

# Labeled | Method | mAP1 | Car Tru. Bus Trai. Con. Bic. Mot. Ped. Traf. Bar.
Labeled Only 0.103 | 0.247 0.054 0.048 0.018 0.003 0.035 0.019 0.116 0.278 0.208

800 UniPAD + Pseudo-Lab | 0.116 | 0.267 0.061 0.026 0.016 0.007 0.040 0.013 0.138 0.318 0.270
Ours 0.137 | 0.284 0.060 0.075 0.023 0.008 0.074 0.041 0.182 0.351 0.271
Labeled Only 0.157 | 0.346 0.091 0.124 0.020 0.007 0.085 0.080 0.184 0.336 0.299

2000 UniPAD + Pseudo-Lab | 0.170 | 0.359 0.098 0.089 0.030 0.005 0.102 0.079 0.188 0.382 0.367
Ours 0.194 | 0.384 0.101 0.134 0.030 0.006 0.137 0.122 0.239 0.420 0.371

Table 3. mAP of methods across 10 classes on the nuScenes dataset [7]. Our method consistently outperforms prior work over both

easy and difficult classes.

where TransformerDecoder(f%** q;,q;) performs self-
attention between the masked features f;**** and then per-
forms cross-attention, pulling information from ¢, to refine
fmask By conditioning the masked reconstruction on the
predicted object queries, this enables gradient flow from the
reconstruction loss to influence the temporal DETR head
directly. To minimize the reconstruction loss, the object
queries need to retain information about scene elements
from both current and past timesteps, which is comple-
mentary to the main detection task. We find that this self-
supervised objective improves performance in conjunction
with our pseudo-labeling method.

4. Experiments

4.1. Datasets and Evaluation Metrics

The nuScenes Dataset. nuScenes [7] includes 1000 scenes
split into 700, 150, and 150 sequence for training, valida-
tion, and online testing. Each sequence is 20s long and is
annotated at 2Hz, resulting in 28130 total training frames.
The ego-vehicle has 6 high-resolution 900 x 1600 cameras
which cover the entire 360° field-of-view. The annotation
covers 10 classes: car, truck, bus, trailer, construction ve-
hicle, pedestrian, motorcycle, bicycle, barrier, and traffic
cone, and methods are evaluated with mean Average Pre-
cision (mAP), Average Translation Error (ATE), Average
Scale Error (ASE), Average Orientation Error (AOE), Aver-
age Velocity Error (AVE), Average Attribute Error (AAE),
and a combined metric Nuscenes Detection Score (NDS).
For semi-supervised learning, we split the training set into
either 800 or 2000 labeled frames, and take the remainder as
the unlabeled set. Note that as we work in the temporal 3D
detection setting, we sample frames at the sequence level in

chunks of 40 consecutive frames.

The nuPlan Dataset. nuPlan [8] is a large-scale planning
dataset that releases sensor data (RGB videos) and 3D box
annotations for 120 hours of driving. This dataset contains
1065 driving logs, which totals 590,499 frames across four
regions — Las Vegas with 455k frames, Boston with 64k,
Pittsburgh with 51k, and Singapore with 19k. Each frame
contains 8 high-resolution RGB images at 1080 x 1920 res-
olution, as well as 3D bounding box labels. We use the
most common car and pedestrian classes on this dataset.
We choose this dataset to demonstrate the scalability of our
method leveraging a large amount of unlabeled data.

In our work, we leverage 800, 2000, or 4000 labeled
frames, keeping the rest as unlabeled data to learn from.
Considering the uneven distribution of frames from each
city, we evenly split the labeled data frames across the four
cities. Notably, we select sequences at the log level, which,
on average, has 600 frames (5 minutes) of driving data. We
do this to mimic realistic data collection scenarios where
annotators label 3D boxes continuously through time. We
use the same metrics as in nuScenes.

4.2. Implementation Details

We develop our SSL pipeline on the performant temporal
3D detector StreamPETR [67]. For the backbone, we use
the ConvNeXt-S [41] backbone with SOM parameters pre-
trained by SparK [64]. As SparK pretrains the backbone
on ImageNet-1k [13] for masked reconstruction, we adopt
its pretrained decoder as our masked reconstruction head as
well, affording the backbone a continuous transition in su-
pervision. We split our training two stages. First, the detec-
tor is trained on the small amount of labeled data until con-
vergence. Then, we leverage our pseudo-labeling pipeline
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| Method | mAP+ | NDS 1 | mATE |
(a) | Labeled-Only 0.155 0.232 0.938
(b) | + Pseudo-Labeling | 0.182 0.247 0.924
(¢) | + Fw-Bw 0.208 0.267 0.855
(d) | + Masked Recon 0.209 0.265 0.862
+ Masked Recon
© | & Query Cond. 0.209 0.271 0.847
(f) | + 3D Tracking 0.215 0.275 0.848
(g) | + Hung. Matching | 0.219 0.278 0.850

Table 4. Ablation study of the major components of our frame-
work. Results are on nuPlan with 800 labeled and 60k unlabeled
samples.

to annotate the unlabeled data offline. Finally, we continue
training our network on both the labeled and unlabeled data,
evenly sampling between them. For our final models in the
second stage, we disable the forwards-backwards flipping to
allow the model to focus solely on the deployment setting.
We use a masking ratio of 0.3. Additional implementation
details can be found in the supplementary.

4.3. Results on nuPlan

We present results on the large-scale nuPlan dataset in Ta-
ble 1. As we are the first to address the problem of SSL for
temporal 3D object detection, we develop a straightforward
but strong pseudo-labeling baseline based on confidence
thresholding. We note that this baseline already signifi-
cantly improves performance over the labeled-only base-
line. Our proposed pipeline, by generating higher-quality
pseudo-labels and leveraging a self-supervised objective,
further improves results in for all # of labeled samples. The
performance gain is especially notable for the low-resource
setting of just 800 labeled samples, where we see a substan-
tial +3.5 mAP and +3.1 NDS.

4.4. Results on nuScenes

We also evaluate our pipeline on the 10 detection classes
in the nuScenes dataset. For comparison, we include Uni-
PAD [80], a self-supervised pre-training method designed
for nuScenes. Specifically, UniPAD builds on the camera-
based 3D detector [24], pre-training its 2D backbone us-
ing an RGB and depth rendering loss. Although this ap-
proach leverages privileged information (e.g., depth from
LiDAR), it does not rely on human annotations during
the pre-training phase. To enhance this baseline, we fur-
ther train UniPAD on the limited labeled dataset, use it to
pseudo-label the unlabeled data, and then continue training.
We note that UniPAD also uses the ConvNeXt-S [41] ini-
tially pre-trained by SparK [64].

The results are in Table 2. While both UniPAD and our
method significantly improve over the labeled-only base-
line, our pipeline consistently demonstrates stronger per-

formance. We further examine mAP over each of the 10
classes in nuScenes in Table 3 and observe a similar trend.
While all methods struggle on rare classes like trailer and
construction vehicle, our method significantly improves on
common classes (car and pedestrian) as well as on classes
that are difficult to localize in 3D (bicycle, motorcycle).

4.5. Ablations and Analysis
4.5.1. Ablation of Components

We carefully ablate the major components of our framework
in Table 4. In this table, we focus on three metrics - mAP,
which captures overall detection performance, NDS, which
balances detection with attribute prediction, and mATE,
which examines localization of the object center. Starting
with the Labeled-Only baseline (a), adding pseudo-labeling
(b) improves mAP substantially, but mATE does not im-
prove significantly. This is due to pseudo-labeling expand-
ing the semantic boundary of the classes and enabling the
model to detect previously uncertain objects. Despite this,
the 3D localization of such objects remains poor due to the
suboptimal 3D localization of the pseudo-labels themselves.
Adding our forwards-backwards ensembling approach (c),
however, substantially boosts mATE in addition to mAP and
NDS. By allowing the model to adopt a more diverse multi-
view stereo baseline, the resulting pseudo-labels have more
precise 3D center estimation.

We then add the self-supervised objective masked recon-
struction loss (d) as an independent decoder head as is done
in SparK [64]. We find that this hurts performance due to
the backbone alone handling reconstruction in addition to
3D detection. However, by conditioning the masked re-
construction on object queries predicted from the detection
head (e), mATE improves further. This demonstrates that
by looping in the detection head, the reconstruction task is
now complementary to 3D detection. Adding 3D tracking
(f) further improves performance by ensuring pseudo-labels
remain more consistent over time, and replacing confidence
thresholding with the cost-free Hungarian Matching (g) fur-
ther improves both mAP and NDS. We hypothesize that
tracking and Hungarian Matching improve mAP as opposed
to mATE because these modules mainly focus on reducing
false positives and false negatives as opposed to refining the
3D location of pseudo-labels.

4.5.2. Qualitative Analysis of Pseudo-Labels

We also show qualitative results of our pseudo-labeling al-
gorithm with 800 labeled samples on nuPlan in Figure 4.
Our framework more consistently captures difficult objects
— those ahead of the vehicle and objects at a far depth. The
more precise and consistent pseudo-labels in turn improve
performance of the final trained model. Additional visual-
izations on pseudo-labels and reconstruction can be found
in the supplementary.
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Figure 4. Qualitative results on pseudo-labeling. We visualize pseudo labels from confidence thresholding in orange and our framework
in blue. Our pseudo labels capture distant objects with 2D-3D hungarian matching, achieve better performance in front of the vehicle due
to forward-backward ensembling, and maintains persistency of past objects through tracking.

5. Conclusion

In this paper, we present a novel semi-supervised learning
pipeline for temporal 3D object detection, designed to
fully leverage the temporal dynamics of RGB video
data. Our approach addresses the challenges of 3D
localization in camera-driven detectors by introducing
forward-backward ensembling for pseudo-labeling, lever-
aging 2D-3D Hungarian Matching for consistency, and
enhancing self-supervised learning with an object-query

conditioned masked reconstruction task. Through ex-
tensive evaluation on nuScenes and nuPlan datasets,
we demonstrate that our method achieves significant
performance gains over a strong pseudo-labeling base-
line, highlighting the value of temporal modeling in
semi-supervised 3D detection. Our framework paves
the way for scalable, cost-effective deployment of
camera-based 3D detection systems, leveraging easy-to-
collect unlabeled data to develop accurate 3D detectors.
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