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ABSTRACT

Active learning (AL) is for optimizing the selection of unlabeled data for annota-
tion (labeling), aiming to enhance model performance while minimizing labeling
effort. The key question in AL is which unlabeled data should be selected for an-
notation. Existing deep AL methods arguably suffer from bias incurred by labeled
data, which takes a much lower percentage than unlabeled data in AL context. We
observe that such an issue is severe in different types of data, such as vision and
non-vision data. To address this issue, we present Manifold-Preserving Trajec-
tory Sampling (MPTS), which combines manifold regularization with trajectory
sampling to address bias accumulation in active learning. By doing so, we expect
to effectively correct the bias incurred by labeled data, which can cause a biased
selection of unlabeled data. Despite its focus on manifold, the proposed method
can be conveniently implemented by performing distribution mapping with MMD
(Maximum Mean Discrepancies). Extensive experiments on various vision, non-
vision and video benchmark datasets demonstrate the superiority of our method.

1 INTRODUCTION

Active learning (AL) has emerged as a powerful paradigm to mitigate data annotation costs across a
wide range of machine learning applications, including medical diagnosis, autonomous driving, nat-
ural language processing, and computer vision. By enabling models to query the most informative
unlabeled samples, AL can significantly improve performance with minimal supervision—an advan-
tage particularly vital in scenarios where expert labeling is expensive, labor-intensive, or inherently
limited.

Recent advances in deep active learning have focused primarily on uncertainty-based acquisition
strategies. Techniques such as Monte Carlo (MC) dropout Gal & Ghahramani (2016), Bayesian
neural networks (BNNs) Gal et al. (2017), and model ensembles Beluch et al. (2018); Czarnecki
(2015) attempt to quantify epistemic uncertainty through stochastic forward passes, posterior mod-
eling, or variance across multiple model instances. While effective to a degree, these methods suffer
from two fundamental limitations that restrict their scalability and generalization.

The first issue stems from a subtle but critical distinction in active learning bias. While we inten-
tionally want to bias our sample selection toward uncertain examples, we don’t want this process to
distort how our model understands the underlying data structure. When labeled data represent only
a tiny fraction of the full dataset, the model’s internal feature representations can drift away from
what they would learn from the complete data distribution. This creates a compounding problem:
biased features lead to poor uncertainty estimates, which in turn lead to even more biased sample
selection. As a result, the model becomes increasingly biased toward a subspace that deviates from
the true manifold, degrading both representation quality and uncertainty calibration. The second
issue stems from reliance on restrictive assumptions or architecture-specific implementations—such
as Gaussian posteriors in BNNs or the insertion of dropout layers in MC dropout—which hinder
applicability across domains and model types.

To overcome these challenges, we propose Manifold-Preserving Trajectory Sampling (MPTS), a
novel active learning framework that simultaneously corrects sampling bias and enables robust un-
certainty estimation without requiring architectural modifications or explicit distributional assump-
tions. MPTS introduces two key components: (1) a manifold-preserving regularization scheme that
aligns feature representations of labeled and unlabeled data using Maximum Mean Discrepancy
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(MMD), ensuring that the learned feature space remains faithful to the data manifold; and (2) a
trajectory-based parameter sampling method that aggregates model checkpoints along optimization
paths near local minima, capturing diverse posterior modes while avoiding the pitfalls of handcrafted
uncertainty modeling.

We validate MPTS through extensive experiments across a broad range of visual, tabular, and video
benchmarks. Results show that our method consistently outperforms state-of-the-art AL techniques,
achieving higher accuracy with significantly fewer labeled samples. This highlights the importance
of addressing sampling bias in uncertainty estimation and underscores the effectiveness of trajectory-
based parameter exploration. We combine MMD regularization with trajectory sampling to address
a specific problem in active learning: how bias accumulates over multiple rounds when models
learn representations from increasingly skewed labeled datasets. While these techniques have been
explored separately in other contexts, their integration provides an effective solution for maintaining
feature quality throughout iterative active learning cycles.

Our key contributions are threefold:

• We introduce MPTS, the active learning framework that jointly integrates manifold-
preserving regularization and trajectory-based parameter sampling. Unlike prior meth-
ods that rely on explicit posterior modeling or architectural constraints, MPTS provides
a lightweight yet powerful solution for robust uncertainty estimation, free from distribu-
tional or structural assumptions.

• We systematically uncover and address the overlooked challenge of sampling bias accu-
mulation across active learning cycles. By enforcing global manifold alignment between
labeled and unlabeled data, MPTS effectively prevents representation drift and ensures that
the model remains anchored to the true data distribution throughout the learning process.

• Through extensive experiments on a wide spectrum of benchmarks—including image
classification, video analysis, and tabular data—we demonstrate that MPTS consistently
achieves state-of-the-art performance with significantly fewer labeled samples, establish-
ing a new standard for label efficiency and cross-domain generalizability in active learning.

2 RELATED WORK

2.1 ACTIVE LEARNING

Active learning is a pivot research area in machine learning, focused on optimizing data annotations
to enhance model performance with fewer labeled samples. Most AL methods mainly consider
uncertainty as a crucial criterion to intelligently sample data that improves model’s generalization.
Such methods prioritize data points with high prediction variance or near the decision boundary,
employing techniques like MC-Dropout Gal & Ghahramani (2016), Query-by-Committee (QBC)
Gorriz et al. (2017), and adversarial training Ducoffe & Precioso (2018) to address overconfident
deep neural networks Tong & Koller (2001); Sinha et al. (2019). Li et al. Li et al. (2024b) propose a
noise stability method that measures output deviation when model parameters are perturbed. How-
ever, these methods do not address the broader issue of distribution bias that accumulates across
active learning cycles. Influence-based AL approaches select data points based on their estimated
impact on model performance, using schemes like Learning Loss Yoo & Kweon (2019), and the
Influence Function Koh & Liang (2017) that leverages gradient to estimate changes in prediction
accuracy Liu et al. (2021); Wang et al. (2022). Besides, BADGE Ash et al. (2021) also aims to
select uncertain data by evaluating gradient. Many deep AL methods resort to auxiliary models to
estimate data uncertainty. Typical works include VAAL Sinha et al. (2019) which uses an auxiliary
auto-encoder, and GCNAL Caramalau et al. (2021) that employs a graph network as the auxiliary
model. Unlike these methods, the Coreset Sener & Savarese (2018) is free of any auxiliary models,
but suffering from a slow optimization process (e.g., solving a classical K-center or 0-1 Knapsack
problem) during data selection. Several other works, such as Zhang et al. (2020), rely on com-
plicated training fashion (e.g., adversarial), and it will be challenging if using such methods on a
different data format (e.g., 3D medical images of voxels) other than 2D natural images.
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2.2 POSTERIOR APPROXIMATION FOR BAYESIAN NEURAL NETWORKS

Bayesian Neural Networks (BNNs) are designed to provide robust uncertainty estimates by treat-
ing the network’s parameters as probabilistic distributions rather than fixed values. This approach
is essential for capturing uncertainty in tasks like active learning. Several works Maddox et al.
(2018; 2019); Lindén et al. (2020) propose to estimate posterior distributions by averaging the train-
ing checkpoints. To this end, they use Stochastic Weight Averaging (SWA) Demir et al. (2024)
to perform the averaging operation, improving the uncertainty estimation. SSVI Li et al. (2024a)
maintains sparse Bayesian models throughout training and inference phases. This approach reduces
computational costs. These methods offer practical solutions for reliable uncertainty estimation in
deep networks. Notably, our method has a very low level of similarity with these methods, as we
propose a brand new solution to estimate the posterior considering both labeled and unlabeled data
simultaneously.

3 METHOD

To address the fundamental challenges of data bias accumulation and distributional assumption de-
pendence in multi-cycle active learning, we propose MPTS (Manifold-Preserving Trajectory Sam-
pling), a novel framework that ensures unbiased posterior estimation while providing assumption-
free parameter sampling.

3.1 PROBLEM ANALYSIS

Active Learning Bias Accumulation. We formalize the multi-cycle active learning problem as
follows. Given an initial labeled set L and a large unlabeled pool U , the objective is to iteratively
select the most informative subset XN ⊂ U for annotation. After expert annotation, the labeled set is
augmented as L ← L∪XN , YN where YN denotes the corresponding labels. For uncertainty-based
sample selection, we estimate prediction uncertainty using entropy:

H(x) = −
C∑

c=1

p(y = c|x, θ) log p(y = c|x, θ) (1)

However, reliable uncertainty estimation requires accurate posterior distributions. Bayesian neural
networks incorporate parameter posterior distributions:

p(y = c|x,D) =

∫
p(y = c|x, θ)p(θ|D)dθ (2)

The critical issue lies in posterior estimation. Applying Bayes’ rule:

p(θ|D) =
p(θ)p(D|θ)

p(D)
∝ p(θ)p(D|θ) (3)

For discriminative models with dependency chain X → Z → Y , the likelihood factorizes as:

p(D|θ) = p(X|θ)p(Z|X, θ)p(Y |X,Z, θ) (4)

The core issue becomes clear when we examine what happens during training. Most active learning
methods focus entirely on the classification layer - they estimate p(Y |X,Z, θ) using only labeled
samples. But they largely ignore whether the feature extractor p(Z|X, θ). learned from these labeled
samples actually captures meaningful patterns from the full dataset. Over multiple rounds, the model
becomes increasingly specialized at representing only the types of examples it has seen, making
it progressively worse at understanding the broader data landscape. This doesn’t mean we should
abandon uncertainty-based selection - it means we need to prevent the model’s feature understanding
from becoming too narrow.

3.2 MANIFOLD-PRESERVING REGULARIZATION

To address both the feature distribution bias and the rigid distributional assumptions, our MPTS
framework consists of two complementary strategies: Strategy 1: Manifold-Preserving Regular-
ization corrects the biased feature distribution p(Z|X, θ) by leveraging abundant unlabeled data.
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Strategy 2: Trajectory-Based Parameter Sampling captures diverse posterior modes without explicit
distributional assumptions.

A natural question arises: won’t correcting this bias just push us back toward random sampling? The
answer lies in understanding what we’re actually correcting. We’re not trying to make our selected
samples look like random samples - we still want to pick uncertain, informative examples. Instead,
we’re ensuring that our model’s internal understanding of data patterns stays grounded in the full
dataset reality, even when it only learns labels from a selective subset. Since existing methods
only use biased labeled data L to learn feature representations, we need to regularize the feature
distribution to align with the true data manifold.

We enforce the feature distribution learned from labeled data to approximate that from the complete
dataset:

ZL = fe(XL; θ) ≈ Z∗ = fe(XL∪U ; θ) (5)

where fe denotes the feature extractor component of the network.

We employ Maximum Mean Discrepancy (MMD) to measure and minimize this distribution gap:

MMD(ZL, Z∗) = sup
h∈H
{Ez∼ZL [h(z)]− Ez∼Z∗ [h(z)]} (6)

The training objective combines supervised learning with manifold preservation:

Ltotal = Lce(XL, YL) + λMMD2(ZL, Z∗) (7)

The effectiveness of MMD regularization in correcting active learning bias stems from its ability
to enforce distributional alignment in reproducing kernel Hilbert spaces (RKHS). Let µL and µ∗
denote the feature distributions induced by labeled and complete datasets respectively. The MMD
distance provides an unbiased estimator of the distributional discrepancy:

MMD(ZL, Z) = sup
h∈H

(Ez∼ZL [h(z)]− Ez∼Z [h(z)]) (8)

For universal kernels, MMD = 0 if and only if the two distributions are identical. In the context of
active learning, the biased sampling process creates a distribution shift: µL ̸= µ∗. By minimizing
MMD2(ZL, Z∗), we enforce the learned feature extractor to satisfy:

lim
|L|→∞

MMD(µL, µ∗) = 0 (9)

This constraint prevents the feature representation from overfitting to the biased labeled subset and
maintains consistency with the underlying data manifold. The training objective combines super-
vised learning with manifold preservation:

Ltotal = Lce(XL, YL) + λMMD2(ZL, Z∗) (10)

Convergence Analysis. We analyze the convergence properties of our manifold-preserving objective.
Under standard smoothness assumptions on the loss function and bounded feature spaces, the MMD
regularization term is Lipschitz continuous with respect to network parameters. Specifically, for a
fixed kernel k and bounded feature domain Z , there exists a constant L > 0 such that:

∣∣MMD2(ZL(θ1), Z(θ1))−MMD2(ZL(θ2), Z(θ2))
∣∣ ≤ L |θ1 − θ2| (11)

To empirically validate our convergence analysis, Figure 1 demonstrates the MMD convergence
behavior across different regularization strengths. The results confirm the theoretical trade-off es-
tablished: smaller λ values achieve rapid convergence within 30 epochs but stabilize at suboptimal
MMD values around 0.8, indicating insufficient distributional alignment. Conversely, larger λ values
exhibit extended convergence periods lasting beyond 60 epochs while ultimately reaching superior
alignment with MMD values.
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Figure 1: MMD convergence under different
regularization strengths. Higher λ values ex-
hibit slower initial convergence but achieve su-
perior final alignment between learned and tar-
get distributions. The trade-off demonstrates
that stronger regularization (λ=2.0) yields the
lowest asymptotic MMD despite delayed con-
vergence dynamics.
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Figure 2: Validation of the theoretical bound
in Equation 12. The actual approximation er-
ror (solid line) follows the predicted O(n−1/2)
convergence rate and stays within the theoretical
guarantee (dashed line), confirming our analy-
sis.

3.3 TRAJECTORY-BASED PARAMETER SAMPLING

Traditional methods assume fixed posterior forms, limiting their flexibility. We collect parameters
during optimization to capture multiple posterior modes. Neural networks find various good so-
lutions during training, each representing a valid data hypothesis. We modify Stochastic Weight
Averaging (SWA) for active learning through two phases. First, we train the network to conver-
gence with standard optimization. Second, we apply a cyclic learning rate that alternates between
high and low values. This cycling explores different parameter regions near the converged solution.
We collect parameter snapshots at each epoch’s end rather than at random intervals. Since training
data stays fixed within epochs, this timing captures real model variations instead of data shuffling
noise. New labeled samples are added only between epochs, preventing interference across SWA
collection phases. During exploration, we save parameter checkpoints θti

n
i=1 from epoch endpoints.

Each checkpoint represents a local minimum state. We typically collect 10-20 checkpoints based
on dataset size. The cyclic schedule runs for about 25% of initial training epochs, balancing ex-
ploration with computational cost. This epoch-based approach reduces parameter variability within
cycles while maintaining diversity across training phases. The collected parameter snapshots form
a trajectory ensemble that theoretically approximates the posterior distribution. The trajectory en-
semble approximates the true posterior with bounded error:

E[KL(ptrue(y|x)|pensemble(y|x))] ≤
C√
n
+O(ϵopt) (12)

where n is the number of trajectory samples and ϵopt is the optimization error.

The final prediction probability is computed by averaging predictions across all sampled parameters:

p(y = c|x,D) =
1

n

n∑
i=1

p(y = c|x, θti) (13)

where each θti is sampled from the trajectory optimization. This ensemble provides a better estimate
of the true predictive distribution than any single model, with prediction variance naturally capturing
epistemic uncertainty.

When combining manifold-preserving regularization with trajectory sampling, our framework in-
herits favorable properties from both components. The MMD regularization ensures consistency
with the true data distribution, while trajectory sampling captures parameter uncertainty. This dual
mechanism maintains reliable uncertainty estimates throughout active learning cycles, even as bi-
ased samples accumulate in the labeled set.
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Theoretical Validation. To verify our analysis, we examine whether the trajectory ensemble ex-
hibits the convergence behavior predicted in Equation 12. Figure 2 shows the approximation error
decreases with trajectory sample size n. The results confirm our theoretical prediction: the actual
error follows the expected O(1/

√
n) rate and remains below the theoretical bound. This validates

that our bound provides meaningful guarantees rather than loose estimates.

Computational Efficiency. Our integrated approach achieves bias correction and uncertainty quan-
tification with manageable overhead: Training Complexity: O(E · |L| · d + E · b2 · k) per active
learning round, where the MMD term adds only O(b2 · k) overhead since b2 · k ≪ |L| · d. Stor-
age Requirements: O(n · d + |U| · k) for trajectory parameters and feature caching. Efficiency
Advantage: Compared to ensemble methods requiring O(m · E · |L| · d) with m separate models,
our single-model approach with n trajectory samples achieves comparable uncertainty quality at
O(n/m) relative cost, making it practically viable for large-scale active learning scenarios.

Table 1: A summary of various AL settings we use in the experiments.

Dataset Pool Size Label Size Input Initial Instances Budget Backbone Initialization

CIFAR10 50,000 10 32 × 32 100 100 ResNet-18 Random
MNIST 50,000 10 28 × 28 100 100 MLP Random
SVHN 50,000 10 32 × 32 100 100 ResNet-18 Random

Mini-ImageNet 48,000 100 84 × 84 1000 1000 ViT-Small Pre-trained

OpenML-6 18,000 26 16 100 100 MLP Random
OpenML-155 50,000 9 10 100 100 MLP Random

HMDB 5310 102 32 204 204 MViT Pre-trained

4 EXPERIMENTS

Here we introduce a series of experiments conducted to validate the proposed method. To make
the evaluation more comprehensive, we consider multiple datasets, backbone models, as well as
different AL settings. We refer readers to Table 1 for details.

4.1 DATASETS AND BASELINES

Datasets. As most deep AL methods have been evaluated in computer vision challenges, we also
adopt four widely used benchmark vision datasets to evaluate our method, including MNIST Lecun
et al. (1998), CIFAR10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011), and Mini-ImageNet
Ravi & Larochelle (2016). In addition, we also incorporate two typical non-vision datasets for
the evaluation, namely OpenML-6 OpenML (2021) and OpenML-155 OpenML (2021), which are
tabular datasets from the OpenML repository, including structured data with mixed types of features.
To verify the generalization of our method, we also evaluated the video dataset HMDB Kuehne et al.
(2011).

Baselines. The baseline methods that we consider in this paper can be categorized into three groups.
The first group resorts to estimate data uncertainty based on posterior, including Entropy Wang
& Shang (2014), BALD Gal et al. (2017), BADGE Ash et al. (2020). The second group designs
customized methods to evaluate data uncertainty, including Coreset Sener & Savarese (2018), CDAL
Agarwal et al. (2020), and Feature Mixing Parvaneh et al. (2022). The third group relies on auxiliary
models and/or special training fashion (e.g., adversarial), including Adversarial Deep Fool Ducoffe
& Precioso (2018) and GCNAL Caramalau et al. (2021). In addition, Random selection is also
included as it is a straightforward yet effective method in several scenarios.

Models. We use three types of deep models as the backbones. Specifically, we use MLP Ash et al.
(2020) for MNIST, ResNet-18 He et al. (2016) as a typical CNN for CIFAR10 and SVHN, and
vision transformer (ViT) Alexey (2020) as a typical foundation model for Mini-ImageNet. We also
use MLP for the two non-vision datasets. We use MViT Fan et al. (2021) to the video dataset.

4.2 EXPERIMENTAL SETTINGS

For each dataset, following the common practice in AL literature, we randomly select a small portion
of data as initial samples and annotate them. The number of such samples is 100 for all the datasets,
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Figure 3: This is the main caption for all six sub-figures.

Table 2: Ablation study of Class-wise vision datasets.

Class (# of samples) 0 (980) 1 (1135) 2 (1032) 3 (1010) 4 (982) 5 (892) 6 (958) 7 (1028) 8 (974) 9 (1009)
MNIST 97.44 97.14 90.69 91.98 94.50 93.94 92.48 95.91 91.78 87.90

Class (# of samples) 0 (1744) 1 (5099) 2 (4149) 3 (2882) 4 (2523) 5 (2384) 6 (1977) 7 (2019) 8 (1660) 9 (1595)
SVHN 70.35 80.15 85.32 80.11 79.62 66.82 70.10 63.55 86.42 71.72

except the Mini-ImageNet in which we use 1000 initial samples. Then in each AL round (covering
both model training and data selection phases), we select 100 unlabeled samples (labeling budget)
for all the datasets, except the Mini-ImageNet where we select 1000 unlabeled samples for initial
annotation. When MLP or CNN is used as the backbone, within each AL round, we train the model
for 100 epochs. When pre-trained ViT is used, we fine-tune it for 1000 epochs within each AL
round. We adopt a learning rate of 1e− 3 for vision datasets and 1e− 4 for non-vision datasets.
The batch size is set to 64 for all the experiments. Notably, we train the MLP and CNN from
scratch, whereas we fine-tune the pre-trained ViT following the practice in Parvaneh et al. (2022)
for a fair comparison. To reduce randomness, we repeat each experiment for 5 times and average
the results as the final one. We observe that some baseline methods occasionally perform worse than
random selection, particularly in early rounds with very limited labeled data. This phenomenon,
documented in prior active learning literature, occurs when uncertainty estimates become unreliable
due to insufficient training data. To ensure fair comparison, we report results starting from the
second active learning round (after 200 labeled samples) when all methods have stabilized.

4.3 RESULTS AND ANALYSIS

We first examine how our method preserves data manifold structure during active learning selection.
Figure 4 shows t-SNE visualizations of MNIST data before and after applying our selection strategy.
The left panel displays the complete dataset (2000 samples) with natural clustering of digit classes,
while the right panel shows our selected subset.

Figure 3 demonstrates that MPTS consistently outperforms baseline methods across all evaluated
datasets. The method adapts well to different architectures, working effectively with MLP on
MNIST, ResNet-18 on CIFAR10 and SVHN, and ViT on Mini-ImageNet. This consistent per-
formance across diverse model types provides initial evidence for the method’s broad applicability.

Building on it, we observe that the performance gains correlate with both budget constraints and
data complexity. Under limited annotation budgets (100 samples per round), MPTS maintains clear
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Figure 4: t-SNE visualization demonstrating manifold preservation. Our method selects 15% of
MNIST samples (right) while maintaining the distributional structure of the complete dataset (left),
with representative coverage across all digit classes and decision boundaries.

advantages on MNIST, CIFAR10, and SVHN, which has direct relevance for cost-sensitive applica-
tions like medical imaging. More importantly, the improvement margins vary systematically with
dataset complexity. While MNIST shows modest gains due to its relative simplicity, CIFAR10 and
SVHN exhibit larger performance differences. This pattern suggests that manifold preservation be-
comes increasingly valuable as visual complexity grows. Even when scaling to larger budgets (1000
samples on Mini-ImageNet), MPTS retains its competitive edge, addressing a common limitation
where active learning methods lose effectiveness at higher annotation volumes.

The benefits extend beyond computer vision to other data modalities. On tabular datasets (OpenML-
6 and OpenML-155), MPTS achieves substantial improvements over baselines. Since these experi-
ments use MLP architectures, the results 3 reveal that simpler models are particularly vulnerable to
distribution bias, which our regularization strategy effectively addresses. This finding connects back
to the MNIST results, where the combination of simple data and simple models limits the observable
benefits. To further validate cross-domain effectiveness, we evaluated MPTS on video classification
using the HMDB Kuehne et al. (2011) dataset with MViT Carreira & Zisserman (2017) backbone.
Table 3 shows consistent improvements over ALFA-Mix, a specialized video active learning method,
with performance gaps widening from 1.15% (204 samples) to 2.47% (1530 samples).

The comparative analysis reveals key methodological advantages. Unlike GCNAL, which requires
auxiliary graph networks alongside the main model, MPTS achieves better results using only the
base architecture. Table 4 compares our approach with ASWA, showing that methods focusing
solely on weight averaging without considering manifold structure achieve lower performance.
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Figure 5: Ablation study of the methods on vision and non-vision datasets

4.4 ABLATION STUDY

We evaluate each component’s contribution by progressively removing manifold-preserving regu-
larization and trajectory sampling. Figure 5 shows the results across three datasets. Using entropy-
based selection alone produces limited improvements and unstable performance. The method strug-
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Table 3: Compare the accuracy of our method
and ALFA-Mix.

Method Dataset AL Rounds
204 408 765 1530

ALFA-Mix HMDB 61.45 67.64 73.31 76.35
Ours 62.60 68.95 74.96 78.82

Table 4: Compare our method with ASWA on the
CIFAR10 and OpenML6 datasets.

Method Dataset AL Rounds
400 600 800 1000

ASWA CIFAR10 25.67 36.99 39.67 43.75
Ours 38.45 41.15 42.98 45.82

ASWA OpenML6 57.35 66.96 70.15 73.20
Ours 58.74 67.22 74.07 76.50

Table 5: Gap (%) between training and test accu-
racy after each AL cycle, evaluated on CIFAR10.

Budget (%) 20 30 40 50 60

Random 6.54 7.68 9.95 10.36 10.10
Entropy 6.61 8.63 10.52 12.51 15.19
BALD 6.12 7.30 8.98 10.32 11.42

CoreSet 6.39 7.23 9.68 11.45 12.54
Badge 6.53 8.65 10.24 12.39 14.00
CDAL 8.00 8.66 10.82 15.27 16.40
Ours 6.23 7.20 8.95 10.22 10.85

Table 6: Ablation study of Class-wise non-vision datasets.

Class (# of samples) 0 (71) 1 (75) 2 (81) 3 (68) 4 (75) 5 (74) 6 (76) 7 (61) 8 (72)
OpenML-6 92.95 77.46 80.00 90.12 88.23 88.00 78.37 82.89 72.13

Class (# of samples) 9 (72) 10 (75) 11 (65) 12 (69) 13 (64) 14 (68) 15 (77) 16 (94) 17 (88)
OpenML-6 95.83 86.11 73.84 84.05 87.50 77.94 92.20 70.21 85.22

Class (# of samples) 18 (74) 19 (91) 20 (93) 21 (89) 22 (71) 23 (101) 24 (78) 25 (96) 26 (57)
OpenML-6 83.78 81.31 89.24 94.38 87.32 95.04 91.02 87.50 84.21

gles with overfitting on certain datasets, indicating that pointwise uncertainty measures cannot cap-
ture underlying distribution structures. Adding MMD regularization (Entropy+MMD) significantly
improves stability and consistency. This demonstrates that aligning feature distributions between
labeled and unlabeled data effectively reduces selection bias. Incorporating trajectory sampling
(Entropy+SWA) also improves over the baseline, but less than MMD regularization. Tables 2 and
6 provide class-wise analysis on vision and non-vision datasets. Our method maintains consistent
performance across different classes, including those with fewer samples or complex structures.

4.5 GENERALIZATION ANALYSIS

We examine model generalization by measuring the training-test accuracy gap across active learning
cycles. Early cycles with limited data often produce unstable gap measurements due to noise and
random factors. To obtain reliable estimates, we scale up the CIFAR10 experiment with 50× larger
initial sets and 25× larger selection budgets. Table 5 shows the accuracy gaps at different annotation
percentages. Baseline methods exhibit increasing gaps as budgets grow, indicating progressive over-
fitting. For example, BALD maintains a small gap (6.12%) at 20% budget but degrades at higher
budgets (11.42% at 60%). This pattern reflects the accumulation of selection bias over multiple
cycles.

5 CONCLUSION

We identify a risk in deep active learning where uncertainty estimation relies solely on biased labeled
data, leading to progressive deviation from the true data manifold across learning cycles. To ad-
dress this challenge, we introduce MPTS, a framework that corrects feature distribution bias through
manifold-preserving regularization while capturing diverse posterior modes via trajectory-based pa-
rameter sampling. The manifold-preserving component is employed to align feature distributions
between labeled and unlabeled data. Comprehensive experiments across vision datasets, tabular
data, and video sequences confirm the effectiveness of our approach. Ablation studies validate that
both manifold preservation and trajectory sampling contribute to performance improvements.
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