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ABSTRACT

Model-based reinforcement learning agents utilizing transformers have shown im-
proved sample efficiency due to their ability to model extended context, resulting
in more accurate world models. However, for complex reasoning and planning
tasks, these methods primarily rely on continuous representations. This compli-
cates modeling of discrete properties of the real world such as disjoint object
classes between which interpolation is not plausible. In this work, we intro-
duce discrete abstract representations for transformer-based learning (DART), a
sample-efficient method utilizing discrete representations for modeling both the
world and learning behavior. We incorporate a transformer-decoder for auto-
regressive world modeling and a transformer-encoder for learning behavior by
attending to task-relevant cues in the discrete representation of the world model.
For handling partial observability, we aggregate information from past time steps
as memory tokens. DART outperforms previous state-of-the-art methods that do
not use look-ahead search on the Atari 100k sample efficiency benchmark with a
median human-normalized score of 0.790 and beats humans in 9 out of 26 games.

1 INTRODUCTION

A reinforcement learning (RL) algorithm usually takes millions of trajectories to master a task,
and the training can take days or even months, especially when using complex simulators. This is
where model-based reinforcement learning (MBRL) comes in handy (Sutton, 1991). With MBRL,
agent learns the dynamics of the environment, understanding how environment state changes when
different actions are taken. This method is more efficient because the agent can train in its imag-
ination without requiring millions of trajectories (Ha & Schmidhuber, 2018). Additionally, the
learned model allows the agent for safe and accurate decision-making by utilising different look-
ahead search algorithms for planning its action (Hamrick et al., 2020).

Most MBRL methods commonly follow a structured three-step approach: 1) Representation Learn-
ing ϕ : S → Rn, the agents captures a simplified representation Rn of the high dimensional environ-
ment state S; 2) Dynamics Learning P : S×A×S → [0, 1], the agent grasps how the environment
evolves P (s′|s, a) in response to its actions; and 3) Policy Learning π : S → P(A), the agent
determines the optimal actions needed to achieve its goals. Dreamer is a family of MBRL agents
that follow a similar structured three-step approach.

DreamerV1 (Hafner et al., 2019) employed a recurrent state space model (RSSM) to learn the world
model. DreamerV2 (Hafner et al., 2020), an improved version of DreamerV1, offers better sample
efficiency and scalability by incorporating a discrete latent space for representing the environment.
Building on the advancements of DreamerV2, DreamerV3 (Hafner et al., 2023) takes a similar ap-
proach with additions involving the use of symlog predictions and various regularisation techniques
aimed at stabilizing learning across diverse environments. Notably, DreamerV3 surpasses the per-
formance of past models across a wide range of tasks, while using fixed hyperparameters.

Although Dreamer variants are among the most popular MBRL approaches, they suffer from
sample-inefficiency. The training of Dreamer models can require an impractical amount of game-
play time, ranging from months to thousands of years, depending on the complexity of the game.
This inefficiency can be primarily attributed to inaccuracies in the learned world model, which tend
to propagate errors into the policy learning process, resulting in compounding error problem. This
challenge is largely associated with the use of convolutional neural networks (CNNs) and recur-
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Figure 1: Discrete abstract representation for transformer-based learning (DART): In this approach,
the original observation xt is encoded into discrete tokens zt using VQ-VAE. These tokenized obser-
vations, and predicted action, serve as inputs for modeling the world. Transformer decoder network
is used for modeling the world. The predicted tokens, along with a CLS and a MEM token are used
as input by the policy. This policy is modeled using a transformer-encoder network. The CLS token
aggregates information from the observation tokens and the MEM token to learn a common represen-
tation, which is then used for action and value predictions. This common representation also plays
a role in modeling memory, acting as the MEM token at the subsequent time step.

rent neural networks (RNNs) that, while effective in many domains, face limitations in capturing
complex and long-range dependencies, which are common in RL scenarios.

This motivates the need to use transformers (Vaswani et al., 2017; Lin et al., 2022), which have
proven highly effective in capturing long-range dependencies in various natural language processing
(NLP) tasks (Wolf et al., 2020) and addressing complex visual reasoning challenges in computer
vision (CV) tasks (Khan et al., 2022). Considering these advantages, recent works have adapted
transformers for modeling the dynamics in MBRL. Transdreamer (Chen et al., 2022) first used a
transformer-based world model by replacing Dreamer’s RNN-based stochastic world model with a
transformer-based state space model. It outperformed DreamerV2 in Hidden Order Discovery Tasks
which requires long-term dependency and complex-reasoning. In order to stabilize the training, it
utilizes gated transformer-XL (GTrXL) (Parisotto et al., 2020) architecture.

Masked world model (MWM) (Seo et al., 2023) utilizes a convolutional-autoencoder and vision
transformer (ViT) (Dosovitskiy et al., 2020) for learning a representation that models dynamics
following the RSSM objective. Their decoupling approach outperforms DreamerV2 on differ-
ent robotic manipulation tasks from Meta-world (Yu et al., 2020) and RLBench (James et al.,
2020). Similarly, transformer-based world model (TWM) (Robine et al., 2023a) use transformer-
XL (TrXL) (Dai et al., 2019) for modeling the world and use the predicted latent states for policy
learning. Their work demonstrates sample-efficient performance on the Atari 100k benchmark.

Contrary to these approaches, imagination with auto-regression over an inner speech (IRIS) (Micheli
et al., 2022) models dynamics learning as a sequence modeling problem, utilizing discrete image
tokens for modeling the world. It then uses reconstructed images using the predicted tokens for
learning the policy using CNNs and long short-term memorys (LSTMs), achieving improved sample
efficiency on the Atari 100k compared to past models. However, it still faces difficulties in modeling
the memory leading to the problem of partial observability, resulting in reduced performance.

In this work, we introduce discrete abstract representation for transformer-based learning (DART), a
novel approach that leverages transformers for learning both the world model and policy. Unlike the
previous method Yoon et al. (2023), which solely utilized a transformer for extracting object-centric
representation, our approach employs a transformer to learn behavior through discrete representa-
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tion (Mao et al., 2021), as predicted by the transformer-decoder that models the world. This choice
allows the model to focus on fine-grained details, facilitating precise decision-making. Specifically,
we utilize a transformer-decoder architecture, akin to the generative pre-trained transformer (GPT)
framework, to model the world, while adopting a transformer encoder, similar to the ViT architec-
ture, to learn the policy (as illustrated in Figure 1).

Additionally, to address challenges related to partial observability necessitates memory modeling.
Previous work Didolkar et al. (2022) modeled memory in transformers using a computationally
intensive two-stream network. Inspired by (Bulatov et al., 2022), we model memory as a distinct
token, aggregating task-relevant information over time using a self-attention mechanism.

Contributions We outline the significant contribution of our work as follows:

• Transformer-Based Modeling: Our work introduces a novel approach that utilizes trans-
formers for both world and policy modeling. Specifically, we utilize a transformer-decoder
(GPT) for world modeling and a transformer-encoder (ViT) for policy learning. This rep-
resents an improvement compared to IRIS, which relies on CNNs and LSTMs for policy
learning, potentially limiting its performance.

• Utilizing Discrete Representations: We use discrete representations for policy and
world modeling. These discrete representations capture abstract features, enabling our
transformer-based model to focus on task-specific fine-grained details. Attending to these
details improves decision-making, as demonstrated by our results.

• Efficient Handling of Partial Observability: To address the problem of partial observabil-
ity, we introduce a novel mechanism for modeling the memory that aggregates task-relevant
information from the previous time step to the next using a self-attention mechanism.

• Enhanced Interpretability and Sample Efficiency: Our model showcases enhanced in-
terpretability and sample efficiency. It achieves state-of-the-art results (no-look-ahead
search methods) on the Atari 100k benchmark with a median score of 0.790 and super-
human performance in 9 out of 26 games.

2 METHOD

Our model, DART, is designed for mastering Atari games, within the framework of a partially
observable Markov decision process (POMDP) (Kaelbling et al., 1998) which is defined as a tuple
(O,A, p, r, γ, d). Here, O is the observation space with image observations xt ⊆ Rh×w×3, A
represents the action space, and at is a discrete action taken at time step t from the action space A,
p (xt | x<t, a<t) is the transition dynamics, r is the reward function rt = r (x≤t, a<t), γ ∈ [0, 1)
is the discount factor and d ∈ {0, 1} indicates episode termination. The goal is to find a policy
π that maximizes the expected sum of discounted rewards Eπ

[∑∞
t=1 γ

t−1rt
]
. DART comprises

three main steps: (1) Representation Learning, where vector quantised-variational autoencoders
(VQ-VAEs) (Van Den Oord et al., 2017) are used for tokenizing the original observations; (2) World-
Model Learning, which involves auto-regressive modeling of the dynamics of the environment using
GPT architecture; and (3) Policy Learning, which is modeled using ViT for decision-making by
attending to task-relevant cues. We now describe our overall approach in detail.

2.1 REPRESENTATION LEARNING

Discrete symbols are essential in human communication, as seen in natural languages (Cartuyvels
et al., 2021). Likewise, in the context of RL, discrete representation is useful for abstraction and
reasoning, leveraging the inherent structure of human communication (Islam et al., 2022). This
motivates our approach to model the observation space as a discrete set. In this work, we use VQ-
VAE for discretizing the observation space. It learns a discrete latent representation of the input data
by quantizing the continuous latent space into a finite number of discrete codes.

Image Encoder: ẑkt = fθ(xt), Vector Quantization: ẑq,LVQ = q(ẑkt ;ϕq, Z),

Codebook: Z = {z1, z2, . . . , zN}, Image Decoder: x̂t = gϕ(ẑ
k
qt).

(1)

At time step t, the observation from the environment xt ∈ RH×W×3, is encoded by the image
encoder fθ to a continuous latent space ẑkt . This encoder is modeled using CNNs. The quantization

3



Under review as a conference paper at ICLR 2024

process q maps the predicted continuous latent space ẑkt to a discrete latent space ẑq . This is done
by finding the closest embedding vector in the codebook from a set of N codes. The discrete latent
codes are passed to the decoder gϕ, which maps it back to the input data x̂t (see Equation 1).

The training of this VQ-VAE comprises minimizing the reconstruction loss to ensure alignment
between input and reconstructed images. Simultaneously, the codebook is learned by minimizing
the codebook loss, encouraging the embedding vector in the codebook to be close to the encoder
output. The commitment loss encourages the encoder output to be close to the nearest codebook
vector. Additionally perceptual loss is computed to encourage the encoder to capture high-level
features. The total loss in VQ-VAE is a weighted sum of these loss functions.

This approach enables the modeling of fine-grained, low-level information within the input image
as a set of discrete latent codes.

2.2 WORLD-MODEL LEARNING

The discrete latent representation forms the core of our approach, enabling the learning of dynamics
through an autoregressive next-token prediction approach (see Equation 2). A transformer decoder
based on the GPT architecture is used for modeling this sequence prediction framework:

Aggregate Sequence: ẑct = fϕ(ẑ<t, â<t), Next State Token Predictor: ẑkqt ∼ pd(ẑ
k
qt | ẑct),

Reward Predictor: r̂t ∼ pd(r̂t | ẑct), Episode End Predictor: d̂t ∼ pd(d̂t | ẑct).
(2)

First, an aggregate sequence is modeled by encoding past latent tokens and actions at each time step.
The aggregated sequence is used for estimating the distribution of the next token, contributing to the
modeling of future states. Simultaneously, it is also used for estimating the reward and the episode
termination. This training occurs in a self-supervised manner, with the next state predictor and
termination modules trained using cross-entropy loss, while reward prediction uses mean squared
error.

2.3 POLICY-LEARNING

The policy π is trained within the world model, using a transformer encoder architecture based
on vision transformer (ViT). At each time step t, the policy processes the current observation as
K discrete tokens received from the world model. These observation tokens are extended with
additional learnable embeddings, including a CLS token placed at the beginning and a MEM token
appended to the end.

The CLS token helps in aggregating information from the K observation tokens and the MEM token.
Meanwhile, the MEM token acts as a memory unit, accumulating information from the previous time
steps. Thus, at time step t the input to the policy can be represented as (CLS, ẑ1qt , . . . , ẑ

K
qt ,MEMt),

where ẑKqt corresponds to the embedding of Kth index token from the codebook, such that

out = [CLS, ẑ1qt , . . . , ẑ
K
qt ,MEMt−1] +Epos, CLS, ẑqt ,MEMt−1,Epos ∈ RD

out = out+ MSA(LN(out)),

out = out+ MLP(LN(out)),

}
× L

ht = out[0], MEMt = out[0] .

(3)

While these discrete tokens excel at capturing fine-grained low-level details, they lack spatial in-
formation about various features or objects within the image. Transformers, known for their
permutational-equivariant nature, efficiently model global representation. To incorporate local spa-
tial information, we add learnable positional encoding to the original input. During training, these
embeddings converge into vector spaces that represent the spatial location of different tokens.

Following this spatial encoding step, the output is first processed with layer-normalization within
the residual block. This helps in enhancing gradient flow and eliminates the need for an additional
warm-up strategy as recommended in Xiong et al. (2020). Subsequently, the output undergoes
processing via multi-head self-attention (MSA) and a multi-layer perception (see Equation 3). This
series of operations is repeated for a total of L blocks.
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Actor: ât ∼ pψ

(
ât | ĥt

)
, Critic: vξ

(
ĥt

)
≈ Epψ

[∑
τ≥t

γ̂τ−tr̂τ

]
. (4)

Following L blocks of operations, the feature vector associated with the CLS token serves as the
representation, modeling both the current state and memory. This representation ht, is used by the
policy to sample action and by the critic to estimate the expected return (see Equation 4). This is
followed by the reward prediction, episode end prediction, and the token predictions of the next
observation by the world model.

The feature vector ht now becomes the memory unit. This is possible because the self-attention
mechanism acts like a gate, passing on information to the next time step as required by the task.
This simple approach enables effective memory modeling without relying on recurrent networks,
which can be challenging to train and struggle with long context (Pascanu et al., 2013).

The imagination process unfolds for a duration of H steps, stopping on episode-end prediction.
Similar to the IRIS and DreamerV2 approaches, we optimize the policy by minimizing LV and Lπ ,
defined as follows:

V λ
t =

{
r̂t + γ

(
1− d̂t

) [
(1− λ)v (x̂t+1) + λV λ

t+1

]
if t < H

v (x̂H) if t = H
,

LV = Eπ

[
H−1∑
t=0

(
V (x̂t)− sg

(
V λ
t

))2]
,

Lπ = −Eπ

[
H−1∑
t=0

log (π (at | x̂≤t)) sg
(
V λ
t − V (x̂t)

)
+ ηH (π (at | x̂≤t))

]
.

(5)

3 EXPERIMENTS

We evaluated our model alongside existing baselines using the Atari 100k benchmark (Kaiser et al.,
2019), a commonly used testbed for assessing the sample-efficiency of RL algorithms. It consists
of 26 games from the Arcade Learning Environment (Bellemare et al., 2013), each with distinct
settings requiring perception, planning, and control skills.

We evaluated our model’s performance based on several metrics, including the mean and median
of the human-normalized score, which measures how well the agent performs compared to human
and random players given as scoreagent−scorerandom

scorehuman−scorerandom
. We also used the super-human score to quantify

the number of games in which our model outperformed human players. We further evaluated our
model’s performance using the Interquartile Mean (IQM) score and the Optimality Gap, following
the evaluation guidelines outlined in (Agarwal et al., 2021)

We rely on the median score to evaluate overall model performance, as it is less affected by outliers.
The mean score can be strongly influenced by a few games with exceptional or poor performance.
Additionally, the IQM score helps in assessing both consistency and average performance across all
games.

Atari environments offer the model an RGB observation of 64× 64 dimensions, featuring a discrete
action space, and the model is allowed to be trained using only 100k environment steps (equivalent
to 400k frames due to a frameskip of 4), which translates to approximately 2 hours of real-time
gameplay.

3.1 RESULTS

In Figure 2, we present the IQM and optimality gap scores, as well as the mean and median scores.
These scores pertain to various models assessed on Atari 100k. Figure 3a visualizes the performance
profile, while Figure 3b illustrates the probability of improvement, which quantifies the likelihood
of DART surpassing baseline models in any Atari game. To perform these comparisons, we use
results from Micheli et al. (2022), which include scores of 100 runs of CURL (Laskin et al., 2020),
DrQ (Kostrikov et al., 2020), SPR (Schwarzer et al., 2020), as well as data from 5 runs of Sim-
PLe (Kaiser et al., 2019), and IRIS.
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Table 1: DART achieves a new state-of-art median score among no-look-ahead search methods. It
attains the highest median score, interquartile mean (IQM), and optimality gap score. Moreover,
DART outperforms humans in 9 out of 26 games and achieves a higher score than IRIS in 18 out of
26 games (underlined).

No look-ahead search
Transformer based

Game Random Human SPR DreamerV3 TWM IRIS DART
Alien 227.8 7127.7 841.9 959 674.6 420.0 962.0
Amidar 5.8 1719.5 179.7 139 121.8 143.0 125.7
Assault 222.4 742.0 565.6 706 682.6 1524.4 1316.0
Asterix 210.0 8503.3 962.5 932 1116.6 853.6 956.2
BankHeist 14.2 753.1 345.4 649 466.7 53.1 629.7
BattleZone 2360.0 37187.5 14834.1 12250 5068.0 13074.0 15325.0
Boxing 0.1 12.1 35.7 78 77.5 70.1 83.0
Breakout 1.7 30.5 19.6 31 20.0 83.7 41.9
ChopperCommand 811.0 7387.8 946.3 420 1697.4 1565.0 1263.8
CrazyClimber 10780.5 35829.4 36700.5 97190 71820.4 59324.2 34070.6
DemonAttack 152.1 1971.0 517.6 303 350.2 2034.4 2452.3
Freeway 0.0 29.6 19.3 0 24.3 31.1 32.2
Frostbite 65.2 4334.7 1170.7 909 1475.6 259.1 346.8
Gopher 257.6 2412.5 660.6 3730 1674.8 2236.1 1980.5
Hero 1027.0 30826.4 5858.6 11161 7254.0 7037.4 4927.0
Jamesbond 29.0 302.8 366.5 445 362.4 462.7 353.1
Kangaroo 52.0 3035.0 3617.4 4098 1240.0 838.2 2380.0
Krull 1598.0 2665.5 3681.6 7782 6349.2 6616.4 7658.3
KungFuMaster 258.5 22736.3 14783.2 21420 24554.6 21759.8 23744.3
MsPacman 307.3 6951.6 1318.4 1327 1588.4 999.1 1132.7
Pong -20.7 14.6 -5.4 18 18.8 14.6 17.2
PrivateEye 24.9 69571.3 86.0 882 86.6 100.0 765.7
Qbert 163.9 13455.0 866.3 3405 3330.8 745.7 750.9
RoadRunner 11.5 7845.0 12213.1 15565 9109.0 4046.2 7772.5
Seaquest 68.4 42054.7 558.1 618 774.4 661.3 895.8
UpNDown 533.4 11693.2 10859.2 7667 15981.7 3546.2 3954.5
#Superhuman(↑) 0 N/A 6 9 7 9 9
Mean(↑) 0.000 1.000 0.616 1.120 0.956 1.046 1.022
Median(↑) 0.000 1.000 0.396 0.466 0.505 0.289 0.790
IQM(↑) 0.000 1.000 0.337 0.490 - 0.501 0.575
Optimality Gap(↓) 1.000 0.000 0.577 0.508 - 0.512 0.458

DART exhibits a similar mean performance as IRIS. However, the median and IQM scores show
that DART outperforms other models consistently.

Table 1 presents DART’s score across all 26 games featured in the Atari 100k benchmark. We
compare its performance against other strong world models including DreamerV3 (Hafner et al.,
2023), as well as other transformer-based world models such as TWM (Robine et al., 2023a) and
IRIS (Micheli et al., 2022).
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Figure 2: Comparison of Mean, Median, and Interquartile Mean Human-Normalized Scores
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Figure 3: Comparison of different models using performance profiles and probabilities of improve-
ment.

To assess DART’s overall performance, we calculate the average score over 100 episodes post-
training, utilizing five different seeds to ensure robustness. DART outperforms the previous best
model, IRIS, in 18 out of 26 games. It achieves a median score of 0.790 (an improvement of
61% when compared to DreamerV3). Additionally, it reaches an IQM of 0.575 reflecting a 15%
advancement, and significantly improves the OG score to 0.458, indicating a 10% improvement
when compared to IRIS. DART also achieves a superhuman score of 9, outperforming humans in 9
out of 26 games.

3.2 POLICY ANALYSIS

In Figure 4, we present the attention maps for the 6 layers of our transformer policy using a heat-
map visualization. These maps are generated by averaging the attention scores from each multi-
head attention mechanism across all layers. The final visualization is obtained by further averaging
these attention maps over 20 randomly selected observation states during an episode. This analysis
provides insights into our approach to information aggregation through self-attention.

The visualization in Figure 4 shows that the extent to which information is aggregated from the
past and the current state to the next state depends on the specific task at hand. In games featuring
slowly moving objects where the current observation provides complete information to the agent,
the memory token receives less attention (see Figure 4a). Conversely, in environments with fast-
moving objects like balls and paddles, where the agent needs to model the past trajectory of objects
(e.g., Breakout and Private Eye), the memory token is given more attention (see Figure 4b- 4d). This
observation highlights the adaptability of our approach to varying task requirements.

Table 2: Evaluating DART’s performance through various techniques such as memory token mask-
ing, random observation masking, and the removal of positional encoding and random exploration.

Masked
w/o Masked Observation Token

Game Original PE ϵ Memory 25% 50% 75% 100%
Boxing 83.0 3.86 58.67 81.45 77.79 51.14 15.64 -11.91
Amidar 125.7 77.1 92.75 113.69 102.47 56.37 52.22 30.43
Road Runner 7772.5 1030.0 3597.1 8021.0 7354.0 2730.0 988.0 961.0
Seaquest 895.8 64.2 753.93 704.8 491.4 207.8 104.0 142.0
KungFuMaster 23744.3 1028.0 15464.7 20378.0 16436.0 9760.0 4676.2 1571.8
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3.3 ABLATION STUDIES

We further analyzed DARTs performance across various experimental settings, as detailed in Table 2
for five distinct games. The original score of DART is presented in the second column. The different
scenarios include:

Without Positional Encoding (PE): The third column demonstrates the performance of DART
when learned positional encoding is excluded. We can observe that in environments where agents
need to closely interact with their surroundings, such as in Boxing and KungFuMaster, the omis-
sion of positional encoding significantly impacts performance. However, in games where the enemy
may not be in close proximity to the agent, such as Amidar, there is a slight drop in performance
without positional encoding. This is because transformers inherently model global context, allow-
ing the agent to plan its actions based on knowledge of the overall environment state. However,
precise decision-making requires positional information about the local context. In our case, adding
learnable positional encoding provides this, resulting in a significant performance boost.

(a) Amidar (b) Breakout

(c) Private Eye (d) Krull

Figure 4: Comparison of Memory Requirements Across Atari Games: Atari games exhibit vary-
ing memory requirements, depending on their specific dynamics. Games with relatively static or
slow-moving objects, like Amidar, maintain complete information at each time step and thus aggre-
gate less information from the memory token. Conversely, games characterized by rapidly changing
environments, such as Breakout, Krull, and PrivateEye, require modeling the past trajectories of
objects. As a result, the policy for these games heavily relies on the memory token to aggregate
information from past states into future states.

No Exploration (ϵ): The fourth column illustrates DARTs performance when trained without ran-
dom exploration, relying solely on agent-predicted actions for collecting trajectories for world mod-
eling. However, like IRIS, our model also faces the double-exploration challenge. This means that
the agent’s performance declines when new environment states aren’t introduced through random
exploration, which is crucial for effectively modeling the dynamics of the world. It’s worth not-
ing that for environments with simpler dynamics (e.g., Seaquest), the performance impact isn’t as
substantial.

Masking Memory Tokens: In the fifth column, we explore the impact of masking the memory
token, thereby removing past information. Proper modeling of memory is crucial in RL to address
the challenge of partial observability and provide information about various states (e.g., the ap-
proaching trajectory of a ball, and the velocity of the surrounding objects) that are important for
decision-making. Our method of aggregating memory over time enhances DARTs overall perfor-
mance. It is interesting to observe improvement in the agent’s performance with masked memory
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tokens in the case of RoadRunner. This could be because the original state already contains complete
information, rendering the memory token redundant, thereby impacting the final performance.

Random Observation Token Masking: The last set of columns explores the consequences of
randomly masking observation tokens, which selectively removes low-level information. Given
that each token among the K tokens model distinct low-level features of the observation, random
masking has a noticeable impact on the agent’s final performance. When observation tokens are
masked 100%, the agent attends solely to the memory token, resulting in a significant drop in overall
performance.

4 RELATED WORK

Sample Efficiency in RL. Enhancing sample efficiency (i.e., the amount of data required to reach
a specific performance level) constitutes a fundamental challenge in the field of RL. This efficiency
directly impacts the time and resources needed for training an RL agent. Numerous approaches
aimed at accelerating the learning process of RL agents have been proposed (Buckman et al., 2018;
Mai et al., 2022; Yu, 2018). Model-based RL is one such approach that helps improve the sample
efficiency. It reduces the number of interactions an agent needs to have with the environment to learn
the policy (Moerland et al., 2023; Polydoros & Nalpantidis, 2017; Atkeson & Santamaria, 1997).
This is done by allowing the policy to learn the task in the imagined world (Wang et al., 2021b; Mu
et al., 2021; Okada & Taniguchi, 2021; Zhu et al., 2020), motivating the need to have an accurate
world model while providing the agent with concise and meaningful task-relevant information for
faster learning. Considering this challenge (Kurutach et al., 2018) learns an ensemble of models
to reduce the impact of model bias and variance. Uncertainty estimation is another approach as
shown in (Plaat et al., 2023) to improve model accuracy. It involves estimating the uncertainty in the
model’s prediction so that the agent focuses its exploration in those areas. The other most common
approach for an accurate world model is using a complex or higher-capacity model architecture
that is better suited to the task at hand (Wang et al., 2021a; Ji et al., 2022). For example, using
a transformer-based world model, as in TransDreamer (Chen et al., 2022), TWM (Robine et al.,
2023a), and IRIS (Micheli et al., 2022).

Learning a low-dimensional representation of the environment can also help improve the sample
efficiency of RL agents. By reducing the dimensionality of the state, the agent can learn an accurate
policy with fewer interactions with the environment (McInroe et al., 2021; Du et al., 2019). Varia-
tional Autoencoders (VAEs) (Kingma et al., 2019) are commonly used for learning low-dimensional
representations in MBRL (Andersen et al., 2018). The VAEs capture a compact and informative rep-
resentation of the input data. This allows the agent to learn the policy faster (Ke et al., 2018; Corneil
et al., 2018). However, VAEs learn a continuous representation of the input data by forcing the
latent variable to be normally distributed. This poses a challenge for RL agents, where agents need
to focus on precise details for decision-making (Dunion et al., 2022).(Lee et al., 2020) show disen-
tangling representations helps in modeling interpretable policy and improves the learning speed of
RL agents on various manipulation tasks. Recent works (Robine et al., 2023b; Zhang et al., 2022)
have used VQ-VAE for learning independent latent representations of different low-level features
present in the original observation. Their clustering properties have enabled robust, interpretable,
and generalizable policy across a wide range of tasks.

5 DISCUSSION

Conclusion In this work, we introduced DART, a model-based reinforcement learning agent that
learns both the model and the policy using discrete tokens. Through our experiments, we demon-
strated our approach helps in improving performance and achieves a new state-of-the-art score on
the Atari 100k benchmarks for methods with no look-ahead search during inference. Moreover, our
approach for memory modeling and the use of a transformer for policy modeling provide additional
benefits in terms of interpretability.

Limitation As of now, our method is primarily designed for environments with discrete action
spaces. This limitation poses a significant challenge, considering that many real-world robotic con-
trol tasks necessitate continuous action spaces. For future work, it would be interesting to adapt our
approach to continuous action spaces and modeling better-disentangled tokens for faster learning.
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A APPENDIX

A.1 EXPERIMENT ON CRAFTER

Crafter (Hafner, 2021), inspired by Minecraft (Guss et al., 2019), allows assessing an agent’s general
abilities within a single environment. This distinguishes it from Atari 100k, where the agent must be
evaluated across 26 different games that test for different skills. In Crafter, 2D worlds are randomly
generated, featuring diverse landscapes like forests, lakes, mountains, and caves on a 64×64 grid.
Players aim to survive by searching for essentials like food, water, and shelter while defending
against monsters, collecting materials, and crafting tools. This setup allows for evaluating a wide
range of skills within a single environment, spanning multiple domains, and increasing assessment
comprehensiveness. The environment is partially observable with observations covering a small
9×9 region centered around the agent.

Model DreamerV3 IRIS DART
Steps 200K 200K 200K

Return 5.02± 0.03 5.45± 0.21 6.13± 0.09

Table 3: Comparing the sample efficiency of DreameV3, IRIS, and DART on challenging Crafter
environment which involves long-horizon tasks. Reported returns are specified as average and stan-
dard deviation over 5 seeds.

In the preliminary results shown in Table 3, we compare DART with IRIS in low data regime and
observed that DART achieves a higher average return.

A.2 EXPERIMENT ON ATARI WITH MORE ENVIRONMENT STEPS

Environment Steps Score
(k)

Freeway 100k 32.2 ± 0.57
150k 33.1 ± 0.37

KungFuMaster 100k 23744.3 ± 3271,53
150k 24756.5 ± 2635.21

Pong 100k 17.2 ± 1.74
150k 17.6 ± 2.79

Table 4: Performance of DART with 100k and 150k environment steps (k). All results are shown as
average and standard deviation over 3 seeds.

By training it beyond 100k training steps, we see improved performance of DART as shown in
Table 4.

A.3 MODEL CONFIGURATION

Recent works have used transformer-based architectures for MBRL. In Table 5 we compare the con-
figurations used by different approaches for representation learning, world modeling, and behavior
learning.

MWM TWM IRIS DreamerV3 STORM DART
Parameters n/a n/a 3.04M 18M n/a 3.07M
Agent state Continuous Continuous Continuous Continuous Continuous Discrete
State model MLP MLP CNN MLP MLP ViT
Agent memory ViT Tr-XL LSTM GRU GPT ViT (Self-attention)
Representation MAE Cat.-VAE VQ-VAE Cat.-VAE Cat.-VAE VQ-VAE

Table 5: Comparing the model configuration of recent MBRL approaches. n/a- Not Available; Cat.-
VAE - Categorical VAE.
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A.4 HYPERPARAMETERS

A detailed list of hyperparameters is provided for each module, Table 6 for Image Tokenizer, Table 7
for World Modeling, and Table 8 for behaviour learning.

Table 6: Hyperparameters for image tokenization using VQ-VAE.

Hyperparameter Symbol Value
Encoder convolutional layers – 4
Decoder convolutional layers – 4
Per layer residual blocks – 2
Self-attention layers – 8 / 16
Codebook size N 512
Embedding dimension d 512
Input image resolution – 64×64
Image channels – 3
Activation – Swish
Tokens per image K 16
Batch size – 64
Learning rate – 0.0001

Table 7: Hyperparameters used for modeling the dynamics using transformer decoder.

Hyperparameter Symbol Value
Embedding dimension – 256
Transformer layers – 10
Attention heads – 4
Imagination steps H 20
Embedding dropout – 0.1
Weight decay – 0.01
Attention dropout – 0.1
Residual dropout – 0.1
Attention type – Causal
Activation – GeLU
Batch size – 64
Learning rate – 0.0001

Table 8: Hyperparameters used for modeling behavior using transformer encoder.

Hyperparameter Symbol Value
Input tokens – 18
Embedding dimension – 512
Attention heads – 8
Transformer layers L 6
Dropout – 0.2
Activation – GeLU
Transformer layers – 6
Attention type – Self-attention
Positional embedding – Learnable
Gamma γ 0.995
Lambda λ 0.95
Batch size – 64
Epsilon ϵ 0.01
Temperature (train) – 1.0
Temperature (test) – 0.5
Learning rate – 0.0001

A.5 WORLD-MODEL ACCURACY

To evaluate the accuracy of the world model, it is important to assess both the next-state prediction
accuracy and reward prediction accuracy. Illustrated in Fig. 5, are the imagined trajectories for the
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games of Pong, Krull, and KungFuMaster. The graphs demonstrate the accuracy of the world model
in predicting subsequent states and rewards as the training progresses. In Fig. 6, we extend our
analysis of the world model’s efficiency in handling long-horizon tasks for the challenging Crafter
environment. Our analysis shows that the transformer-based world model is able to learn a better
world model as demonstrated by the peak signal-to-noise ratio (PSNR) values in Table 9.

Table 9: Comparing the PSNR values for the imagined trajectories produced by the world models
of DreamerV3 and DART. The final PSNR is calculated by averaging the values obtained from 100
episodes, with each episode comprising 200 steps.

DreamerV3 DART
PSNR 31.94dB 33.53dB

Table 10: Comparing the performance of DART with STORM.

Game STORM DART
Alien 984 962.0
Amidar 205 125.7
Assault 801 1316.0
Asterix 1028 956.2
BankHeist 641 629.7
BattleZone 13540 15325.0
Boxing 80 83.0
Breakout 16 41.9
ChopperCommand 1888 1263.8
CrazyClimber 66776 34070.6
DemonAttack 165 2452.3
Freeway 0 32.2
Frostbite 1316 346.8
Gopher 8240 1980.5
Hero 11044 4927.0
Jamesbond 509 353.1
Kangaroo 4208 2380.0
Krull 8413 7658.3
KungFuMaster 26182 23744.3
MsPacman 2673 1132.7
Pong 11 17.2
PrivateEye 7781 765.7
Qbert 4522 750.9
RoadRunner 17564 7772.5
Seaquest 525 895.8
UpNDown 7985 3954.5
#Superhuman(↑) 9 9
Mean(↑) 1.267 1.022
Median(↑) 0.584 0.790
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Figure 5: Analysing the accuracy of the transformer-based learned world model by visualizing the
future imagined trajectories. The images visualized are the states predicted by the learned world
model. Each image is merged with an original image (left) and a reconstructed image (right). Each
row evolves the state over time.
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Figure 6: Three imagined trajectories for DART (top) and DreamerV3 (bottom) for Crafter environ-
ment with randomly sampled action sequences.
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