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ABSTRACT

The challenge of action recognition is to capture reasoning motion information.
Compared to spatial convolution for appearance, the temporal component pro-
vides an additional (and important) clue for motion modeling, as a number of
actions can be reliably recognized based on the motion information. In this pa-
per, we present an effective and interpretable module, Dense Correlation Fields
(DCF), which builds up dense visual correlation volumes at the feature level to
model different motion patterns explicitly. To achieve this goal, we rely on a spa-
tially hierarchical architecture that preserves both fine local information provided
in the lower layer and the high-level semantic information from the deeper layer.
Our method fuses spatial hierarchical correlation and temporal long-term correla-
tion, which is better suited for small objects and large displacements. This module
is extensible and can be plugged into many backbone architectures to accurately
predict object interactions in the video. DCF shows consistent improvements over
2D CNNs and 3D CNNs baseline networks with 3.7% and 3.0% gains respectively
on the standard video action benchmark of SSV1.

1 INTRODUCTION

Action recognition is a fundamental problem in video understanding (Karpathy et al., 2014; Laptev
et al., 2008). Unlike image classification, action recognition should distinguish visual tempo vari-
ation as well as its semantic appearance. Recently, great progress has been made by deep learning
based models to improve the accuracy of video action recognition (Feichtenhofer et al., 2019; Jiang
et al., 2019; Yang et al., 2020a). CNNs for video understanding has been extended with the capa-
bility of capturing not only appearance information contained in individual frames but also motion
information extracted from the temporal dimension of the image sequence.

One common method for action recognition is to use a two-stream network (Simonyan & Zisserman,
2014; Crasto et al., 2019; Feichtenhofer et al., 2016; Qiu et al., 2019), where one stream is on raw
frames to extract appearance information, and the other is to leverage optical flow to learn motion
information. An alternative strategy implicitly uses 3D CNNs (Carreira & Zisserman, 2017; Tran
et al., 2015a; Feichtenhofer et al., 2019) or temporal convolution (Tran et al., 2018; Xie et al., 2018),
as these methods can jointly capture spatial and temporal information in a unified spatiotemporal
framework. Some other methods extend 2D CNN-based backbones with temporal modules (Lin
et al., 2019; Li et al., 2020b; Meng et al., 2021; Liu et al., 2021b) to learn motion information.
However, the performance of previous action recognition systems is limited by difficulties including
small objects and large displacements (fast moving objects). One conundrum for these methods is
that the high-level feature is semantically strong but spatially coarse, as the spatial feature is crucial
to capture motion information. As the cases shown in Figure 1, strong semantic features and fine
spatial features are both the keys to distinguishing action classes.

This paper propose Dense Correlation Fields (DCF), a new temporal module for motion modeling.
The correlation operator captures the motion information by computing the alignment of visually
similar image regions between frames. Visual correlation is highly relevant to optical flow, which
is the most important clue for capturing motion patterns. The correlation operator can be used as
approximate motion information, which has shown effectiveness in action recognition in CorrNet
(Wang et al., 2020). DCF combines low-resolution, semantically strong correlation features with
high-resolution, semantically weak correlation features to recover different motion patterns. Our
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(a) Small object (the pen on the box)

(b) Moving something at a fast tempo

Figure 1: The action examples above show small object and large displacement (fast moving object)
from SSV1 valid videos. (a) This example is captioned with ‘Moving something across a surface
until it falls down’. There is another similar type of action where the object does not fall down. The
action of the pen on the box is crucial to distinguish these two classes. (b) This example shows a
fast-tempo action with large displacement across the frames.

DCF consists of two main contributions: (1) correlation aggregation over a spatial pyramidal hierar-
chy; (2) cross-frame correlation volume with both short-term and long-term temporal information.
Our DCF enables the efficient integration of spatial information and semantic information for motion
modeling throughout the network.

The design of DCF draws inspiration from many existing works but is substantially novel. First, DCF
builds up dense fields by combining features from spatial pyramidal correlation hierarchy. This is
different from the individual temporal module applied over multi-stage in prior works (Wang et al.,
2020; 2018b; Huang et al., 2021). Temporal modeling normally presents short-term motion between
adjacent frames at low-level feature and long-term temporal aggregation at high-level feature. These
methods use motion modeling as different stages to deal with different motions. In practice, this fails
in cases where the determined motion on a lower scale is too spatially coarse to be close to the correct
motion of a higher scale. Our DCF uses spatial pyramid hierarchy to hallucinate spatially coarser
but semantically stronger correlation feature by spatially finer correlation feature. The principle
advantage of featuring each level of a correlation pyramid is that it produces a multi-scale motion
feature representation in which all levels are spatially fine, including the low-resolution levels.

Second, DCF maintains a cross-frame correlation with both short-term and long-term temporal in-
formation. While CorrNet only uses the correlation between adjacent frames, we compute the cor-
relation between consecutive frames to form long-term temporal information, following the strategy
of previous methods (Wang et al., 2021; 2018b). DCF provides the network with long-term motion
information by operating on cross-frame correlation volume.

DCF can be applied to different backbone architectures as a plugin module. We construct DCF net-
works with two backbone networks, (R(2+1)D (Tran et al., 2018) and X3D(Feichtenhofer, 2020)).
In order to evaluate the proposed method in terms of modeling motion variations, we construct ex-
periments on the Something-Something dataset (Goyal et al., 2017) which has been well-known to
be challenging to classify an action due to the temporal complexity. In addition, we validate various
design choices of DCF through extensive ablation studies. Moreover, we show the performance on
Kinetics-400 dataset (Kay et al., 2017) to compare the proposed method to the many state-of-the-
arts.

2 RELATED WORK

Action Recognition. Action recognition research has been largely driven by learned features and
various learning models utilizing deep networks. Two-stream CNNs (Simonyan & Zisserman, 2014)
with one stream of static images and the other stream of optical flows are proposed to fuse the infor-
mation of appearance and motion. Temporal Segment Networks (Wang et al., 2016) sample frames
and optical flow on different time segments to extract information for activity recognition. 3D-CNNs
(Ji et al., 2012; Tran et al., 2015b) proposed 3D convolution to directly learn spatiotemporal features
from videos. Several variants decompose 3D convolution into a 2D convolution and a 1D temporal
convolution, for example P3D Qiu et al. (2017), R(2+1)D (Tran et al., 2018), S3D (Xie et al., 2018),
and CT-Net (Li et al., 2021). Recently, the great success of image Transformers has led to investi-
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gation of Transformer-based architectures for video recognition tasks (Liu et al., 2021a; Bertasius
et al., 2021; Arnab et al., 2021; Fan et al., 2021; Neimark et al., 2021) Our work is motivated by the
success in incorporating optical flow for action recognition. There is an important issue in existing
methods with optical flow for action recognition: the dependency on beforehand extraction of opti-
cal flow lowers the efficiency and effectiveness of the recognition system. Our DCF module inherits
the effectiveness of optical flow and provides the video model with precise motion information.

Motion Modeling for Action Recognition. For action recognition, the appearance of still frames
and motion information such as optical flow is the most important cues to identify the action. Many
recent works (Choutas et al., 2018; Sun et al., 2018; Jiang et al., 2018; Fan et al., 2018; Asghari-
Esfeden et al., 2020; Wu et al., 2018) design powerful temporal modules and insert them into 2D
CNNs for efficient action recognition. TRN (Zhou et al., 2018) and TSM (Lin et al., 2019) cap-
ture information along the temporal dimension with an interpretable relational module and a shift
module respectively. Some methods learn motion information by incorporating optical flow or RGB
difference for action recognition systems. TDN (Wang et al., 2021) generalizes temporal difference
operator for capturing both short-term and long-term temporal. ActionFlowNet (Ng et al., 2018)
proposes to jointly estimate optical flow and recognize actions in one network. Several works pro-
pose carefully designed modules to capture different types of temporal dependency, such as Slowfast
(Feichtenhofer et al., 2019), TPN (Yang et al., 2020a), Non-local Net (Wang et al., 2018b).

Some methods(Zhao et al., 2018; Wang et al., 2018a) introduce cost volume or multiplicative inter-
actions without the reliance on optical flow. CorrNet(Wang et al., 2020) and MSNet(Kwon et al.,
2020) also compute frame-to-frame correlation over feature maps for effective motion estimation.
(Piergiovanni & Ryoo, 2019) propose a flow layer that unrolls the iterations of the TV-L1 algo-
rithm with learned parameters. DynamoNet(Diba et al., 2019) propose dynamic motion filters by
predicting the future frames to enrich motion representation. However, these methods learn motion
representation at single level, or multiple levels of the network individually, which may encounter a
problem that local information disappears at spatially coarse levels. (Yang et al., 2020b) also present
hierarchical method to bridge different levels in a network. This hierarchical design use discrimi-
native contrastive loss to enforce the motion features at high-level to predict the ones at low-level.
However, this contrastive learning encourages features to have more similar representations, leading
to less diversity to cover motion patterns. In contrast, we combine low-level features with high-level
features via top-down and skip connections. In this way, we can preserve the diversity from the
fine local information provided in the lower layer and the high-level semantic information from the
deeper layer.

3 APPROACH

The Dense Correlation Fields are designed to model motion patterns explicitly. The proposed DCF
can be applied to different backbone architectures as a plugin module. An overview of our approach
is given in Figure 2. Given a video clip, we sample T frames as input I with the shape of I is
[T,H,W,D], where D is the number of channels and H , W are the spatial resolution. The backbone
network is applied to I and maps the input frames to feature maps at lower spatial resolution. This
process is independent of the backbone architectures, and here we present a backbone example
using ResNets(He et al., 2016). Typically, a ResNet-like backbone outputs feature pyramid at 4
resolutions for multiple stages, and note that they have spatial strides of 4, 8, 16, 32. We construct
Dense Correlation Fields by exploiting connections that associate correlation volume across multiple
stages. DCF is built upon a collection of spatial pyramid correlation features. We first detail the
specific instantiation of the correlation operator, which computes frame-to-frame visual similarity.
Afterwards, we show how our DCF aggregates motion information over the correlation features
from a spatial pyramid feature hierarchy. Finally, provide the implementation detail to instantiate
DCF with backbone networks.

3.1 BASIC CORRELATION OPERATOR

The correlation operator explicitly captures the motion information by computing visual similarity
between two frames. Given two frame features ft ∈ RH×W×D and ft+τ ∈ RH×W×D, the corre-
lation operator volume is formed by taking the dot product between feature vectors. For a feature
vector ft(i, j), we compute the similarity of this vector with vectors in ft+τ , where (i, j) is the
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Figure 2: The framework of Dense Correlation Fields with spatial pyramid feature hierarchy. A
Backbone network extracts multi-level features for a video clip. A correlation layer constructs a 4D
correlation volume with shape H ×W × T × (K ×K × 2L) for each level feature. K indicates the
spatial region and L indicates the temporal range. Correlation volumes in the low-level stages are
down-sampled to generate multi-scale volumes, which are connected to high-level stages. The vol-
umes from the current stage and the bottom-up pathway are combined to learn motion information.
A learned block aggregates the motion information from the correlation hierarchy. Our dense corre-
lation fields maintain coarse and fine resolution information, also long-term and short-term temporal
information. It helps to handle various object sizes and motion tempos in action recognition.

spatial location of the vector. We consider pixel-to-pixel similarity between two frames, ft and
ft+τ ,

C(ft, ft+τ ) ∈ RH×W×K×K ,Ci,j =
1√
D

⟨ft(i, j), ft+τ (i
′, j′)⟩ (1)

where 1√
D

is for normalization. (i′, j′) is often limited in a K ×K spacial neighborhood of (i, j)
for computational reason. A correlation volume can be seen as a set of visual similarities between
the pairs of consecutive frames t and t+ τ .

3.2 DENSE CORRELATION FIELDS

In this subsection, we describe Dense Correlation Fields, which improve the action recognition
system’s robustness to capture motion variation. We first consider an extension of correlation from
image-wise to video-wise. This aims to better capture long-term dependencies. Then we build a
spatial pyramid correlation features on top of it. Our goal is to preserve both fine spatial information
provided in the lower layer and the high-level semantic information from the deeper layer.

Long-term Correlation. To represent the motion across a sequence of T frames, we first repeat the
correlation operator in video frames by computing the correlation volume for every pair of adjacent
frames of the input sequence, obtain video-level correlation volume S = [S1, ..., ST ]. It is natural
to consider an extension to a bi-directional correlation, which can be obtained by computing an
additional set of displacements in the opposite direction. We stack the forward correlation between
frames t and t + 1 and the backward correlation between frames t and t − 1. To capture long-
range dependencies, we construct long-term correlation across 2L neighborhood frames (L forward
frames and L backward frames). We enlarge the matching region as the temporal step increases by a
dilation factor. In this long-range bi-directional case, we combine multiple displacement fields into
a single correlation volume by concatnation,

St = {C(ft, ft−L), ...,C(ft, ft−1),C(ft, ft+1), ...,C(ft, ft+L)} (2)
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Figure 3: Dense Correlation Fields detail. (a). The correlation is formed by taking the inner
product of feature vectors between patches from different frames. (b). In order to explore the long-
term temporal dependency, we construct correlation volume between bidirectional and consecutive
frames. (c). The feature of the current stage first undergoes a 1×1×1 layer to reduce channel
dimensions and then compute a correlation volume. The correlation volume of current stage is
combined with correlation volumes from the top-down pathway. These correlation volumes are
attached by another 1×1×1 Conv (we omit BN and ReLU for clarity) to produce the correlation
feature. The video feature is merged by addition with the correlation feature. The current correlation
volume is downsampled spatially and connected to the deeper stage for a pyramid correlation.

Thus, the correlation volume S for T frames has dimensions T × H × W × (K × K × 2L) (last
dimension can be seen as correlation volume channels).

Spatial Correlation Hierarchy Aggregation. We employ the correlation block for multiple stages
and obtain the correlation volumes as Si at several spatial scales with a scaling step of 2i. We further
construct a spatial correlation pyramid by collecting correlation volume hierarchy. For example, we
have P4 for the correlation pyramid in the stage 4,

P4 = {S4,Pool(S3),Pool2(S2)} (3)

where Poolk() denote pooling at the spatial dimensions with kernal 2k. The pooled correlation
volume Poolk(S) has dimensions T ×H/2k ×W/2k × (K ×K × 2L).

We use a top-down pathway to combine correlation volume from lower resolution with spatially
stronger correlation volume from higher resolution. We wrap our DCF into a residual connection
block that can be incorporated into many existing architectures. The residual connection allows us to
insert our DCF block into any pre-trained model, without breaking its initial behavior. Figure 3.(c)
shows the building block that constructs our DCF. The video feature first undergoes a 1×1×1 layer
to reduce channel dimensions and then is attached a correlation layer. The correlation volume is then
merged with the top-down correlation volumes by concatenation in the channel dimension. Finally,
we append another 1×1×1 layer (we omit BN and ReLU for clarity) on the stacked correlation
volumes to generate the final feature map, which is merged with the input video feature by element-
wise addition. To generate a spatial correlation hierarchy, we simply downsample (using average
pooling) the spatial resolution of the current correlation volume for deeper stage. The top-down
pathway starts at early stage without correlation volume input. This process is iterated until the final
dense correlation fields are generated.

3.3 DCF NETWORKS

Our DCF presents a new motion modeling mechanism to learn action explicitly in action recognition
tasks. DCF is designed as a plug-in substitution for video models. We describe our baseline network
architecture for this task, and then wrap them into our proposed DCF networks. In practice, the DCF
only adds a small overhead to the computational cost of the backbone network.

We first use the R(2+1)D (Tran et al., 2018) with ResNet (He et al., 2016) pretrained on ImageNet
(Deng et al., 2009) as our backbone model to instantiate our DCF networks. Following the practice in
previous temporal module methods (Wang et al., 2021; Yang et al., 2020a; Wang et al., 2020), we use
the output features of stage2, stage3, stage4 to build DCF, where they are spatially downsampled
by respectively 4, 8 and 16 times, compared to the input frames. We omit stage5 as its spatial
resolution is too low. Compared with the original R(2+1)D, we make a few changes to further
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simplify and improve its efficiency, e.g., using depthwise temporal 1D-Conv, removing temporal
downsampling. Alternatively, we also construct DCF with 3D CNNs based on the recent X3D
model(Feichtenhofer, 2020). For the X3D backbone, we build DCF on the collection of feature
maps from the stages with the same resolutions as in R(2+1)D model. For the structure detail of the
R(2+1)D ResNet and X3D, please refer to Appendix.

The computation of a DCF block is lightweight when it is used in sub-sampled feature maps rather
than high-resolution image. We set the channels of the first 1×1×1 layer to be half of the input
channels in X3D and a quarter in R(2+1)D. Then, we perform the correlation operation with spatial
region size K = 5 and temporal range L = 2 (L = 1 for the last stage). After that, another 1×1×1
layer is used to restore the original channels. We add BatchNorm (BN) (Ioffe & Szegedy, 2015) and
ReLU (Nair & Hinton, 2010) layer after the second 1×1×1 layers.

4 EXPERIMENTS ON ACTION RECOGNITION

In this section, we present the experiment results of our DCF on three large-scale public datasets.
To understand the behavior of DCF, we first perform comprehensive studies on the challenging
temporal-related dataset Something-Something V1 (Goyal et al., 2017). Ablation studies present
consistent improvements, which show the effectiveness and generality of our DCF. We also report
results on the Something-Something V2 (Goyal et al., 2017) and Kinetics dataset (Kay et al., 2017)
to show the generality of our method.

4.1 DATASET AND IMPLEMENTATION DETAILS

Datasets. Something-Something (Goyal et al., 2017) is a large-scale dataset created by crowdsourc-
ing. The videos are collected by performing the same action with different objects so that action
recognition is expected to focus on the motion property instead of appearance. The first version
consists of 86k training videos and 11k validation videos belonging to 174 action categories, whose
durations vary from 2 to 6 seconds. The second release (V2) of Something-Something increases the
number of videos to 220k. Kinetics-400 (Kay et al., 2017) is among the most popular datasets for
video classification. It contains around 240k training YouTube videos and 19k validation videos that
last for 10 seconds. It includes 400 action categories in total. The Kinetics dataset contains activities
in daily life and some categories are highly correlated with interacting objects or scene context.

Training and evaluation. In R(2+1)D backbone experiments, we use ResNet50 and ResNet101
initialized using ImageNet (Deng et al., 2009) pre-trained weights (He et al., 2016) to implement
our DCF networks. We train the R(2+1)D model for 60 epochs on Something-Something dataset
and 100 epochs for Kinetis-400 dataset. As for X3D backbone experiments, we use X3D-S and
X3D-M to train our DCF networks from scratch. We train the X3D model for 128 epochs on
Something-Something dataset and 256 epochs for Kinetis-400 dataset. Following common practice
(Feichtenhofer et al., 2019; Wang et al., 2021), during training, each video frame is resized to have
shorter side in [256, 320] and a crop of 224 × 224 is randomly cropped. Temporally, we perform
interval based sampling for Kinetics-400, with interval of 8 for 8 frames, interval of 6 for 13 frames
and interval of 5 for 16 frames. On Something-Something dataset, we perform segment based
sampling with segments of 8 or 16. We implement two kinds of testing scheme. When we consider
the efficiency, 1-clip per video and the center crop of 224 × 224 is used for evaluation on SSV1
and SSV2 dataset. When pursuing high accuracy, we followed the common setting in (Wang et al.,
2018b) to sample multiple clips per video and use three spatial crops of 256× 256 on Kinetics-400
dataset. We include further training details in the appendix.

4.2 ABALATION STUDY

This section provides comprehensive ablation studies to verify the effectiveness of the proposed DCF
in terms of motion modeling. Something Something V1 dataset is used as it is widely acknowledged
to focus on motion modeling. For these evaluations, we use the testing scheme of 1 clip and center
crop, and report the Top1 accuracy. We first explore the effect of different components and the
locations for DCF, using X3D-S as backbone network. Then we investigate the generality of DCF
on different backbones.
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Basic
Corr

Long
Term

Spatial
Pyramid Top1 ∆

44.6
✓ 46.1 +1.5
✓ ✓ 46.6 +2.0
✓ ✓ 47.3 +2.7
✓ ✓ ✓ 47.6 +3.0

Table 1: Contributions of the proposed compo-
nents in DCF, including basic correlation oper-
ator, long-term temporal correlation and spatial
pyramid aggregation.

Stage FLOPs Top11 2 3 4
2.0G 44.6

✓ ✓ 2.4G 46.5
✓ ✓ 2.1G 46.8

✓ ✓ ✓ 2.5G 47.2
✓ ✓ ✓ 2.2G 47.6

Table 2: Different stage groups employ DCF.
The results imply that employing blocks at
stages 2-4 obtains the best recognition accuracy
and the computational cost is also reasonable.

Backbone DCF Frames Params FLOPs Top1 ∆

X3D-S ✗ 13 3.3M 2.0G 44.6 -
✓ 13 3.4M 2.2G 47.6 +3.0

X3D-M ✗ 16 3.3M 4.7G 47.3 -
✓ 16 3.4M 5.2G 49.5 +2.2

R(2+1D) R50 ✗ 8 23.9M 32.7G 46.8 -
✓ 8 24.6M 35.9G 50.5 +3.7

Table 3: Different backbones employing DCF.

Different components of DCF. We study the effect of the individual component of DCF and the
results are shown in Table 1. In particular, we measure the effect of: using basic correlation op-
erator; long-term temporal correlation; spatial pyramid aggregation. We add one correlation block
to stages of stage2, stage3, stage4 respectively. First of all, we can conclude that the correlation
operator is beneficial for action recognition, as it provides the network with explicit motion informa-
tion. Second, we find that long-term temporal correlation is also helpful, as it enhances the original
representation with long-term motion information. Finally, we note that spatial pyramid correlation
significantly boosts the performance by ∼1%, which confirms the importance of associating low-
level correlation across resolutions and semantic levels for motion modeling. It hallucinates lower
resolution features by downsampling spatially finer, but semantically weaker, correlation feature
maps from higher resolution features. In the rest of this paper, we use the full version of DCF by
default.

Different stages employing DCF. We perform the ablation study on which stage to use the corre-
lation block. The results are shown in Table 2. First, we see that adding more correlation blocks
into the backbone network will lead to better results. More blocks increase the computational cost
slightly. The setting of using blocks in stages 2-4 obtains the best recognition accuracy and the com-
putational cost is also reasonable. Noting that DCF on stage3 contributes more to the performance,
as this stage provides feature maps of high-level semantics as well as more accurately localized in-
formation. In the rest of this paper, we use three blocks (1 to stage2, 1 to stage3, 1 to stage4) to
build DCF by default.

DCF with different backbones. We compare the proposed DCF with other backbone architectures
in Table 3. DCF improves the recognition performance with small computation overhead on dif-
ferent backbones, including X3D (Feichtenhofer, 2020) and R(2+1)D (Tran et al., 2018) by 3.0%
(2.2% for X3D-M) and 3.7% respectively on SSV1. It is noteworthy that the improvement of DCF
is not just because they add depth to the baseline model. To see this, we note that in Table 3 the
DCF with X3D-S model has 47.6% accuracy, higher than the deeper X3D-M baseline’s 47.3%. This
comparison shows that the improvement due to DCF is complementary to going deeper in standard
ways.

4.3 COMPARISON WITH THE STATE OF THE ART

After the ablation study of DCF on Something-Somthing V1 dataset, we directly transfer its optimal
setting to the datasets of Something-Something V2 and Kinetics-400. Compared to Kinetics-400,
Something-Something V1&V2 require more temporal modeling ability than spatial appearance. In
this subsection, we compare our DCF with other state-of-the-art methods on these benchmarks. As
expected, sampling more frames can further improve the accuracy, but also increase the FLOPs.
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Method Backbone Pretrain Frames GFLOPs Sth-Sth V1
Top1 Top5

TSN BNInception ImageNet 8 16 19.5 -
TRN-Multiscale BNInception ImageNet 8 33 34.4 -

R(2+1)D* ResNet50 ImageNet 8 33 46.8 74.7
TSM ResNet50 ImageNet 8+16 98 49.7 78.5

TANet ResNet50 ImageNet 8+16 99 50.6 79.3
SmallBigNet ResNet50 ImageNet 8+16 157 50.4 80.5

CorrNet ResNet101 - 32 224x30 51.7 -
Yang et al. ResNet101 - 32 150x30 52.8 -

TDN ResNet101 ImageNet 16+64 132 55.3 83.3
X3D* X3D-S - 13 2.0 44.6 74.4
X3D* X3D-M - 16 4.7 47.3 76.6

DCF (Ours) X3D-S - 13 2.2 47.6 76.3
DCF (Ours) X3D-M - 16 5.1 49.5 78.5
DCF (Ours) ResNet50 ImageNet 8 35.9 50.5 79.4
DCF (Ours) ResNet50 ImageNet 16 71.9 54.1 82.0
DCF (Ours) ResNet101 ImageNet 16 131.3 55.8 84.3

Method Backbone Pretrain Frames GFLOPs Sth-Sth V2
Top1 Top5

TSM ResNet50 ImageNet 16 86×6 63.4 88.8
SmallBigNet ResNet50 ImageNet 8+16 157 63.3 88.8

TANet ResNet50 ImageNet 16 86×6 64.6 89.5
TAda2D ResNet50 ImageNet 16 86×6 65.6 89.2

TDN ResNet101 ImageNet 16+64 132 66.9 90.9
TimeSformer-HR ViT-B ImageNet 16 1703×3 62.2 -

MViT ViT-B Kinetics400 16 70.5×3 64.7 89.2
X3D* X3D-M - 16 4.7 59.3 86.1

DCF (Ours) X3D-M - 16 5.1 63.4 88.7
DCF (Ours) ResNet50 ImageNet 16 71.9 65.5 90.1
DCF (Ours) ResNet101 ImageNet 16 131.3 67.5 91.1

Table 4: Comparison with the state-of-the-art methods over action recognition on Something-
Something V1 and V2 validation set. The results of R(2+1)D ResNet and X3D baselines are trained
with the same training protocols for a fair comparison, which are marked with *.

Method Backbone Pretrain Frame GFLOPs Top1 Top5
TSN InceptionV3 ImageNet 25 3.2×250 72.5 90.2
TSM ResNet50 ImageNet 16 86×30 74.7 91.4

CorrNet ResNet50 - 32 115×10 77.2 -
TDN ResNet50 ImageNet 16+64 94×30 77.5 93.2

TAda2D ResNet50 ImageNet 16 86×30 77.4 93.1
X3D X3D-M - 16 6.2×30 76.0 92.3

SlowFast ResNet50 - 8+32 65.7×30 77.0 92.6
MViT ViT-B - 16 70.5×5 78.4 93.5

DCF (Ours) X3D-M - 16 6.8×30 77.2 92.7
DCF (Ours) ResNet50 ImageNet 16 93.9×30 77.4 93.1

Table 5: Comparison with the state-of-the-art methods over action recognition on Kinetics-400 val-
idation set. We instantiate our DCF with the backbones of R(2+1)D ResNet and X3D for evaluation.

For fair comparison with previous methods, we use 1 clip and center crop testing scheme on the
Something-Something dataset and 10 clips and 3 crops for testing on the Kinetics- 400 dataset.

Results on Something-Something. We first validate the efficiency and effectiveness of the pro-
posed DCF on Something-Something V1&V2. Table 4 shows the results and computation bud-
gets (i.e., number of GFLOPs) of other methods: temporal modeling based on 2D CNN methods (
TSM(Lin et al., 2019), TANet(Luo & Yuille, 2019), CorrNet(Wang et al., 2020), (Yang et al., 2020b),
TDN(Wang et al., 2021), TAda2D(Huang et al., 2021)), 3D CNN architectures ( I3D(Carreira &
Zisserman, 2017), SmallBigNet(Li et al., 2020a) and X3D(Feichtenhofer, 2020)) and Transformer
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Stage2

Stage3

Stage4

Corr direction

Figure 4: An example of the correlation pyramid on the SSV1 dataset. We provide a color wheel
for correlation direction tendency on the right. The tendency of the correlation feature is consistent
with the correct motion pattern. Note that the correlation from the early stage preserves fine details.
Best viewed in color.

methods ( TimeSformer-HR(Bertasius et al., 2021) and MViT(Fan et al., 2021)). Under the same
input frames and the same backbone of ResNet50, DCF consistently outperforms other methods
with a comparable computation budget on both Something V1&V2. When compared to 2D CNN
with temporal modules for all stages, our DCF consistently outperforms them on both datasets,
demonstrating the effectiveness of DCF in motion modeling for action recognition. When com-
pared to more recent 3D CNNs and Transformer methods, our DCF can still obtain slightly better
performance than those methods. CorrNet (Wang et al., 2020) shares a similar with ours, namely
the construction of correlation operator to establish frame-to- frame matches over convolutional fea-
ture maps to capture motion information. In particular, our DCF achieves better performance than
CorreNet even with fewer input frames on SSV1. This result demonstrates that the proposed dense
correlation fields make it better to model coarse-to-fine motion information.

Results on Kinetics-400. We also compare DCF to other state-of-the-art methods on Kinetics-400.
DCF with R(2+1)D achieves 77.4% Top-1 accuracy, and it shows better performance than the state-
of-the-art temporal modeling methods. DCF with X3D also surpasses 3D CNNs methods, including
Slowfast(Feichtenhofer et al., 2019) and X3D(Feichtenhofer, 2020). Our best result is on par with
the previous best performance on the Kinetics dataset.

4.4 VISUALIZATION OF CORRELATION FEATURE

In this section, we visualize the correlation fields to better understand our method. Visualization
results are shown in Figure 5. A color wheel on the right indicates the correlation direction tendency.
Note that the correlation is incomplete at image boundary because of the image padding before the
correlation operator. The correlation exhibits reliable motion patterns for the correct actions. For
example, the key moves right (correlation color is red-purple), while the ruler moves left (correlation
color is green-blue). The correlation pyramid shows that lower stage can preserve considerably
more details and more localization information as it is downsampled fewer times. It motivates us to
combine low-resolution, semantically strong correlations with high-resolution, semantically weak
correlations.

5 CONCLUSION

This work proposes Dense Correlation Fields (DCF) for explicitly model motion information, which
computes frame-to-frame similarity and builds up temporal-spatial correlation fields with coarse-to-
fine strategy. DCF is unique in that it operates on a spatial correlation hierarchy that associates
motion feature across resolutions and semantic levels. DCF is complementary to increasing the
model capacity for motion modeling as a stand-alone and plug-in module. Our method outperforms
the state-of-the-art temporal modeling 2D CNNs methods as well as 3D CNN methods in terms of
motion modeling. We hope this work can facilitate further research in motion modeling.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
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APPENDIX

A MODEL STRUCTURE

Stage R(2+1)D-50 Output size
data T×224×224

stage1 1×7×7, 64, stride 1,2,2
pool, 1×3×3, stride 1,2,2 T×56×56

stage2

 1× 1× 1, 64
3× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256

× 3 T×56×56

stage3

1× 1× 1, 128
3× 1× 1, 128
1× 3× 3, 128
1× 1× 1, 512

× 4 T×28×28

stage4

 1× 1× 1, 256
3× 1× 1, 256
1× 3× 3, 256
1× 1× 1, 1024

× 6 T×14×14

stage5

 1× 1× 1, 512
3× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 2048

× 3 T×7×7

global average pool, fc # classes

Table 6: The R(2+1)D ResNet-50 backbone for building DCF networks.

Stage X3D-S Output size
data T×160×160

stage1 1×3×3, 3×1×1, 24, stride 1,2,2 T×80×80

stage2

[
1× 1× 1, 54
3× 3× 3, 54
1× 1× 1, 24

]
× 3 T×40×40

stage3

[
1× 1× 1, 108
3× 3× 3, 108
1× 1× 1, 48

]
× 5 T×20×20

stage4

[
1× 1× 1, 216
3× 3× 3, 216
1× 1× 1, 96

]
× 11 T×10×10

stage5

[
1× 1× 1, 432
3× 3× 3, 432
1× 1× 1, 192

]
× 7 T×5×5

global average pool, fc # classes

Table 7: The X3D-S backbone for building DCF networks.

Here we introduce the implementation of DCF for action recognition. We use the R(2+1)D(Tran
et al., 2018) as 2D backbone network, and X3D(Feichtenhofer, 2020) as the 3D backbone network.
Compared with the original R(2+1)D, we make a few changes to further simplify and improve its
efficiency, e.g., using depthwise temporal 1D-Conv, removing temporal downsampling. We provide
the structure of R(2+1)D ResNet-50 in Table6 and X3D in Table7 for the reference. The dimen-
sions of 3D output maps and filter kernels are in T×H×W, with the number of channels following.
Residual blocks are shown in brackets. We use the output features of stage2, stage3, stage4 to
build DCF, where they are spatially downsampled by respectively 4, 8 and 16 times, compared to
the input frames. We omit stage5 as its spatial resolution is too low.
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Algorithm 1 The DCF block
Parameters: Pyramid output level l, temporal range τ , patch size p.
Input: Video feature F , correlation volumes from the top-down pathway Cin.

1: x = Conv1(F );
2: C = corr op(x, τ , p);
3: if Cin is not None then
4: corr pyramid = concat(C, Cin);
5: else
6: corr pyramid = C;
7: end if
8: C ′ = BN2(Conv2(corr pyramid));
9: F ′ = F + C ′;

10: F ′ = ReLU(F ′);
11: Cout = List();
12: for i = 1 to l do
13: C = Avg pool(C, kernel=2, stride=2); % in spatial dimensions;
14: Cout.append(C);
15: end for
16: Return F ′, Cout

Output: Video feature F ′ enhanced by DCF, pyramid correlation volumes Cout.

B DCF BLOCK INSTANTIATION DETAILS

We wrap the DCF into a plugin module that can be incorporated into many existing architectures.
DCF is based on several correlation blocks. The design of correlation block is similar to Residual
block (He et al., 2016). The current feature first undergoes a 1×1×1 layer to reduce channel di-
mensions. And then we compute a correlation volume C across frames. The correlation volume of
current stage C is combined with correlation volumes Cin from the top-down pathway by concate-
nation. These correlation volumes are attached by a 1×1×1 layer, a BN layer and a ReLU layer
to produce the correlation feature C ′. The video feature is merged by addition with the correlation
feature. The current correlation volume is downsampled spatially and connected to the deeper stage
for a pyramid correlation. The details is presented in Algorithm 1.

C COMPITATIONAL ANALYSIS

The correlation operator is intentionally designed to capture matching information between consec-
utive frames. The correlation operator uses dot-product as visual similarity and does not include
learnable parameters. Consider the input feature with the shape of T × H × W × Cin, where Cin

denotes the number of input channels. The computation is:

FLOPs(Corr) = T ×H ×W × Cin × (K2 × 2L) (4)

where K indicates the spatial region and L indicates the temporal range. In contrast to the 3D
convolutions for spatiotemporal modelling, the computation is:

FLOPs(3D Conv) = T ×H ×W × Cin × Cout × (Kt ×Kx ×Ky) (5)

where Kt,Kx,Ky indicate the filter sizes for temporal, height and width respectively. For the
FLOPs, the computation of the correlation operator is at least an order of magnitude smaller than
the standard 3D convolution term. A correlation layer constructs a 4D correlation volume with shape
T ×H ×W × (K2 × 2L) for each level feature.

D IMPLEMENTATION DETAILS

Here, we further describe the implementation details for action recognition. For a fair comparison,
we keep all the training strategies the same for our baseline.
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Our experiments on action recognition are conducted on three large-scale datasets. In the training
scheme, we train with synchronized SGD using 16 GPUs for all action recognition models. Fol-
lowing common practice (Feichtenhofer et al., 2019; Wang et al., 2021), during training, each video
frame is resized to have shorter side in [256, 320] and a crop of 224 × 224 is randomly cropped.
For all models, we use a dropout ratio (Hinton et al., 2012) of 0.5 before the classification heads.
Temporally, we perform interval based sampling for Kinetics-400, with interval of 8 for 8 frames,
interval of 6 for 13 frames and interval of 5 for 16 frames. On Something-Something dataset, we
perform segment based sampling with segments of 8 or 16. We implement two kinds of testing
scheme. When we consider the efficiency, 1-clip per video and the center crop of 224 × 224 is used
for evaluation on SSV1 and SSV2 dataset. When pursuing high accuracy, we followed the com-
mon setting in (Wang et al., 2018b) to sample multiple clips per video and use three spatial crops
of 256 × 256 on Kinetics-400 dataset. Note that X3D-S has a different resolution for training and
testing.

In R(2+1)D backbone experiments, we use ResNet50 and ResNet101 initialized using ImageNet
(Deng et al., 2009) pre-trained weights (He et al., 2016) to implement our DCF networks. We train
the R(2+1)D model for 60 epochs on Something-Something dataset and 100 epochs on Kinetis-400
dataset. The batch size is 64 and the initial learning rate is 0.01 for Something-Something dataset.
The batch size is 128 and the initial learning rate is 0.02 for Kinetis-400 dataset. We use half-period
cosine schedule for decaying the learning rate. The weight decay is set to 5e-4 for Something-
Something dataset and 1e-4 for Kinetis-400 dataset.

As for X3D backbone experiments, we use X3D-S and X3D-M to train our DCF networks from
scratch. We train the X3D model for 128 epochs on Something-Something dataset and 256 epochs
on Kinetis-400 dataset. The batch size is 128 and the initial learning rate is 0.4 for Something-
Something dataset. The batch size is 256 and the initial learning rate is 0.4 for Kinetis-400 dataset.
We use half-period cosine schedule for decaying the learning rate. The weight decay is set to 5e-5
for all datasets. For X3D-S models, we use a special resolution of 160×160 for training and testing.
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E MORE VISUALIZATION EXAMPLES
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Figure 5: Examples of correlation pyramid on the SSV1 dataset. Best viewed in color.
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