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ABSTRACT

Reinforcement learning in discrete combinatorial action spaces requires searching
over exponentially many joint actions to simultaneously select multiple sub-actions
that form coherent combinations. Existing approaches either simplify policy learn-
ing by assuming independence across sub-actions, which often yields incoherent or
invalid actions, or attempt to learn action structure and control jointly, which is slow
and unstable. We introduce Structured Policy Initialization (SPIN), a two-stage
framework that first pre-trains an Action Structure Model (ASM) to capture the
manifold of valid actions, then freezes this representation and trains lightweight
policy heads for control. On challenging discrete DM Control benchmarks, SPIN
improves average return by up to 39% over the state of the art while reducing time
to convergence by up to 12.8×1.

1 INTRODUCTION

Many real-world problems require decision-making in high-dimensional discrete action spaces,
including applications in healthcare (Liu et al., 2020), robotic assembly (Driess et al., 2020), rec-
ommender systems (Zhao et al., 2018), and ride-sharing (Lin et al., 2018). In such domains, online
exploration can be costly or unsafe, making offline reinforcement learning (RL) (Lange et al., 2012;
Levine et al., 2020) an appealing framework. Standard offline RL methods (Fujimoto et al., 2019;
Agarwal et al., 2020; Fu et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021), however, are
not designed for large discrete action spaces, as they require either maximizing a Q-function or
parameterizing a policy over the full discrete action set — operations that become intractable as the
space scales exponentially with

∏A
d=1md, where A is the number of sub-action dimensions and md

is the number of choices per dimension.
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Figure 1: In the humanoid-stand task, learning
from the medium-expert dataset, SPIN reaches the
target performance (dashed horizontal line) quickly af-
ter pre-training (dashed vertical line), while baselines
require over 200 minutes of wall-clock training.

Learning in these complex settings requires solv-
ing two related problems: (i) searching over an
exponential number of joint actions, and (ii) en-
suring that the chosen sub-actions form coherent
combinations. Methods designed for these com-
binatorial spaces have traditionally simplified
policy learning by imposing strong structural
priors such as assuming conditional indepen-
dence between sub-actions (Tang et al., 2022;
Beeson et al., 2024). However, this sacrifices
representational capacity, precluding the model
from capturing the interactions required for ef-
fective control. Other approaches attempt to
learn the action representation and optimize a
policy simultaneously (Zhang et al., 2018; Lan-
ders et al., 2024; 2025), but this conflation of
objectives often makes learning slow and unsta-
ble.

1Code is available at https://anonymous.4open.science/r/SPIN-60C4/README.md
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We introduce Structured Policy INitialization (SPIN), a two-stage framework that decouples repre-
sentation learning from control. In the first stage, an Action Structure Model (ASM) is trained with
self-supervision to learn a representation function that, conditioned on the state s, induces a feature
space over sub-actions in which structurally coherent joint actions concentrate on a low-dimensional
manifold. This action space representation is then frozen during the second stage, where the control
problem reduces to learning lightweight policy heads over the action manifold for the downstream RL
task. By learning structure first and policy second, SPIN allows the agent to exploit the underlying
action geometry instead of searching the raw combinatorial space. This leads to faster training and
improved policy performance (Figure 1). Across diverse benchmarks varying in dataset size and
quality, action dimensionality, and action cardinality, SPIN improves average return by up to 39%
over the state of the art and reduces training time to state-of-the-art performance by up to 12.8×.

Our contributions are as follows:

• We reframe offline RL in discrete structured action spaces as a representation problem,
separating learning action structure from control.

• We propose SPIN, a two-stage framework that pre-trains and freezes an action-space repre-
sentation to accelerate and improve policy learning.

• We show that SPIN achieves state-of-the-art performance on challenging benchmarks,
outperforming existing methods while being significantly faster.

• We analyze the learned representations to demonstrate that capturing action structure is
critical for effective policy learning in discrete combinatorial action spaces.

2 RELATED WORK

RL in Large Discrete Action Spaces. Several RL methods have been developed for combinatorial
action spaces in domains such as routing Nazari et al. (2018); Delarue et al. (2020) and resource
allocation Chen et al. (2024), but these approaches typically rely on task-specific knowledge. General-
purpose methods have also been introduced (Dulac-Arnold et al., 2015; Tavakoli et al., 2018; Farquhar
et al., 2020; Van de Wiele et al., 2020; Zhao et al., 2023), but they are typically designed for online
learning and are not easily adapted to the constraints of offline datasets. In offline RL, methods often
factorize the policy or Q-function (Tang et al., 2022; Beeson et al., 2024). This factorization, however,
enforces conditional independence across sub-actions, which restricts representational capacity and
fails when sub-actions are strongly dependent. Other methods capture dependencies explicitly —
BraVE (Landers et al., 2024) models cross-dimensional interactions but scales poorly with action size,
while autoregressive policies (Zhang et al., 2018) impose a fixed ordering that breaks permutation
invariance. More recently, SAINT (Landers et al., 2025) introduced a Transformer-based policy to
capture sub-action dependencies through self-attention, but learns action structure and control jointly,
leading to slow and unstable training.

Self-Supervised Pre-Training in RL. Self-supervised pre-training in RL has taken several forms
including as auxiliary objectives for representation shaping (Jaderberg et al., 2016; Shelhamer et al.,
2016), contrastive and predictive encoders (Laskin et al., 2020; Schwarzer et al., 2021; Stooke
et al., 2021; Liu & Abbeel, 2021b;a), and world-modeling (Ha & Schmidhuber, 2018). Other
work explores masked decision or trajectory modeling (Cai et al., 2023; Liu et al., 2022; Wu et al.,
2023; Sun et al., 2023). Large-scale behavioral pre-training has produced generalist policies and
vision–language–action models (Brohan et al., 2022; Zitkovich et al., 2023; O’Neill et al., 2024; Kim
et al., 2024; Team et al., 2024; Tirinzoni et al., 2025), with methods for rapid post-pre-train adaptation
(Sikchi et al., 2025). These approaches are largely state/trajectory-centric and often presume online
interaction or multi-task fine-tuning. SPIN, by contrast, pre-trains an Action Structure Model that
captures action composition, providing a structured initialization for policy learning in combinatorial
action spaces without any online interaction.

3 PRELIMINARIES

An RL problem is formalized as a Markov Decision Process (MDP) M = ⟨S,A, p, r, γ, µ⟩, where S
is the state space, A the action space, p(s′ | s, a) the transition dynamics, r(s, a) the reward function,
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γ ∈ [0, 1] the discount factor, and µ the initial state distribution. A policy π : S → P(A) maps states
to distributions over actions. The optimal policy maximizes the expected discounted return:

π∗ = argmax
π

Eπ

[
∞∑
t=0

γtr(st, at) | s0 ∼ µ, at ∼ π(· | st), st+1 ∼ p(· | st, at)

]
.

Combinatorial action space. The standard MDP formulation does not define structure in A. In
this work, we assume actions are compositional A = A1 × · · · × AN , with each component Ad

a discrete set of size md. An action a = (a1, . . . , aN ) therefore lies in a space of exponential size
|A| =

∏N
d=1md, making naive maximization and policy parameterization infeasible.

Offline reinforcement learning. Offline reinforcement learning assumes access to a fixed dataset
B = {(st, at, rt, st+1)}Zi=1 generated by a behavior policy πβ . The learning agent has no addi-
tional access to the environment and must train entirely from this static dataset. In offline RL, the
maximization in standard temporal difference learning:

L(θ) = E(s,a,r,s′)∼B

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2]
,

induces overestimation errors, since actions a′ outside the support of B yield extrapolated val-
ues Q(s′, a′; θ−) without evidence. If such estimates are selected by the max operator, they are
propagated through Bellman updates. Unlike online RL, offline RL cannot correct these errors by
interacting with the environment. Reliable offline learning therefore requires constraining policies to
the support of B.

4 STRUCTURED POLICY INITIALIZATION (SPIN)

Structured Policy INitialization (SPIN) is a two-stage framework for offline RL in structured action
spaces that explicitly decouples representation learning from control. In the first stage, an Action
Structure Model (ASM) is trained with self-supervision to learn a representation function that,
conditioned on the state s, induces a feature space over sub-actions in which structurally coherent
joint actions concentrate on a low-dimensional manifold. In the second stage, this representation is
frozen, and policy learning is reduced to training lightweight heads on the induced action manifold
for the downstream RL task.

4.1 ACTION STRUCTURE MODELING (ASM)

SPIN’s first stage trains an Action Structure Model (ASM) that captures the structure of plausible
actions, conditioned on the environment state. Let fASM(s, a;ψ) denote a Transformer encoder with
parameters ψ. The encoder operates on an input sequence X ∈ R(M+N)×d that concatenates M
learned state embeddings (xs1 , . . . ,xsM ) with N sub-action embeddings (xa1

, . . . ,xaN
):

X = (xs1 , . . . ,xsM ,xa1 , . . . ,xaN ) ∈ R(M+N)×d.

We omit positional encodings across sub-actions to preserve permutation-equivariance over
a1, . . . , aN (Lee et al., 2019; Landers et al., 2025).

The ASM is trained with a masked conditional modeling objective, analogous to masked language
modeling in BERT (Devlin et al., 2019). This objective enables the ASM to capture the manifold of
valid actions directly from data, without requiring reward supervision. For each (s, a), we sample a
subset M ⊆ {1, . . . , N} of sub-action indices to perturb. For every i ∈ M, ai is (i) replaced by a
mask token, (ii) replaced by an element drawn uniformly at random from the full sub-action space
Ai, or (iii) left unchanged, following an 80/10/10 ratio. The perturbed tuple amask is then encoded by
fASM, producing per-slot embeddings hai at each slot i. Finally, each hai is mapped by a slot-specific
head fi : Rd → R|Ai| to logits over Ai, and cross-entropy loss is computed only on the masked
sub-actions:

LASM = E(s,a)∼D

[
EM

∑
i∈M

ℓ
(
fi(hai), ai

)]
.

The ASM pre-training procedure is summarized in Algorithm 1.

3
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Algorithm 1 ASM Pre-Training

Initialize parameters ψ, heads {fi}Ni=1

for t = 1 . . . TASM do
Sample (s, a)∼D with a = (a1, . . . , aN )
Sample mask setM⊆ {1, . . . , N}; form amask by masking/replacing ai for i ∈M
Compute attention over sub-actions: H ← fASM(s, a

mask;ψ)
LASM =

∑
i∈M CrossEntropy

(
fi(Hi), ai

)
Update ψ, {fi} to minimize LASM

end for
return ψ

4.2 POLICY LEARNING WITH A FROZEN REPRESENTATION

In the second stage, SPIN performs policy learning on the frozen representation provided by the
ASM. The policy network πθ updates only lightweight components such as the query vectors and
output heads, while the ASM remains fixed. This separation preserves the learned action structure
and keeps policy optimization tractable.

Policy Architecture and Training SPIN implements the policy πθ using the SAINT architecture
(Landers et al., 2025), which models dependencies among sub-actions while preserving tractability.
Specifically, M state embeddings and N learnable action queries are passed through the frozen,
permutation-equivariant Transformer from the ASM stage, producing contextualized embeddings
z1, . . . , zN . Each embedding zi encodes the state, the corresponding action query, and its relations to
other sub-actions through shared attention. These embeddings are then passed to sub-action-specific
MLP heads fi, which output logits ℓi over the corresponding sub-actions. The logits parameterize
categorical distributions πθ(· | s, zi) = softmax(ℓi), from which ai is sampled. The joint policy
factorizes over these contextualized distributions:

πθ(a | s) =
N∏
i=1

πθ(ai | s, zi) .

As in prior factored approaches (Tang et al., 2022; Beeson et al., 2024), this factorization preserves
tractability — rather than optimizing over an exponentially large joint action space, the policy
produces N categorical distributions. Unlike purely factored methods that assume conditional
independence across sub-actions, SPIN retains cross-dimensional dependencies through shared self-
attention, learned during ASM pre-training, to produce contextualized embeddings zi. The full policy
learning procedure is summarized in Algorithm 2.

Compatibility with Offline RL Methods. This design makes SPIN broadly compatible with
actor–critic algorithms for which the actor update is expressed as weighted log-likelihood maxi-
mization over dataset actions:

max
θ

E(s,a)∼D [wΦ(s, a) log πθ(a | s)] ,

where wΦ(s, a) ≥ 0 encodes algorithm-specific weights (e.g., advantages or value estimates). This
class includes methods such as IQL (Kostrikov et al., 2021) and AWAC (Nair et al., 2020). SPIN also
supports selection-based updates, as in BCQ (Fujimoto et al., 2019), where the actor is trained on
dataset-supported candidate actions.

Objectives requiring global operations over the joint action space are intractable unless QΦ or πθ
are factorized across action dimensions, which enforces conditional independence and discards
cross-dimensional structure. This conflicts with SPIN’s objective of modeling action coherence, so
value-regularization methods such as CQL (Kumar et al., 2020) fall outside this compatibility class,
mirroring the boundary defined by SAINT.

5 EXPERIMENTAL EVALUATION

We evaluate SPIN on a discretized variant of the DeepMind Control Suite (Tassa et al., 2018),
introduced by Beeson et al. (2024). The combinatorial action spaces grow exponentially with the
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Algorithm 2 Policy Learning with Frozen Representation

Initialize policy params θ (queries Q, heads), aux params Φ (e.g., critic), optimizers
for t = 1 . . . TRL do

Sample (s, a, r, s′)∼D
Get contextualized embeddings: z1:N ← fASM(s,Q;ψfrozen) ▷ Policy forward pass
Compute policy loss: Lθ = −wΦ(s, a)

∑N
i=1 log πθ(ai | s; zi)

Compute auxiliary loss LΦ with chosen offline RL objective
Update both θ and Φ with their respective gradients ▷ Only queries/heads train

end for
return θ

number of joints and the sub-action cardinalities. Action spaces vary along two axes: (i) the action
dimensions, ranging from six in cheetah to 38 in dog-trot, and (ii) the sub-action cardinalities,
ranging from three to thirty bins per dimension. Together, these variations yield joint action spaces
spanning several orders of magnitude, from hundreds to 3038 ≈ 1.35× 1056 possible actions.

Datasets are constructed at four quality levels following standard offline RL protocols. The medium
sets are generated by partially trained policies, and the expert sets by fully trained policies. The
medium-expert sets combine transitions from both, while the random-medium-expert sets
additionally include trajectories with random actions, yielding highly heterogeneous distributions.
Dataset sizes range from 2× 105 to 2× 106 transitions.

We evaluate SPIN against three baselines representing the primary approaches to offline learning in
structured action spaces. SAINT (Landers et al., 2025) is a Transformer-based policy that treats sub-
actions as an unordered set and models their dependencies through self-attention. While originally
introduced for online RL, we adapt SAINT to the offline setting; in this context, it is equivalent
to SPIN without ASM pre-training. A factored policy (Tang et al., 2022; Beeson et al., 2024)
assumes conditional independence across sub-actions, learning separate per-dimension distributions
without modeling interactions. An autoregressive policy (Zhang et al., 2018) models dependencies
sequentially by factorizing the joint distribution as a chain, conditioning each sub-action on its
predecessors. This autoregressive decomposition depends on an arbitrary ordering of dimensions and
is not permutation-equivariant.

To isolate the effect of architectural choices, all methods are trained with the IQL (Kostrikov et al.,
2021) objective. To assess robustness, we also report results with alternative objectives, including
AWAC (Nair et al., 2020) and BCQ (Fujimoto et al., 2019), in Appendix C. To validate SPIN’s
generalizability beyond locomotion, we evaluate its performance on Maze (Beeson et al., 2024),
with results provided in Appendix D. To demonstrate that SPIN’s effectiveness comes from its
action-masked pre-training objective rather than from pre-training alone, we compare its performance
to that of an alternative pre-training approach in Appendix E. Across all of these settings, SPIN
consistently outperforms the baselines in both performance and efficiency.

All experiments are run using Python 3.9 with PyTorch 2.6 on a single NVIDIA A40 GPU. Reported
results are averaged over five random seeds, with ± values indicating one standard deviation across
seeds.

5.1 ASYMPTOTIC PERFORMANCE AND TRAINING EFFICIENCY

Table 1 reports final performance and training efficiency across environments and dataset qualities
(full learning curves are provided in Appendix A). SPIN achieves consistently higher returns than all
baselines and reaches the target performance in less wall-clock time than all baselines.

SPIN achieves the highest overall average return of 594.1, exceeding the next-best baseline, SAINT, at
572.1. Improvements are systematic across the benchmark suite rather than concentrated in individual
environments. The advantage is most pronounced in the heterogeneous medium-expert and
random-medium-expert datasets, which represent the most realistic and challenging benchmark
settings. On the random-medium-expert datasets, SPIN achieves an average return of 499.2,
an improvement of more than 13% over the next-best method, SAINT (438.9).

We also measure the wall-clock time, reported as the number of minutes, required for each method to
reach 95% of F-IQL’s asymptotic performance. F-IQL is a widely adopted state-of-the-art baseline

5
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Task F-IQL AR-IQL SAINT SPIN

Medium
cheetah 293.0± 6.9 284.7± 7.2 293.5± 6.1 293.6± 4.1
finger 385.4± 6.6 383.5± 8.1 391.5± 7.7 392.7± 8.3
humanoid 335.4± 6.0 327.3± 6.7 332.3± 7.2 334.8± 7.6
quadruped 353.4± 82.4 343.4± 84.4 354.7± 75.1 359.7± 78.7

Average Return 341.8 334.7 343.0 345.2
Time to Target 48.2 114.3 174.6 45.5

Medium-Expert
cheetah 612.9± 50.2 609.9± 37.7 627.4± 37.1 651.1± 33.1
finger 844.5± 11.1 857.8± 8.5 847.6± 14.6 855.2± 9.7
humanoid 603.0± 49.5 567.6± 50.4 621.5± 53.5 652.5± 31.0
quadruped 838.2± 45.9 833.4± 46.4 836.5± 35.9 854.1± 37.7

Average Return 724.7 717.2 733.3 753.2
Time to Target 257.3 285.8 308.4 62.0

Random-Medium-Expert
cheetah 289.6± 17.0 276.5± 13.2 302.4± 33.2 332.4± 43.1
finger 693.4± 17.5 762.7± 20.1 747.2± 17.1 773.2± 14.9
humanoid 230.1± 21.9 192.8± 24.1 237.3± 29.4 330.2± 28.6
quadruped 340.0± 52.6 350.2± 84.5 468.8± 55.5 561.0± 70.6

Average Return 388.3 395.6 438.9 499.2
Time to Target 85.1 95.8 100.2 38.4

Expert
cheetah 665.9± 24.2 665.7± 20.1 664.5± 25.8 672.7± 21.5
finger 874.0± 4.6 873.3± 6.7 870.2± 9.2 868.5± 6.4
humanoid 729.0± 21.2 717.2± 25.0 726.1± 25.3 734.7± 19.5
quadruped 843.5± 20.2 824.9± 35.8 831.6± 43.9 839.0± 33.9

Average Return 778.1 770.3 773.1 778.7
Time to Target 167.5 288.7 261.8 77.4

Overall Average Return 558.2 554.5 572.1 594.1
Overall Time to Target 558.1 784.6 845.0 223.3

Table 1: Asymptotic performance and training efficiency on DM Control tasks. Time to Target denotes the
wall-clock minutes required to reach 95% of F-IQL’s asymptotic performance, with SPIN times including ASM
pre-training. SPIN attains the best overall returns and the highest computational efficiency.

in structured action spaces (Tang et al., 2022; Beeson et al., 2024; Landers et al., 2024), offering
both tractability and stable convergence across environments. Using F-IQL as the target enables fair
comparison across methods that converge to different return levels, avoiding misleading advantages
from terminating early at suboptimal performance. We adopt the 95% threshold rather than 100%
because some methods never reach F-IQL’s asymptotic performance. Handling these cases directly
— either by excluding runs or by reporting full runtimes — would bias the results, whereas the 95%
criterion offers a consistent and comparable metric. Full per-environment time-to-target results are
reported in Appendix B. In total, SPIN reaches the target performance in 223.3 minutes, approximately
2.5× faster than F-IQL itself and 3.8× faster than SAINT. The acceleration is especially pronounced
in the medium-expert datasets, where SPIN requires only 62 minutes of training time compared
to more than 250 minutes for all other methods. All runtimes for SPIN include the full duration of
the ASM pre-training stage.

These findings demonstrate that explicitly modeling action structure in a dedicated pre-training phase
allows the representation to capture the manifold of coherent actions. Freezing this representation
during policy learning preserves that structure, enabling lightweight heads to adapt efficiently to the
downstream task. Compared to Factored and Autoregressive approaches, which either discard or
impose rigid structure on cross-dimensional dependencies, SPIN retains flexibility without sacrificing
tractability. Unlike SAINT, which attempts to learn action structure and control jointly, SPIN’s
decoupled design achieves both higher asymptotic performance and faster convergence.

6
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Bins F-IQL AR-IQL SAINT SPIN

3 Bins 472.3± 43.5 526.5± 57.8 635.1± 39.6 647.0± 19.6
10 Bins 483.8± 33.0 457.4± 53.2 529.1± 58.2 629.5± 52.5
30 Bins 485.0± 54.0 557.4± 66.0 562.5± 88.7 703.9± 25.6

Average Return 480.4 513.8 575.6 660.1
Time to Target 545.8 692.6 291.6 237.0

Table 2: Performance and efficiency on the dog-trot task as action cardinality increases. SPIN sustains
strong returns and training efficiency as the action space grows, while baselines stagnate or deteriorate.

5.2 ROBUSTNESS TO ACTION CARDINALITY

The results in Section 5.1 report evaluations with a fixed action cardinality of three bins per dimen-
sion. To test robustness under more severe combinatorial growth, we increased the granularity of
discretization in the dog-trot environment, which has 38 sub-action dimensions. Varying the
cardinality from 3 to 30 bins produces action spaces ranging from 338 ≈ 1.35× 1018 to more than
3038 ≈ 1.35×1056 possible actions. Experiments were conducted on the medium-expert dataset,
which provides a realistic and challenging setting.

Results are summarized in Table 2. SPIN achieves the highest average return at every cardinality,
and the gap relative to baselines increases with the size of the action space. At three bins, SPIN
slightly outperforms the strongest baseline, SAINT. At thirty bins, SPIN reaches an average return of
703.9 compared to 562.5 for SAINT, an improvement of more than 25%. AR-IQL shows unstable
performance, dropping from 526.5 at three bins to 457.4 at ten bins, while F-IQL shows no benefit
from increased granularity, plateauing around 480.

Training efficiency follows the same trend. SPIN consistently requires less wall-clock time to
reach the target performance, even in the largest action spaces (full runtime results are provided in
Appendix B). These results demonstrate that separating structure learning from control is increasingly
beneficial as combinatorial complexity grows, as the agent can act over a learned low-dimensional
manifold while end-to-end methods remain tied to the scale of the raw joint space.

6 MECHANISMS UNDERLYING SPIN’S EFFECTIVENESS

The experiments in Section 5 show that SPIN outperforms existing methods both in learning speed
and final performance. We now examine the mechanisms underlying these gains.

6.1 EFFECT OF REPRESENTATION QUALITY ON POLICY PERFORMANCE

To assess the contribution of ASM pre-training, we trained the ASM representation on the
medium-expert datasets for 10–100 epochs. Each representation function was then frozen
and used to initialize a new policy, which was subsequently trained to convergence on the control task.
Figure 2 shows that downstream return generally improves with more ASM pre-training, with the
steepest gains in the first 20 epochs. After 20 epochs, policies surpass the fully converged F-IQL refer-
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Figure 2: Final policy return as a function of ASM pre-training duration. Policies are initialized from frozen
ASM representations trained for different numbers of epochs. While pre-training is critical, just 20 epochs yield
a representation that enables policies to surpass the fully trained F-IQL baseline in all tasks (dashed horizontal
line).
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Task F-IQL AR-IQL SAINT SPIN

Medium
cheetah 94.0% 91.0% 94.6% 94.5%
finger 90.2% 89.0% 89.8% 91.2%
humanoid 50.9% 67.3% 84.9% 94.2%
quadruped 90.3% 82.7% 92.7% 94.0%

Average 81.4% 82.5% 90.5% 93.5%

Medium-Expert
cheetah 30.3% 40.9% 46.1% 90.6%
finger 0.37% 0.70% 0.39% 68.5%
humanoid 2.2% 3.1% 9.3% 93.4%
quadruped 34.1% 38.1% 39.0% 78.6%

Average 16.7% 20.7% 23.7% 82.8%

Random-Medium-Expert
cheetah 87.7% 93.3% 94.0% 103.6%
finger 31.1% 34.6% 33.6% 49.0%
humanoid 23.3% 30.4% 50.5% 110.7%
quadruped 43.3% 48.2% 45.0% 80.7%

Average 46.4% 51.6% 55.8% 86.0%

Expert
cheetah 26.5% 35.8% 49.1% 94.3%
finger 31.6% 33.1% 8.4% 94.9%
humanoid 2.8% 2.3% 14.0% 95.1%
quadruped 44.6% 45.7% 53.0% 79.2%

Average 26.4% 29.2% 31.1% 90.9%

Overall Average 42.7% 46.0% 50.3% 88.3%

Table 3: Percentage of final F-IQL performance achieved after 10,000 gradient steps (1% of training budget).
SPIN quickly learns a high-performing policy, while baselines improve more gradually.

ence on all tasks. Policies initialized from an untrained ASM (Epoch 0) perform poorly. These results
indicate that final policy performance is largely determined by the quality of the pre-trained action
representation; once a coherent representation is learned, control optimization becomes substantially
easier.

6.2 EMERGENT RAPID ADAPTATION

Having established the importance of pre-training, we next examine learning dynamics. Table 3
reports the percentage of F-IQL’s asymptotic performance achieved after 10,000 gradient steps,
corresponding to only 1% of the total training budget. Across nearly all environments, SPIN learns
policies that reach at least 90% of target performance, whereas baselines improve much more
gradually. The effect is most pronounced on heterogeneous datasets. In the humanoid task with the
medium-expert dataset, SPIN reaches 93.4% of target performance, while the next-best method,
SAINT, achieves only 9.3%. On the random-medium-expert datasets, SPIN exceeds 100% of
F-IQL’s asymptotic performance in both cheetah and humanoid during this period.

These results suggest that pre-training the ASM substantially simplifies downstream learning. End-to-
end baselines must simultaneously discover a coherent action representation and a control policy,
leading to slow early progress. SPIN, by contrast, begins policy training with a structured repre-
sentation, enabling more efficient early adaptation. This motivates the next analysis, which directly
evaluates the representations learned by the ASM.

6.3 QUANTIFYING REPRESENTATION QUALITY

The large gap between randomly initialized (epoch 0) and pre-trained agents in Figure 2 may be
due to pre-training providing only a convenient initialization, without encoding structure, or due to

8
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pre-training learning a representation that enables downstream performance. We evaluate this directly
by testing whether the ASM representation captures joint action dependencies using a linear probe, a
standard diagnostic for self-supervised representations (Chen et al., 2020; He et al., 2020).

In this experiment, the ASM representation is frozen — either pre-trained for 100 epochs or randomly
initialized — and a lightweight linear classifier is trained on its embeddings to predict dataset actions
from the state. New action queries and linear heads are learned for this probe. The analysis is
conducted in the dog-trot environment, which has 38 sub-action dimensions discretized into 30
bins, yielding the largest and most challenging combinatorial action space in the DM Control suite.

The random ASM (0 epochs) achieves 76.6% per-slot accuracy, but its exact-match accuracy on
the full 38-dimensional action tuple is only 0.10% — well above the uniform-chance baseline of
30−38 ≈ 7 × 10−57, but far below the level required for coherent control. These features capture
individual action dimensions but fail to encode cross-joint dependencies. The pre-trained ASM, by
contrast, attains 90.0% per-slot accuracy and 4.52% exact-match accuracy, a 45× improvement over
the random ASM. Crucially, the observed tuple accuracy more than doubles the value expected under
independence (0.9038 ≈ 1.83%), showing that pre-training produces a representation with substantial
cross-joint coordination.

7 DISCUSSION AND CONCLUSION

Reinforcement learning in discrete combinatorial action spaces requires searching over an exponential
number of composite actions while ensuring that the chosen sub-actions form coherent sets. Some
methods simplify policy learning by ignoring action structure (Tang et al., 2022; Beeson et al., 2024),
at the cost of discarding critical sub-action dependencies. Other approaches attempt to simultaneously
capture structure and solve control (Zhang et al., 2018; Landers et al., 2024; 2025), but are often
prohibitively slow and unstable. SPIN, by contrast, separates representation learning from policy
learning using a two-stage procedure. In the first stage, an Action Structure Model (ASM) learns
a representation function that, conditioned on the state s, induces a feature space over sub-actions
in which structurally coherent joint actions lie on a low-dimensional manifold. This representation
is then frozen and reused in the second stage, where control reduces to training lightweight policy
heads on top of the pre-trained ASM.

Across benchmarks varying in dataset size and quality, action dimensionality, and action cardinality,
SPIN improves average return by up to 39% over the state of the art and reduces the time to
reach strong baseline performance by up to 12.8×. Gains are most pronounced in the challenging,
realistic medium-expert and random-medium-expert datasets.

A targeted analysis elucidates SPIN’s effectiveness. Final performance rises with the quality of the
learned representation, confirming that control is bottlenecked by structure discovery. Once this
structure is available, policies learn rapidly, reaching most of their eventual return within a small
fraction of training. Linear probes further show that the learned representation is 45× more effective
at producing fully coordinated actions than a random baseline, providing a direct, quantitative
explanation for the downstream agent’s success.

While SPIN demonstrates strong performance, there are several limitations and opportunities for
future work. The current framework requires architectural alignment between the ASM and the policy
to enable weight transfer; relaxing this through distillation could broaden applicability. Moreover,
our masked modeling objective is effective, but alternative self-supervised objectives for learning the
action manifold remain unexplored. Finally, while SPIN learns the structure present in a dataset, its
generalization, like all offline methods, is ultimately dependent on the quality and coverage of the
provided data.

SPIN introduces a representation-first view of control in structured action spaces. By first learning
the manifold of plausible actions and then reusing a representation function for downstream decision-
making, it reduces a complex combinatorial problem to a tractable policy learning task. This
decoupling offers a principled framework for reinforcement learning in high–dimensional, structured
domains.
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A LEARNING CURVES

Figure 3 shows the full learning curves corresponding to the results in Table 1. Each plot reports
mean episode return versus gradient steps for all methods across environments and dataset qualities.
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Figure 3: Learning curves on all DM Control tasks and dataset qualities. Curves show mean return over 1M
gradient steps, averaged across five seeds with shaded regions denoting ±1 std.

The curves visually confirm the trends reported in the main text — SPIN matches or exceeds
the best baseline policy in every environment. SPIN’s advantage is most pronounced on the
medium-expert and random-medium-expert datasets, the most challenging and realistic
settings.
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B WALL-CLOCK EFFICIENCY

This section reports the full wall-clock training times underlying the efficiency analyses in Sections 5.1
and 5.2. For comparability across methods with different asymptotic returns, we measure the time
required to reach 95% of the Factored IQL (F-IQL) baseline’s final performance. We adopt the 95%
target rather than 100% because not all methods reach F-IQL’s asymptote. Alternative treatments —
such as excluding these runs or reporting their full runtime — would bias the averages. The 95%
criterion provides a consistent point of comparison across methods. All reported SPIN runtimes
include the complete ASM pre-training stage.

B.1 WALL-CLOCK TRAINING TIMES FOR SECTION 5.1

Task F-IQL AR-IQL SAINT SPIN

Medium
cheetah 7.0 13.0 12.3 2.4
finger 4.7 8.0 11.7 7.8
humanoid 25.1 59.3 43.1 23.5
quadruped 11.4 34.0 107.5 11.8

Medium Total 48.2 114.3 174.6 45.5

Medium-Expert
cheetah 80.0 84.1 103.3 14.9
finger 28.8 20.5 56.3 14.0
humanoid 128.2 143.2 112.2 11.2
quadruped 20.3 38.0 36.6 21.9

Medium-Expert Total 257.3 285.8 308.4 62.0

Random-Medium-Expert
cheetah 11.4 13.6 17.9 3.0
finger 33.5 10.6 33.6 25.7
humanoid 23.7 55.6 33.1 5.6
quadruped 16.5 16.0 15.6 4.1

Random-Medium-Expert Total 85.1 95.8 100.2 38.4

Expert
cheetah 27.6 46.3 53.3 19.6
finger 16.5 16.9 38.5 4.3
humanoid 110.0 199.6 147.3 45.6
quadruped 13.4 25.9 22.7 7.9

Expert Total 167.5 288.7 261.8 77.4

Total Runtime 558.1 784.6 845.0 223.3

Table 4: Wall-clock training time (minutes) to reach 95% of F-IQL’s asymptotic performance, with SPIN times
including ASM pre-training. Italicized rows give totals per dataset quality; the bottom row reports the overall
total. This table provides the detailed breakdown for the Time to Target results in Table 1.

Table 4 reports the per-environment efficiency results summarized in Table 1. SPIN is consistently the
fastest method, with the largest gains on the medium-expert and random-medium-expert
datasets.
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B.2 WALL-CLOCK TRAINING TIMES FOR SECTION 5.2

Bins F-IQL AR-IQL SAINT SPIN

3 Bins 388.3 319.3 121.7 81.2
10 Bins 102.1 215.2 87.9 77.8
30 Bins 55.4 158.1 82.0 78.0

Time to Target 545.8 692.6 291.6 237.0

Table 5: Wall-clock training time (minutes) to target performance in the dog-trot environment as action
cardinality increases. This table provides the detailed breakdown for the Time to Target results in Table 2.

Table 5 reports detailed runtimes for the action cardinality experiments in the dog-trot environ-
ment, corresponding to Table 2. SPIN is the most efficient method, achieving the lowest total training
time across all experiments. Overall, SPIN is the fastest at 3 and 10 bins, while the simpler F-IQL
model converges quickest at 30 bins. However, F-IQL’s speed comes at the cost of much lower final
performance, as shown in Table 2. Crucially, SPIN’s runtime remains stable even as the action space
expands by many orders of magnitude, demonstrating superior scalability. These results confirm that
SPIN offers the best overall balance of strong performance and computational efficiency.
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C ROBUSTNESS TO OFFLINE RL TRAINING OBJECTIVE

To test whether SPIN’s benefits extend beyond the IQL objective used in the main experiments, we
evaluate it with two additional offline RL methods — Advantage-Weighted Actor-Critic (AWAC)
(Nair et al., 2020) and Batch-Constrained Q-Learning (BCQ) (Fujimoto et al., 2019). These experi-
ments are designed to assess whether SPIN can serve as a general framework for accelerating and
improving offline RL in structured action spaces. For these experiments, we use the challenging and
realistic medium-expert datasets.

C.1 AWAC

Task F-AWAC AR-AWAC SAINT SPIN

cheetah 655.6± 33.4 662.1± 24.5 672.5± 19.5 675.6± 17.1
finger 1.2± 1.6 2.9± 3.7 681.8± 339.5 863.1± 6.9
humanoid 593.4± 93.6 684.0± 34.6 690.5± 31.1 691.7± 32.6
quadruped 813.8± 50.3 801.6± 41.3 821.5± 44.0 826.4± 35.7

Average 516.0 537.7 716.5 764.2

Table 6: Mean ± std performance on DM Control tasks with AWAC variants. SPIN matches or exceeds the
performance of the best baseline in every environment.

Task F-AWAC AR-AWAC SAINT SPIN

cheetah 68.6 125.0 122.2 97.6
finger 0.5 0.7 1.7 1.1
humanoid 84.5 82.0 72.8 3.3
quadruped 39.6 59.0 34.3 14.6

Total Runtime 193.2 266.7 231.0 116.6

Table 7: Wall-clock training time (minutes) to reach 95% of Factored AWAC asymptotic performance, with
SPIN times including ASM pre-training.

Tables 6 and 7 report final performance and training efficiency for all architectures under the AWAC
objective. SPIN achieves the highest average return (764.2), about 10% higher than the next-best
baseline (SAINT). It is also the most efficient, attaining target performance in 116.6 minutes, roughly
twice as fast as SAINT.
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C.2 BCQ

Task F-BCQ AR-BCQ SAINT SPIN

cheetah 655.2± 33.1 573.9± 111.2 681.3± 21.2 679.2± 23.0
finger 690.0± 69.9 753.6± 49.6 834.5± 27.3 850.9± 19.5
humanoid 597.2± 45.1 603.2± 49.0 698.4± 43.6 712.4± 31.7
quadruped 816.6± 47.3 674.8± 115.8 829.0± 33.7 852.0± 30.0

Average 689.7 651.9 760.8 773.1

Table 8: Mean ± std performance on DM Control tasks with BCQ variants. SPIN matches or exceeds the
performance of the best baseline in every environment.

Task F-BCQ AR-BCQ SAINT SPIN

cheetah 29.1 33.4 30.6 18.3
finger 3.8 1.0 1.6 0.3
humanoid 80.8 81.1 31.4 4.0
quadruped 40.8 43.7 17.0 11.6

Total Runtime 154.5 159.2 80.6 34.2

Table 9: Wall-clock training time (minutes) to reach 95% of Factored BCQ asymptotic performance, with SPIN
times including ASM pre-training.

Tables 8 and 9 show that the trend holds with BCQ as the base algorithm. SPIN attains the highest
average performance (773.1). Its efficiency advantage is also pronounced — SPIN reaches target
performance in 34.2 minutes, more than twice as fast as SAINT and over four times faster than the
factored BCQ variants.
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D PERFORMANCE ON MAZE

To assess generalization beyond the DM Control locomotion suite, we evaluated all methods on
a configurable Maze navigation task introduced in Beeson et al. (2024). Unlike locomotion, this
environment emphasizes goal-reaching rather than complex dynamics. Action dimensionality was
varied by changing the number of actuators from 5 to 15.

Num. Actuators F-IQL AR-IQL SAINT SPIN

5 98.2± 2.1 99.4± 0.0 98.3± 2.2 99.4± 0.1
10 99.4± 0.0 98.4± 2.2 99.4± 0.1 99.4± 0.0
15 99.4± 0.0 99.4± 0.0 99.4± 0.0 99.4± 0.0

Average 99.0 99.1 99.0 99.4

Table 10: Performance across actuator configurations on the Maze environment. All methods achieve near-
expert performance, indicating the task is solvable by all architectural variants.

Num. Actuators F-IQL AR-IQL SAINT SPIN

5 4.5 2.6 4.1 1.1
10 3.9 3.6 6.5 3.0
15 8.1 11.6 12.1 7.0

Total Runtime 16.5 17.8 22.7 11.1

Table 11: Wall-clock training time (minutes) to reach F-IQL asymptotic performance, with SPIN times including
ASM pre-training.

Table 10 shows that all methods, including factored and autoregressive baselines, achieve near-expert
performance on the Maze task. This suggests that coordination between sub-actions is less demanding
than in locomotion tasks and can be captured even without strong sub-action coordination.

Despite similar asymptotic returns, SPIN retains a consistent efficiency advantage. As shown in
Table 11 SPIN reaches the F-IQL performance target fastest across all actuator configurations. With a
total runtime of 11.1 minutes across experiments, SPIN is about 1.5× faster than the next-quickest
baseline (F-IQL).
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E COMPARISON TO ALTERNATIVE PRE-TRAINING OBJECTIVE

To validate that SPIN’s effectiveness comes from its action-masked pre-training objective rather than
from pre-training alone, we compare its performance to that of REPREM (Cai et al., 2023). REPREM
also follows a pre-train–finetune paradigm, but like most existing RL pre-training methods (see
Section 2), its objective is trajectory-centric, predicting future states and rewards from interleaved
state–action sequences. Because RePreM’s per-sample cost scales with horizon length, training on
the 2× 106–transition medium-expert datasets is prohibitively expensive. We therefore conduct
the comparison on the random-medium-expert datasets with 2× 105 transitions, which remain
heterogeneous and challenging.

Return Runtime

Task RePreM SPIN RePreM SPIN

cheetah 272.5± 27.1 332.4± 43.1 585.8 1.8
finger 706.9± 40.0 773.2± 14.9 599.3 1.0
humanoid 180.6± 23.9 330.2± 28.6 580.8 4.4
quadruped 328.8± 95.3 561.0± 70.6 585.7 2.9

Average 372.2 499.2 587.9 2.5

Table 12: Performance and pre-training runtime on the random-medium-expert datasets. SPIN achieves
higher returns with over 200× faster training.

Results in Table 12 show that SPIN achieves an average return of 499.2, while REPREM reaches only
372.2, demonstrating that in combinatorial action spaces, modeling the action manifold provides a
stronger representation for control than trajectory prediction. The efficiency gap is even larger. SPIN
completes training in 10.1 minutes, whereas REPREM requires 2351.6 minutes, more than 200×
slower. This difference reflects the horizon-independent design of the ASM.
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