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ABSTRACT

Mapping the conformational dynamics of proteins is crucial for elucidating their
functional mechanisms. While Molecular Dynamics (MD) simulation enables de-
tailed time evolution of protein motion, its computational toll hinders its use in
practice. To address this challenge, multiple deep learning models for reproducing
and accelerating MD have been proposed drawing on transport-based generative
methods. However, existing work focuses on generation through transport of sam-
ples from prior distributions, that can often be distant from the data manifold. The
recently proposed framework of stochastic interpolants, instead, enables transport
between arbitrary distribution endpoints. Building upon this work, we introduce
EquiJump, a transferable SO(3)-equivariant model that bridges all-atom protein
dynamics simulation time steps directly. Our approach unifies diverse sampling
methods and is benchmarked against existing models on trajectory data of fast
folding proteins. EquiJump achieves state-of-the-art results on dynamics simula-
tion with a transferable model on all of the fast folding proteins.

1 INTRODUCTION

Proteins are the workhorses of the cell, and simulating their dynamics is critical to biological dis-
covery and drug design (Karplus and Kuriyan, 2005). Molecular Dynamics (MD) simulation is an
important tool that leverages physics for time evolution, enabling precise exploration of the confor-
mational space of proteins (Hollingsworth and Dror, 2018). However, sampling with physically-
accurate molecular potentials requires small integration time steps, often making the simulation of
phenomena at relevant biological timescales prohibitive (Lane et al., 2013).

To tackle this challenge, several studies have adopted deep learning models to capture surrogates of
MD potentials and dynamics (Noé et al., 2020; Durumeric et al., 2023; Arts et al., 2023). More recent
works (Schreiner et al., 2023; Li et al., 2024; Jing et al., 2024) have proposed to use deep learning-
based simulators trained on long-interval snapshots of MD trajectories to predict future states given
some starting configuration. These models draw from neural transport models (Ho et al., 2020;
Lipman et al., 2022), learning a conditional or guided bridge between a prior distribution (ρ0 = N )
and the target data manifold of simulation steps (ρ1 = ρdata). In contrast to this, the recent paradigm
of Stochastic Interpolants (Albergo et al., 2023a; Albergo and Vanden-Eijnden, 2023) provides a
method for directly bridging distinct arbitrary distributions.

In this work, we utilize this framework and introduce EquiJump, a Two-Sided Stochastic Inter-
polant model which bridges between long-interval timesteps of protein simulation directly (Figure
1). EquiJump is SO(3)-equivariant and simulates all heavy atoms directly in 3D. We train a trans-
ferable model on 12 fast-folding proteins (Majewski et al., 2023; Lindorff-Larsen et al., 2011) and
successfully recover their dynamics.

Our main contributions are as follows:

• We extend the Two-Sided Stochastic Interpolants framework to simulate the dynamics of
three-dimensional representations. By training on trajectory data, our approach directly
leverages the close relationship between consecutive timesteps.
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• We introduce a novel four-track SO(3)-equivariant neural architecture to implement a gen-
erative transport operator, which we apply to model the dynamics of all heavy atoms in
protein monomers.

• We learn transferable simulators for capturing the dynamics of 12 fast-folding proteins
while performing large jumps in time, demonstrating the effectiveness of EquiJump in
reproducing long-term dynamics and ensemble distributions.

Figure 1: Direct bridging of 3D all-atom simulation time steps: EquiJump runs an stochastic
interpolants-based transport process on coordinates and 3D geometric representations to generate
future time frames from an initial state. Gray boxes depict transport across the learned latent

space, which takes Gaussian noise perturbations and uses noise (η̂) and drift (b̂) predictions to
directly transform all-atom proteins across time and 3D space.

2 RELATED WORK

Recent advancements in protein modeling through deep learning have led to the development of
several models capable of replicating molecular dynamics (MD) trajectories. (Wang et al., 2019;
Husic et al., 2020) introduced supervised models trained through direct force matching, demonstrat-
ing their ability to transfer simulations across different proteins. (Majewski et al., 2023) implements
a unified transferable model for multiple proteins. Their approach relies on force matching, which
approximates atomistic forces. In contrast, EquiJump eliminates the need for force data by using
a two-sided stochastic transport framework that directly generates next steps of configurations, en-
abling time stepping that is orders of magnitude larger than those required by this method. We
show that our model outperforms force-matching approaches by maintaining kinetic consistency
and replicating dynamical observables more precisely.

(Fu et al., 2023) learns to predict accelerated, coarse grained dynamics of polymers with GNNs.
(Köhler et al., 2023) utilizes Normalizing Flows (Gabrié et al., 2022) for coarse grained force-
matching, while (Arts et al., 2023) builds upon Denoising Diffusion Probabilistic Models (DDPM)
(Ho et al., 2020) through Graph Transformers (Shi et al., 2020; Costa, 2021). These approaches
focus heavily on coarse-grained representations, which limit their ability to simulate the full com-
plexity of protein dynamics at the all-atom level. In contrast, EquiJump operates directly at the
all-atom scale, achieving efficiency through SO(3)-equivariant neural networks and residue repre-
sentation (Costa et al., 2024). This allows EquiJump to provide a more accurate and comprehensive
simulation of protein dynamics, combining the precision of all-atom modeling with the computa-
tional efficiency typically seen in coarse-grained approaches.
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Figure 2: Neural Transport of Tensor Clouds. (a) DDPM defines an SDE for denoising samples
from a Gaussian prior, while standard (b) Flow Matching traces a velocity field-based ODE for
moving the Gaussian samples. (c) Two-Sided Stochastic Interpolants instead enable transporting
through a local, normally-perturbed latent space that remains close to the manifold of the data end-
points.

Recent models have proposed generating samples from a prior distribution while conditioning on
an initial configuration. Timewarp (Klein et al., 2023) enhances MCMC sampling with conditional
normalizing flows, while ITO (Schreiner et al., 2023) uses a PaiNN-based network (Schütt et al.,
2021) to learn a conditional diffusion model for next-step prediction. Similarly, F3low (Li et al.,
2024) employs FramePred (Yim et al., 2023) and Optimal Transport Guided Flow Matching (Zheng
et al., 2023). Finally, (Jing et al., 2024) applies one-sided stochastic interpolants (Ma et al., 2024) to
interpolate or extrapolate molecular configurations. These approaches rely on transforming Gaus-
sian priors via stochastic (SDE) or ordinary differential equations (ODE), where the prior often lies
far from the true data distribution. Instead, EquiJump uses two-sided stochastic interpolants to di-
rectly bridge trajectory snapshots, leveraging the configuration proximity of consecutive timesteps
and enabling a transport that stays close to physical states (Figure 2; Appendix A.1).

3 METHODS

3.1 STOCHASTIC INTERPOLANTS

Neural transport methods have demonstrated outstanding performance in generative tasks (Ma et al.,
2024; Liu et al., 2023; Lipman et al., 2022; Ho et al., 2020). Stochastic Interpolants (Albergo et al.,
2023a; Albergo and Vanden-Eijnden, 2023) are a recently proposed class of generative models that
have reached state-of-the-art results in image generation (Ma et al., 2024; Albergo et al., 2023b).
One-sided stochastic interpolants, which generalize flow matching and denoising diffusion models,
transport samples from a prior distribution X0 ∼ N to a target data distribution X1 ∼ ρ1 by utilizing
latent variables Z ∼ N through the stochastic process {Xτ}:

Xτ = J(τ,X1) + α(τ)Z (1)

where τ ∈ [0, 1] is the time parameterization. The interpolant function J satisfies boundary condi-
tions J(0,X1) = 0 and J(1,X1) = X1, and the noise schedule α satisfies α(0) = 1 and α(1) = 0.

In contrast, two-sided stochastic interpolants enable learning the transport from X0 ∼ ρ0 to X1 ∼
ρ1 when ρ0 and ρ1 are arbitrary probability distributions (Figure 2). Two-sided interpolants are
described by the stochastic process {Xτ}:

Xτ = I(τ,X0,X1) + γ(τ)Z (2)

where τ ∈ [0, 1] and to ensure boundary conditions, the interpolant I and noise schedule γ must
satisfy the following: I(0,X0,X1) = X0 and I(1,X0,X1) = X1, and γ(0) = γ(1) = 0.
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The probability p(τ,X) of a stochastic interpolant satisfies the transport equation:
∂τp(τ,X) +∇ · (b(τ,X)p(τ,X)) = 0 (3)

and the boundary conditions p(0,X) = p0 and p(1,X) = p1. Here, b(τ,X) is the expected velocity:
b(τ,X) = E [∂τXτ |Xτ = X] = E [∂τI(τ,X0,X1) + ∂τγ(τ)Z |Xτ = X] (4)

We can similarly define the noise term η(τ,X) as:
η(τ,X) = [Z |Xτ = X] (5)

In practice, the exact forms of b and η are not known for arbitrary distributions p0, p1, and are thus
parameterized by neural networks. (Albergo et al., 2023a) shows that we can learn the functions
b̂ ≈ b and η̂ ≈ η by optimizing:

min
b̂

∫ 1

0

E
[
1

2
b̂(τ,Xτ )

2
− (∂τI(τ,X0,X1) + ∂τγ(τ)Z) · b̂(τ,Xτ )

]
dτ (6)

min
η̂

∫ 1

0

E
[
1

2
η̂(τ,Xτ )

2
+ Z · η̂(τ,Xτ )

]
dτ (7)

We can then sample Xτ=1 ∼ p(τ = 1,X1) through an ordinary differential equation (ODE), or a
stochastic differential equation (SDE):

dXτ = b̂(τ,Xτ )dτ (8)

dXτ =

(
b̂(τ,Xτ )−

ϵ(τ)

γ(τ)
η̂(τ,Xτ )

)
dτ +

√
2ϵ(τ)dWτ (9)

where Wτ is the Weiner process. Once we have learned the expected velocity b̂ and noise η̂, the
above equations can be integrated numerically starting from (τ = 0,X0 ∼ p0) to (τ = 1,X1 ∼
p1). Furthermore, following from eqs. (8) and (9) the probability p(τ,Xτ ) is SO(3)-equivariant
when b̂ and η̂ are SO(3)-equivariant and dWτ is isotropic. We provide more details on interpolant
parameterization in Appendix A.2.

3.2 TWO-SIDED STOCHASTIC INTERPOLANTS FOR DYNAMICS SIMULATION

We extend the two-sided stochastic interpolant framework to learn a time evolution operator from
trajectory data [Xt]Lt=1. Given a source time step Xt and its consecutive target step Xt+1, we
define the distribution boundaries of our interpolant as ρ0 = ρ(Xt) and ρ1 = ρ(Xt+1 | Xt). The
conditional nature of the target distribution requires that our predictions for drift b̂ and noise η̂ are
explicitly conditioned on the source step Xt. We apply this approach to simulating all-atom protein
dynamics, as depicted in Figure 1. In this context, Xt represents a 3D all-atom protein conformation
at time t, which is provided as input to our model. We frame it as the source distribution, and set
Xτ=0 = Xt. We then employ an iterative process governed by the integration of eqs. (8) and (9)
from τ = 0 to τ = 1. This produces a sample Xτ=1, which follows the distribution Xτ=1 ∼ ρ1,
generating a next step in the simulation Xt+1.

3.3 MULTIMODAL INTERPOLANTS OF GEOMETRIC REPRESENTATIONS

We treat data X represented as geometric features positioned in three-dimensional space, X =
[(Vi,Pi)]

N
i=1, which we refer to as the Tensor Cloud representation (Figure 2). In this formulation,

each Vi is a tensor of irreducible representations (irreps) of O(3) or SO(3), associated with a 3D
coordinate Pi ∈ R3. The feature representations V are arrays of irreps up to order lmax where for
each l ∈ [0, lmax], the tensor Vl represents geometric features with dimensions Vl ∈ RH×(2l+1),
where H denotes the feature multiplicity.

We extend interpolant eqs. (8) and (9) to the multi-modal type Xi = (Vi,Pi) by integrating ge-
ometric features and coordinate components as dXτ

i = (dVτ
i , dP

τ
i ). For computing the losses

eqs. (6) and (7), we define the Tensor Cloud dot product as Xi ·Xj = Vi ·Vj +Pi ·Pj . In general,
treating the feature and coordinate components independently allows for different parameterizations
of the interpolant. In this work, we use the same interpolant form for both components, and only
adjusting the scaling γ(t) of the variable Z. For further details see Appendix A.2.
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Figure 3: EquiJump Architecture: (a) The Self-Interaction Layer updates geometric features
independently, mixing Vl of different degrees into new features through a Tensor Square operation.
(b) The Spatial Convolution layer updates representations by aggregating the tensor product of
neighbors messages with the spherical harmonics embedding of the relative 3D vector between
the positions of those neighbors. (c) We stack the above modules to form a block, and build a
base network out of L blocks for making predictions. (d) A shared conditioner and 4 headers are
built from the base network. The conditioner processes sequence and the current simulation step,
producing latent embeddings that are fed to the prediction headers. The headers independently
predict features and coordinates updates for drift and noise components of the two-sided stochastic
interpolant process.

3.3.1 PROTEIN STRUCTURE REPRESENTATION

We represent a protein monomer (R,X) as a sequence R and a Tensor Cloud X. Our model is
designed to update X while being conditioned on R. Each residue i consists of three components: a
residue label Ri ∈ R = {ALA, GLY, . . . }, the Cα 3D coordinate Pα

i ∈ R3, and a geometric feature
of order l = 1 with multiplicity 13, VA

i ∈ R13×3. This feature encodes the relative 3D vector from
the Cα to all other heavy atoms in the residue, following a canonical ordering. For residues with
fewer than 13 non-Cα heavy atoms, we pad the atom vectors. This modeling approach, based on
(King and Koes, 2020; Costa et al., 2024), allows for the direct representation of all heavy atoms in
3D, while maintaining a coarse-grained representation anchored on the Cα.

3.3.2 NEURAL NETWORK ARCHITECTURE AND TRAINING

To efficiently process 3D data, we utilize Euclidean-equivariant neural networks (Geiger and Smidt,
2022; Miller et al., 2020). We design a neural network to predict the drift b̂ = (b̂V, b̂P) and noise
η̂ = (η̂V, η̂P) terms, conditioned on the sequence R, the source structure Xt, the latent transport
structure Xt

τ , and the latent time τ (Figure 3).

The EquiJump layer is built from two SO(3)-equivariant modules: the Self-Interaction (Figure 3.a)
module for updating features Vl indepedently from coordinates, based on (Costa et al., 2024; Batatia
et al., 2022); and the Spatial Convolution (Figure 3.b) module for sharing information between
neighbors, based on Tensor Field Networks (Thomas et al., 2018). At each layer, we also employ
residual connections and the SO(3)-equivariant layer norm from (Liao and Smidt, 2022). We build
a deep neural network (DNN) by stacking L times the above blocks (Figure 3.c). Refer to Appendix
A.2 for additional details.

We use 5 DNNs in our model (Figure 3.d): 1 conditioner network fcond and 4 header networks for
predicting each of b̂V, b̂P, η̂V, η̂P independently. Given a configuration Xt, we first prepare a
hidden representation X̃t = fcond(R,Xt). The 4 headers take (X̃t,Xt

τ , τ) to produce predictions of
each component of the drift b̂ and the noise η̂. For efficiency, the embedding X̃t is made independent
of τ , and only the prediction headers are used in the integration loop of the latent transport. We train
and sample these networks following Algorithms 1 and 2:
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Algorithm 1 EquiJump Training
Require: Sequence R
Require: Trajectory Data [Xt]Tt=1

Require: Interpolant Parameters Iτ , γ(τ)
Require: Networks b̂V, b̂P, η̂V, η̂P, fcond
1: t ∼ U(1, T − 1)
2: τ ∼ U(0, 1)
3: Zτ ∼ N (0, I)
4: X̃t = fcond(R,Xt)
5: Xt

τ ← (1− τ) ·Xt + τ ·Xt−1 + γ(τ)Zτ

6: η̂ ←
(
η̂V(X̃t,Xt

τ , τ), η̂P(X̃
t,Xt

τ , τ)
)

7: b̂←
(
b̂V(X̃t,Xt

τ , τ), b̂P(X̃
t,Xt

τ , τ)
)

8: Gradient Step
9: −∇

(
1
2
∥b̂∥ − b̂ ·

(
∂τIτ (X

t,Xt+1) + γ̇(τ) ·Zτ
)

+ 1
2
∥η̂∥ − η̂ · Zτ

)

Algorithm 2 EquiJump Sampling
Require: Sequence R
Require: Start Step Xt

Require: Interpolant Parameters ϵ(τ), γ(τ)
Require: Networks b̂V, b̂P, η̂V, η̂P, fcond
Require: Integration Timestep dτ
1: Xt

τ=0 = Xt

2: X̃t = fcond(R,Xt)
3: for (τ = 0 ; τ < 1 ; τ = τ + dτ ) do
4: Zτ ∼ N (0, I)
5: η̂ ←

(
η̂V(X̃t,Xt

τ , τ), η̂P(X̃
t,Xt

τ , τ)
)

6: b̂←
(
b̂V(X̃t,Xt

τ , τ), b̂P(X̃
t,Xt

τ , τ)
)

7: dXτ ←
(
b̂− ϵ(τ)

γ(τ)
η̂
)
dτ +

√
2ϵ(τ)Zτ

8: Xt
τ+dτ ← Xt

τ + dXt
τ

9: return Xt
τ=1

4 EXPERIMENTS AND RESULTS

4.1 FAST-FOLDING PROTEINS

To evaluate the capability of our model to reproduce protein dynamics, we leverage the dataset of 12
fast-folding proteins produced by (Majewski et al., 2023), and originally investigated in (Lindorff-
Larsen et al., 2011). The dataset consists of 100 ps spaced snapshots of MD for 12 proteins ranging
from 10 to 80 residues. The trajectories are made up of several NVT runs (20 to 100 ns) at T=350 K
from different starting configurations sampling the phase space, for an aggregated simulation time
of hundreds to thousands of µs per protein. We refer to the original work and Appendix A.3 for
more details on the dataset.

While training on the whole dataset is effective in producing configurations within the original phase
space, it is not optimal to correctly reconstruct the potential energy surface. This is because when
performing MD the relative probability of different configurations is extremely sensitive to the cor-
rect description of the dynamics of the transition states. However, for the slowest modes of the
system these states are by their own nature very high in free energy and therefore heavily under-
represented in our training dataset. For this reason, taking inspiration by classical sampling meth-
ods such as umbrella sampling (Torrie and Valleau, 1977) and metadynamics (Laio and Parrinello,
2002), we propose a reweighing of the training set that will enable our model to better learn the
complex dynamics of transition states. To achieve this, we define collective variables and add a bias
to the sampling probability in training, to compensate the free energy of the system. We first find
the relevant degrees of freedom through TICA analysis (Pérez-Hernández et al., 2013) (see below)
and then construct a small number of clusters through k-means in this simplified space. Since we
are interested in the long-time dynamics of the system, this provides a reasonable basis to consider
for reweighing the trajectories. If our data came from a long NVT dynamics, the free energy Fi of
cluster i would be proportional to the number of samples: Ni ∝ e−βFi (β being the inverse temper-
ature). In the discrete basis, the reweighing with eβFi would thus naturally correspond to a uniform
distribution over the clusters, as desired. Since our dataset was obtained through a biased procedure
to enhance variety (Majewski et al., 2023), the relation between probability and free energy does
not hold true before reweighing. However, we still propose to sample uniformly on the clusters, as
this is a simple procedure that does not depend on the population of each clusters, if not for its small
effect on the definition of the clusters themselves. We show the cluster centers and distributions of
population sizes for each protein in Figure 8. Refer to Appendix A.4 for more details.

4.2 MODEL TRAINING AND SAMPLING

We train EquiJump models for time-evolving any of the 12 fast-folding proteins following Algorithm
1. We use the Adam optimizer (Kingma and Ba, 2017) with linearly decreasing learning rate from
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Figure 4: EquiJump Samples: (a) We visualize the distribution in 3D of 1500 backbone random
samples of EquiJump trajectories. We align samples to the crystal backbone (shown in black) and
verify that our model stays close to the native state basin. We show (b) mean pairwise Cα distance
matrices, (c) Ramachandran plots of backbone dihedrals and (d) Janin plots of sidechain dihedrals
of EquiJump samples against reference trajectory data.

1 × 10−2 to 1 × 10−3 over 150k steps, with batch size of 128. We train all models for 500k steps.
We perform all our experiments on NVIDIA A100 machines with 2-4 GPUs. Additional details on
model paramterization can be found in Appendix A.2.

For sampling, we start from a configuration of the enhanced dataset and iteratively apply the model.
We perform 500 simulations of 500 steps. We employ 100 steps of integration to obtain the next
configuration. While each evaluation is slower than the original model used for MD, our timesteps
are effectively 25000 times longer. Moreover, the simulations can be very efficiently parallelized on
modern hardware.

4.3 CONFIGURATION SPACE AND FREE ENERGY SURFACE ANALYSIS

In Figure 4, we present samples of the best performing EquiJump model and compare its generated
densities of backbone and sidechain dihedral angles and pairwise Cα distances to those of refer-
ence trajectory data. We provide plots for the additional fast-folding proteins in Appendix A.5. By
accurately recovering these metrics across the sampled conformations, we demonstrate that Equi-
Jump remains within the physical configuration space of the original dataset and effectively avoids
sampling nonphysical states.

In order to study the long-term dynamical behavior of the model, we leverage Time-lagged Indepen-
dent Component Analysis (TICA) (Pérez-Hernández et al., 2013), which offers a reduced dimen-
sional space that highlights the slow macroscopic modes of the system. We obtain reference TICA
components from the original trajectories by considering a similarity based on the Euclidean dis-
tance between Cα and a lagtime of 2ns. To estimate long-term probabilities after equilibration, we
reweigh the the density of sampled configurations. We first cluster the configuration using K-means
in the first 4 TIC dimensions with 100 clusters. We then build a Markov State Model (MSM) on
the basis these clusters by estimating the transition matrix at long time-lag (45 to 95ns). Finally,
from the MSM largest eigenvectors we obtain the steady state probability of each cluster, which
we use to reweigh them and approximate the Boltzmann distribution. Note that this reweighing is
extremely sensitive to the correct description of the transition states, as a wrong sampling of the
transition probability will exponentially affect the relative probability of different basins. As such,
the correct description of these probability distributions is a good indicator of the faithfulness of the
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Figure 5: Free Energy on TICA components for the 12 Fast-Folding Proteins. We compare the
free energy of EquiJump against that of the reference and that of available model CG-MLFF. The
free energy for each plot is set to 0 at the minimum and the color map is in units of kBT at the MD
temperature of 350 K. EquiJump succesfully recovers the dynamics of the proteins, covering the
phase space and stabilizing the basin of most (shown as + in reference profile).

long-term dynamics. The density plot in the first two TIC dimensions for these reweighed samples
is shown in Figure 5. In these plots, different regions represent different conformational states and
their proximity indicates time autocorrelation. The logarithmic color scale represents the free energy
in units of kBT , and it is shifted to the minimum of each plot. We find that EquiJump sucessfully
captures the dynamics of the 12 fast-folding proteins by accurately recovering the free energy curve
in that describes long-term behavior. While performing significant steps of 100ps, our model is able
to cover the phase space and accurate reproduce the dynamical profiles of observables.

4.4 MODEL COMPARISON AND ABLATION

In order to assess the quality of EquiJump trajectories, we compare its performance across model
capacities H = {32, 64, 128, 256}, where H is the per residue dimension of the latent representa-
tion, and against available transferable model CG-MLFF (Majewski et al., 2023), which is based
on coarse-graining and force matching, and uses Langevin sampling for dynamical generation. To
the best of our knowledge, this is the only other multi-protein model that covers the 12 fast-folding
proteins.

We assess the dynamics of EquiJump and compare it to CG-MLFF by estimating their free energies
on TICA space as shown in Figures 5. We additionally provide free energy profiles across different
EquiJump model capacities in Appendix A.6. We note that while CG-MLFF remains stable within
most native basins, EquiJump covers more of the phases space and reveals stronger bias to less
likely and disordered states, which are attenuated through increased model capacity (Appendix A.6).
Nevertheless, our model reveals better reconstruction of the slow components and more accurate
profiling of the free energy TICA maps across the considered proteins.

In Figure 6, we show the estimated free energy of observable Cα Root Mean Square Deviation
(RMSD) from the reference crystal structure, following reweighting based on stationary distribu-
tions of fitted Markov Models. We compare the best performing EquiJump model against reference
and CG-MLFF. These curves represent the distribution of Cα-RMSD after the system reaches equi-
librium and are highly sensitive to the accurate estimation of conformational transitions, making
them a robust evaluation metric for dynamics models. In Appendix A.7 we provide free energy
curves for additional ensemble observables. Through these plots, we observe that EquiJump pre-
cisely replicates the energy curves in comparison to reference, correctly modeling basin states while
providing a more extensive profile in comparison to CG-MLFF.
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Figure 6: Free Energy on Cα-RMSD for the 12 Fast-Folding Proteins. We align trajectory
samples to the reference crystal, and measure Cα-RMSDs (x-axis). Using Markov State Model
(MSM) weights based on our TICA-based clusters, we reweight Cα-RMSD counts to obtain free
energy estimates (y-axis). We find that EquiJump successfully approximates the free energy curves
of reference trajectories.

EquiJump
CG-MLFF 32 64 128 256

TIC1 0.30 0.15 0.13 0.07 0.03
TIC2 0.23 0.17 0.09 0.06 0.03

RMSD 0.20 0.18 0.12 0.11 0.03
GDT 0.21 0.25 0.13 0.11 0.02

RG 0.18 0.14 0.08 0.12 0.04
FNC 0.27 0.25 0.13 0.08 0.03

Table 1: Jensen-Shannon Divergence of en-
semble observables of fast-folding proteins.

EquiJump
CG-MLFF 32 64 128 256

RMSD 34.7 51.2 46.9 43.6 15.2
GDT 51.5 57.1 42.7 38.0 18.3

RG 9.4 13.8 11.4 18.7 4.3
FNC 45.2 48.8 32.8 23.7 15.7

Table 2: Percent Error in Predicting Ensem-
ble Averages of fast-folding proteins observ-
ables

In Tables 1 and 2, we investigate model performance in reproducing the long-time (MSM-
reweighted) distribution of ensemble observables and in recovering the average values of these
observables. In both tables, metrics are averaged over the twelve proteins. We additionally pro-
vide protein-specific results for Jensen-Shannon divergence comparisons in Appendix A.8. Our
tables demonstrate that while the force field-based model is competitive in low-capacity regimes,
our long-interval generative model significantly outperforms it in higher-capacity settings. This can
be attributed to the fact that force-field methods are constrained to small time steps and only require
short-term, local predictions which can be captured with fewer model parameters. In contrast, a
model capable of large time steps must possess a deep understanding of the underlying data mani-
fold, as the number of plausible transition states grows significantly with increasing time step size.
While EquiJump requires substantial capacity to accurately reproduce long-term equilibrium be-
havior, it successfully navigates this manifold across model sizes (Appendix A.6), while achieving
overall superior performance.

In order to study the performance of our model, we consider the largest protein (lambda) as refer-
ence. The classical MD simulation used to generate its trajectory uses explicit water and the total
system has size around 12000 atoms (Lindorff-Larsen et al., 2011). Following Amber24 bench-
marks, on the same hardware we use for our simulations (NVIDIA A100) a system twice as large
(JAC) can reach a throughput of 1258 ns/day (Exxact Corp., 2024). Scaling linearly to the size of the
lambda cell, this results in 3.6s for a single 100ps step. Drawing from this reference, in Table 3 we
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Batch Size

Model (# Params) 1 8 32

32 (6.5M) Time (s) 0.34 1.49 3.35
Accel. (×) 10.60 19.33 34.39

64 (25.4M) Time (s) 0.51 2.26 6.07
Accel. (×) 7.05 12.74 18.98

128 (100.8M) Time (s) 0.60 3.12 12.17
Accel. (×) 6.00 9.23 9.47

256 (391.1M) Time (s) 1.05 6.40 26.09
Accel. (×) 3.40 4.50 4.42

Table 3: Performance Metrics and Estimates.
We measure the time of transport for a step of
100 ps using different model capacities when
integrating with 100 latent time steps for sim-
ulating the largest protein considered (lambda),
and estimate the acceleration factor from rep-
resentative classical MD with explicit solvent
that generated the training dataset. All results
are reported on NVIDIA A100 machines with
single GPUs of 80G.

Figure 7: Quality against Acceleration.
We plot estimated acceleration factors against
Jensen-Shannon divergence (JS) for the distri-
bution of long-term TIC components of Equi-
Jump samples against reference trajectories.
We display positive performance across batch
sizes.

compare the performance of EquiJump models across different scales, where we observe positive
acceleration factors for all model instances.

Based on these metrics, we study the relation of EquiJump speedup against generation quality. In
Figure 7, we identify the trade-off between estimated acceleration factors and accuracy in repro-
ducing the distribution of TIC components for different simulation batch sizes. We observe that
EquiJump models are able to accurately reconstruct TIC components (JS < 0.1) while accelerating
by factors of 5-15× compared to Amber24, achieving a significant simulation throughput with min-
imal trade-off in precision. In comparison, CG-MLFF is estimated to be 1-2 orders of magnitude
slower than the reference simulation (Majewski et al., 2023). Similarly, while MACE-OFF (Kovács
et al., 2023) represents the state-of-the-art in machine learned force-fields, it is estimated to perform
2.5Msteps/day for its smallest model on the same hardware (Kovács et al., 2023). With a time step
of 4 fs, this would amount to 860s per 100ps step, representing a 0.004 × slowdown in comparison
to reference. In contrast, despite its already promising acceleration, the performance of EquiJump is
likely to be further enhanced through additional hyperparameter optimization, exploration of more
efficient differential equation solvers, and application of distillation and sampling acceleration tech-
niques (Luhman and Luhman, 2021; Salimans and Ho, 2022).

5 CONCLUSION

In this work, we introduced EquiJump for learning the dynamics of 3D protein simulations. Equi-
Jump extends Two-Sided Stochastic Interpolants for 3D dynamics through SO(3)-equivariant neural
networks, and is implemented through a novel four-track architecture that handles all-atom struc-
tures. We validated our approach through a series of experiments on large-scale dataset of fast-
folding proteins, where we demonstrated a unified model that accurately reproduces complex dy-
namics across different proteins. We ablated model capacities and compared our model to existing
approaches, outperforming state-of-the-art methods in terms of accuracy and efficiency. Our re-
sults suggest EquiJump provides a stepping stone for future research in modeling and accelerating
protein dynamics simulation. Future work will focus on architecture and parameter efficiency, on
transferability across data, and on generalization.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 BROWNIAN DYNAMICS IN PROTEIN-SOLVENT SYSTEMS AND CONNECTION TO
STOCHASTIC INTERPOLANTS

In the study of molecular dynamics of proteins immersed in solvents, it is crucial to account for
the interactions between the proteins and the surrounding fluid. Proteins in a solvent experience
random collisions with solvent molecules, leading to stochastic behavior that can be effectively
modeled using Brownian dynamics (Ermak and McCammon, 1978). This approach captures the
random motion arising from thermal fluctuations and solvent effects, providing a realistic depiction
of protein behavior in biological environments.

Generalized frictional interactions among the particles can be incorporated into the Langevin equa-
tion through a friction tensor R (Schlick, 2010). This tensor accounts for the action of the solvent
on the particles and modifies the Langevin equation to:

MẌ(t) = −∇E(X(t))−RẊ(t) +W(t), (10)

where M is the mass matrix, X(t) represents the particle positions at time t, E(X(t)) is the potential
energy, and W(t) is a random force representing thermal fluctuations from the solvent. The mean
and covariance of the random force W(t) are given by:

⟨W(t)⟩ = 0, ⟨W(t)W(t′)T ⟩ = 2kBTRδ(t− t′), (11)

where kB is Boltzmann’s constant, T is the temperature, and δ(t − t′) is the Dirac delta function.
This relation is based on the fluctuation-dissipation theorem, a fundamental result that connects the
friction experienced by a particle to the fluctuations of the random force acting upon it, assuming
the particle is undergoing random motion around thermal equilibrium.

This description ensures that the ensemble of trajectories generated from Eq. 10 is governed by the
Fokker-Planck equation, a partial differential equation that describes the evolution of the probability
density function of a particle’s position and momentum in phase space during diffusive motion.

In this context, the random force W(t) is modeled as white noise with no intrinsic timescale. The
inertial relaxation times, given by the inverses of the eigenvalues of the matrix M−1R, define the
characteristic timescale of the thermal motion. When these inertial relaxation times are short com-
pared to the timescale of interest, it is appropriate to neglect inertia in the governing equation,
effectively discarding the acceleration term by assuming MẌ(t) ≈ 0. Under this approximation,
Eq. 10 simplifies to the Brownian dynamics form:

Ẋ(t) = −R−1∇E(X(t)) +R−1W(t). (12)

This simplification reflects that solvent effects are sufficiently strong to render inertial forces negli-
gible, resulting in motion that is predominantly Brownian and stochastic in nature. This description
is particularly effective for modeling very large, dense systems whose conformations in solution are
continuously and significantly altered by the fluid flow in their environment.

To stably evolve Brownian dynamics eq. (12) over time, small integration steps are usually required
due to the stiffness of the physical manifold. Molecular systems exhibit a wide range of timescales:
fast atomic motions such as bond vibrations and thermal fluctuations occur on the order of femtosec-
onds, while slower conformational shifts and larger-scale rearrangements may take place over much
longer periods. These necessitate small time steps to accurately capture the system’s rapid changes
without numerical instability. In contrast, Stochastic Interpolants eq. (9), while also following the
form of eq. (12), enable smoothing of the data manifold by convolution with small Gaussian pertur-
bations. This leads to a latent representation that is robust to noise, allowing for larger integration
steps. The smoother manifold helps overcome local energy barriers and navigate the broader confor-
mational landscape more efficiently, making it possible to simulate molecular dynamics on extended
timescales without losing stability.
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A.2 ARCHITECTURE DETAILS

Algorithms 3, 4, 5 describe the components of EquiJump. The Tensor Square operation in Alg. 3
(line 1) is applied independently within each channel. The residual sum of Alg. 5 (line 5) is only
performed on the geometric features, since positions are fixed.

Tested models employ irreps of 0e + 1e across multiplicities {32, 64, 128, 256}. We only test
conditional number of layers Lcond = 6, and header number of layers Lheader = 4. Our experimenta-
tion indicates further scaling is a promising direction of research.

For interpolant parameterization we use I(τ,X0,X1) = (1− τ)X0 + τX1, γ(τ) = σ · τ · (1− τ)
and fixed time dependent diffusion coefficient ϵ(τ) = 1.0 in sampling. Where σ = 3.0, 1.0 for the
coordinates and geometric features, respectively. In future work we will investigate how different
interpolant parameterizations affect the performance of our model.

Algorithm 3 Self-Interaction

Require: Tensor Cloud (P,V)

1: V← V ⊕ (V)
⊗2

2: V← MLP(Vl=0) ·V
3: V← Linear(V)
4: return (P,V)

Algorithm 4 Spatial Convolution

Require: Tensor Cloud (V,P)
Require: Output Node Index i

1: (P̃, Ṽ)1:k ← kNN(Pi,P1:N )

2: R1:k ← Embed(||P̃1:k −Pi||2),
3: ϕ1:k ← SphericalHarmonics(P̃1:k −Pi)

4: Ṽ1:k ← MLP
(
Rk ⊕Vl=0

1:k ⊕Vl=0
)
· Linear

(
Ṽ1:k ⊗ ϕ1:k

)
5: V← Linear

(
V + 1

k

(∑
k Ṽk

))
6: return (V,P)

Algorithm 5 EquiJump Deep Network

Require: Tensor Cloud X = (P,V0:lmax)
1: H0 ← Self-Interaction(X)
2: for l in [0, L) do
3: Hl+1 ← Self-Interaction(Hl)
4: Hl+1 ← SpatialConvolution(Hl+1)
5: Hl+1 ← LayerNorm(Hl+1 +Hl)

6: Hagg ← Linear
(⊕L−1

l=0 Hl
)

7: Hout ← Self-Interaction(Hagg)
8: return Hout
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A.3 DATASET DETAILS

We adapt the dataset produced by (Majewski et al., 2023). The dataset consists of trajectories of
500 steps at intervals of 100ps. Refer to the table below for the number of trajectories curated. To
include all relevant residues, in addition to the standard vocabulary of residues, we also include a
canonical form of Norleucine (NLE).

Protein Residues Trajectories

Chignolin 10 3744
Trp-Cage 20 3940
BBA 28 7297
Villin 34 17103
WW domain 35 2347
NTL9 39 7651
BBL 47 18033
Protein B 47 6094
Homeodomain 54 1991
Protein G 56 11272
a3D 73 7113
λ-repressor 80 15697

A.4 DETAILS ON ENHANCED SAMPLING CLUSTERS

To choose clusters that are diverse and dynamically relevant for enhanced sampling in training,
we perform K-means clustering on 2D TICA components and find 200 clusters for each protein.
Figure 8 visualizes cluster centers and the distribution of population sizes. Our enhanced dataset
first samples a cluster, then from the cluster a configuration and its transition.

Figure 8: Cluster Centers and Distribution of Cluster Population Sizes.
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A.5 ADDITIONAL VISUALIZATION OF SAMPLES

Figure 9: EquiJump Samples: (a) We visualize the performance of EquiJump on additional fast-
folding proteins by superposing 1500 backbone random samples of EquiJump trajectories. We align
samples to the crystal backbone (shown in black). We further present (b) mean pairwise Cα distance
matrices, (c) Ramachandran plots of backbone dihedrals and (d) Janin plots of sidechain dihedrals
of EquiJump samples against reference trajectory data.
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A.6 ADDITIONAL TICA FREE ENERGY PROFILES

Figure 10: From disorder to order: Free Energy profiles on TIC1 and TIC2 for comparison
model and EquiJump models with increasing capacity. While the MLFF model remains close to
basin states, EquiJump is biased to less ordered regions despite staying in the manifold, and instead
becomes more stable with increasing capacity.
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A.7 ADDITIONAL FREE ENERGY CURVES

Figure 11: Free Energy on Cα Radius of Gyration for the 12 Fast-Folding Proteins. We bin
and reweigh counts of Cα gyradii (x-axis) based on MSM weights to obtain free energy estimates
(y-axis).

Figure 12: Free Energy on Fraction of Native Contacts of Cα atoms for the 12 Fast-Folding
Proteins. We bin and reweigh Fraction of Native Contacts (FNC) (x-axis) of Cα atoms based on
MSM weights to obtain free energy estimates (y-axis). We only consider residues at least 3 sequence
positions apart, and use a cutoff of 8 Å for counting contacts.
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A.8 PROTEIN-SPECIFIC ABLATION RESULTS

We provide below Jensen-Shannon divergece measures against reference trajectories for
(reweighted) ensemble observables of each protein. We compare CG-MLFF (Majewski et al., 2023)
and EquiJump models at different capacities.

EquiJump
CG-MLFF 32 64 128 256

chignolin

TIC1 0.221 0.026 0.069 0.009 0.006
TIC2 0.152 0.019 0.039 0.003 0.006

RMSD 0.253 0.028 0.083 0.012 0.018
GDT 0.231 0.018 0.080 0.010 0.013

RG 0.191 0.029 0.061 0.008 0.020
FNC 0.189 0.024 0.069 0.007 0.012

trpcage

TIC1 0.372 0.115 0.107 0.048 0.019
TIC2 0.187 0.037 0.047 0.068 0.008

RMSD 0.283 0.051 0.038 0.011 0.022
GDT 0.302 0.066 0.042 0.013 0.021

RG 0.438 0.045 0.028 0.007 0.035
FNC 0.299 0.100 0.096 0.036 0.031

bba

TIC1 0.334 0.110 0.067 0.114 0.044
TIC2 0.169 0.132 0.012 0.022 0.017

RMSD 0.022 0.102 0.048 0.211 0.025
GDT 0.037 0.339 0.045 0.248 0.029

RG 0.185 0.086 0.024 0.271 0.026
FNC 0.200 0.279 0.086 0.143 0.026

wwdomain

TIC1 0.252 0.191 0.061 0.048 0.028
TIC2 0.072 0.065 0.047 0.037 0.014

RMSD 0.246 0.226 0.091 0.139 0.022
GDT 0.263 0.240 0.093 0.127 0.021

RG 0.084 0.161 0.064 0.173 0.018
FNC 0.264 0.294 0.100 0.090 0.021

villin

TIC1 0.347 0.181 0.091 0.020 0.015
TIC2 0.340 0.162 0.078 0.016 0.019

RMSD 0.253 0.149 0.079 0.035 0.016
GDT 0.293 0.151 0.088 0.028 0.015

RG 0.240 0.101 0.054 0.079 0.019
FNC 0.300 0.149 0.064 0.015 0.020

ntl9

TIC1 0.251 0.270 0.207 0.072 0.045
TIC2 0.270 0.287 0.225 0.078 0.073

RMSD 0.192 0.283 0.191 0.101 0.059
GDT 0.170 0.242 0.156 0.069 0.044

RG 0.019 0.187 0.130 0.121 0.050
FNC 0.172 0.383 0.240 0.054 0.038

bbl

TIC1 0.402 0.124 0.062 0.069 0.033
TIC2 0.229 0.224 0.063 0.137 0.036

RMSD 0.378 0.053 0.016 0.135 0.011
GDT 0.409 0.055 0.008 0.132 0.008

RG 0.207 0.042 0.013 0.140 0.018
FNC 0.445 0.237 0.057 0.134 0.029

proteinb

TIC1 0.377 0.055 0.040 0.041 0.008
TIC2 0.332 0.115 0.062 0.054 0.008

RMSD 0.214 0.265 0.156 0.178 0.007
GDT 0.240 0.277 0.162 0.181 0.007
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EquiJump
CG-MLFF 32 64 128 256

RG 0.247 0.247 0.121 0.190 0.044
FNC 0.313 0.189 0.095 0.095 0.004

homeodomain

TIC1 0.250 0.308 0.260 0.203 0.081
TIC2 0.183 0.144 0.130 0.117 0.044

RMSD 0.150 0.414 0.298 0.321 0.068
GDT 0.189 0.468 0.349 0.355 0.078

RG 0.051 0.288 0.195 0.313 0.137
FNC 0.246 0.378 0.257 0.261 0.089

proteing

TIC1 0.180 0.077 0.127 0.034 0.009
TIC2 0.212 0.602 0.154 0.037 0.012

RMSD 0.075 0.175 0.101 0.079 0.019
GDT 0.103 0.628 0.106 0.067 0.013

RG 0.079 0.191 0.069 0.105 0.040
FNC 0.241 0.386 0.155 0.039 0.011

a3d

TIC1 0.348 0.336 0.356 0.095 0.072
TIC2 0.319 0.130 0.099 0.055 0.034

RMSD 0.107 0.352 0.336 0.074 0.070
GDT 0.112 0.355 0.339 0.072 0.057

RG 0.371 0.234 0.173 0.099 0.038
FNC 0.224 0.311 0.286 0.079 0.055

lambda

TIC1 0.330 0.109 0.159 0.107 0.116
TIC2 0.338 0.210 0.144 0.100 0.091

RMSD 0.311 0.129 0.109 0.033 0.046
GDT 0.277 0.167 0.095 0.028 0.042

RG 0.157 0.137 0.131 0.046 0.053
FNC 0.382 0.277 0.116 0.044 0.060
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