
Liu et al., Sci. Adv. 10, eadj3608 (2024)     10 January 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c L e

1 of 12

O P T I C S

Imaging privacy threats from an ambient light sensor
Yang Liu1,2*, Gregory W. Wornell1,2,3, William T. Freeman1,2, Frédo Durand1,2*

Embedded sensors in smart devices pose privacy risks, often unintentionally leaking user information. We inves-
tigate how combining an ambient light sensor with a device display can capture an image of touch interaction 
without a camera. By displaying a known video sequence, we use the light sensor to capture reflected light inten-
sity variations partially blocked by the touching hand, formulating an inverse problem similar to single- pixel im-
aging. Because of the sensors’ heavy quantization and low sensitivity, we propose an inversion algorithm involving 
an ℓp- norm dequantizer and a deep denoiser as natural image priors, to reconstruct images from the screen’s 
perspective. We demonstrate touch interactions and eavesdropping hand gestures on an off- the- shelf Android 
tablet. Despite limitations in resolution and speed, we aim to raise awareness of potential security/privacy threats 
induced by the combination of passive and active components in smart devices and promote the development of 
ways to mitigate them.

INTRODUCTION
Privacy is one of the major issues raised by the prevalence of smart 
devices, such as mobile phones, watches, tablets, and televisions (1). 
Embedded sensors enable tremendous capabilities, but, unfortunately, 
they also increase the risk of leaking users’ information. For example, 
embedded front cameras enable selfies and video conferences but 
can leak a user’s facial information if not managed properly (2). Per-
mission control can provide effective privacy protection by allowing 
users to manage access to sensors (e.g., cameras) and data (3, 4). 
However, some sensors are considered “low risk” and can be accessed 
directly without any permissions or privileges. For example, the ambient 
light sensor is used to measure the illuminance of the surrounding 
light and to adjust the brightness of the screen automatically. The 
ambient light sensor needs to be always on for functionality and is 
traditionally considered to be of low risk because it provides a single 
value and does not appear to enable imaging of the environment (5–10).

Previous work mainly focuses on the privacy threats from sen-
sors, which acquire data passively. These sensors can be divided into 
two categories: permission- required and permission- free sensors (4). 
Permission- required sensors are usually of high privacy risk because 
they convey direct video (2, 11), audio (12), and location information 
and their access is carefully controlled or even physically blocked, 
e.g., by the camera/microphone blocker. Not until recently have 
permission- free sensors, such as motion (13), light (5–7, 9, 10), 
and proximity (8) sensors, received attention for revealing privacy 
threats. The ambient light sensor, in particular, has been shown to 
enable the inference of keystrokes on a virtual keyboard (5), the 
classification of content shown on a nearby display (7, 9), and the 
determination of visited websites or even images by extracting one 
bit of information at a time (10). These usually involve user- specific 
data for behavior regression (5, 7, 9) and resolve limited information 
(6, 10).

Here, we combine an active component—viz., a display screen—
with the passive ambient light sensor and demonstrate the capture 
of images of the environment in front of the screen without access to 

the camera. The ubiquity of the combination of screens and ambient 
light sensors makes it crucial to understand its privacy risks and to 
revisit whether it should be considered a low- risk configuration.

We argue that the ambient light sensor can enable imaging if one 
uses the screen as a controllable active source of illumination dis-
playing a known video sequence. The ambient light sensor measures 
the corresponding intensity variation of light reflected off or blocked 
by the scene (Fig. 1A). These sequential measurements and the cor-
responding known illumination sequence form a linear inverse problem, 
which can be solved to reconstruct an image from the perspective of 
the screen (Fig. 1B). Here, the problem is linear only when the mea-
surements are not quantized with full precision of floating- point 
numbers. However, the ambient light sensor is of low sensitivity 
(at 1 lux level), and the contribution of screen fluctuation is heavily 
quantized to ≤5 bits per measurement. This type of imaging inverse 
problem is known as ghost imaging (14–17) or single- pixel imaging 
(18–22), which was considered to be a quantum effect (23), was 
independently explored as dual photography (18, 24), and can be 
accelerated by compressive sensing (19–21). A similar idea using 
arrays of light- emitting diodes as virtual sensors has also been 
explored in the internet of things community for skeleton posture 
(25) and hand pose (26) estimation. However, it has not been shown 
in any privacy settings. The imaging capability that we explore is a 
form of dual photography (18, 24), where Helmholtz reciprocity (27, 
28) indicates that the flow of light can be computationally reversed 
to swap out the sensor (ambient light sensor) and the illumination 
(screen). In our case, the light path from the screen to the scene and 
then to the ambient light sensor (primal path) can be reversed, 
resulting in a path from the ambient light sensor to the scene and 
eventually to the screen (dual path). The primal configuration (Fig. 1A), 
where the sensor has a single pixel and the illumination has good 
resolution, can be interpreted by its duality, where the pixelated 
screen works as a virtual sensor and the ambient light sensor as a 
virtual light source (Fig. 1B).

Capturing images of the scene in front of the screen using an 
ambient light sensor involves two challenges. First, quantization 
noise is substantial due to the combination of limited light reflected 
off the scene and the integer- quantized outputs (in lux) of the ambient 
light sensor. Some early Android devices, such as Google Nexus 
phones, give floating- point outputs. We consider the more recent 
and common case, where smart devices with ambient light sensors 
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only have integer outputs with the same unit lux. To address this, we 
combine the optimization- based reconstruction and the deep learning–
based image denoiser as a prior (29, 30), where the iterative inversion 
procedure and the strong image prior remove the measurement noise 
and retain the signal content accurately (Fig. 2).

The second challenge is that there is no lens between the scene 
and the screen. The screen serving as the virtual sensor “sees” a 
highly blurred image of a general scene at a distance (fig. S2A). This 
“lensless” scenario inherently affects the fidelity with which the en-
vironment can be imaged in this way. For objects that are in contact 
with or close enough to the screen, lenses are not required. This is 
because each pixel of the virtual sensor sees the one- to- one mapping 
blocked by the scene pixel (Fig. 3). For general objects, this is closely 
related to the non–line- of- sight (NLOS) imaging problem by observing 
a blank wall with an ordinary camera (31–37), where there is no lens 
between the target NLOS scene and the observing wall. In contrast, 
we show that the deformation of an occluder to form an accidental 
pinhole (31) between the scene and the screen. As a result, we em-
phasize on revealing imaging information leakage of the ambient 
light sensor in contact with the screen by eavesdropping the user in-
teraction of hand gestures. We further discuss ways to mitigate these 
light sensor–based imaging privacy threats by considering access to 
the screen and the ambient light sensor; the brightness of the screen; 
and the precision, refresh rate, and location of the ambient light sensor.

RESULTS
Imaging inverse problem
Imaging forward model
Revealing the imaging privacy threats from an ambient light sensor 
can be formed as a quantized version of linear inverse problem

where y ∈ ℝm is the ambient light sensor outputs as a vector, m is the 
number of outputs; x ∈ Rn is the target signal with two- dimensional 
image vectorized; n is the total number of pixels of the target image; 
A ∈ ℝm×n is the sensing matrix with each row as the vectorized pattern 

on the screen; b ∈ ℝn is the noise induced by the sampling process 
with the noise of the ambient light sensor output, surrounding light, 
and the fluctuation of the screen brightness as dominant sources; and 
(⋅) is a uniform and scalar quantizer, i.e., (z) = Δ ⋅ ⌊ z

Δ
⌋ with Δ 

being the quantization step size and ⌊·⌋ denoting the floor function. 
Note that subsampling when the number of measurements is less 
than that of the number of total pixels of the target image, i.e., m < n, 
could reduce the acquisition time for a single image. Likewise, we 
use the “zig- zag” strategy for subsampling Walsh- Hadamard trans-
form domain (38), and the proposed inversion algorithm inherently 
works for subsampled sensing matrix (see fig. S11 for comparison of 
subsampled images with sampling ratios from 50 to 10%). A com-
plete imaging model taking the occluder and the receiving/transmitting 
angle ranges of the ambient light sensor and the screen into account 
can be found in fig. S1.
Imaging inverse recovery
Intuitively, if the measurement y is not quantized and the sensing 
matrix A is an orthogonal matrix, e.g., identity matrix, and no noise 
is engaged, then Eq. 1 can be solved by its direct inverse transform, 
i.e., x = A−1 y. Because quantization noise is the dominant corrup-
tion source of the measurement, we use the ℓp- norm or basis pursuit 
dequantizer of moment p (39) to constrain the data- fidelity manifold. 
Here, 2 ≤ p < ∞, and ℓ∞- norm better respects the uniform quan-
tization consistency (39, 40) than ℓ2- norm. The consistency (39, 40) 
can be rewritten as (z) = y ⇔‖y−z‖∞ ≤

Δ

2
 with Δ being the quan-

tization step size of (⋅) . Then, we have the ℓp- norm constrained imag-
ing inverse recovery problem

where ∥z∥
p
p = (

∑m

i=1
∣ zi ∣

p) is the ℓp- norm, R(·) is the regularization/
prior term imposed on the signal, which comes from the prior knowl-
edge of the signal, and λ is the factor balancing the data- fidelity term 
1

2
∥ y − Ax ∥

p
p
 and the prior term R(x).

y = (Ax + b) (1)

x̂ = argminx
1

2
∥ y − Ax ∥

p
p

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
data−fidelity term

+ λ ⋅ R(x)
⏟⏟⏟
prior term (2)
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Fig. 1. Imaging setup with primal and dual configurations. (A) Primal configuration where the screen displays a sequence of patterns and the ambient light sensor 
receives the light first partially blocked by the interacting hand and then reflected from the human face. (B) dual configuration where the ambient light sensor works as 
the virtual point light source and the pixelated screen as the virtual sensor. no lens is required between the screen and the scene to form an image on the virtual sensor, 
because the interacting hands create in- contact shadows on the virtual sensor, forming one- to- one mapping between the target scene pixel and the sensor pixel.
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Then, we use the alternating direction method of multipliers 
(ADMM) (41) to solve this optimization problem by rewriting Eq. 2 
in the alternating direction form, that is

Note that Eq. 3 separates the constraints of the data- fidelity term 
and the prior term on two variables x and z, respectively. The aug-
mented Lagrangian of Eq. 3 can be written as

where w is the multiplier or dual variable and ρ is the penalty pa-
rameter. After substituting w/ρ with the scaled dual variable u, Eq. 4 
can be rewritten as

with const. being a constant independent of x and z. Following the 
ADMM method, Eq. 5 can be solved by iteratively updating x, z, and 

u in an alternating manner. Using the proximal operator (42), that is 
proxh(v) = argminxh(x) +

1

2
∥ x − v ∥2

2
 , the iterative procedure can be 

written as

where f (·) is the data- fidelity term, i.e., f (x) =
1

2
∥ y − Ax ∥

p
p.

Note that Eq. 6 is an ℓp- norm minimization problem with a closed- 
form solution only for the quadratic or ℓ2 case, i.e., xk+1 = (AT A + 
ρ I)−1 [AT y + ρ (zk − uk)]. Inspired by this, we apply iteratively 
reweighted least squares (43, 44) to solve the general case of ℓp-  
norm minimization (p > 2). The approach is to replace the ℓp- norm 
objective f (x) with a reweighted ℓ2- norm, where the weights are 
corresponding values from previous update. That is 
‖q‖pp =

∑
i ∣q

�
i
∣p−2 ⋅ ∣qi ∣

2 =
∑

iwi ⋅ ∣qi ∣
2 = qTWq , where W is a di-

agonal matrix with previous values q′ as the diagonal elements. 
Therefore, for each substep of solving the ℓp- norm minimization 
problem, we have a reweighted version of quadratic form with 

(x̂, ẑ)= argmin(x,z)
1

2
∥y−Ax ∥

p
p +λR(z)

subject to x= z
(3)

ρ(x, z ,w)=
1

2
∥y−Ax ∥

p
p +λR(z)+wT(x−z)+

ρ

2
∥x−z ∥2

2

(4)

ρ(x, z , u)=
1

2
∥y−Ax ∥

p
p +λR(z)+

ρ

2
∥x−z+u∥2

2
+const.

(5)

xk+1 = proxf ∕ρ(z
k − uk) (6)

zk+1 = proxλR∕ρ(x
k+1 + uk) (7)

uk+1 = uk + (xk+1 − zk+1) (8)

CNN-based image denoiser

ℓp-norm 
dequantizer

Proposed PnP-QCS recovery algorithm 

A B C ED

Fig. 2. Inversion procedure for revealing imaging privacy threats from an ambient light sensor. (A) the ambient light sensor measurements by displaying a se-
quence of full Walsh- hadamard bases on the screen with an in- contact hand pose. the pixel resolution is 32 × 32, and a total of 1024 measurements are collected with 
acquisition time of 17 min. the light sensor value range is [0, 25] lux in integers. (B) Sensor outputs reshaped as a two- dimensional transform domain according to sam-
pling indices. (C) Recovered image by applying direct inverse transform. (D) the iterative inversion process using the cnn- based image denoiser as the prior. PnP- QcS, 
plug- and- play quantized compressive sensing. (E) the final recovered image using the proposed inversion algorithm.
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Fig. 3. Imaging privacy threats revealing touch detection in front of the screen. (A) experimental setup where in- contact touch is revealed. (B) target touching hand 
to be resolved. (C) Recovered images by direct inverse transform, where the noise in images comes from the measurement process, especially the quantization noise of 
the ambient light sensor. (D) Final recovered images by the proposed inversion algorithm. Recovered images are acquired by displaying a sequence of full Walsh- 
hadamard bases with corresponding pixel resolutions. the pixel resolution is 32 × 32, and each acquisition takes 17 min. Scale bars, 2 cm.
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closed- form solution, and the corresponding weights can be updat-
ed iteratively, that is the subiteration involved for solving Eq. 6

where diag(v) returns a diagnoal matrix with diagonal elements being 
all elements of vector v, ∣v∣ returns the absolute value of each element 
in vector v, Eq. 10 is a weight- normalized version of diag[∣y − 
Ax(t+1)∣p−2], and the initial weight matrix is identity, i.e., W(0) = I. For 
orthogonal bases as displayed patterns, AAT is diagonal. In addition, 
recall from Eq. 10 that W(t) is also a diagonal matrix. According to 
the matrix inversion lemma (45), the substep x(t+1) can be updated 
without solving a matrix inversion in each subiteration (46, 47), that is

where ⊘ is element- wise division and diag(·) returns the diagonal 
elements of a square matrix. Detailed derivations can be found in 
section S4.

The update on zk+1 is regularizing (xk+1 + uk) on the signal prior 
domain and can be viewed as a denoising problem without explicitly 
expressing R(·), that is

where σ(v) = proxσ2R(v) =
1

2σ2
‖x−v‖2

2
+ R(x) is a denoising func-

tion with the noisy signal v and the noise level σ as inputs and 
σ̂k =

√
λ∕ρ is the estimated noise standard deviation (SD) in each 

iteration. This framework is called plug- and- play priors for inverse 
problems (29) because a denoiser can serve as the prior for the signal 
and state- of- the- art results can be achieved with a simple plug- in 
(30). With the advances of deep neural networks (48), convolution 
neural network (CNN)–based image denoisers are efficient in terms 
of the long- standing trade- off of quality and speed and flexible 
enough to deal with a wide range of noise levels (e.g., noise SD [0, 
70] at a scale of 255) with a single pretrained network (49, 50). These 
flexible CNN–based denoisers serve as the prior for natural images. 
Inspired by the success of deep denoisers for other high- dimensional 
compressive imaging problem (47), we propose to use a pretrained 
CNN–based image denoiser, i.e., the fast and flexible denoising con-
volutional neural network (50) as a prior and obtain fast and high- 
quality reconstruction compared to a hand- crafted prior and other 
state- of- the- art denoisers (see fig.  S10 for comparison with other 
priors and algorithms). The code along with measurement data and 
experimental configurations is publicly available (51).

Imaging privacy threats
Touch detection in contact with the screen
We first demonstrate the imaging privacy threat of touch poses in 
contact with the screen, as shown in Fig. 3. An off- the- shelf Android 
tablet (Samsung Galaxy View2) embedded with a 17.3- inch screen 
(width of 38.3 cm and height of 21.5 cm) and an ambient light sensor 
near the front camera is used here. We put a mannequin person 

facing the screen at a distance of around 12 cm and apply a certain 
touch to the screen with a cardboard hand or a real human hand 
(Fig. 3A). We display a sequence of full Walsh- Hadamard transform 
bases (52, 53) reshaped as two- dimensional with {+1, −1} values. A 
differential measurement strategy is used to circumvent the negative 
values (38). In particular, each Walsh- Hadamard basis H is imple-
mented with the subtraction of two adjacent patterns D+ =

1

2
(1 +H) 

and D− =
1

2
(1 +H) , with 0 or 1 value for each pixel. The reflected 

light is collected by the ambient light sensor with integer values (be-
tween 0 and 25 lux in Fig. 2A). We set the effective refresh rate of the 
patterns on the screen as 2 Hz to match the speed of the ambient 
light sensor (around 10 to 20 Hz) and average the outputs within a 
time period of a pattern. The acquisition time for a pixel resolution 
of 32 × 32 is 17 min (Fig. 2 as well as the hand touches in Fig. 3). The 
ambient light sensor outputs are then reshaped as the two- dimensional 
transform domain according to the sampling index of each output 
(Fig. 2B). We use the direct inverse Walsh- Hadamard transform on 
the reshaped image and obtain the initial image of the touching 
hand (Fig. 2C). Last, we apply the proposed iterative process using a 
deep learning–based denoiser as the image prior for reconstruction 
(see Fig. 2D as well as Materials and Methods for details). Figure 3 
(C and D) shows the resulting imaging privacy threats involving two 
types of hand touches in contact with the screen. We observe that 
spatial noise (mainly in the form of quantization noise in the ambi-
ent light sensor) is removed and that the scene content is retained 
accurately in the final recovered image (Figs. 2E and 3D). From the 
dual photography perspective (Fig. 1), touching hands cast shadows 
on the virtual sensor because the human face reflects light, and the 
hands, which are very close to the screen while touching, partially 
block light. The imaging privacy threat here is the leaking of infor-
mation about physical interactions with the screen. In particular, we 
show that the cardboard open hand and the real pointing hand 
touching the screen (Fig. 3, A and B) can be reconstructed at reason-
ably good fidelity. Figure 3D shows that all five fingers are clearly 
resolved for the cardboard open hand, and the forefinger, thumb, 
and little finger are distinguishable for the real pointing hand.
Revealing hand gestures in contact with the screen
Furthermore, five sequences of typical touch gestures are revealed 
from the ambient light sensor of the 17.3- inch tablet, as shown in 
Fig. 4. To effectively obtain the touch gesture sequences, we match 
the effective refresh rate of the screen with the speed of the ambient 
light sensor (at ∼15 Hz) in terms of Nyquist sampling and obtain a 
pattern switching rate of 5 Hz (2.5× of acquisition speedup), where 
the upper bound (Nyquist sampling rate) is ∼7.5 Hz. Combined with 
the subsampling strategy by measuring the 50% low spatial frequency 
portion of the Walsh- Hadamard bases (see figs. S10 and S11 for de-
tails), we achieve a total of 5× speedup. As a result, we show 
sequences of touch gestures (one- finger slide, two- finger scroll, three- 
finger pinch, four- finger swipe, and five- finger rotate) with a frame 
interval of 3.3 min at pixel resolution of 32 × 32. Although the frame 
interval is still one to two orders of magnitude longer than the dwell 
time of the hand gesture, the revealed touch gestures are consis-
tent with target user input on the screen and can potentially eaves-
drop the user interaction. The bottleneck of the acquisition speed is 
the sampling rate of the ambient light sensor, as the frame interval is 
determined by t ≥ s/(2N × N × γ), where s is the sampling rate of the 
ambient light sensor, N × N is the target pixel resolution, and γ is the 
sampling ratio in the transform domain. With a faster ambient light 

x(t+1)=
[
ATW (t)A+ρI

]−1[
ATW (t)y+ρ(zk−uk)

]
(9)

W (t+1) = diag

[
n1∕p ∣y−Ax(t+1) ∣

∥y−Ax(t+1) ∥p

]p−2

(10)

x(t+1)= (zk−uk)+AT
[
y−A(zk−uk)

]
⊘
[
diag(AAT)+𝜌⊘diag(W (t))

]

(11)

zk+1 = σ̂k
(xk+1 + uk) (12)
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sensor and smaller pixel resolution and sampling ratio, the frame 
interval can be further reduced by one to two orders of magnitude, 
and real- time eavesdropping user interaction from an ambient light 
sensor would be an actual privacy threat.
Hand interaction leakage while watching a natural video
A potential abuse case is leaking the user’s hand interaction while 
watching a natural video, such as a film and a short video, or 
even browsing. We explore this interaction leakage by display-
ing a modified video clip of Tom and Jerry (www.youtube.
com/watch?v=cV6ucplpmbY/) on the screen, as shown in Fig. 5A, 
and form a quantized version linear inverse problem with a sensing 
matrix A. Each row of the sensing matrix corresponds to the vec-
torized displaying frame on the screen, as shown in Fig. 5D. Note 
that, in Fig. 5D, we are showing the transpose of the sensing matrix 
A for better visualization. The ambient light sensor gathers the total 
intensity of light partially blocked by the interacting hand and re-
flected from the white surface. Here, we use a white surface instead 
of a mannequin head and reduce its distance to the screen to in-
crease the light level received by the ambient light sensor. Therefore, 
the ambient light sensor is capable of distinguishing subtle inten-
sity changes of adjacent video frames, as shown in Fig. 5E. We show 
the recovery procedure can resolve the fingers of the touch de-
tection, as shown in Fig. 5C. This inversion result is based on the 

alternating projection method (54), as the Euclidean projection in 
ADMM struggles to get clean recovery for heavily ill- conditioned 
sensing matrices (34).
There are two key factors of the natural video affecting the recovery 
quality. The first one is the overall mean intensity, which directly 
affects the quantization level of the ambient light sensor. Natural 
videos with higher overall mean intensity benefit the recovery quality 
because it contributes to higher light level and consequently higher 
quantization level. The second factor is the condition number of the 
sensing matrix, which is a common metric for ill- conditioned linear 
inverse problems (55). A lower condition number at magnitude scale 
usually make the reconstruction easier as well. Empirically, this is 
characterized by high spatiotemporal variations of the video sequence. 
It is evident that the variance of light intensity in Fig. 5E is propor-
tional to the spatiotemporal variation of the video sequence, as 
shown in Fig. 5D. Two examples are the slowly varying interval of 
sampling index from 2300 to 3000 and the rapidly varying interval 
of sampling index from 7000 to 8000.

Imaging quality factors
Two passes of imaging formation processes are involved considering 
obtaining an image of objects distant from the screen.

One-finger 
slide

Two-finger 
scroll

Three-finger 
pinch

Four-finger 
swipe

Five-finger 
rotate

A B C

3.3 min 6.6 min 9.9 min 13.2 min 16.5 min 19.8 min

Fig. 4. Eavesdropping touch gestures from the ambient light sensor of a 17.3- inch tablet. (A) Gesture names. (B) Gesture depiction. (C) Recovered gesture sequenc-
es in front of the screen by the proposed inversion algorithm. each frame is of 32 × 32 pixel resolution and acquired with a 3.3- min interval by displaying a sequence of 
half Walsh- hadamard bases (low spatial frequency portion in a zigzag manner as shown in fig. S11) on the screen. Scale bars, 5 cm.

D
ow

nloaded from
 https://w

w
w

.science.org at M
assachusetts Institute of T

echnology on M
arch 10, 2025

http://www.youtube.com/watch?v=cV6ucplpmbY/
http://www.youtube.com/watch?v=cV6ucplpmbY/


Liu et al., Sci. Adv. 10, eadj3608 (2024)     10 January 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c L e

6 of 12

Privacy screen filter and angular response of screen pixel
From a dual perspective (Fig. 1B), the first pass is from the object to 
the screen. Because there is no lens between the object and the virtual 
image sensor (screen), the physical limit of the spatial resolution is 
determined by the receptive angle of image pixel, which corresponds 
to the angular response of the screen pixel (refer to the light transport 
imaging model in section S2). Modern screens optimize the viewing 
angle close to 180°, that is, the receptive angle of virtual image pixel 
is ∼180°, and there will not be angular selectivity to the object pixel, 
resulting in a highly blurry image (fig. S2A) with almost no spatial 
information revealed. Privacy screen filters are designed to avoid 
unwanted content exposure to peers by limiting the viewing angle 
from 180° to 60°. This angular selectivity of privacy screen filter is 
not sufficient to bring back the spatial information of the object 
given the ratio of the screen and object- screen distance close to 1:1. 
Lenticular autostereoscopic displays, however, are one to two orders 
of magnitude more angular selective than privacy screen filters and 
can potentially reveal more spatial information of the object in this 
incoherent lensless setting.

The second pass is from the screen pixel to virtual image sensor 
pixel, which is the dual photography process. From the image forward 
model, we can see that limiting factors to image quality are the sens-
ing matrix A, measurement signal- to- noise ratio, and quantization 

level. Because we use orthogonal bases, the sensing matrix A is de-
termined by the type of orthogonal bases and the sampling ratio in 
transform domain. Here, we discuss two major factors, which are 
the type of orthogonal bases and the quantization level. Detailed ex-
planation about sampling ratio in the transform domain and back-
ground signal- to- noise ratio are provided in sections S6.1 and S8, 
respectively.
Displayed orthogonal bases on the screen
We compare five typical orthogonal bases, i.e., standard or canonical 
basis, Haar wavelet basis, discrete Fourier transform (DFT) basis, dis-
crete cosine transform (DCT) basis, and Walsh- Hadamard basis in the 
context of imaging a map scene in contact with the screen shown in 
Fig. 6. The quantization level (4- bit) and measurement signal- to- noise 
ratio (30 dB) are set to mimic the level of quantization and background 
noise in real setup.

As shown in Fig. 6, Walsh- Hadamard basis combined with the 
proposed inversion algorithm performs the best both quantita-
tively and qualitatively among other bases even when the direct 
inverse transform is heavily noisy, e.g., Fig. 6 at pixel resolution 
of 64  ×  64. Fine details are retained faithfully with noise pixel 
removed, which is also evident in real data (Fig.  3, C and D). 
Walsh- Hadamard basis outperforms Fourier basis and DCT basis 
here because correlated high- contrast scene and basis can result 

A B C

D

E

Tablet

White 
surface

Ambient light sensor

Mannequin hand

Fig. 5. Hand interaction leakage while watching a natural video. (A) experimental setup with the screen displaying a modified video clip of tom and Jerry. (B) target 
reference touch gesture image. (C) Recovered touch gesture image. (D) transpose of the sensing matrix A, where each column corresponds to the vectorized displaying 
frame on the screen. (E) Light intensity measurements from the ambient light sensor, where each sampling index corresponds to each column (frame in the video) of (d). 
the video clip is modified to match the speed of the ambient light sensor. the total acquisition time is 68 min.
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in more discrepancy in this heavily quantized scenario. Standard 
basis and Haar wavelet basis struggle to give a meaningful re-
covery because all or the majority of the basis only carry one 
or a few pixels of the original image. As a result, individual 
measurements are below quantization step size contributing to 
all or most zeros in the transform domain.
Quantization levels of the light intensity
As shown in Fig. 7, the imaging capability is limited by the quan-
tization level of the ambient light sensor. If the quantization 
level is reduced to as low as 4.0- bit (illuminance value [0, 15] 
lux; Fig. 7E), then it fails to resolve enough imaging information 
even with the proposed algorithm, because high spatial frequen-
cies are lost during the sampling procedure [comparing the first 
row of Fig. 7E to Fig. 7 (A to D)]. Although the surrounding 
noise and averaging over time could partially circumvent the 
quantization issue (fig. S13), with a slow sampling speed of the 
ambient light sensor, this would not be effective.

DISCUSSION
We have demonstrated three types of imaging privacy threats. At this 
point, they may not be easy for attackers to leverage because of the 
long acquisition time (over 3 min) and the limited spatial resolution of 
the recovered images. For some scenarios, constrained configurations 
are required to form images, e.g., a particular mirror orientation for 
specular objects (fig. S6) and an occluder with centimeter- scale defor-
mation for general objects (figs. S3 and S9). Note that, while our 
experiments rely on a specific known sequence of basis illumination, 
similar approaches could be deployed with more natural displayed 
sequences, such as from a movie or a game. A linear system can still be 
formed and inverted, although possibly with more challenging con-
ditioning, as shown in Fig. 5 and fig. S12. This implies that people 
might not even be aware of being spied on while watching a film or 
playing a game. Detailed discussions of the magnitude of imaging privacy 
threats along with typical scenarios are in the Supplementary Materials. 
Nevertheless, our demonstrations confirm the reality of these threats.

Haar wavelet Fourier (DFT)

- ; - 7.92 dB; 0.2327

- ; - 1.49 dB; 0.0620

- ; - 17.07 dB; 0.4879

- ; - 14.50 dB; 0.1980

Walsh-Hadamard

Direct 
inverse 

transform

Ground truth

13.18 dB; 0.3802

5.86 dB; 0.1403

20.20 dB; 0.5892

18.04 dB; 0.4438

Standard basis 

PSNR; SSIM

PSNR; SSIM

32 × 32

Proposed 
inversion 
algorithm

Direct 
inverse 

transform

Proposed 
inversion 
algorithm

64 × 64

DCT

8.08 dB; 0.2418

6.53 dB; 0.0767

16.35 dB; 0.4572

15.23 dB; 0.3501

- ; -

- ; -

- ; -

- ; -
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F

Fig. 6. Simulation results comparing five orthogonal bases with measurement parameters mimicking the setup (4- bit quantization or [0, 15] integer values and 
measurement signal- to- noise ratio of 30 dB). Quantitative indices, i.e., peak signal- to- noise ratio (PSnR) and structural similarity (SSiM) (57), are shown on the bottom 
of reconstructed images, except for those far from ground truth image. higher is better. (A) Standard basis. (Black image results are shown because individual measurements 
are below quantization step size, i.e., all zeros.) (B) haar wavelet basis. (C) dFt basis. center frequencies are shifted to the upper left corner for better visualization comparison. 
(D) dct basis. (E) Walsh- hadamard basis. (F) Ground truth.
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From the privacy perspective, the potential risks of revealing images 
of the scene, albeit limited to some particular scenarios, should be 
reduced from both the software and hardware sides. In both cases, 
adding any constraints on the display is unlikely because it is such a 
central component whose capabilities are hard to reduce, which is 
why we focus on the ambient light sensor.

The landscape of privacy risk of typical off- the- shelf smart 
devices in terms of software constraints is shown in Fig. 8. Given a 
fixed reasonable resolution and time configuration, i.e., 32 × 32 pixels 
and 20 min here, the privacy risk or the imaging capability is limited 
by the information budget (measured by bits per second) acquired 
by the light sensor. As seen in Fig. 8 (A and B), the separation line 
between safe/warning zones is showing an inverse proportion be-
cause the information budget is the product of the light sensor speed 
and measurement bit depth, which is characterized by the log ratio 
of maximum screen brightness and light sensor precision. That says 
that a large brighter screen with higher light sensor precision as well 
as higher sensor speed will have higher risk of revealing imaging 
privacy threats, such as large Android TVs. Another key factor is 
how useful each bit (or measurement) is. Intuitively, if frames in a 
video sequence are too similar to each other or if rows of the sensing 
matrix are highly correlated, then this will not provide enough 
information for solving every pixel in the linear system (after quan-
tization). Therefore, Fig. 8B is showing a relaxed trend of imaging 
privacy threats. Following the usefulness argument of the measurement 
bits, if the smart device is put in a bright environment such as office 
light or sunlight, then the measurement bits will be less useful, i.e., 
the signal- to- noise ratio will go down, resulting in expanded low- risk/
safe zone.

From the software side, the imaging threats that we have revealed 
suggest two mitigation strategies: tighten permission controls and 
reduce the information output by the sensor. Restricting access to 
the screen is probably not realistic, but the lack of permission to access 
the ambient light sensor may need to be rethought. Second, the precision 
and speed of the ambient light sensor should be reduced in its 
application programming interface. From the hardware side, the 
location of the ambient light sensor should not be directly facing the user. 
It could be on the side of smart devices, which could break the direct 
interaction of the screen and the light sensor, thereby reducing the 
privacy risks. From the dual photography perspective, the ambient 
light sensor works as a virtual point light source and would still be 
able to resolve an image because photons bounce around and the 
scene might be lighted up. However, given the brightness of the screen 
and the quantization level of the ambient light sensor, the scene is 
not bright enough to be seen by the virtual sensor.

Accordingly, we propose quantizing the sensor output more 
(e.g., at a step of 10 lux), reducing speed (e.g., 1 to 5 Hz), and putting 
the ambient light sensor on the side instead of facing the user. These 
measures significantly mitigate the imaging threats of the ambient 
light sensor with no sacrifice in its functionality. In summary, we 
show that combined access to the ambient light sensor and the 
display can leak imaging information via capturing images of the 
scene in front of the screen without requiring access to the device’s 
camera. The intensity variation of the ambient light sensor resulting 
from the screen displaying a known sequence can resolve an image 
of the scene from the perspective of the screen. Touch detection and 
eavesdropping hand gestures are revealed from the ambient light 
sensor of an off- the- shelf Android tablet. Although the resulting 

A 5.6 bits B 5.2 bits C 4.9 bits E 4.0 bitsD 4.4 bits

Fig. 7. The effect of reduced quantization levels of the ambient light sensor outputs. (A to E) Recovered images with reduced quantization levels (from 5.6 to 4.0 bit) 
of the ambient light sensor outputs. the first row shows the transform domain, the second and third rows give the results using direct inverse Walsh- hadamard transform 
and the proposed inversion algorithm, respectively. All transform- domain and image- domain results are of 32 × 32 pixel resolution.
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image resolution as well as the acquisition speed is limited and 
constrained configurations are required in some scenarios, these 
demonstrations confirm the reality of the threats. The key to these 
imaging privacy threats is using both passive and active light–associated 
components of smart devices. In response to these risks, we aim 
to raise awareness of potential security/privacy threats post by 
both passive and active components of smart devices. Measures 
should be taken to mitigate them from restricting access to as-
sessing the information budget of these interacting components.

MATERIALS AND METHODS
Details on data acquisition
We use a 17.3- inch Samsung Galaxy View2 tablet operating on 
Android 8.1.0 Oreo with an embedded ambient light sensor (CM3323E 
by Capella Microsystems Inc.) for imaging information leakage 
of touch gestures and a 27- inch ASUS monitor (VE276Q) and 
a FLIR Grasshopper3 color camera (GS3- U3- 41C6C- C) for occluder- 
based imaging information leakage. Both screens have 16:9 aspect 
ratio, 1920 × 1080 pixel resolution, 60- Hz refreshing rate, and 
∼180° viewing angle. The peak brightness is ∼400 and 300 nits for 
the tablet and the monitor, respectively. We use the center pixels 
of 1024 × 1024 with 32 × 32 pixel binning for recovering a scene 
of pixel resolution of 32 × 32. We use a relatively low refresh rate 
for the screens, i.e., 12 and 30 Hz for the tablet and the monitor, 
respectively. Blank frames between adjacent patterns are used to 
get temporal segmentation of the light sensor outputs for each 
pattern with a duty ratio of 4:2, i.e., four frames of the same pattern 
followed by two blank frames. The effective refresh rate goes down 
to 2 and 5 Hz, respectively. The ambient light sensor has a speed 
of around 10 to 20 Hz, and we use the frame rate of 360 Hz and 
exposure time of ∼2.5 ms for the camera with a region of interest 
of 512 × 512 (the full pixel resolution of the camera is 2048 × 2048 
at a maximum frame rate of 90 Hz).

Displayed patterns on the screen
We use the Walsh- Hadamard patterns to demonstrate imaging privacy 
threats for two reasons. First, the Walsh- Hadamard patterns come 

from the Walsh- Hadamard transform basis, which is orthogonal and 
benefits the recovery procedure by reducing the matrix inversion over-
head (see the “Imaging inverse recovery” section). Second, comparing 
to other orthogonal bases, like standard basis, DCT basis, and discrete 
Fourier transform basis (56), Walsh- Hadamard transform basis turns 
out to be more tolerant to the quantization noise for high- contrast 
scenes (see simulation comparisons in the Supplementary Materials). 
Besides, the differential measurement strategy helps reduce the mea-
surement noise induced by surrounding light and the fluctuation of 
screen brightness. Random matrices can be used as displayed patterns 
on the screen as explored by the compressive sensing community (19–21). 
A known but uncontrolled sequence, like a video clip shown in Fig. 5 
and fig. S12, can be used for revealing imaging privacy threats. We use 
orthogonal bases as a controlled sequence to explore the imaging ca-
pability for simplicity. See discussions about the sensing matrix and 
various subsampling strategies in sections S6 and S7.

Occluder- based imaging
More generally, we show that a variety of objects can be potentially re-
vealed with the deformation of an occluder between the scene and the 
screen. Because there is no lens between it and the scene, the virtual sensor 
sees a severely blurred image of the scene (Fig. 9E). Inspired by the acci-
dental pinhole/pinspeck camera (31), we use the deformation of an oc-
cluder to act as a pinhole between the scene and the virtual sensor. The 
idea is to use the deformation of the occluder to capture the contribution 
of a small portion of the occluder, which would naturally act as a pinhole 
(Fig. 9, A to C). Here, the equivalent pinhole image is obtained by sub-
tracting the T- shape occluder image from the I- shape occluder image, i.e.

where the T- occluder is composed of the I- occluder stand and a 
head. This is always the case when there is finger motion of the hand 
between the face and the screen. Considering the trade- off of spatial 
resolution and the signal- to- noise ratio of the captured image, we 
use a pinhole size of 1 cm by 1 cm (see figs. S8 and S9 for experimental 
discussions). The distance from the scene to the occluder is approx-
imately equal to that from the occluder to the screen (fig. S9), the 
magnification factor of the equivalent pinhole imaging is ∼1:1. The 

Ipinhole = II−occluder − IT−occluder (13)

A B

Fig. 8. Privacy risk of typical smart devices in terms of the light sensor speed and the per- measurement bit depth, characterized by the log ratio of maximum 
screen brightness and light sensor precision. the dashed lines are simulated isolines in PSnR (higher PSnR values means higher fidelity of image recovery, thus higher 
privacy risk). (A) Screen displaying a sequence of a predefined orthogonal sensing matrix in a row- by- row manner. LLS, linear least squares. (B) Screen displaying a known 
film sequence, where each vectorized frame forms a row of the sensing matrix. the evaluated pixel resolution and acquisition time are fixed to 32 × 32 and 20 min, respec-
tively. Background isolines and detailed explanation can be found in fig. S14.
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final image is expected to be an inverted (upside- down reversed) 
image of the scene. Because the equivalent pinhole rejects most of 
the light from the scene and the limited sensitivity of the ambient 
light sensor on the tablet, we use a high- sensitivity light sensor, i.e., 
a camera summing up all the pixel values to mimic an ambient light 
sensor and a 27- inch monitor for experimental validation. The ef-
fective refresh rate of the patterns on the screen is set to 5 Hz, and 
the frame rate of the camera is 360 Hz with a region of interest as 
512 × 512. The acquisition time for a single occluder image is 7 min. 
We use three color channels from the camera and recover each 
channel separately. A pinhole image (Fig. 9H) is obtained by sub-
tracting the T- occluder (Fig. 9G) image from the I- occluder image 
(Fig. 9F). The shadows of the scene are barely visible when comparing 
Fig. 9 (F and G) to Fig. 9E, and the contribution of the pinhole is 
almost undetectable to the human eye. Here, we also average three 
and five measurements over time for the Stripes scene and the Man-
nequin scene for a better signal- to- noise ratio. Last, we apply the 
proposed inversion algorithm on the pinhole image (Fig. 9H) and 
obtain a more accurate reconstruction of the mannequin face and 
the color stripes (Fig. 9I). As it is often the case that hand motion 
can serve as the natural deformation of an occluder, this imaging 
modality puts pressure on the ambient light sensor, potentially 
revealing face information without accessing the front camera.

Imaging a general object with this screen and ambient light sensor 
setup is closely related to the passive NLOS imaging problem (see a 
full comparison of the proposed imaging modality and passive 
NLOS imaging in fig. S4) (31–37). Passive NLOS imaging aims to 
look around the corner by observing a blank wall (32–35) or a pile of 
clutter (36). The imaging information comes from the shadows cast 
by the occluder between the scene and the observing wall. This idea 

originates from the accidental pinhole and pinspeck camera (31), 
where partial occlusion and movements or deformation could serve 
as the virtual pinhole/pinspeck. We use the deformation of an occluder 
to demonstrate imaging a general object with the screen and ambient 
light sensor setup for two reasons. First, it is always the case that 
finger motion between the face and the screen can serve as a virtual 
pinhole. Second, the sensitivity of the ambient light sensor is still 
limited extracting imaging information directly (33–36) from low 
signal- to- noise ratio signals. This remains as a future work.

Supplementary Materials
This PDF file includes:
Sections S1 to S10
Figs. S1 to S14
tables S1 to S4
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