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ABSTRACT

We propose a novel and interpretable data augmentation method based on energy-
based modeling and principles from information geometry. Unlike black-box gen-
erative models, which rely on deep neural networks, our approach replaces these
non-interpretable transformations with explicit, theoretically grounded ones, en-
suring interpretability and strong guarantees such as energy minimization. Central
to our method is the introduction of the backward projection algorithm, which
reverses dimension reduction to generate new data. Empirical results demon-
strate that our method achieves competitive performance with black-box gener-
ative models while offering greater transparency and interpretability.

1 INTRODUCTION

Data augmentation has advanced significantly in recent years, primarily due to the increasing use
of generative models to meet the growing demand for large datasets (Feng et al., 2021; Wong et al.,
2016). Despite their success, these generative models often rely on modern deep neural networks,
which are typically treated as black boxes, raising concerns about their interpretability (Guidotti
et al., 2018). For instance, the popular autoencoder model encodes original data into a compact
latent representation and then decodes it back, with both processes usually handled by black-box
neural networks (Kingma & Welling, 2022). Consequently, even when these models perform well,
the lack of understanding of the underlying transformations makes it difficult to control the generated
outputs, forcing researchers to depend heavily on empirical heuristics.

A natural approach to developing a more interpretable data augmentation method is to replace black-
box transformations with more explicit ones (Rudin, 2019). In this work, we take inspiration from
the autoencoder model, which consists of encoder and decoder. Encoder, when viewed as a form
of dimension reduction (Wang et al., 2016), contributes to the model’s success by acting as a form
of regularization and potentially avoiding sparsity through encoding data into a low-dimensional la-
tent representation space. Indeed, various data augmentation methods adopt this philosophy, where
compact representations are first learned via neural networks, incorporating dimension reduction
as a key component of the pipeline (Maharana et al., 2022). However, while dimension reduction
is a well-established field in data science, two main obstacles prevent its direct application to data
augmentation. First, classical methods like Principal Component Analysis (Wold et al., 1987) and
Singular Value Decomposition (Stewart, 1993) inherently rely on linear projection in the ambient
space (e.g., Euclidean), making the straightforward application of these methods unsuitable for cer-
tain modality such as images. Second, the decoder—which aims to reverse the dimension reduction
to generate new data—is highly non-trivial to design even for these classical linear methods. This is
one of the main reasons why modern generative models rely on black-box transformations.

We address both issues by proposing a new framework and a data-centric algorithm. The frame-
work introduces non-linearity through the well-known energy-based model (Xie et al., 2016), and is
built upon recent developments in the log-linear model on partially ordered sets (posets) (Sugiyama
et al., 2016; 2017) and information geometry (Amari, 2016; Amari & Nagaoka, 2000; Ay et al.,
2017): the log-linear model on posets embeds structured data (e.g., tensors) as discrete probability
distributions via an explicit mapping φ into a statistical manifold S, and subsequently, provides intri-
cate geometric structure of the data that enables efficient dimension reduction method via projection
in S. Building on this, the proposed algorithm, termed backward projection, aims to reverse this
forward projection process to generate new data via projection again. The core idea of backward
projection is simple and general: given a new point in the low-dimensional latent representation
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space, we identify its k-nearest latent representations of the original data (obtained via forward pro-
jection) and use them to create a target subspace to project backward onto. A key insight of the
proposal is its ability to exploit the interplay between linearity and non-linearity of projection: the
linearity arises from the divergence minimizing property when projecting onto flat low-dimensional
sub-manifolds defined by linear constraints on the coordinate systems provided by the log-linear
model on posets; however, these projections are inherently non-linear as the space S is curved. This
interplay leads to what we refer to as pseudo-non-linear data augmentation.

By combining backward projection with the log-linear model on posets, our approach benefits from
explicit, energy-based transformations: these non-linear projections are interpretable, fully white-
box, and energy-minimizing, while the framework offers the potential to capture intricate informa-
tion beyond the ambient space structure. Our contributions are summarized as follows:

• We introduce a novel framework for modeling structured data (e.g., tensors) within a sta-
tistical manifold via energy-based modeling. Unlike previous works on information geom-
etry, which focused on a single probability distribution, we consider multiple distributions
simultaneously, offering a “meta” learning perspective that may be of independent interest.

• We propose the backward projection algorithm, a data-centric method that reverses dimen-
sion reduction, which we then utilize to develop a novel data augmentation method within
our framework.

• We demonstrate the effectiveness of the proposed data augmentation method. Results
show that our approach achieves competitive performance compared to black-box genera-
tive models such as autoencoder through simple, transparent, and interpretable algorithms,
underscoring its interpretability.

2 RELATED WORK

2.1 DATA AUGMENTATION

In the Era of Deep Generative Models. Data augmentation has proven to be highly effective in
enhancing deep learning training by increasing dataset size, improving model robustness (Rebuffi
et al., 2021), and introducing implicit regularization (Hernández-Garcı́a & König, 2018). These
techniques have been applied across various modalities, including text (Shorten et al., 2021; Feng
et al., 2021; Li et al., 2022a) and images (Shorten & Khoshgoftaar, 2019; Mumuni & Mumuni,
2022; Wang et al., 2017). Much of the recent progress in data augmentation has been driven by
advancements in black-box generative models, such as autoencoders (Kingma & Welling, 2022;
Chadebec et al., 2022) and generative adversarial networks (GANs) (Antoniou, 2017).

Interpretability. Although there are data augmentation methods that do not rely on generative
models (Maharana et al., 2022), these often depend on the knowledge of the underlying data gen-
eration mechanisms, which are typically unknown for complex datasets. As a result, creating inter-
pretable augmented data involves interpreting black-box generative models, an area that remains an
active research focus. To date, there is no fully satisfactory solution to this challenge. For example,
the design of interpretable GANs is still evolving (Li et al., 2022b; She et al., 2021) and remains
largely limited to specific domains, such as image generation.

2.2 DIMENSION REDUCTION AND RELATION TO DATA AUGMENTATION

Linear Methods. Classical linear dimension reduction techniques, such as Principal Component
Analysis (PCA) (Wold et al., 1987) and Singular Value Decomposition (SVD) (Stewart, 1993), work
by identifying the optimal linear subspace that minimizes reconstruction error, typically through the
orthogonal projection of data onto this subspace. These methods are not only straightforward and
explicit, but they also provide valuable geometric insights. For instance, PCA highlights the princi-
pal directions that capture the most variance in the data, uncovering important structural patterns.

However, one of the challenges in applying linear dimension reduction methods to data augmen-
tation is the inverse problem, where reconstructing the original data from the space of reduced di-
mension is highly non-trivial. While some studies have explored indirect approaches to using linear
dimension reduction for data augmentation (Abayomi-Alli et al., 2020; Sirakov et al., 2024), they
are often application-specific and hard to generalize, limiting their broader applicability.
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Non-Linear Methods. The non-linear generalizations, often called manifold learning (Meilă
& Zhang, 2024), offer an alternative approach to dimension reduction. Popular methods like t-
SNE (Hinton & Roweis, 2002; Van der Maaten & Hinton, 2008), Isomap (Tenenbaum et al., 2000),
and UMAP (McInnes et al., 2018) are based on the manifold hypothesis, which suggests that high-
dimensional data lie on a lower-dimensional manifold within the ambient space. The goal is to
uncover this manifold and develop a smooth embedding that captures the data’s intrinsic low-
dimensional structure. While classical manifold learning methods do not rely on black-box neural
networks, they are computationally complex, prone to overfitting, and require careful hyperparame-
ter tuning, making interpretation challenging (Han et al., 2022).

In theory, manifold learning avoids the inverse problem by aiming to recover the underlying low-
dimension manifold of the data with near-zero information loss, making it conceptually appealing
for data augmentation. However, this is rarely achieved in practice, hence solving the inverse prob-
lem is still necessary to generate realistic augmented data. Additionally, classical manifold learning
methods that do not rely on black-box neural networks are often limited to providing fixed embed-
dings for training data and cannot perform out-of-sample extensions (Duque et al., 2020), further
limiting their ability to augment data. Recent approaches to address this limitation involve more
complex algorithms (Coifman & Lafon, 2006; Williams & Seeger, 2000; Vladymyrov & Carreira-
Perpinán, 2013) or the introduction of black-box generative models (Duque et al., 2020), which
reintroduces the concern about interpretability.

3 PRELIMINARY

3.1 DUALLY-FLATNESS IN INFORMATION GEOMETRY

Information geometry studies the structure of statistical manifolds S within the space of probabil-
ity distributions. In this paper, we are primarily concerned with the space of exponential families
{pθ(x) | θ ∈ RD}, where each pθ denotes a probability density function parameterized by θ. We
focus on the key concept in this field, dually-flatness, in this preliminary, while directing readers to
Amari (2016) for more comprehensive details.1

The starting point is the observation that the log-partition function ψ(θ) (also known as the cumulant
generating function in statistics and free energy in physics) of an exponential family with density pθ
is convex in the natural parameter θ ∈ RD. This convexity induces a natural coordinate system,
θ, on S, defining both the Riemannian metric g = ∇2ψ(θ) and the Bregman divergence (Bregman,
1967) Dψ(pθ, pθ′). With these structures, the manifold (S, g) is flat, meaning that any curve θ(t) =
at + b (where a, b ∈ RD are constants) is a geodesic and lies entirely within S. This flatness is
known as e-flatness, and the geodesics are referred to as e-geodesics or primal-geodesics.

The dual structure arises from the Legendre transform (Legendre, 1787), which generates the dual
function ψ∗(η), where η ∈ RD is the expectation parameter. This dual function is also convex,
giving rise to the expectation coordinate system η, the dual Riemannian metric g∗, and also the
dual Bregman divergence Dψ∗ which is the well-known Kullback-Leibler divergence DKL. The
corresponding flatness is termed m-flatness, with m-geodesics or dual-geodesics as its geodesics.

Dually-flatness then emerges from the interplay between these two structures. Specifically, for any
point p in S, there is a unique point p∗ on an e-flat sub-manifold B ⊆ S that minimizes the dual
Bregman divergence Dψ∗(p, q) = DKL(p, q) (Amari, 2016, Theorem 1.5). This process, known as
the m-projection, can be efficiently solved via convex optimization. The dual holds when switch-
ing e and m in this context. Projection is a central tool in information geometry with profound
implications for understanding the geometry of S, which we will utilize later.

3.2 STATISTICAL MANIFOLD ON POSETS

A set Ω is a partially ordered set (poset) if it is equipped with a partial order “≤”, a relation
satisfying the following for all x, y, z ∈ Ω: 1.) x ≤ x (reflexivity); 2.) x ≤ y and y ≤ x implies
x = y (antisymmetry); and 3.) x ≤ y and y ≤ z implies x ≤ z (transitivity). We focus on finite
posets Ω with a bottom element ⊥ such that ⊥ ≤ x for all x ∈ Ω.

1We will assume some familiarity on the basic terminologies for manifold (Lee, 2012, Chapter 1, 4).
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Given such a poset Ω, consider a discrete random variable X with finite support Ω with its prob-
ability mass function p : Ω → R≥0 being defined by p(x) = Pr(X = x) for x ∈ Ω. A key
observation is that for a discrete probability distribution p over a poset Ω, the log-linear model on
posets recursively defines θ : Ω → R as log p(x) =:

∑
y≤x θ(y) for all x ∈ Ω. Intuitively, one can

think of θ(x) for each x ∈ Ω as specifying the correct energy for x that correctly represents p(x),
where the dependence between θ’s on different elements depends on the poset structure. This model
belongs to the exponential family, with θ corresponding to the natural parameters, except for θ(⊥)
which coincides with the partition function. Thus, all discrete probability distributions over Ω form
a (|Ω| − 1)-dimensional dually-flat statistical manifold S := {p : Ω → R≥0 |

∑
x∈Ω p(x) = 1},

with dual coordinate systems (θ, η) defined by the poset structure.

4 DATA AUGMENTATION WITH LOG-LINEAR MODEL ON POSETS

We first present our proposed framework in Section 4.1 and the backward projection algorithm in
Section 4.2, then, we combine and apply them to data augmentation in Section 4.3. Finally, we
discuss an important feature of the proposed method regarding interpretability in Section 4.4.

4.1 LOG-LINEAR MODEL ON POSETS FRAMEWORK

Given a dataset {zi}ni=1, our proposed framework embeds the data into a statistical manifold S using
an energy-based approach, leveraging the log-linear model on posets. This provides a geometric
structure induced by the energy-based modeling, which is general and not restricted to any specific
application, making it of broader interest. The process works in three steps: 1.) models each zi as
a real-valued poset; 2.) embeds the data naturally into the statistical manifold S; 3.) computes two
coordinate representations of the embedded data using the log-linear model on posets. See Figure 1
for an illustration. We now explain each step in detail below.

Structured Data
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pθ(x)

Real-Valued Poset ∈ ΩR

Poset Ω ∑
=1

Probability Distribution pθ ∈ S

φ
(θ, η)

Design
Poset

Figure 1: Given structured data, we design a corresponding poset Ω and embed the resulting real-
valued poset as a discrete probability distribution pθ(x) via a natural embedding φ into the statistical
manifold S. Then the log-linear model on posets provides the dually-flat coordinates (θ, η) for pθ.

Real-Valued Poset. In the usual machine learning pipeline, inputs are constrained to be vectors or
matrices, failing to deal with more complex data. In contrast, posets are flexible enough to capture
data with structures, including vectors and matrices. For instance, focusing on the underlying data
structure for now (i.e., omitting the feature associated with individual entry), aD-dimensional vector
z ∈ RD can be modeled by the poset Ω := [D] with the partial order being the natural order between
positive integers. Similarly, other common data structures such as matrices or tensors can be treated
in the same way, while capturing more complex structures potentially. In general, any data structure
that naturally admits a partial order can be effectively modeled by a poset.

Now, considering the features associated with each entry in the data structure, we define the real-
valued poset, which is a mapping from the poset Ω to, say, the set of real numbers R such that each
entry (element) of the data structure (poset) x ∈ Ω is associated with a feature in R. We denote the
set of real-valued posets as ΩR. In the D-dimensional vector example, Ω = [D], with each element
x ∈ Ω corresponds to one of the D dimensions. Associating a real number to each dimension (i.e.,
a D-dimensional vector) naturally corresponds to an element in ΩR.

Natural Embedding. To embed the data {zi ∈ ΩR}ni=1, which are now modeled as real-valued
posets, to the statistical manifold S which concerns with discrete probability distributions, we want
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an embedding φ : ΩR → S such that
∑
x∈Ω(φ(zi))x = 1 for all zi with dim(S) = D−1.2 From the

perspective of energy-based modeling, φ is oftentimes naturally induced, e.g., for tabular frequency
data. Moreover, φ often admits a natural inverse φ−1, or an empirical one based on the data. We
will take both φ and φ−1 as granted from now on.

Dually-Flat Coordinates. After defining φ, from the theory of information geometry and the log-
linear model on posets, for each point z′i := φ(zi) ∈ S, we can associate the dually-flat coordinate
systems θ(z′i) ∈ RD−1 and η(z′i) ∈ RD−1. Such coordinate systems are with respect to the under-
lying poset structure of Ω and are driven by the principle of energy-based modeling.

4.2 FORWARD AND BACKWARD PROJECTION

We now demonstrate how to incorporate projection theory to achieve data augmentation. As our
algorithm is inspired from the architecture of autoencoders, we focus on two of the central building
blocks: the encoder Enc(·) and the decoder Dec(·). First, for the encoding step, we formally explain
how projection theory can be applied to perform dimension reduction within our framework. Next,
for the decoding step, we introduce our proposed algorithm, termed backward projection, which
serves as the inverse of dimension reduction. While our explanation is tailored to our proposed
framework, i.e., the log-linear model on posets, the proposed backward projection algorithm itself
is general and may be of independent interest as well.

Dimension Reduction: Forward Projection. Given the log-linear model on posets framework
in Section 4.1, the embedding from ΩR to the statistical manifold S does not achieve dimension
reduction as dim(S) ≈ dim(ΩR). To achieve dimension reduction, we leverage the projection
theory: by projecting z′i = φ(zi) onto a low-dimensional flat base sub-manifold B ⊆ S with
dim(B) ≪ dim(S), we obtain the desired encoding Enc := ProjB ◦φ : ΩR → B that maps the
data to a low-dimensional latent representation manifold. The encoding Enc(·) is smooth and well-
defined as the projection is unique when B is flat and minimizing either the primal or the dual Breg-
man divergence, depending on B. These theoretical guarantees provide rigor and support reasoning
through geometric intuition, which in turn offers interpretability.

Inverse Dimension Reduction: Backward Projection. As we have hinted at, one of the technical
burdens is that the encoding Enc(·) is not invertible, hence no natural decoding Dec(·) is available,
even when Enc(·) only involves traditional linear dimension reduction algorithm. While finding the
exact inverse is mathematically impossible as the pre-image of the projection is not unique in any
sense (even in Euclidean space), here, we propose a simple, geometrically intuitive, and data-centric
solution that aims to find the inverse of the projection that is similar to the original data.

The high-level intuition is simple: if the result of the projection is close, then so is the original data,
i.e., its inverse. Hence, given a point in the low-dimensional latent representation space, we try to
“project it back” to approximate the original dataset by exploiting the fact that we have access to
the inverse of the dataset’s projection, i.e., the dataset itself. Specifically, we can artificially create a
local sub-manifold around a subset of the dataset, determined by the nearest neighbors of that given
point in the latent representation space, and backward project onto it.

Formally, assuming that we have access to the embedded dataset {z′i = φ(zi)}ni=1 and their
projected result {wi = ProjB(z

′
i)}ni=1 for some base sub-manifold B. To find the inverse of

some given point w∗ ∈ B assuming it comes from the projection on B, we first find w∗’s k-
nearest neighbors among wi’s, obtaining a size k index set N . Then we create a local data sub-
manifold D based on the pre-images z′i’s of these wi’s, and project w∗ on D to obtain the inverse
z′∗ = Proj−1

B (w∗) := ProjD(w
∗). Algorithm 4.1 summarizes this procedure, which we termed

backward projection. With access to Proj−1
B (·), decoding is simply Dec := φ−1◦Proj−1

B : B → ΩR,
serving as the inverse of Enc(·) as desired.

Remark 4.1. A flat sub-manifold can be defined by forcing linear constraints on the (θ or η) coor-
dinates. For instance, given the nearest neighbors z′i⋆ , one can define D := {θ ∈ Rdim(S) | (θ)x =(
θ(z′i⋆)

)
x
} for some x ∈ Ω, namely, we fix some indexes to be the corresponding θ-coordinate values

of z′i∗ . The quality of Algorithm 4.1 can be controlled by choosing appropriate linear constraints.

2In fact, we can also consider the manifold of positive measures, which avoids the dimension being D − 1
and the potential scaling issues. We omit this trivial extension in the presentation to prevent complications.
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Algorithm 4.1: Backward Projection
Data: A data point w∗ ∈ B, φ-embedded dataset {z′i}ni=1, projection result {wi}ni= on B, k ∈ N
Result: Backward projected data z′∗

1 N ←Nearest-Neighbor(k, w∗, {wi}ni=1) // N ⊆ [n] with |N | = k
2 D ←Sub-Manifold({z′i}i∈N)
3 z′∗ ←Projection(w∗, D)
4 return z′∗

Algorithm 4.1 is a geometrically intuitive, data-centric algorithm with desirable theoretical guaran-
tees such as divergence minimizing when projecting on the constructed local data sub-manifold D.
Its white-box nature ensures a level of interpretability, making it the cornerstone of our method, in
contrast to black-box generative models.

4.3 DATA AUGMENTATION WITH LOG-LINEAR MODEL ON POSETS

With all the building blocks in place, we can now formally describe the complete data augmentation
algorithm, which consists of three phases: 1.) encoding, 2.) generating, and 3.) decoding.
Encoding. As described in Section 4.2, the encoding Enc := ProjB ◦φ is simply a combination
of the natural embedding followed by a projection. Notation-wise, we write wi := Enc(zi).
Generating. To generate new data z∗, we first generate a new point w∗ in the latent space, which
in our case, is a pre-specified flat base sub-manifold B. This can be done in various ways, such as
using pure heuristics, controlled perturbations, or even black-box generative models. In our case,
we focus on a simple, white-box generation method: kernel density estimation (Davis et al., 2011;
Parzen, 1962). Specifically, we first fit a kernel density estimation model M on either the θ or η
coordinate systems, then sample m new points w∗ in the latent space B from M .
Decoding. As described in Section 4.2, the decoding Dec := φ−1◦Proj−1

B is simply a combination
of backward projection (Algorithm 4.1) with the inverse of the natural embedding. Notation-wise,
we write z∗ := Dec(w∗) = φ−1(z′∗) where z′∗ := Proj−1

B (w∗) := ProjD(w
∗).

We summarize the above procedure in Algorithm 4.2.

Algorithm 4.2: Data Augmentation with Log-Linear Model on Posets
Data: A dataset {zi}ni=1, embedding φ : ΩR → S, k ∈ N, flat base sub-manifold B, size m ∈ N
Result: A generated dataset {z∗j }mj=1 of size m

1 for i = 1, . . . , n do // Encoding
2 z′i ← φ(zi)
3 wi ←Projection(z′i, B) // w = Enc(z) = ProjB ◦φ(z)
4
5 {w∗

i }mi=1 ←Sample({wi}ni=1, B, m) // Generating m points
6
7 for j = 1, . . . ,m do // Decoding
8 z′∗j ←Backward-Projection(w∗

j , {z′i}ni=1, {wi}ni=1, k) // Algorithm 4.1

9 z∗j ← φ−1(z′∗j ) // z∗ = Dec(w∗) = φ−1 ◦ Proj−1
B (w∗)

10 return {z∗j }mj=1

In what follows, we use positive tensors as the running example for a better illustration.
Example 4.2 (Positive tensor). A dth-order tensor T ∈ RI1×···×Id =: RD is a multidimensional
array with real entries for every index vector v = (i1, . . . , id) ∈ [I1] × · · · × [Id] =: Ω where for
each k, [Ik] := {1, 2, . . . , Ik} for a positive integer Ik. Tensors with entries all being positive are
called positive tensors, denoted as P ∈ RI1×···×Id

≥0 . For tensors, a natural partial order “≤” one can
impose on Ω between two index vectors v = (i1, . . . , id), w = (j1, . . . , jd) is that v ≤ w if and only
if ik ≤ jk for all k = 1, . . . , d. Finally, for positive tensors, a simple embedding φ : RI1×···×Id

≥0 → S
where P ′ := φ(P ) : Ω→ R≥0 such that P ′

v := Pv/
∑
w∈Ω Pw for all v ∈ Ω can be defined.

6
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Figure 2: Data augmentation for positive tensors via Algo-
rithm 4.2 with k = 1 and D = DP ′

2
.

We now illustrate Algorithm 4.2 with
positive tensors. Following the no-
tations in Example 4.2, let’s write
zi’s as Pi’s, z′i’s as P ′

i ’s, and wi’s
as Qi’s. Firstly, Example 4.2 pro-
vides one way to model positive ten-
sors by real-valued posets and define
a natural embedding φ (i.e., normal-
ization), giving P ′

i . To obtain the fi-
nal encoding, we choose some base
manifold B to project P ′

i onto, giving
Qi := ProjB(P

′
i ). For generation,

we simply fit a kernel density estima-
tion model M to {wi = Qi}ni=1 and
sample a new Q∗ ∼ M . Finally, for
the decoding step, consider the case
of k = 1, D is created by some linear
constraints w.r.t. one particular P ′

i⋆ ,
where i⋆ corresponds to the nearest neighbor Qi⋆ of Q∗ among Qi’s. We then backward project
Q∗ on D with Algorithm 4.1 to obtain P ′∗ := ProjD(Q

∗), and we output P ∗ := φ−1(P ′∗) as our
generated result.3 See Figure 2 for an illustration, where we let k = m = 1.

Algorithm 4.2 integrates both forward (encoding) and backward (decoding) projections, which, as
discussed in Section 4.2, are interpretable due to its white-box nature and come with strong theo-
retical guarantees. When the generating step is performed in a clear and white-box manner, Algo-
rithm 4.2 retains its interpretability while continuing to benefit from these theoretical guarantees.

4.4 CONSTRUCTION OF SUB-MANIFOLDS

For any sub-manifold S ′ ⊆ S, as dim(S ′) increases, more information of the data is preserved after
forward projection onto S ′. In the case of constructing the base sub-manifold B, the quality of the
backward projection Proj−1

B (·) (Algorithm 4.1) should increase along with dim(B) for the same rea-
son. However, in the extreme case where dim(B) ≈ dim(S), Algorithm 4.2 becomes less effective
due to the sparsity of the data, resulting in an intrinsic trade-off for choosing dim(B) (see Ap-
pendix A.3 for an empirical justification). In this section, we argue that by leveraging existing tools
and understandings of the log-linear model on posets, such an intrinsic trade-off for constructing
sub-manifolds (either B or D) provides an additional layer of interpretability and control compared
to black-box generative models like autoencoders.

To keep our presentation concise and concrete, we focus on positive tensors, although the argument
and the high-level idea extend to more general cases. Firstly, the projection theory is well-explored
for positive tensors within the log-linear model, where several established constructions for flat base
sub-manifolds B ⊆ S (Sugiyama et al., 2018; Ghalamkari et al., 2024) have proven powerful in
capturing the non-trivial structure of positive tensors after the projection. One of which is called
the many-body tensor approximation (Ghalamkari et al., 2024), which captures a hierarchy of mode
interactions with different dim(B). Specifically, the ℓ-body approximation considers projection on
the following sub-manifold

Mℓ := {θ ∈ Rdim(S) | (θ)x = 0 for all non ℓ-body parameters x ∈ Ω}, (1)

where the ℓ-body parameter corresponds to ℓ non-one indices, acting as a generalization of one-
body and two-body parameters (Ghalamkari & Sugiyama, 2022). Intuitively speaking, an ℓ-body
parameter captures the interaction among ℓ different modes, hence, when B =Mℓ, all interactions
between modes of orders higher than ℓ are neglected. This offers a practical design choice for
employing Algorithm 4.2. In particular, it allows us to leverage prior knowledge of the data to design
an appropriate base sub-manifold B and also the local data sub-manifold D that captures different
degrees of information with appropriate dimension. This approach provides a more principled way
of defining the latent space, compared to black-box models like autoencoders, where the latent space
dimensions are oftentimes tuned without a clear understanding of what those dimensions represent.

3Empirically, we let φ−1 to be reversing the average of original scaling among the nearest neighbors.
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5 EXPERIMENT

In this section, we conduct a series of experiments to validate the efficacy of our proposed data
augmentation method. We focus primarily on image tasks for a clear illustration, where we compare
our method with autoencoder models. Additional experiments can be found in Appendix A.

5.1 SETUP

Here, we briefly summarize the experimental setup, while directing readers to Appendix A.1 for
more details. Consider the image classification task4 on the MNIST dataset (LeCun, 1998), with the
training set size being 1000 (200 samples for each digit). Since MNIST images are in R28×28

≥0 , we
apply the log-linear model with posets for positive tensors as in Example 4.2. For the sub-manifold
constructions, we utilize the many-body approximation (Equation (1)) with its variances when con-
structing the base sub-manifold B and the local data sub-manifold D, where we use dim(B) = 17
and dim(D) = 767. For a fair comparison with the autoencoder model, we consider a simple 2 + 2
layers architecture with latent space dimension 17 = dim(B). Finally, when generating data, we first
fit a kernel density estimation model M on the latent representation of the training dataset, sample a
new latent representation from which, and then decode it. We note that important hyperparameters
(k = 8 and the bandwidth 0.01 of M ) are chosen via a simple grid search in Appendix A.2.

5.2 VISUAL INSPECTION

To illustrate how Algorithm 4.2 works in practice, Figure 3 shows the intermediate results after pro-
jection onto B, while Figure 4 shows the results of Algorithm 4.2 after applying backward projection
(Algorithm 4.1). We emphasize that the results from Figure 4 do not come from backward projecting
the results of Figure 3; instead, they come from the latent representations sampled from M .

Figure 3: (Top) Forward projected data on B. (Bottom) Heat map of corresponding θ values.

Figure 4: (Top) Augmented data via Algorithm 4.2. (Bottom) The closest training data.

For comparison, Figure 5 shows the data augmentation results generated by the autoencoder. Despite
careful bandwidth tuning when fitting the kernel density model, the autoencoder results appear to
overfit the training set. Finally, we note an interesting difference between the two approaches: our
proposed method produces a blurred effect, while the autoencoder exhibits hard-clipping.

5.3 CLASSIFICATION PERFORMANCE

We evaluate our proposed method on the downstream task, i.e., classification performance, in addi-
tion to visual inspection. Specifically, we train a linear classifier on three types of training datasets:
1.) original dataset, 2.) augmented dataset, and 3.) original dataset combined with the augmented

4As there are only finitely many labels (classes) in classification tasks, one can perform Algorithm 4.2 for
each class separately without worrying about assigning labels.
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Figure 5: (Top) Augmented data via autoencoder. (Bottom) The closest training data.

dataset, where the augmented dataset consists of m = 200 augmented samples, which is 20% of the
original training set. For clarity, we refer to the original dataset as Original, the dataset augmented
with Algorithm 4.2 as Ours, and the dataset augmented using the autoencoder model as AE.

The results are shown in Table 1, where each test set consists of 500 samples, evaluated over 20
bootstrapping runs. Firstly, observe that Original+Ours and Original+AE outperforms Origi-
nal as expected, with the former outperforming the latter slightly. Moreover, we see that Ours
outperforms AE by a large margin, which is surprising given the representation power of the au-
toencoder compared to our fully white-box, interpretable method. Overall, our method achieves
competitive performance against black-box generative models in the downstream task while offer-
ing interpretability. We direct readers to Appendix A.5 for additional evaluations on other datasets.

Table 1: Test accuracy of the linear classifier trained on different training sets.

Training Set Original Ours AE Original+Ours Original+AE
Accuracy 81.79± 4.57% 75.37± 2.89% 68.12± 3.96% 83.40± 3.22% 82.72± 3.50%

5.4 INTERPRETABILITY WITH CHOICES OF SUB-MANIFOLDS

As discussed in Section 4.4, constructing the base sub-manifold carefully allows for an additional
layer of interpretability and control. In Section 5.1, the default base manifold B, though implicit,
is M1 for the tensor structure R7×2×2×7×2×2

≥0 . We now consider B = Mℓ for ℓ = 1 to 3 for
comparison, while direct readers to Appendix A.4 for a more in-depth experiment. Following the
same setup as in Figures 3 and 4 for ℓ = 1, the results for ℓ = 2, 3 are shown in Figures 6 and 7.

(a) Result with base sub-manifold B = M2 (dim(B) = 107).

(b) Result with base sub-manifold B = M3 (dim(B) = 327).

Figure 6: (Top) Forward projected data. (Bottom) Heat map of corresponding θ values.

We observe several interesting phenomena. First, for ℓ = 1 with a small base sub-manifold dimen-
sion, the forward projection results (Figure 3) appear visually unclear, in contrast to the augmenta-
tion results (Figure 4). Note that throughout the experiment, the local data sub-manifold D has a
dimension of 767, indicating a high degree of freedom for backward projection. This suggests that
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(a) Result with base sub-manifold B = M2 (dim(B) = 107).

(b) Result with base sub-manifold B = M3 (dim(B) = 327).

Figure 7: (Top) Augmented data via Algorithm 4.2. (Bottom) The closest training data.

M1 can effectively capture key features across signals, leading to non-trivial neighbor information
and thus constructing a sufficiently good local data sub-manifold. Second, as expected, the higher
the dimension ofMℓ (i.e., value of ℓ), the more signal structures (in terms of mode interactions) are
preserved as shown in Figures 3 and 6, resulting in better performance (Figures 4 and 7).

Based on the theory of many-body approximation, one can construct the base sub-manifold with a
clear understanding of the trade-off between dimensionality and the performance of Algorithm 4.2.
Unlike black-box generative models, which often rely on heuristics or blindly tuning the latent space
dimension, our proposed method offers an additional layer of interpretability.

6 DISCUSSION

Structural Limitation. While the log-linear model is flexible to represent structural data, it still
faces limitations. The key issue lies in the model’s reliance on a partial order of the index set, which
makes it impossible to ensure invariance under the permutation of indexes. For instance, modeling
graphical data usually requires non-invariance and non-equivariance of vertices (i.e., indexes), in
this case, the log-linear model might not be the best model due to its structural limitations.

Meta-Perspective. Classical information geometry typically involves learning a single distribu-
tion by manipulating a single point in the statistical manifold S, as seen in tasks like learning the
Boltzmann machine or finding the maximum likelihood estimation (Amari, 2016). In our case, how-
ever, we treat data as probability distributions within S, offering a new perspective for applying the
information geometry framework. With multiple distributions in S, a natural extension would be to
employ data-centric machine learning algorithms to learn the “data” distribution, i.e., the distribution
of these distributions, thereby providing a meta-perspective.

7 CONCLUSION

In this paper, we proposed a novel data augmentation method that leverages several information ge-
ometric algorithms, incorporating interpretability while maintaining competitive performance. Our
framework, built on the log-linear model on posets, equips data with information geometric struc-
tures, facilitating geometric reasoning and algorithm design. The proposed backward projection
algorithm reverses the dimension reduction process in a geometrically intuitive and data-centric
manner, which may be of independent interest.

We empirically demonstrated that our method achieves competitive performance compared to tra-
ditional autoencoder-based approaches on downstream tasks, even though the latter may possess
greater representational power but lack interpretability, which is a crucial requirement in many prac-
tical applications. Overall, our work paves the way for further exploration of information geometric
algorithms in various domains, not limited to data augmentation.
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A OMITTED DETAILS FROM SECTION 5

A.1 DETAILS OF IMAGE CLASSIFICATION SETUP

Log-Linear Model on MNIST. When we apply the log-linear model on posets for positive ten-
sors, we first reshape every image into R7×2×2×7×2×2

≥0 and consider the natural poset Ω correspond-
ing to this 6th-order tensor structure. From the discussion in Section 4.4, when considering the
image as a tensor of shape (7, 2, 2, 7, 2, 2) instead of (28, 28), a finer hierarchy of projection is pos-
sible via many-body approximation (Ghalamkari et al., 2024). In Section 5, the default choice of
the base sub-manifold is B = M1 for the 6th-order tensor structure R7×2×2×7×2×2

≥0 as defined in
Equation (1). On the other hand, the local sub-manifold D is constructed by fixing every one-body
parameter: given a set N of k nearest neighbors, we let D asM∗

1(N) where in general, we define

M∗
ℓ (N) :=

{
θ ∈ Rdim(S) | (θ)x =

1

k

∑
i∗∈N

(
θ(z′i∗)

)
x

for all ℓ-body parameters x ∈ Ω

}
, (2)

where dim(S) = 28 × 28 = 784 for MNIST. This is like the dual notion ofMℓ: in Equation (1),
we allow all ℓ-body parameters to vary; here, we allow all non ℓ-body parameters to vary.
Kernel Density Estimation Model. The default bandwidth for the kernel density estimation
model is set to be 0.05 to avoid overfitting. This is a fair comparison since the latent space di-
mensions for our proposed method and the autoencoder model we consider are the same.
Linear Classifier. The classification task is conducted with a simple linear classifier trained with
Stochastic Gradient Descent (SGD) (Ruder, 2016) till convergence with a learning rate of 0.01.

A.2 SENSITIVITY AND ROBUSTNESS

We examine our proposed method’s robustness and sensitivity of the bandwidth used when fitting
the kernel density model, and also the number k of the nearest neighbors used in Algorithm 4.1.
Bandwidth of Kernel Density Estimation Model. Consider varying the bandwidth we use when
fitting the kernel density model, ranging among {0.01, 0.05, 0.1, 0.2, 0.5}. The results are shown in
Figure 8, where we omit showing the closest training data as it is not important for the purpose here.
We observe that Algorithm 4.2 is robust under different bandwidths when working with the kernel
density estimation model in the generating step.

(a) Result with bandwidth 0.01.

(b) Result with bandwidth 0.05.

(c) Result with bandwidth 0.1.

(d) Result with bandwidth 0.2.

(e) Result with bandwidth 0.5.

Figure 8: Augmented data via Algorithm 4.2 with different kernel density estimation bandwidths.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Under review as a conference paper at ICLR 2025

Number of Nearest Neighbors. Next, we consider ranging k among {1, 4, 8, 16}. The results are
shown in Figure 9. Observe that when k is small, e.g., 1, the result of Algorithm 4.2 tends to overfit
since the local sub-manifold D in Algorithm 4.1 is defined using only the nearest neighbor. When k
goes up, a non-trivial augmentation emerges, robust across different k’s.

(a) Result with k = 1.

(b) Result with k = 4.

(c) Result with k = 8.

(d) Result with k = 16.

Figure 9: (Top) Augmented data via Algorithm 4.2 with different k’s for Algorithm 4.1. (Bottom)
The closest training data.

A.3 NECESSITY OF DIMENSION REDUCTION

We demonstrate that dimension reduction, a key building block of our proposed method based on
the intuition we have from autoencoder-like models, is necessary for Algorithm 4.2 to work.
Direct Fitting. As discussed, naive perturbation-based data augmentation methods fall short of
high-dimensional data due to the sparsity of the data. Figure 10 shows the results of directly fitting
a kernel density estimation model on MNIST with 1000 samples.

Figure 10: (Top) Augmented data via directly fitting a kernel density estimation model with a band-
width 30. (Bottom) The closest training data.
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Observe that even with a large bandwidth (30) to introduce variability, we only see meaningless
noisy perturbation on one of the exact training samples, indicating overfitting.

Local Data Sub-Manifold. A potential problem related to the necessity of dimension reduction is
that, if D captures too much local information about the data, backward projecting a random latent
representation w∗ ∈ B might already suffice to augment the data in a non-trivial way, without the
need for knowing the latent representations of the training dataset. To this end, consider sampling
uniformly random latent representations within the empirical range we observed from the latent
representations of the training data and perform Algorithm 4.1. The results are shown in Figure 11.

(a) Result with k = 1.

(b) Result with k = 4.

(c) Result with k = 8.

(d) Result with k = 16.

Figure 11: (Top) Augmented data on random latent representations via Algorithm 4.2 with different
k’s for Algorithm 4.1. (Bottom) The closest training data.

For k = 1, Figure 11(a) shows that similar to Figure 9(a), it is possible to overfit one of the training
data (i.e., the nearest neighbor of the randomly sampled latent representation). This is not surprising
since the base sub-manifold is only of dimension 17 and the local data sub-manifold is of dimension
767, as the random latent representation is sufficiently close to one of the representations of the
training data in B, their backward projection result should not deviate too much. Furthermore, we
observe the fading effect, which intuitively corresponds to misspecification of the energy, indicating
that the sampled latent representation is fundamentally different from the one of the dataset.

As k increases, the reason for getting informative and meaningful latent representations from the
original dataset becomes clear. Specifically, we start to see degeneration: from unclear overlappings
to collapsing (i.e., only a few pixels are showing). Intuitively speaking, it is because the random
latent representation’s nearest neighbors appear to be significantly different, hence failing to provide
a consistent local data sub-manifold. For instance, in the extreme case when k = 16, the local data
sub-manifold is completely not informative, resulting in collapsing. Overall, without dimension
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reduction, we will lose the reference of realisitc latent representations provided by the original
dataset, which leads to bad performance once we are beyond the trivial overfitting regime.

A.4 CHOICES OF TENSOR STRUCTURE AND CONSTRUCTION OF SUB-MANIFOLDS

In Section 5.4, we consider varying ℓ for B =Mℓ with the tensor structure being R7×2×2×7×2×2
≥0 . In

this section, we further vary the tensor structure as well: in particular, we consider the tensor struc-
ture of the MNIST image being R28×28

≥0 , R7×4×7×4
≥0 , and R7×2×2×7×2×2

≥0 . For notation convenience,
we write their corresponding poset structures as Ω28×28, Ω7×4×7×4, and Ω7×2×2×7×2×2, and fur-
ther write the many-body approximation sub-manifold (Equation (1)) asMℓ(Ω) and its dual (Equa-
tion (2)) asM∗

ℓ (N,Ω) for a particular poset Ω to emphasize the dependency. In particular, through-
out this section, we consider the default local data sub-manifold, i.e.,D =M∗

ℓ (N,Ω7×2×2×7×2×2),
for consistency. Finally, we consider ranging ℓ from 1 to at most 4 where we neglect the degenerate
case: for instance, in the case of Ω28×28, M2(Ω28×28) = S as there are only two modes for a
matrix, therefore degenerates to direct fitting which is not of interest (see Appendix A.3).

The results for the finest structure R7×2×2×7×2×2
≥0 are shown in Figures 12 and 13. As ℓ grows,

the forward projection results in Figure 12 preserve the structure of the data better, subsequently
improving the quality of the augmented data, as shown in Figure 13.

(a) Result with base sub-manifold B = M1(Ω7×2×2×7×2×2) (dim(B) = 17).

(b) Result with base sub-manifold B = M2(Ω7×2×2×7×2×2) (dim(B) = 107).

(c) Result with base sub-manifold B = M3(Ω7×2×2×7×2×2) (dim(B) = 327).

(d) Result with base sub-manifold B = M4(Ω7×2×2×7×2×2) (dim(B) = 592).

Figure 12: (Top) Forward projected data with tensor structure R7×2×2×7×2×2
≥0 . (Bottom) Heat map

of corresponding θ values.
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(a) Result with base sub-manifold B = M1(Ω7×2×2×7×2×2) (dim(B) = 17).

(b) Result with base sub-manifold B = M2(Ω7×2×2×7×2×2) (dim(B) = 107).

(c) Result with base sub-manifold B = M3(Ω7×2×2×7×2×2) (dim(B) = 327).

(d) Result with base sub-manifold B = M4(Ω7×2×2×7×2×2) (dim(B) = 592).

Figure 13: Augmented data via Algorithm 4.2 with tensor structure R7×2×2×7×2×2
≥0

Similar trends can be found in the case of R7×4×7×4
≥0 , as shown in Figures 14 and 15.

(a) Result with base sub-manifold B = M1(Ω7×4×7×4) (dim(B) = 19).

(b) Result with base sub-manifold B = M2(Ω7×4×7×4) (dim(B) = 136).

Figure 14: (Top) Forward projected data with tensor structure R7×4×7×4
≥0 . (Bottom) Heat map of

corresponding θ values.

(a) Result with base sub-manifold B = M1(Ω7×4×7×4) (dim(B) = 19).

(b) Result with base sub-manifold B = M2(Ω7×4×7×4) (dim(B) = 136).

Figure 15: Augmented data via Algorithm 4.2 with tensor structure R7×4×7×4
≥0 .

If we look at the results when using the original matrix structure R28×28
≥0 (Figures 16 and 17),

some interesting comparison can be made. Firstly, if we compare the augmentation results for
B = M1(Ω28×28) (Figure 17) with the finer structures counterparts, e.g., Figure 13(a) for
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M1(Ω7×2×2×7×2×2), one can observe that the results are worse. However, the former requires
more dimension (dim(M1(Ω28×28)) = 55 > 17 = dim(M1(Ω7×2×2×7×2×2))) for the base sub-
manifold. Similarly, the augmentation results with B =M1(Ω7×4×7×4) (Figure 15(a)) also achieve
better performance with a lower base sub-manifold dimension.

Figure 16: Result with base sub-manifold B = M1(Ω28×28) (dim(B) = 55). (Top) Forward
projected data with tensor structure R28×28

≥0 . (Bottom) Heat map of corresponding θ values.

Figure 17: Augmented data via Algorithm 4.2 with tensor structure R28×28
≥0 and base sub-manifold

B =M1(Ω28×28) (dim(B) = 55).

Remark A.1. Many-body approximation is a type of “oblivious” construction for base sub-
manifolds that is expected to work well for general positive tensor data. However, alternative
choices for B, not necessarily Mℓ(Ω) for some ℓ, could be investigated when specific knowledge
about the underlying data is available. Nonetheless, our approach demonstrates non-trivial perfor-
mance, both in downstream tasks and through visual inspection.

A.5 ADDITIONAL DATASET

In addition to Section 5.3, we demonstrate our approach’s efficacy on various non-image datasets in
this section. In particular, we consider the following UCI datasets:

(a) Connectionist Bench (Sonar, Mines vs. Rocks) (Sejnowski & Gorman, 1988) (208 samples,
60 features, 2 classes),

(b) Taiwanese Bankruptcy Prediction (Journal, 2020) (6819 samples, 95 features, 2 classes),

(c) Musk (Version 2) (Chapman & Jain, 1994) (6497 samples, 12 features, 11 classes).

We summarize the parameters we use for Algorithm 4.2 on each dataset in Table 2. In particular, for
each dataset, the training set consists of 80% of the total dataset, and the remaining 20% is used for
testing accuracy. Furthermore, the augmented dataset generated also consists of 20% of the training
data for each class, similar to the setting in Section 5.3. On the other hand, the autoencoder model
trained in each experiment is with hidden-dimension dim(B) for a fair comparison.

Table 2: Setting of Algorithm 4.2 for different UCI datasets.

Dataset Poset Ω Base B Local Data D Bandwidth k

(a) Ω2×2×3×5 M2(Ω2×2×3×5) M∗
1(Ω2×2×3×5) 0.05 4

(b) Ω5×19 M1(Ω5×19) M∗
1(Ω5×19) 0.05 8

(c) Ω2×2×3 M2(Ω2×2×3) M∗
1(Ω2×2×3) 0.1 10

The results are shown in Table 3. The models perform similarly in most cases, with the fact that aug-
mentation indeed helps with the downstream tasks’ performance. We conclude that Algorithm 4.2
is competitive compared to autoencoders regarding the quality of the downstream tasks.
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Table 3: Test accuracy of the linear classifier trained on different datasets.

Dataset Training Set
Original Ours AE Original+Ours Original+AE

(a) 60.10± 11.46% 55.50± 14.92% 66.30± 10.76% 75.40± 12.40% 64.80± 12, 85%
(b) 96.90± 4.55% 81.10± 11.12% 58.3± 14.04% 97.30± 4.34% 97.40± 4.82%
(c) 42.40± 14.96% 21.80± 11.95% 20.80± 9.79% 43.00± 11.19% 44.10± 14.43%
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