
Learning to Discover Abstractions for LLM Reasoning

Yuxiao Qu * 1 Anikait Singh * 2 Yoonho Lee * 2 Amrith Setlur 1

Ruslan Salakhutdinov 1 Chelsea Finn 2 Aviral Kumar 1

Abstract
Effective reasoning often requires going beyond
pattern matching or memorization of solutions to
identify and implement “algorithmic procedures”
that can be used to deduce answers to hard prob-
lems. These algorithmic procedures consist of
reusable primitives, intermediate results, or pro-
cedures that themselves can be applied across
many problems. While current methods of RL
post-training on long chains of thought ultimately
desire to uncover this kind of algorithmic behav-
ior, their sensitivity to benchmarks and the brittle
and locally optimal nature of strategies learned
by these systems suggest that this is far from a
fulfilled promise. To instantiate this, we introduce
reasoning abstractions: concise natural language
descriptions of procedural and factual knowledge
that guide the model toward successful reason-
ing strategies. We train models to be capable of
proposing several useful abstractions given a prob-
lem, followed by RL training that incentivizes
building a solution while using the information
provided by these abstractions. This results in
a two-agent cooperative RL training paradigm,
RL through Abstraction Discovery (RLAD), that
jointly trains an abstraction generator and an
abstraction-conditioned solution generator. This
bi-level setup effectively enables structured explo-
ration, decouples learning signals pertaining to
abstraction proposal and solution generation, and
improves generalization to harder problems, anal-
ogous to what we would expect from hierarchical
RL. Empirically, RLAD improves performance
on challenging math benchmarks.

1 Introduction
Modern machinery for solving reasoning tasks with large
language models (LLMs) relies on incentivizing the use of

*Equal contribution 1Carnegie Mellon University
2Stanford University. Correspondence to: Yuxiao Qu <yuxi-
aoq@andrew.cmu.edu>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

longer chains of thought via reinforcement learning (RL).
This training approach largely incentivizes “depth”: sub-
sequent training iterations increase response length by in-
corporating new operations that usually verify or build on
top of the existing line of reasoning (Anonymous Author(s),
2025). In many hard problems, it is instead more desirable
to optimize for “breadth”: explore a diverse array of solution
strategies, rather than committing to a seemingly optimal set
of reasoning strategies right away (Yu et al., 2025; Yue et al.,
2025). Optimizing for breadth is important: even when mod-
els optimized for depth succeed on some problems, they fail
on structurally similar ones that require slightly different
strategies, revealing brittle reasoning and poor generaliza-
tion (Shi et al., 2023; Ma et al., 2024; Mirzadeh et al., 2024;
Li et al., 2024; Petrov et al., 2025).

How can we help models discover a breadth of reasoning
strategies for a given problem? Abstractly, the most natural
approach is to train models to hypothesize new solutions to
difficult problems and then attempt to utilize these strategies
in the solution. We can do this by making models capable of
discovering reasoning abstractions: compressed represen-
tations of shared procedures that underlie multiple candidate
solutions. For example, in math reasoning problems, such
abstractions might correspond to useful intermediate lem-
mas or even some intermediate steps that do not succeed but
illustrate what not to do. When presented in context, these
abstractions function akin to hints on an exam, enabling
LLMs to solve harder problems by building on the insights
appearing in the abstraction, rather than from scratch. That
is, when conditioned on abstractions, an LLM should learn
to implement useful algorithmic procedures via RL that can
utilize and compose the procedural information in the con-
text as best as possible and apply it to the problem at hand.
This naturally boosts the diversity of solution strategies and
behaviors that a model learns to utilize when encountering
an unseen problem, in contrast to committing to a narrow
set of approaches like existing models. In RL terminology,
abstractions serve as high-level subgoals, skills, or priors –
any of them depending upon context – guiding the low-level
solution-generating policy.

In this work, we imbue LLMs with the capability of propos-
ing and utilizing reasoning abstractions for reasoning prob-
lems. Concretely, we build reasoning models that, first,
given an input problem, propose one or more reasoning

1

Learning to Discover Abstractions for LLM Reasoning

Query

Model-Generated

Abstraction

Intermediate Step Correct Incorrect

Query

Determine the smallest positive
prime p which satisfies the
congruence p + p⁻¹ ≡ 25 mod
143.

Abstraction 1 (Blind-Follow)

Use the quadratic formula in
modular arithmetic: for aX² + bX
+ c ≡ 0 (mod m), compute the
discriminant D = b² – 4ac, then X
≡ [–b ± √D]·(2a)⁻¹ (mod m)...

Abstraction 2 (Launchpoint)

Transform any equation a + a⁻¹ ≡
c into a quadratic form by setting
x = a⁻¹. This yields x + a·x = c, i.e.
x(a + 1) = c. It turns an inverse-
based problem into a standard...

Abstraction 3 (Caution Alert)

Check the existence of a
multiplicative inverse before
using X⁻¹ in a congruence. A
number X has an inverse mod m
precisely when gcd(X, m) = 1...

Figure 1. Reasoning abstractions illustrated in the solution-space graph for a problem. We represent the problem as a node (labeled
“query”) and various traces (both correct and incorrect) attempting to solve the problem as a graph. In this illustration, reasoning
abstractions describe useful high-level structure in this space of all traces, such as (1) an abstract idea that can induce a predictable
sequence of successful states (blind follow), (2) an initial step that informs the approach to take (launchpoint), or (3) a common critical
error to avoid (caution alert). Note that reasoning abstractions encode a mix of procedural and factual knowledge that may be helpful.

abstractions, expressed in natural language. Subsequently,
they generate a solution that utilizes the information and
principles prescribed by these abstractions. To achieve this,
we jointly train two LLMs via RL: (1) an abstraction gener-
ator, and (2) an abstraction-conditioned solution generator.
The abstraction generator is rewarded for the improvement
in the accuracy of the solution generator, stemming from
the abstractions it provides. The solution generator is re-
warded to maximize accuracy in solving a problem while
utilizing the abstraction. To obtain a good initialization for
RL training, we warmstart both models by running super-
vised fine-tuning (SFT) on data generated from a stronger
models. For the abstraction generator, we collect multiple
candidate solutions on a dataset of problems and prompt
a stronger LLM to generate diverse abstractions. For the
solution generator, we generate solutions from an LLM,
conditioning on the abstraction. We call this approach RL
through Abstraction Discovery (RLAD).

The main contribution of this paper is the notion of reason-
ing abstractions, how they can be obtained and amplified
via RL training, and an illustration of how they can be used
to improve reasoning performance. Concretely, we build an
approach to imbue LLMs with the capability of proposing
abstractions, and evaluate the model on a variety of math-
reasoning benchmarks, AIME 2025 (Mathematical Associ-
ation of America, 2025), DeepScaleR Hard (Anonymous
Author(s), 2025), and AMC 2023. We find an average 44%
improvement over state-of-the-art long chain-of-thought RL
approaches (i.e., DAPO (Yu et al., 2025)) on AIME 2025,
and show an effective benefit from generating diverse ab-
stractions over brute-force solution sampling.

2 Related Work
Scaling test-time compute and exploration. Recent work
highlights the promise of scaling test-time compute in dif-
ferent ways. One approach involves parallel sampling: sam-
pling multiple reasoning rollouts and then selecting a win-
ner via a scoring rule (Uesato et al., 2022; Wang et al.,
2023; Charniak and Johnson, 2005; Feng et al., 2024; Snell
et al., 2024; Yao et al., 2023a; Hao et al., 2023; Snell et al.,
2024). A complementary line of work iteratively edits a
single trace, attempting to implement some sort of a se-
quential search within a single solution trace (Madaan et al.,
2023; Qu et al., 2024; Qu et al., 2024; Kumar et al., 2024).
As such, the sequential approach performs a bit worse on
harder problems (Snell et al., 2024; Qu et al., 2025), where
it often gets trapped in strategies that seem optimal but
aren’t actually (Pan et al., 2025). Yet it still performs better
than parallel search on easier and medium difficulty prob-
lems (Snell et al., 2024). Our approach of proposing and
leveraging abstractions enables a kind of a hybrid between
sequential sampling and parallel sampling, guided by the
proposed abstractions. This should address failure modes of
current methods. Prior work has also utilized hand-designed
scaffolds to integrate multi-step evaluations of intermediate
hypotheses into reasoning (Yao et al., 2023b; Ho et al., 2023;
Hao et al., 2023; Li et al., 2023). In contrast, we do not rely
on pre-defined interfaces but learn to automatically propose
useful abstractions.

Using prior knowledge for LLM reasoning. Several
threads of work converge on the idea that textual artifacts
such as examples, plans, or prompts, can serve as reusable
knowledge that steers LLM behavior. Existing retrieval-
augmented generation (RAG) pipelines assume a static cor-
pus, typically of human-written text, and focus on improv-
ing retrieval heuristics (Lewis et al., 2020; Borgeaud et al.,

2

Learning to Discover Abstractions for LLM Reasoning

2022; Trivedi et al., 2022; Verma et al., 2024; Anonymous,
2025; Li et al., 2025). Many works use LLMs to learn or
refine prompts, either in an input-agnostic fashion (Zhou
et al., 2022; Yang et al., 2023; Pryzant et al., 2023; Fer-
nando et al., 2023) or through input-specific edits based
on feedback (Shinn et al., 2023; Madaan et al., 2023; Gou
et al., 2023; Yuksekgonul et al., 2025; Lin et al., 2025).
Other related work explores the use of synthetic demon-
strations (Zelikman et al., 2022b), scratchpads (Nye et al.,
2021), and memory-augmented agents (Schäfer et al., 2020)
to encode prior problem-solving knowledge. Two recent
works demonstrate that LLMs can accumulate and reuse
their own experience across tasks (Zhao et al., 2024; Suzgun
et al., 2025). While one can view our reasoning abstractions
as a form of prior procedural and factual knowledge pro-
duced before the model’s solution attempt, this knowledge
is (a) input-dependent and (c) is not acquired from an exter-
nal source at deployment, but rather is “proposed” by the
model itself. Imbuing models with this capability requires
a two-player cooperative RL training procedure that we de-
velop. To our knowledge, such procedures have not been
used for generating textual artifacts of any type, let alone
the abstractions we consider.

3 Preliminaries and Notation
We study reasoning with LLMs, where the LLM is provided
access to a problem x, and generates a stream of tokens ỹ
that ends in an estimate of the answer. We assume access to
a rule-based ground-truth 0/1 reward Accx(ỹ,y

⋆) ∈ {0, 1}
that measures correctness of the produced answer ỹ, against
the ground-truth solution y⋆ for a question x. For training,
we are given a dataset Dtrain = {(xi,y

⋆
i)}Ni=1 of problems

xi and solutions y⋆
i that end with the correct answer. Our

goal is to train the LLM π(·|x) such that it achieves high
rewards on a test distribution of problems Ptest.

We primarily evaluate models in terms of their average ac-
curacy under Ptest. We also measure the pass@k metric,
where for problem x, we sample k solutions ỹ1, . . . , ỹk ∼
π(·|x), and consider the problem to be solved if any of
these k traces is correct. This metric couples accuracy with
diversity, i.e., it attains the largest value when the model ef-
fectively finds diverse, good responses. To reduce variance
in estimating pass@k, we sample n ≥ k samples per prob-
lem and use the unbiased estimator introduced in OpenAI
Codex (Chen et al., 2021): 1−

(
n−c
k

)
/
(
n
k

)
, where c ≤ n is

the number of correct samples.

4 Reasoning Abstractions and Why They
Are Useful

Solving reasoning problems often requires composing both
procedural knowledge (e.g., how to apply a root-finding
algorithm) and factual knowledge (e.g., relevant lemmas
or intermediate results). Current approaches typically train

reasoning models to elicit such knowledge entirely through
reinforcement learning (RL) with long chains of thought.
However, this is often ineffective as RL often tends to op-
timize for “depth”: producing longer traces where each
subsequent segment extends the last (e.g., verifying prior
calculations), rather than “breadth”, which involves explor-
ing diverse solution strategies. In this section, we introduce
reasoning abstractions, that provide a mechanism for ex-
plicitly encoding a range of procedural and factual concepts
useful in solving a problem.

Intuition. We instantiate reasoning abstractions as con-
cise textual descriptions of core insights that are useful
for solving a problem. We show some examples of ab-
stractions in Figure 1, in the domain of math reasoning.
Here, these abstractions can correspond to useful techniques
(e.g., “launchpoint” in Figure 1), a useful lemma or heuristic
principle (e.g., “blind-follow” in Figure 1), and cautionary
examples that demonstrate common pitfalls encountered
when solving a problem (e.g., “caution alert” in Figure 1).
These abstractions distill complex reasoning patterns and
potential approaches into useful nuggets, allowing models
to generalize across structurally similar problems.

Conceptual understanding. With this intuitive notion in
place, we now consider a more conceptual definition. We
can view abstractions as a compressed representation of
the reasoning procedures embedded within longer chains of
thought. Consider the space of possible reasoning traces for
a given problem, which can be visualized as a graph struc-
ture where nodes represent intermediate states encountered
when solving a question (see Figure 1). Good abstractions
identify useful substructures within this larger reasoning
graph. For example, an abstraction can capture if a set of
strategies lead to a similar outcome or another set of tactics
leads to an error being consistently made.

Concretely, let us denote the LLM policy that produces a
solution conditioned on the problem x as πsol

θ (·|x). A good
abstraction z is a sequence of tokens that provides some
useful procedural and factual information to improve model
performance:

Eỹ∼πsol
θ (·|x,z) [Acc(ỹ,y∗)] > Eỹ∼πsol

θ (·|x) [Acc(ỹ,y∗)] .

(1)

How can we generate good reasoning abstractions? Do
good reasoning abstractions exist? We now attempt to
understand whether good reasoning abstractions exist and
how one might discover them. Perhaps the most natural
way to obtain an initial set of reasoning abstractions is to
collect a diverse set of traces attempting to solve a prob-
lem and then summarize useful concepts appearing in these
traces, mimicking the illustration in Figure 1. To evaluate
the existence and utility of reasoning abstractions (before
developing our method to train LLMs to discover useful

3

Learning to Discover Abstractions for LLM Reasoning

Classify breast masses as
malignant or benign using BI-
RADS, shape, and margin criteria.

...If BI-RADS ≥ 5, then malignant.

...if BI-RADS = 4 AND shape =
irregular AND margin = ill-
defined, then malignant...

Breast Cancer Detection

45% 60% 88% 45%

90% 90% 94% 100%

GPT-4o-mini

GPT-4o-mini + Abs

Abstraction

Tweet Hate Speech Detection Corporate Lobbying Relevance Bank Note Authentication

...If the text contains explicit
derogatory slurs (e.g., b****,
c***, s****, h**, r********),
classify as hate speech.

...if the text degrades or
dehumanizes a protected group
(nationality, race, religion...

...If the bill addresses regulation,
labeling, pricing, reimbursement,
R&D funding, or licensing of the
company’s core products or
services, label “Yes.”

...Else if the bill alters taxes,
credits, bonds, infrastructure...

1. If variance > 4, predict Fake.

2. Else if variance < –3, predict
Original.

3. Else if skewness > 5, predict
Fake.

4. Else if entropy > 0 and
skewness > 1, predict Fake.

Figure 2. Examples of good reasoning abstractions in non-math domains. Adding the abstraction to the prompt of GPT-4o-mini
consistently improves performance on unseen instances.

Qwen-0.6B

Qwen-1.7B
Qwen-4B

o4-mini (Short)

o4-mini (Lo
ng)

0.6B

1.7B

4BSo
lu

tio
n

M
od

el
 S

ize

-2.06 3.23 0.78 -1.05 -4.65

3.15 2.61 2.61 4.05 7.97

0.18 -1.13 1.09 -1.26 8.09

GSM8k

Qwen-0.6B

Qwen-1.7B
Qwen-4B

o4-mini (Short)

o4-mini (Lo
ng)

0.6B

1.7B

4B

-1.30 0.40 -0.40 1.06 1.65

6.07 2.48 1.52 0.35 6.54

-1.12 -0.47 -2.96 -2.71 6.98

GSMPlus

0

1

2

3

4

5

6

7

8

Im
pr

ov
em

en
t (

%
)

Figure 3. Many factors matter for consistent benefits from ab-
stractions: solver capability, abstraction length, and abstraction
generator. We show relative accuracy change (%) for GSM8k
and GSMPlus datasets. Rows indicate solution model size, and
columns indicate the source of the abstraction.

reasoning abstractions), we instantiate this idea by prompt-
ing a model to generate solutions for a given problem and
prompting a stronger model to deduce useful patterns from
the responses of the first model. Concretely, we utilize the
Qwen3 series of models to produce solutions and a stronger
reasoning model, o4-mini, to generate abstractions. While
this approach is not perfect, and it is not meant to be our
final approach, it still enables us to validate the feasibility
of the concept of reasoning abstractions. To ensure that the
abstractions do not “leak” content of the solution, we verify
that post-hoc prompting the solver with only the abstraction
and no question yields zero accuracy.

Results and observations. After generating abstractions as
above, we measure their quality by evaluating Equation 1,
i.e., by checking if conditioning the problem solver on a set
of abstractions improves its accuracy. Results in Figure 3
show that conditioning a problem solver on generated ab-
stractions improves accuracy when three conditions hold
simultaneously: (i) the abstraction is not too short (e.g., not
just a few words that are not informative) and generated
by a strong generator (o4-mini(High)) and (ii) the so-
lution generator has sufficient capability (Qwen3-1.7B
or Qwen3-4B) of interpreting and utilizing the generated
abstraction. These results confirm that good abstractions
(satisfying Eq. 1) exist for math problems, but neither the
ability to generate them nor the ability to leverage them in
solutions arises naturally. In Section 5, we will describe our
method for explicitly training models to propose and use
such abstractions effectively.

Good abstractions exist in many domains. We also find
that this procedure can be used to identify an initial set of
useful reasoning abstractions on many problem domains,
including healthcare, human behavior, legal reasoning, and
web security. Of course, the proportion of abstraction de-
voted to procedural knowledge and factual knowledge is
different in these domains compared to math reasoning.
Nonetheless, we find that using reasoning abstractions im-
proves performance by 30% on average over 37 tasks from
RAFT (Alex et al., 2021), CLUES (Menon et al., 2022), and
LegalBench (Guha et al., 2023). We show four representa-
tive abstractions in Figure 2 and full results in Table 3 in the
appendix.

Takeaways: Abstractions improve performance

Reasoning abstractions summarize procedural and factual
knowledge that is useful for learning to solve problems
via diverse strategies. Prompting abstractions generated
by merely prompting models already improves perfor-
mance by 30% on average for reasoning.

5 Learning to Discover Reasoning
Abstractions

Having defined the notion of reasoning abstractions and
shown that they can improve performance when adhered
to for tackling reasoning problems, we now wish to de-
velop an approach that can allow us to imbue and improve
an LLM’s ability to propose and utilize abstractions. Do-
ing so requires training an abstraction generator: an LLM,
z ∼ πabs

θ (·|x) that proposes candidate abstractions z given
problem x, and an abstraction-conditioned solution gener-
ator, y ∼ πsol

θ (·|x, z), that produces a solution y given x
and abstraction z. Note that z is parameterized as a variable-
length string of tokens and might consist of one or more
pieces of information or procedures. While our approach
applies to the case when πabs

θ produces more than one ab-
straction, we abuse notation and subsume more than one ab-
straction into one to avoid notational clutter. In this section,
we describe RL through Abstraction Discovery (RLAD),
our method for training these models via RL.

4

Learning to Discover Abstractions for LLM Reasoning

Figure 4. RLAD training paradigm. We train an abstraction gener-
ator, πabs

θ , that proposes some reasoning abstractions conditioned
on the question x, denoted as z. Then, the solution generator, πsol

θ ,
is trained to produce a response, ỹ conditioned on the generated
abstraction z. The reward used for training πabs

θ corresponds to
the average success rate of the solution generator conditioned on
the proposed abstraction.

5.1 Training πabs
θ and πsol

θ via RL
The core principle behind our approach is that an abstraction
z is successful at a given problem x if it can maximally help
πsol
θ (·|x, z) find correct responses to question x, without

actually leaking the answer itself. To convert this into an RL
objective, we design a reward function that rewards an ab-
straction z with the expected success of solutions generated
by πsol

θ conditioned on z:

rπsol
θ
(x, z) := Eỹ∼πsol

θ (·|x,z) [Accx(ỹ,y
∗)] , (2)

where y∗ is the groundtruth answer and Accx(·, ·) denotes
the 0/1 accuracy on problem x. To train πsol

θ , one can then
adopt the fairly straightforward approach of maximizing
0/1 binary outcome reward, now conditioned on a given
abstraction z sampled previously from πabs

θ , akin to recent
results RL (DeepSeek-AI et al., 2025). Formally, we set the
reward for a solution as: r(x, z, ỹ) := Accx(ỹ,y

∗). With
these reward functions in place, perhaps the most natural
approach then would be to train πabs

θ to maximize rπsol
θ

for a fixed πsol
θ on a dataset of prompts Dπabs

θ
, while also

iteratively training πsol
θ to maximize the reward function r

on modified prompts generated by concatenating a set of
sampled abstraction z on a dataset of problems, Dπsol

θ
. This

maximization could be done via on-policy RL methods like
GRPO (Shao et al., 2024) or (batched) offline RL methods
like DPO (Rafailov et al., 2023) and STaR (Zelikman et al.,
2022a).

Challenges with naı̈ve reward design. While the approach
so far is extremely simple, it presents some challenges. In
particular, the reward functions defined above can result in
spurious, undesirable solutions in a rather nuanced manner:
(1) if πabs

θ learns to solve problem x in its entirety, it will still
be rewarded highly by rπsol

θ
but is not a desirable abstraction;

(2) if πsol
θ is too weak or too strong, such that it is either

able to always solve the problem x or never solves it, then
rπsol

θ
will not provide a meaningful signal to update πabs

θ ;
and (3) similar to the above failure modes, training πsol

θ

via on-policy RL may result in it ignoring the abstraction z
altogether no matter how useful it is. Abstractly, all of these
challenges correspond to a “signal obfuscation” problem,

where an imbalance in the strength of πabs
θ and πsol

θ may
drown out the learning signal for the other.

Modifying reward design. To address these signal ob-
fuscation challenges, we make a slight but consequential
changes to the training process. In particular, we train πsol

θ

on a mixture of prompts x augmented by abstractions z and
prompts x without any abstractions at all. In this process,
while we utilize Accx as discussed above on a given re-
sponse, we simply zero out rewards for any trace generated
on x without abstractions. When utilizing KL-constrained
RL, e.g., GRPO (Shao et al., 2024), πsol

θ is now trained to
closely mimic the distribution of responses as the reference
LLM on questions x but must attempt to find ways to opti-
mize reward on the same question x when augmented with
an abstraction. This can be accomplished only when πsol

θ

learns to utilize the provided abstraction carefully, hence
addressing one of the challenges above. Second, we ensure
that z ∼ πabs

θ (·|x) itself does not contain the answer to the
question x, which means that Acc(z,y∗) is penalized to be
small. Finally, we utilize separate partitions of the training
dataset to train πabs

θ and πsol
θ to avoid overfitting on sub-

sets of data. We present detailed ablations of these design
choices in Appendix B.3. Formally, the updated versions of
these reward functions are shown as:

r(x, z, ỹ) :=

{
0, if z = ∅
Accx(ỹ,y

∗), otherwise
(3)

rπsol
θ
(x, z) := Eỹ∼πsol

θ (·|x,z)[Accx(ỹ,y
∗)]. (4)

5.2 Warmstarting πsol
θ and πabs

θ from Good
Initializations

While the above approach prescribes a recipe for RL train-
ing of πabs

θ and πsol
θ , any such recipe critically relies on the

ability of the initialization to be able to generate somewhat
meaningful abstractions and meaningful solutions condi-
tioned on the abstraction input, respectively, right from the
beginning of RL training. How can we ensure that our
model initializations have this capability? Inspired from
the approach of running an initial phase of SFT to imbue
into the model the basic structure of a long chain-of-thought
before running RL (DeepSeek-AI et al., 2025; Qu et al.,
2025), we run an initial phase of SFT to imbue into πabs

θ

and πsol
θ the basic capabilities of producing abstractions and

attempting to follow abstractions respectively, even if the re-
sulting models are not very good. For this initial warmstart
phase, we follow the protocol from Section 4 and construct
a corpus {(xi, zi,yi)}Mi=1 by prompting strong models. For
each training problem-solution pair (x,y∗), in our training
set, we first generate a abstraction z using an instruction-
tuned model, discarding any that leak y∗. We then sample a
solution trace y conditioned on (x, z). As mentioned in Sec-
tion 5.1, we partition this corpus into non-overlapping splits
for πsol

θ and πabs
θ to avoid overfitting.

5

Learning to Discover Abstractions for LLM Reasoning

5.3 Practical Approach and Algorithm Details
For warmstarting the abstraction generator, we utilize ab-
stractions generated by o4-mini. We then use a weaker
solution generator (GPT 4.1-mini) to check the efficacy
of each abstraction when conditioned on by comparing the
success rate of the solution generator with and without a
abstraction. We filter abstractions that don’t result in an in-
crease in solution generation performance to form our seed
set of abstractions. Then, we run SFT for 5 epochs on the
seed dataset to obtain an initial abstraction generator. For
solution generation, we utilize Qwen 3 1.7b (Qwen Team,
2025), a 1.7B reasoning model distilled from Qwen 3-32B.

After SFT, we employ RLAD to further fine-tune the ab-
straction generator and abstraction-conditioned solution
generator via RL. For the abstraction generator, we opt to
use “batched” offline RL instantiation of our approach via
RFT (Yuan et al., 2023) and RPO (Pang et al., 2024), since
reward computation by rolling out the solution generator the
on the fly was infeasible in our RL infrastructure and com-
pute. To train the solution generator, we utilize the DAPO
approach (Yu et al., 2025), and include token-level policy
loss normalization and asymmetric clipping, and prompt
difficulty/length curriculum. Building upon implementa-
tion of concurrent work (Anonymous Author(s), 2025), we
employ a two stage curriculum where we partition the Deep-
ScaleR (Luo et al., 2025) mixture by success rate of the
base model into three sets: (1) easy, (2) medium, and (3)
hard, where we fine-tune first on easy problems with an 8K
token budget and then on medium problems. We utilize the
hard split as a held out, evaluation subset, which we denote
as DeepScaleR [Hard]. We outline hyperparameters
and details in Appendix A.1 and provide a pseudocode in
Algorithm 1.

Takeaways: RLAD method design

RLAD jointly optimizes the abstraction generator πabs
θ

and solution generator πsol
θ with RL, in an alternating

manner, using reward functions in Equation 3. These re-
ward functions incentivize πsol

θ to utilize abstractions and
incentivize πabs

θ to never “leak” the response to the input
problem. We obtain the initialization for πabs

θ by distill-
ing traces from a stronger teacher model (o4-mini).

6 Experimental Evaluation
The goal of our experiments is to evaluate the efficacy of
RLAD in improving the reasoning capabilities of LLMs
through abstraction-guided solution generation. Specifi-
cally, we aim to answer the following research questions: (1)
Does RLAD improve pass@1 accuracy across several math-
ematical reasoning benchmarks compared to direct solution
generation? (2) How does RLAD scale as more abstractions
and solutions are generated? (3) What makes the generated
abstractions useful, how faithfully are they followed, and

how do they guide and improve solution generation? To this
end, we compare RLAD with strong base models on three
representative mathematical reasoning datasets: AMC 2023,
AIME 2025, and DeepScaleR Hard (Luo et al., 2025), which
itself is a subset of hard problems from the OmniMATH
mixture on which DeepSeek-R1 distilled Qwen-32B model
attains an accuracy of ≤ 10%. We also conduct several
ablations to better understand the abstractions produced by
RLAD.

6.1 Main Performance Results for RLAD
We evaluate RLAD in three settings: (1) w/o abs,without ab-
stractions; (2) w/ abs (avg), average performance over gener-
ations conditioned on 4 proposed abstractions per problem;
and (3) w/ abs (best): using the best-performing abstraction
(in a set of 4 proposed abstractions per problem).

Observe that RLAD consistently outperforms the base
model and variant fine-tuned with RL on the same prompts
via DAPO (Yu et al., 2025), but without any abstractions,
across all settings and benchmarks (Table 1). This high-
lights that RLAD can propose and leverage abstractions to
improve its reasoning performance. We also note that these
performance gains are not limited to abstraction-conditioned
inference: even in the w/o abs setting, where no abstrac-
tion is provided during inference, RLAD improves over the
prior methods, when trained with abstractions via RLAD.
This suggests that exposure to diverse abstractions during
training enhances the model’s general reasoning ability. We
observe similar trends on additional benchmarks, including
AIME 2024 and HMMT 2025 (see Appendix B.2), where
RLAD improves in the w/o abs setting.

In Appendix C, we also measure the performance of RLAD
when different budgets are allowed for reasoning – while
Table 1 measures performance at a budget of 32K tokens, we
also measure performance at 8K and 16K budgets and find
RLAD to be more effective compared to the comparisons.

6.2 Understanding Properties of RLAD
Compute tradeoffs between abstraction and solution gen-
eration. We now study how to allocate compute between
generating diverse abstractions and sampling solutions con-
ditioned on them to attain maximal performance within a
given budget on the total sampling allowed. This corre-
sponds to a “compute-optimal strategy” (Snell et al., 2024)
for partitioning compute between abstraction and solution
generation. If the model typically fails by making small
local errors in its computations, then additional concise ab-
stractions may not help it as much as simply trying again. In
contrast, if the model tends to pursue a seemingly plausible
but incorrect approach and is unable to easily recover or
switch approaches, then conditioning on diverse abstrac-
tions can help by offering alternative high-level approaches
toward the correct answer. In other words, when the model

6

Learning to Discover Abstractions for LLM Reasoning

Let A be the set of positive integer divisors of 2025. Let B be a
randomly selected subset of A. The probability that B is a
nonempty set with the property that the least common multiple
of its element is 2025 is m/n, where m and n are relatively
prime positive integers. Find m+n.

Question Solution
...

But how do we compute the number of subsets with LCM equal to 2025?

From the cheatsheet, there's a mention of using prime factorization and
considering exponent vectors. Let me recall that.

The idea is that each divisor of 2025 can be represented as 3^a * 5^b, where 0
≤ a ≤ 4 and 0 ≤ b ≤ 2. So each element of A is determined by exponents (a, b).
The LCM of a subset of these elements is 2025, which is 3^4 * 5^2. Therefore,
for the LCM of the subset to be exactly 2025, each prime in the subset must
have at least the exponent of 2025 for that prime.

So for prime 3, in the subset, there must be at least one element with exponent
4 (since 2025 has exponent 4 for 3). Similarly, for prime 5, there must be at
least one element with exponent 2 (since 2025 has exponent 2 for 5).

Therefore, the problem reduces to counting the number of subsets of A
(including empty set) where:

... 
<description>Model subsets of divisors by their exponent
vectors. Let S be the set of exponent choices for all primes. A
subset of divisors corresponds to a subset of S. The condition
“LCM equals N” becomes “for each prime i, the maximum
exponent chosen in the subset equals eᵢ.”</description> 
<example>With primes (2,5) and exponent choices S={(0,0),
(1,1),(2,2),(3,3)}, the condition “LCM=2^3·5^2” means we must
include at least one choice with exponent 3 for 2 and exponent
2 for 5. Any valid subset has at least one of (3,0),(0,2),(3,2).</
example>

Reasoning Abstraction

Figure 5. Example of a reasoning abstraction. Here, we provide an example of a reasoning abstraction for a given problem. In the
solution, we see (in blue) references to the abstraction and keywords from the abstraction being utilized in the thinking trace of the
reasoning model.

Approach AIME 2025 DeepScaleR [Hard] AMC 2023
w/o abs w/ abs (avg) w/ abs (best) w/o abs w/ abs (avg) w/ abs (best) w/o abs w/ abs (avg) w/ abs (best)

Qwen-3-1.7B 33.75 36.25 40.00 20.21 22.14 32.50 86.41 78.01 84.53
+ DAPO 37.92 34.90 39.79 21.67 21.88 33.54 86.41 81.99 88.44
+ RLAD 38.04 42.45 48.33 23.54 24.84 35.54 87.25 88.35 91.72

Table 1. Pass@1 accuracy across three math reasoning benchmarks. RLAD achieves consistent gains in both abstraction-conditioned
and w/o abstraction settings.

has a tendency to explore “depth” over “breadth” of solution
strategies, abstractions can help improve performance. With
this intuition, we hypothesize that when the compute budget
permits only a limited number of samples, allocating more
compute into sampling multiple solutions will enable the
model to succeed at least once. In order words, sampling
multiple solutions for the same abstraction will result in a
higher pass@k performance. However, once pass@k for a
single abstraction begins to saturate, performance gains are
more likely to come from scaling diversity of abstractions,
which enables the model to explore qualitatively different
regions of the solution space.

To visualize this tradeoff, we plot iso-compute scaling
curves under a fixed compute budget, where multiple ab-
stractions are generated and multiple solutions are sampled
per abstraction. Specifically, we denote the number of ab-
stractions as m and the number of solutions sampled per
abstraction as k. To better isolate the effect of abstraction
diversity, we introduce a normalization offset k0, which
accounts for performance gains that do not stem from new
strategies, but arise from local modifications in the solution
and the model’s own stochasticity (e.g., small edits that do
not require new abstractions). Figure 6 shows multiple iso-
compute frontiers, one for each total compute budget. Each
curve corresponds to a fixed total number of abstraction-
conditioned samples, with compute defined as m×(k−k0),
where m is the number of abstractions, k is the number

of solutions per abstraction, and k0 offsets for solutions.
This formulation captures the number of “meaningful” sam-
ples that go beyond the model’s local neighborhood. The
x-axis plots the ratio between abstractions and adjusted so-
lutions, m/(k − k0) We observe in Figure 6 that across
k0 ∈ {0, 2, 4, 6, 8}, shifting compute toward abstractions
consistently yields greater performance improvements than
allocating the same additional compute to solution refine-
ments. This supports the conclusion that once local errors
in the chain-of-thought have been addressed, it is more
effective to increase the breadth of the search through ab-
straction conditioning rather than to continuing to scale up
sampling alone.

Understanding behavior of the abstraction-conditioned
solution generator. A desirable property of the solution
generator is the ability to follow proposed abstractions. To
study this, we prompt a strong reasoning model o4-mini
to classify whether a particular solution trace produced by a
trained solution generator closely adheres to a given abstrac-
tion. We ask for a binary decision on each pair of hint and
solution, and measure the adherence rate across 200 pairs.
In Figure 7 (right), we report adherence rates under four
conditions: Abstraction (solution generated with the
intended abstraction), No Abstraction (solution with
only question), Retrieval (a semantically similar past
solution is retrieved), and Unrelated Abstraction
(solution conditioned on an abstraction from a different prob-

7

Learning to Discover Abstractions for LLM Reasoning

Figure 6. Tradeoff of abstraction and solution generation on AIME 2025. As the compute budget increases, we find better performance
efficiency when allocating our budget to abstraction generation rather than solution generation, for all values of normalization offset k0.

Abstraction No
Abstraction

Sol
Retrieval

Unrelated
Abstraction

0

10

20

30

40

50

Ad
he

re
nc

e
Ra

te
 (%

) 43.33%
38.75%

20.42%
16.25%

Abstraction-Solution Adherence Rates

Figure 7. Abstraction-conditioned solution generation analysis.
RLAD produces solutions with (left) greater semantic diversity
across different abstractions and (right) higher abstraction adher-
ence than baselines.

Figure 8. Abstraction Categorization. RLAD produces a diverse
characterization of abstractions (characterize bo4-mini).

lem). We find that the Abstraction condition achieves
the highest adherence rate, outperforming all control vari-
ants on average. Intuitively, this means that the trained
solution generator is detected to be more likely to follow the
strategy or guidance of a given abstraction. Additionally,
we measure the semantic similarity of solutions generated
without abstraction conditioning, conditioned on the same
abstraction, and across abstractions. Here we find across
abstractions, the semantic similarity of solutions is lower,
indicating abstractions allow for higher solution diversity.

Categorizing abstractions. As outlined in Appendix C,
we classify each model-generated abstraction into four
mutually-exclusive categories: (1) Caution Alert
that warns the solver to avoid a specific approach; (2)
Productive Launchpoint that suggests strategic
framings or problem reformulations that open high-potential

solution paths; (3) Blind-Follow Trajectory
that prescribes repeatable, step-by-step procedures exe-
cutable without further insight; and (4) Structural
Shortcut that leverages abstract insights or invariants
to collapse multiple reasoning steps into a single leap. In
Figure 8, we show that after training via RLAD, the distribu-
tion over these categories shifts, with a notable increase in
blind-follow abstractions, which a stronger reasoning model
classifies as an effective reasoning path to a successful solu-
tion as seen in Appendix C.

Takeaways: Experimental Results

RLAD outperforms RL fine-tuning approaches that do
not propose or leverage abstractions on math reasoning.
Jointly scaling the number of abstractions and solution
samples enables continued performance gains even when
scaling solutions alone begins to saturate.

7 Discussion, Conclusion
We introduce reasoning abstractions: concise representa-
tions of procedural and factual knowledge that are expressed
in natural language, as a means to broaden the reasoning
strategies of LLMs. Our method, RLAD, instantiates a
two-player training framework that trains an abstraction
generator and an abstraction-conditioned solution genera-
tor. RLAD yields consistent improvements across several
mathematical reasoning benchmarks, outperforming exist-
ing methods for training LLMs to reason. Moreover, we
show that allocating compute toward generating diverse ab-
stractions, rather than increasing solution sampling alone,
leads to greater performance gains. This highlights abstrac-
tions as a complementary axis for scaling test-time compute:
while longer length chains-of-thoughts and parallel solu-
tion sampling provide some existing ways to scale compute,
using abstractions provides us with an orthogonal axis to
improve performance. While we showed abstractions can be
helpful, we limited our evaluation to mathematical reason-
ing tasks, leaving open-ended reasoning unexplored. Finally,
RLAD incurs additional computational overhead, and train-
ing a single model that can both generate abstractions and
solutions is open for future work.

8

Learning to Discover Abstractions for LLM Reasoning

References
N. Alex, E. Lifland, L. Tunstall, A. Thakur, P. Maham, C. J.

Riedel, E. Hine, C. Ashurst, P. Sedille, A. Carlier, et al.
Raft: A real-world few-shot text classification benchmark.
arXiv preprint arXiv:2109.14076, 2021.

Anonymous. Optimizing inference-time reasoning in LLMs
via retrieval-augmented reflection, 2025. URL https:
//openreview.net/forum?id=ElYRG3pJcv.

Anonymous Author(s). e3: Learning to Explore Enables Ex-
trapolation of Test-Time Compute for LLMs. Submitted
to the 39th Conference on Neural Information Processing
Systems (NeurIPS 2025), 2025.

S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Ruther-
ford, K. Millican, G. B. Van Den Driessche, J.-B. Lespiau,
B. Damoc, A. Clark, et al. Improving language models by
retrieving from trillions of tokens. In International con-
ference on machine learning, pages 2206–2240. PMLR,
2022.

E. Charniak and M. Johnson. Coarse-to-fine n-best pars-
ing and maxent discriminative reranking. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics, ACL ’05, page 173–180,
USA, 2005. Association for Computational Linguistics.
doi: 10.3115/1219840.1219862. URL https://doi.
org/10.3115/1219840.1219862.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brock-
man, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf,
G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Win-
ter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Rad-
ford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba. Evaluating large lan-
guage models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song,
R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,
X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao,
Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng,
C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai,
D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao,
G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang,
H. Ding, H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li,
J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni,
J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan,

K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang,
L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang,
M. Li, M. Wang, M. Li, N. Tian, P. Huang, P. Zhang,
Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan,
R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou,
S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li,
S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei, T. Sun, T. Wang,
W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu,
W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen,
X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang, X. Li,
X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun,
X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao,
Y. Sun, Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He,
Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo, Y. Ou,
Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo,
Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu, Y. Huang,
Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan,
Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang,
Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu,
Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang,
and Z. Zhang. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

X. Feng, Z. Wan, M. Wen, S. M. McAleer, Y. Wen,
W. Zhang, and J. Wang. Alphazero-like tree-search can
guide large language model decoding and training, 2024.
URL https://arxiv.org/abs/2309.17179.

C. Fernando, D. Banarse, H. Michalewski, S. Osindero,
and T. Rocktäschel. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan,
and W. Chen. Critic: Large language models can self-
correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

N. Guha, J. Nyarko, D. Ho, C. Ré, A. Chilton, A. Chohlas-
Wood, A. Peters, B. Waldon, D. Rockmore, D. Zambrano,
et al. Legalbench: A collaboratively built benchmark
for measuring legal reasoning in large language models.
Advances in Neural Information Processing Systems, 36:
44123–44279, 2023.

S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang,
and Z. Hu. Reasoning with language model is plan-
ning with world model, 2023. URL https://arxiv.
org/abs/2305.14992.

N. Ho, L. Schmid, and S.-Y. Yun. Large language models
are reasoning teachers, 2023. URL https://arxiv.
org/abs/2212.10071.

9

https://openreview.net/forum?id=ElYRG3pJcv
https://openreview.net/forum?id=ElYRG3pJcv
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2212.10071
https://arxiv.org/abs/2212.10071

Learning to Discover Abstractions for LLM Reasoning

A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. D. Co-Reyes,
A. Singh, K. Baumli, S. Iqbal, C. Bishop, R. Roelofs,
L. M. Zhang, K. McKinney, D. Shrivastava, C. Paduraru,
G. Tucker, D. Precup, F. Behbahani, and A. Faust. Train-
ing language models to self-correct via reinforcement
learning, 2024. URL https://arxiv.org/abs/
2409.12917.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel,
et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459–9474, 2020.

G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and
B. Ghanem. Camel: Communicative agents for ”mind”
exploration of large language model society, 2023. URL
https://arxiv.org/abs/2303.17760.

Q. Li, L. Cui, X. Zhao, L. Kong, and W. Bi. Gsm-plus: A
comprehensive benchmark for evaluating the robustness
of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255, 2024.

X. Li, G. Dong, J. Jin, Y. Zhang, Y. Zhou, Y. Zhu,
P. Zhang, and Z. Dou. Search-o1: Agentic search-
enhanced large reasoning models, 2025. URL https:
//arxiv.org/abs/2501.05366.

K. Lin, C. Snell, Y. Wang, C. Packer, S. Wooders, I. Sto-
ica, and J. E. Gonzalez. Sleep-time compute: Be-
yond inference scaling at test-time. arXiv preprint
arXiv:2504.13171, 2025.

M. Luo, S. Tan, J. Wong, X. Shi, W. Tang,
M. Roongta, C. Cai, J. Luo, T. Zhang, E. Li,
R. A. Popa, and I. Stoica. Deepscaler: Surpass-
ing o1-preview with a 1.5b model by scaling rl.
https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025. Notion Blog.

J. Ma, D. Dai, L. Sha, and Z. Sui. Large language models are
unconscious of unreasonability in math problems. arXiv
preprint arXiv:2403.19346, 2024.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao,
S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang,
S. Gupta, B. Prasad Majumder, K. Hermann, S. Welleck,
A. Yazdanbakhsh, and P. Clark. Self-Refine: Iterative
Refinement with Self-Feedback. arXiv e-prints, art.
arXiv:2303.17651, Mar. 2023. doi: 10.48550/arXiv.2303.
17651.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao,
S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang,
et al. Self-refine: Iterative refinement with self-feedback.

Advances in Neural Information Processing Systems, 36:
46534–46594, 2023.

Mathematical Association of America. 2025 American
Invitational Mathematics Examination (AIME)
I: Problems and Solutions, Feb. 2025. URL
https://artofproblemsolving.com/wiki/
index.php/2025_AIME_I. Art of Problem Solving
Wiki entry.

R. R. Menon, S. Ghosh, and S. Srivastava. Clues a bench-
mark for learning classifiers using natural language ex-
planations. 2022.

I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio,
and M. Farajtabar. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski,
J. Austin, D. Bieber, D. Dohan, A. Lewkowycz,
M. Bosma, D. Luan, C. Sutton, and A. Odena. Show
your work: Scratchpads for intermediate computation
with language models, 2021. URL https://arxiv.
org/abs/2112.00114.

J. Pan, X. Li, L. Lian, C. Snell, Y. Zhou, A. Yala, T. Dar-
rell, K. Keutzer, and A. Suhr. Learning adaptive par-
allel reasoning with language models. arXiv preprint
arXiv:2504.15466, 2025.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and
J. Weston. Iterative reasoning preference optimization.
arXiv preprint arXiv:2404.19733, 2024.

I. Petrov, J. Dekoninck, L. Baltadzhiev, M. Drencheva,
K. Minchev, M. Balunović, N. Jovanović, and M. Vechev.
Proof or bluff? evaluating llms on 2025 usa math
olympiad. arXiv preprint arXiv:2503.21934, 2025.

R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng.
Automatic prompt optimization with” gradient descent”
and beam search. arXiv preprint arXiv:2305.03495, 2023.

Y. Qu, T. Zhang, N. Garg, and A. Kumar. Recursive In-
trospection: Teaching Language Model Agents How to
Self-Improve. arXiv e-prints, art. arXiv:2407.18219, July
2024. doi: 10.48550/arXiv.2407.18219.

Y. Qu, T. Zhang, N. Garg, and A. Kumar. Recursive in-
trospection: Teaching language model agents how to
self-improve. arXiv preprint arXiv:2407.18219, 2024.

Y. Qu, M. Y. Yang, A. Setlur, L. Tunstall, E. E. Beech-
ing, R. Salakhutdinov, and A. Kumar. Optimizing test-
time compute via meta reinforcement fine-tuning. arXiv
preprint arXiv:2503.07572, 2025.

10

https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114

Learning to Discover Abstractions for LLM Reasoning

Qwen Team. Qwen3 technical report. Technical report,
Qwen, May 2025. URL https://huggingface.
co/Qwen. Available at: https://huggingface.co/Qwen,
https://modelscope.cn/organization/qwen,
https://github.com/QwenLM/Qwen3.

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Er-
mon, and C. Finn. Direct preference optimization: Your
language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–
53741, 2023.

M. B. Schäfer, F. Ohme, and A. H. Nitz. Detection
of gravitational-wave signals from binary neutron star
mergers using machine learning. Physical Review D,
102(6), Sept. 2020. ISSN 2470-0029. doi: 10.1103/
physrevd.102.063015. URL http://dx.doi.org/
10.1103/PhysRevD.102.063015.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang,
M. Zhang, Y. Li, Y. Wu, et al. Deepseekmath: Pushing
the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H.
Chi, N. Schärli, and D. Zhou. Large language
models can be easily distracted by irrelevant context.
In A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 31210–31227. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/shi23a.html.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and
S. Yao. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling LLM
Test-Time Compute Optimally can be More Effective
than Scaling Model Parameters. arXiv e-prints, art.
arXiv:2408.03314, Aug. 2024. doi: 10.48550/arXiv.2408.
03314.

C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

M. Suzgun, M. Yuksekgonul, F. Bianchi, D. Jurafsky, and
J. Zou. Dynamic cheatsheet: Test-time learning with
adaptive memory. arXiv preprint arXiv:2504.07952,
2025.

H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal.
Interleaving retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv preprint
arXiv:2212.10509, 2022.

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel,
L. Wang, A. Creswell, G. Irving, and I. Higgins. Solving
math word problems with process- and outcome-based
feedback, 2022. URL https://arxiv.org/abs/
2211.14275.

P. Verma, S. P. Midigeshi, G. Sinha, A. Solin, N. Natara-
jan, and A. Sharma. Plan×RAG: Planning-guided
Retrieval Augmented Generation. arXiv e-prints, art.
arXiv:2410.20753, Oct. 2024. doi: 10.48550/arXiv.2410.
20753.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang,
A. Chowdhery, and D. Zhou. Self-consistency improves
chain of thought reasoning in language models, 2023.
URL https://arxiv.org/abs/2203.11171.

C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and
X. Chen. Large language models as optimizers. arXiv
preprint arXiv:2309.03409, 2023.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao,
and K. Narasimhan. Tree of thoughts: Deliberate problem
solving with large language models, 2023a. URL https:
//arxiv.org/abs/2305.10601.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan,
and Y. Cao. React: Synergizing reasoning and acting
in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Q. Yu, Z. Zhang, R. Zhu, Y. Yuan, X. Zuo, Y. Yue, T. Fan,
G. Liu, L. Liu, X. Liu, et al. Dapo: An open-source llm
reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Z. Yuan, H. Yuan, C. Li, G. Dong, C. Tan, and C. Zhou. Scal-
ing relationship on learning mathematical reasoning with
large language models. arXiv preprint arXiv:2308.01825,
2023.

Y. Yue, Z. Chen, R. Lu, A. Zhao, Z. Wang, S. Song, and
G. Huang. Does reinforcement learning really incentivize
reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

M. Yuksekgonul, F. Bianchi, J. Boen, S. Liu, P. Lu,
Z. Huang, C. Guestrin, and J. Zou. Optimizing generative
ai by backpropagating language model feedback. Nature,
639(8055):609–616, 2025.

11

https://huggingface.co/Qwen
https://huggingface.co/Qwen
http://dx.doi.org/10.1103/PhysRevD.102.063015
http://dx.doi.org/10.1103/PhysRevD.102.063015
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

Learning to Discover Abstractions for LLM Reasoning

E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Boot-
strapping reasoning with reasoning. Advances in Neu-
ral Information Processing Systems, 35:15476–15488,
2022a.

E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. Star:
Bootstrapping reasoning with reasoning, 2022b. URL
https://arxiv.org/abs/2203.14465.

A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang.
Expel: Llm agents are experiential learners. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632–19642, 2024.

Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan,
and J. Ba. Large language models are human-level prompt
engineers. In The Eleventh International Conference on
Learning Representations, 2022.

12

https://arxiv.org/abs/2203.14465

Learning to Discover Abstractions for LLM Reasoning

Appendices

A Experimental Details
A.1 Pseudocode for RLAD

Algorithm 1 Joint RL Training of πabs
θ and πsol

θ

Require: Policies πabs
θ (z | x), πsol

θ (ỹ | x, z) Datasets Dπabs
θ

, Dπsol
θ

; rates απabs
θ

, απsol
θ

; batch sizes N,M ; epochs E
1: Initialize πabs

θ , πsol
θ

2: for e = 1 to E do ▷ Update abstraction policy
3: for {xi}Ni=1∼Dπabs

θ
do

4: zi ∼ πabs
θ (·|xi)

5: ri ← rπsol
θ
(xi, zi)

6: πabs
θ ← πabs

θ − απabs
θ
∇πabs

θ
LSTAR/RPO(π

abs
θ ;xi, zi, ri)

7: end for ▷ Update solution policy
8: for {xj}Mj=1∼Dπsol

θ
do

9: zj ∼ πabs
θ (·|xj), ỹj ∼ πsol

θ (·|xj , zj)
10: rj ← r(xj , zj , ỹj)
11: πsol

θ ← πsol
θ − απsol

θ
∇πsol

θ
LGRPO(π

sol
θ ;xj , zj , ỹj , rj)

12: end for
13: end for

A.2 Hyperparameters

Hyperparameter Value

algorithm DaPO (Yu et al., 2025)
training steps 100
epochs 10
train batch size 128
max prompt length 3072
max response length 16384
max extrapolation length 32768
learning rate 1e-6
PPO mini batch size 64
PPO micro batch size 64
clip ratio (low / high) 0.2 / 0.5
entropy coefficient 0.001
KL loss coefficient 0.001
KL loss type low var kl
sampling temperature (train / val) 0.6 / 0.6
samples per prompt (train / val) 16 / 8
max batched tokens 32768

Table 2. Key training hyperparameters used in RLAD.

B Additional Experimental Results

B.1 Abstraction on Diverse Text Classification

13

Learning to Discover Abstractions for LLM Reasoning

Dataset Zero-shot Best Average
Abstraction Abstraction

UCI Dry Bean 0.00 0.65 0.51
Wikipedia Proteinogenic Acid 0.22 0.78 0.58
UCI Student Performance 0.25 0.45 0.28
UCI Website Phishing 0.25 0.25 0.22
UCI Teaching Assistant Evaluation 0.25 0.45 0.33
UCI Contraceptive Method Choice 0.30 0.60 0.43
UCI Vertebral Column 0.30 0.75 0.64
UCI Shill Bidding 0.30 1.00 0.95
Kaggle Job Change 0.30 0.85 0.83
UCI Caesarian Section 0.38 0.75 0.64
Wikipedia Coin Face Value 0.40 1.00 0.88
UCI Wine 0.40 0.95 0.85
UCI Tic-Tac-Toe Endgame 0.40 0.80 0.42
Kaggle Campus Placement 0.40 0.85 0.72
Wikipedia Driving Championship Points 0.40 1.00 0.74
UCI Mammographic Mass 0.45 0.90 0.82
UCI Banknote Authentication 0.45 1.00 0.78
Kaggle Engineering Placement 0.50 0.85 0.79
RAFT One Stop English 0.50 0.40 0.36
LegalBench Function of Decision Section 0.54 0.72 0.61
Kaggle Entrepreneur Competency 0.55 0.65 0.58
UCI Indian Liver Patient 0.55 0.80 0.68
LegalBench International Citizenship Questions 0.56 0.74 0.63
LegalBench Abercrombie 0.56 0.80 0.67
Wikipedia Color Luminance 0.60 1.00 1.00
RAFT Twitter Hate Speech 0.60 0.90 0.76
Wikipedia Award Nomination Result 0.64 1.00 0.76
UCI Car Evaluation 0.65 0.75 0.64
Kaggle Water Potability 0.65 0.50 0.38
Kaggle Travel Insurance 0.65 0.70 0.59
UCI Internet Firewall 0.70 1.00 0.97
RAFT ADE Corpus 0.70 1.00 0.89
UCI Somerville Happiness Survey 0.70 0.80 0.68
UCI Mushroom 0.75 1.00 0.95
UCI Occupancy Detection 0.80 1.00 0.92
Kaggle Stroke Prediction 0.85 0.90 0.90
LegalBench Corporate Lobbying 0.88 0.94 0.88

Average 0.50 0.80 0.68

Table 3. Evaluation of abstractions on diverse collection of 37 domains. We sampled 10 abstractions by prompting o4-mini, and
measure test set accuracy while prompting GPT-4o-mini with each abstraction. We report both the average performance of the 10
abstractions and the best abstraction. We find that the average and best abstractions outperform standard prompting by 18.0% and
30.0% on average, respectively.

14

Learning to Discover Abstractions for LLM Reasoning

B.2 RLAD’s w/ abs performance on AIME 2024 and HMMT 2025

In this section, we evaluate the performance of the base model (Qwen-3-1.7B), GRPO-enhanced model, and our proposed
method RLAD on two math reasoning benchmarks: AIME 2024 and HMMT 2025. As shown in Table 4, our method
achieves the best performance across both datasets.

It is important to note that RLAD is trained using access to abstractions, yet it also generalizes better even when evaluated
without abstraction. This suggests that RLAD does not merely overfit to the abstraction format but instead learns to
effectively leverage high-level procedural guidance, leading to better generalization on challenging reasoning benchmarks.

Approach AIME 2024 HMMT 2025

Qwen-3-1.7B 48.54 22.50
+ GRPO 44.17 23.13
+ RLAD 51.46 23.75

Table 4. RLAD’s w/ abs performance on AIME 2024 and HMMT 2025.

B.3 Design Choice Ablations

In this section, we run run some ablation experiments to better understand the contributions of individual components of
RLAD in attaining good performance. In particular, we are interested in understanding the role of (a) inclusion of prompts
that are not annotated with an abstraction, (b) reward masking on these prompts if they are included, and (c) training via a
curriculum approach, following the protocol in Anonymous Author(s) (2025).

We present our results in Table 5. The first experiment we run focuses on understanding how important it is to include a
small fraction of prompts with no abstractions in training of πsol

θ . Observe in

Curriculum training refers to a staged training process where the model first learns from simpler problems and gradually
transitions to harder examples. We borrow this idea from concurrent work Anonymous Author(s) (2025) (which we also
attach in the supplementary material) as it showed that this approach led to better performance without any abstractions, for
just direct math problem-solving. In contrast, non-curriculum training mixes problems of all difficulties throughout training.
As shown in the table, when training with abstractions as well, curriculum training improves both average and best-case
abstraction-conditioned performance (0.41 and 0.48 vs. 0.38 and 0.43).

Second, we explore whether including no-abstraction prompts during training helps the solution-generator pay attention
to the abstractions. We find that including these abstractions minorly improves the average performance from 0.37 to 0.38,
in isolation when curriculum is not utilized.

Lastly, we study the effect of masking the problem-solving reward on no-abstraction prompts. We apply reward masking
to prevent updates that might cause the solution-generator to ignore abstractions altogether. Specifically, we zero out the
advantage (i.e., no policy reward) for completions from no-abstraction prompts, while retaining the KL penalty to maintain
regularization. This design discourages the model from over-optimizing on no-abstraction examples, which could otherwise
lead it to bypass abstractions entirely, a shortcut that may yield improved performance on the training set but hinders
generalization to test problems when abstractions are provided. Empirically, we find reward masking is helpful.

Approach Design Choice AIME 2025
curriculum training including no-abstraction prompt reward masking w/ abs (avg) w/ abs (best)

variant 1 ✗ ✓ ✗ 36.51 42.29
variant 2 ✗ ✗ - 37.08 42.50
variant 3 ✗ ✓ ✓ 37.50 43.33
RLAD ✓ ✓ ✓ 42.45 48.33

Table 5. Ablation of Design Choices in RLAD. We isolate the effects of curriculum training, no-abstraction inclusion, and reward
masking. The full method achieves the strongest performance under abstraction-conditioned evaluation.

15

Learning to Discover Abstractions for LLM Reasoning

C Qualitative Examples of Math Reasoning Abstractions

C.1 Prompt for Abstraction Classification

We prompt GPT-4o-mini with the following prompt template to classify each abstraction into one of four categories.

Post-hoc abstraction classifier prompt

You are a abstraction classifier. You will be given a problem-solving heuristic
or abstraction used for mathematical reasoning. Your task is to classify it into
exactly one of the following mutually exclusive categories, based on the primary
cognitive function the heuristic serves.

(A) Caution alert: any abstraction that warns the reader to double-check a specific
aspect of their solution or to not take a specific approach to the problem.
(B) Productive launchpoint: an early move or framing that opens up high-potential
trajectories. Examples include clever reformulations or symmetries.
(C) Blind-follow trajectory: a description of a repeatable, sequential path that
can be reliably followed to solve the problem. Examples include plug-and-play
formulas that can be followed blindly, without insight. Do not choose this is
further reasoning is required to solve the problem.
(D) Structural shortcut: a conceptual move that collapses multiple graph paths into
a single jump via insight or abstraction. This can include introducing invariants.
(E) Other: a abstraction that does not fit into the above categories.
Give a 1-2 sentence explanation for your classification, and end your answer with
exactly one of: (A), (B), (C), (D), or (E).

abstraction:
{abstraction}

C.2 Example for Each Abstraction Category

Below, we show examples of abstractions classified into the four categories above.

Examples of (A) Caution alert

<description>Always record forbidden values from denominators before and after
manipulation. After solving the polynomial, discard any roots that make a
denominator zero or that do not satisfy the original equation, to avoid extraneous
solutions.</description>
<example>In the equation (x+2)/(2x{1) = x{3, 2x{1 cannot be zero (so x is not ½).
If solving yields x=½ or any root that makes any denominator zero, reject it. Then
verify the accepted roots in the original equation.</example>

<description>Keep units consistent when moving between area and length or
summing lengths. After extracting a length from an area (via square root),
ensure subsequent arithmetic stays in the same unit to avoid scaling errors.
</description>
<example>If a square’s area is 10000 cm², its side is sqrt(10000) = 100 cm. To
express in meters, convert 100 cm to 1 m. All later distances computed with that
side length must be in meters to remain consistent.</example>

16

Learning to Discover Abstractions for LLM Reasoning

Examples of (B) Productive launchpoint

<description>Translate comparative statements into algebraic equations using the
chosen variables. Phrases like \twice as many" or \one less than" correspond to
multiplication or addition/subtraction expressions. This step captures the core
relationship in a solvable form.</description>
<example>If the problem states \Group A has twice as many as Group B," write the
equation x = 2y. For \Group B has three fewer than Group C," you would write y = z -
3.</example>

<description>Select one variable as a parameter (often setting it to 1 or keeping it
symbolic) to express all other variables in terms of it. This reduces the number of
independent symbols and streamlines substitutions.</description>
<example>Given p/q = 3 and r/q = 2, choose q as the base variable. Write p =
3q and r = 2q, so all expressions involving p and r can be handled through q
alone.</example>

Examples of (C) Blind-follow trajectory

<description>Logarithms offer a streamlined way to compute floor-based digit counts:
for y>0, the number of integer digits is floor(log10 y) + 1. Use this to handle
arbitrary exponents without juggling large powers explicitly.</description>
<example>To count digits of y = x7, compute d = floor(7 * log10 x) + 1. If x=2.5,
then d = floor(7 * log10(2.5))+1 = 2+1 = 3 digits.</example>

<description>The mean of a set equals its total sum divided by its number of
elements. Use this to move between sums and averages when counts or totals are
known. It works because \average" is defined as that ratio.</description>
<example>Suppose a subset has k items with mean m. Then its total sum is S =
k·m. Conversely, if you know the sum S and the count k, the mean is m = S/k. For
instance, if 5 items average to 10, their total is 5×10 = 50, and if you later learn
the total is 60 for 6 items, the new mean becomes 60/6 = 10.</example>

Examples of (D) Structural shortcut

<description>When the same distance appears in multiple geometric roles (e.g., as
radius to a vertex and to a tangen t point), express it in different algebraic forms
and equate them. Solving the resulting equation produces the unknown variable,
which then gives the desired length.</description>
<example>If r is both the distance from O to a vertex (r = sqrt[x² + (L/2)²]) and
the distance from O to the tangent point (r = f(x)), set sqrt[x² + (L/2)²] = f(x).
Solving this equation for x and back-substituting determines r explicitly, closing
the geometric problem with an algebraic solution.</example>

<description>Use the perimeter constraint a+b+c=P to eliminate one variable, e.g.
set c=P-a-b, reducing the problem to two degrees of freedom. This simplification
turns the three-variable Heron expression into a function of a and b alone,
facilitating analysis or enumeration.</description>
<example>For a target perimeter P=10, one writes c=10-a-b. Substituting into
Heron’s formula yields A(a,b)=sqrt[5 * (5-a) * (5-b) * (a+b-5)], which is now a
two-variable function to study instead of three.</example>

17

