
COSMIR: Chain Orchestrated Structured Memory for Iterative Reasoning over Long Context

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Reasoning over very long inputs remains difficult for large language models
2 (LLMs). Common workarounds either shrink the input via retrieval (risking
3 missed evidence), enlarge the context window (straining selectivity), or stage mul-
4 tiple agents to read in pieces. In staged pipelines (e.g., Chain of Agents, CoA),
5 free-form summaries passed between agents can discard crucial details and amplify
6 early mistakes. We introduce COSMIR (Chain Orchestrated Structured Memory
7 for Iterative Reasoning), a chain-style framework that replaces ad hoc messages
8 with a structured memory. A PLANNER agent first turns a user query into concrete,
9 checkable sub-questions. WORKER agents process chunks via a fixed micro-cycle:
10 Extract, Infer, Refine, writing all updates to the shared memory. A MANAGER agent
11 then SYNTHESIZES the final answer directly from the memory. This preserves step-
12 wise read-then-reason benefits while changing both the communication medium
13 (structured memory) and the worker procedure (fixed micro-cycle), yielding higher
14 faithfulness, better long-range aggregation, and auditability. On long-context QA
15 from the HELMET suite, COSMIR reduces propagation-stage information loss
16 and improves accuracy over a CoA baseline.

1 Introduction

18 Large Language Models (LLMs) have rapidly advanced language understanding and generation
19 tasks, supporting assistants, search, and retrieval systems [Wu et al., 2024, LangChain, 2023].
20 However, reasoning over *long* inputs, for example, books, extended technical documents, or large
21 code repositories, remains brittle [Liu et al., 2024, Brown et al., 2020, Srivastava et al., 2023].
22 Mitigation strategies typically follow two paths. The first contracts the input through retrieval (e.g.,
23 RAG [Lewis et al., 2020]), which can omit crucial evidence and inject noise. The second expands
24 the model context windows [Peng et al., 2024], but still struggles with selectivity [Liu et al., 2024]
25 and faces practical scaling limits [Wang et al., 2024a].

26 A complementary line decomposes long-context reasoning into steps executed over shorter spans.
27 This includes tree- or graph-structured prompting [Yao et al., 2023] and multi-agent coordination
28 [Zhang et al., 2024b]. Although effective, sequential pipelines that pass *free-form summaries* between
29 steps are vulnerable to compression loss and cascading errors. An agent must spot what matters in
30 its local fragment, compress it into an ad hoc message, and anticipate future relevance. Omissions
31 or imprecisions early on can silently propagate and degrade the final answer (Appendix A.1).

32 We propose COSMIR, *Chain Orchestrated Structured Memory for Iterative Reasoning*, a training-
33 free framework that keeps the stepwise “read–reason” benefit while replacing free text messages with a
34 *structured, centralized working memory*. A PLANNER converts the user query into concrete, checkable
35 sub-questions. WORKERS traverse chunks using a fixed micro-cycle: EXTRACT evidence under a
36 memory budget, INFER grounded claims from accumulated evidence, and REFINE the unresolved

37 question set. The worker then writes the information into a shared memory M . A MANAGER then
38 SYNTHEZIZES the final answer directly from M . This design reduces propagation stage information
39 loss, improves long-range aggregation, and yields an auditable trace of how the answer was produced.
40 Our key contributions are: 1] We introduce COSMIR, a training-free, interpretable framework for
41 long-context reasoning that replaces free-form message passing with a centralized memory and
42 a fixed worker micro-cycle. 2] We show in long-context QA benchmarks (HELMET suite [Yen
43 et al., 2025]) that COSMIR reduces information loss and improves accuracy over a Chain of Agents
44 (CoA) [Zhang et al., 2024b] baseline at comparable cost.

45 **Paper organization.** Section 2 analyzes a representative failure of CoA [Zhang et al., 2024b] due
46 to propagation stage information loss and illustrates how COSMIR prevents it. Section 3 situates
47 our work among long-context modeling, multi-agent prompting, and structured memory. Section 4
48 formalizes COSMIR end-to-end describing both the structured, centralized memory and the different
49 agent executions. Sections 5 and 6 describe the experimental setup and results. We discuss limitations
50 and future work before concluding.

51 2 Example Case Study

52 Figure 1 illustrates COSMIR on a question from the **Infbench-QA** dataset (Section 5): *Where did
53 Kiara and Carter first meet before becoming roommates in Nigeria?* Early in the book (chunk 1),
54 the text states that **Kiara met a pale young gentleman at Miss Kiley’s house; they fought in the
55 garden**, without naming the gentleman. Much later (chunk R), the gentleman is identified as Carter.

56 With COSMIR, the PLANNER seeds “Questions” with targeted set of sub-questions such as **What is
57 Kiara’s history of encounters before becoming roommates with Carter?**. The EXTRACT phase
58 of WORKER records the early passage as a relevant element in “Gathered Facts” (preserving the text
59 under the memory budget). When a later fragment reveals the identity of the gentleman, the INFER
60 phase of the WORKER reconciles the two sections into an entry in “Inferred Facts”, resolving the
61 ambiguity of the cross reference. REFINE phase marks the relevant sub-question as answered and
62 prunes distractors. Finally, MANAGER composes the answer using both the early encounter span and
63 the later identity span in “Structured Memory”, resulting in a faithful and evidence-cited resolution.

64 By contrast, pipelines that rely on unstructured summaries (e.g., CoA-style message passing) fre-
65 quently compress away the unnamed encounter or fail to reconnect it when the identity appears many
66 chunks later, leading to missed long-range links. The failure example is provided in more detail in
67 Appendix A.1.1.

68 3 Related Work

69 We review three areas relevant to our framework: long-context modeling, multi-agent collaboration,
70 and memory mechanisms.

71 **Long-Context Modeling for LLMs** Extending the context window remains a core challenge.
72 Techniques like Retrieval-Augmented Generation (RAG) [Lewis et al., 2020] aim to reduce the input
73 by retrieving relevant segments via embedding similarity but often miss critical evidence [Zhang
74 et al., 2024b]. Window-extension methods aim to extend LLM context windows using new attention
75 mechanisms [Liu and Abbeel, 2023] and position interpolation [Peng et al., 2024]. Such methods,
76 along with large-context models such as Claude Sonnet 4 [Anthropic, 2024], enable direct processing
77 but suffer from degraded focus [Liu et al., 2024]. Recent proposals like MemAgent [Yu et al., 2025]
78 and Sculptor [Li et al., 2025] explore memory-augmented processing, but do not explicitly structure
79 reasoning dependencies. Parallel works in improving model reasoning capabilities over long-context,
80 like SELF-DISCOVER [Zhou et al., 2024], ALR² [Li et al., 2024], and InfinityThink [Yan et al.,
81 2025], enhance reasoning by adopting explicit task-specific structure and decouple reasoning and
82 inferencing. However, these approaches rely on the base model to jointly perform reasoning,
83 inference, and memory management, which can overextend its capacity in long-context scenarios.
84 COSMIR adopts benefits from structured reasoning and augments them with memory-augmented
85 processing by enforcing explicit state-based structured reasoning.

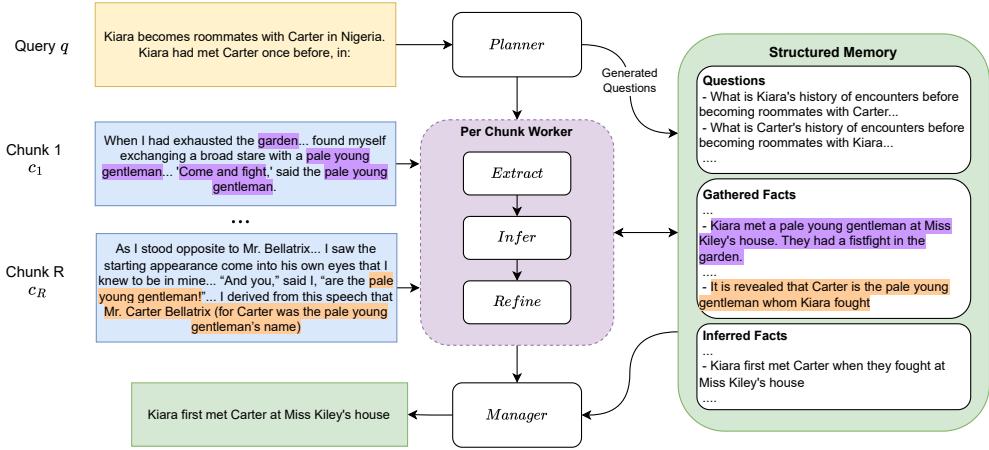


Figure 1: Overview of COSMIR, a training-free framework for long context tasks. It consists of a PLANNER agent which given the question generates clarifying sub-questions. Segmented chunks from the context are then processed by the WORKER agent in a fixed micro cycle which has three phases: EXTRACT, INFERENCE and REFINE. Through these phases the WORKER agent edits a structured centralized memory by extracting facts, making logical inferences over the facts and planning next steps by removing/adding new sub-questions. Finally, the structured memory is passed to the MANAGER agent to generate a final coherent answer. Boxes in blue are excerpts from chunks c_1 and c_R . Key portions of these excerpts, that are needed to answer the query q have been highlighted and corresponding facts that have been extracted from these chunks have been highlighted in the structured memory.

86 **Multi-Agent LLM Collaboration** Multi-agent systems have been widely studied for decomposing
 87 complex tasks [Guo et al., 2024]. Prior work in the space of multi-agent LLM collaboration focuses
 88 on reasoning on small text through multi-agent discussion [Du et al., 2024, Xiong et al., 2023, Chen
 89 et al., 2023b, Tang et al., 2024, Chen et al., 2024, Zhao et al., 2024] on domains like reasoning [Du
 90 et al., 2024, Tang et al., 2024, Zhao et al., 2024], paper review [Xu et al., 2023], and coding generation
 91 [Wang et al., 2025, Wadhwa et al., 2024]. Different from prior works, we target reasoning over long
 92 contexts. For long context reasoning, XpandA [Xiao et al., 2025] uses dynamic chunk partitioning
 93 and selective replay mechanisms to accelerate inference on long texts. Other collaborative strategies
 94 (e.g., multi-hop prompting [Yao et al., 2023]) improve decomposition but lack persistent, structured
 95 memory. COSMIR differs by combining multi-agent decomposition with centralized, structured
 96 memory. Among prior multi-agent approaches for long-context handling, our work is most similar to
 97 Chain-of-Agents (CoA) [Zhang et al., 2024b], which handles long-context reasoning by coordinating
 98 multiple worker agents in sequential collaboration but this can result in information loss and cascading
 99 errors. COSMIR improves on this approach by conditioning the workers with high quality clarifying
 100 questions and decomposing the worker agent into multiple phases which focus on dedicated subtasks,
 101 namely; Fact Extraction, Logical Inference and Problem Refinement.

102 **Memory Systems for LLMs** Memory systems for LLMs have been explored in several dimensions.
 103 Training time approaches integrate memory directly into the architecture, such as recurrent memory
 104 layers [Bulatov et al., 2022], side network memory encoders [Wang et al., 2023, 2024b], or through
 105 trainable memory layers [Berges et al., 2025]. Other training methods involve training models to
 106 generate designated memory tokens [Jin et al., 2025, Yu et al., 2025, Qian et al., 2025]. Runtime
 107 methods instead attach external stores [Zhong et al., 2024, Das et al., 2024] or retrieve memory
 108 units created from the token sequence [Xiao et al., 2024, Fountas et al., 2025]. More structured
 109 approaches explicitly organize and manage memory contents: for instance, MemWalker [Chen et al.,
 110 2023a] generates, organizes, and consumes hierarchical summaries of the context, while HippoRAG
 111 [Gutiérrez et al., 2025] takes inspiration from associative memory in the brain, building graph-like
 112 structures that support spreading activation and relational retrieval. While these systems enhance
 113 retention and retrieval, they often operate at a hidden or architectural level, limiting interpretability.

114 Our method complements them by providing a transparent, text-based memory that explicitly records
115 gathered, inferred facts and unanswered threads, enabling workers to reason collaboratively while
116 exposing intermediate states for inspection.

117 4 Methodology

118 COSMIR inherits the high-level idea from CoA [Zhang et al., 2024b] of traversing long contexts
119 with lightweight agents, but generalizes it in two ways: (1) a planner that converts the user query
120 into concrete investigation targets and (2) workers who operate over a structured centralized working
121 memory rather than emitting free-form summaries. The manager then produces the final answer
122 from that structured memory. This preserves the intuition of chain-style processing while changing
123 both the artifact being passed (structured memory vs. summary) and the internal procedure of the
124 worker (a fixed micro-cycle instead of “summarize and pass”).

125 4.1 Centralized Memory

126 The centralized memory in COSMIR is defined as

$$M := \langle \mathcal{Q}, \mathcal{F}_g, \mathcal{F}_i, a \rangle, \quad (1)$$

127 where \mathcal{Q} denotes the set of unresolved sub-questions, \mathcal{F}_g the set of gathered facts, \mathcal{F}_i the set of inferred
128 facts, and a the synthesized answer, which remains empty until the reasoning process terminates. To
129 limit the context available to each agent, the size of \mathcal{F}_g is constrained to at most a k -fraction of the
130 length of a chunk.

131 4.2 Agent Roles and Execution

132 **PLANNER (Decompose).** From the user query q , the planner seeds \mathcal{Q} with a small set of checkable
133 questions. The PLANNER generates two classes of questions; Focused questions that decompose the
134 user query q into smaller bite-sized sub-questions and exploratory information nets that promote
135 broad fact extraction which serves to catch facts that might slip through the direct questions.

136 **WORKER (Analyze chunks with a fixed micro-cycle).** Given a chunk c_j and current M , each
137 worker performs a three-step micro-cycle:

- 138 • **EXTRACT:** From chunk c_j and the current question set \mathcal{Q} , select evidence units relevant to
139 the user query q and the current question set \mathcal{Q} and append them to \mathcal{F}_g while adhering to
140 the memory budget. If the size of \mathcal{F}_g goes over the allotted memory budget then oldest
141 facts in \mathcal{F}_g are pruned away till \mathcal{F}_g fits in the allotted budget.
- 142 • **INFER:** Using $E = \mathcal{F}_g \cup \mathcal{F}_i$, derive new, grounded claims and add them to \mathcal{F}_i .
- 143 • **REFINE:** Update the question set \mathcal{Q} by marking resolved items and spawning focused
144 follow-ups that improve utility of later chunks.

145 **MANAGER (Synthesize).** After all chunks are processed, the manager computes a using the memory
146 M producing the answer plus an optional rationale citing evidence.

147 Algorithm 1 provides the end-to-end pseudo-code for COSMIR, detailing planning, the worker
148 micro-cycle (EXTRACT, INFER, REFINE) over chunks, and the final synthesis by the manager.

149 5 Experimental Setup

150 5.1 Datasets

151 We evaluate COSMIR on the long context QA split of the HELMET benchmark [Yen et al., 2025].
152 This split consists of three datasets, namely:

- 153 1. ∞ bench English QA: This dataset consists of freeform questions on English novels with
154 entity replacement. The evaluation metric is ROUGE F1 score [Lin, 2004]. We refer to this
155 dataset as **InfBench-QA** going forward.

Algorithm 1 COSMIR: Chain Orchestrated Structured Memory for Iterative Reasoning

Require: query q ; chunks $C = \{c_1, \dots, c_L\}$; memory fraction k
Ensure: answer a

```
1:  $\mathcal{Q} \leftarrow \text{PLAN}(q);$  ▷ PLANNER agent
2:  $\mathcal{F}_g \leftarrow \emptyset; \mathcal{F}_i \leftarrow \emptyset; a \leftarrow \emptyset$ 
3:  $M \leftarrow \langle \mathcal{Q}, \mathcal{F}_g, \mathcal{F}_i, a \rangle$ 
4: for  $j = 1$  to  $L$  do ▷ WORKER agents process chunks left-to-right
5:    $\Delta\mathcal{F}_g \leftarrow \text{EXTRACT}(c_j, \mathcal{Q})$ 
6:    $\mathcal{F}_g \leftarrow \mathcal{F}_g \cup \Delta\mathcal{F}_g$ 
7:    $\mathcal{F}_g \leftarrow \text{PRUNE}(\mathcal{F}_g, k)$ 
8:    $\Delta\mathcal{F}_i \leftarrow \text{INFER}(\mathcal{F}_g, \mathcal{F}_i)$ 
9:    $\mathcal{F}_i \leftarrow \mathcal{F}_i \cup \Delta\mathcal{F}_i$ 
10:   $\mathcal{Q} \leftarrow \text{REFINE}(\mathcal{Q}, \mathcal{F}_g, \mathcal{F}_i)$ 
11:   $M \leftarrow \langle \mathcal{Q}, \mathcal{F}_g, \mathcal{F}_i, a \rangle$  ▷ Structured communication unit
12: end for
13:  $a \leftarrow \text{SYNTHESIZE}(M)$  ▷ MANAGER agent
14: return  $a$ 
```

156 2. *∞bench* English MC: This dataset consists of multiple-choice questions on English novels
157 with entity replacement. The evaluation metric is exact match (EM). We refer to this dataset
158 as **InfBench-MC** going forward.

159 3. NarrativeQA: This dataset consists of free-form questions on English books and movie
160 scripts. The evaluation metric is ROUGE F1 score [Lin, 2004].

161 Specifically, for NarrativeQA, we further filter the dataset to only have questions with a context of at
162 least 256000 tokens; we call this subset **NarrativeQA-256k**.

163 **5.2 Baselines and System Configurations**

164 The primary baseline that we test COSMIR against is CoA [Zhang et al., 2024b]. For both
165 COSMIR and CoA, a chunk size of 64000 tokens is chosen, while the maximum size of the summary
166 and memory is chosen to be 8000 tokens. We additionally also test COSMIR against a truncated
167 context setting (TC) where the context is truncated down to 128000 tokens by removing sentences
168 from the middle of the context [Zhang et al., 2024a].

169 We run all three techniques with three models: *GPT-4.1*, *GPT-4.1-mini*, and *Qwen3-14B*. Model-level
170 settings (temperature, max tokens) are identical across methods to ensure fair comparison.

171 **6 Results and Analysis**

172 Table 1 shows the results for the three models for all three datasets. We see that COSMIR outperforms
173 both baselines for all model-dataset combinations. The largest gains of COSMIR over CoA are seen
174 for **InfBench-QA** and **NarrativeQA-256k**, which are free-form question-response benchmarks.
175 The gains are also consistent across different model sizes, showing the universal applicability of the
176 technique.

177 Performance gains of COSMIR and CoA over the TC baseline are representative of the better
178 extraction and storage of facts in both CoA and COSMIR. Furthermore, the TC baseline illustrates
179 performance degradation of models at extreme context lengths. This effect is especially pronounced
180 for GPT-4.1-mini, which sees a steeper decline in performance compared to other models, consistently
181 performing worse than both GPT-4.1 and Qwen3-14B for all the datasets in the TC baseline.

182 Gains between COSMIR and CoA are primarily driven by the decomposition of the reasoning
183 process and the specific structured memory of COSMIR. The structured memory preserves far
184 more contextual information than intermediate CoA summaries, resulting in lower information loss.
185 Furthermore, generating targeted sub-questions helps guide the fact-extraction process, enabling the
186 extraction of broader facts from the initial chunks. These facts can then serve both as input and
187 contextual support for fact extraction and inference in later chunks. Both COSMIR and CoA have

Model	Method	InfBench-QA (ROUGE-F1)	InfBench-MC (Exact Match)	NarrativeQA-256k (ROUGE-F1)
GPT-4.1	TC	36.05	70.31	28.87
	CoA	47.62	86.03	35.27
	COSMIR	50.74	87.33	37.58
GPT-4.1-mini	TC	17.59	46.28	18.10
	CoA	40.47	72.49	29.17
	COSMIR	43.56	74.23	31.43
Qwen3-14B	TC	35.99	56.33	27.37
	CoA	38.12	65.07	29.53
	COSMIR	40.76	65.93	31.14

Table 1: Performance comparison of COSMIR, CoA, and TC across three long-context datasets for *GPT-4.1*, *GPT-4.1-mini*, and *Qwen3-14B*. The evaluation metrics for each dataset are mentioned alongside the dataset. Best results for each dataset and model are in **bold**.

188 high performance on the **InfBench-MC** benchmark. The multiple-choice options present with the
 189 query provide enough context for both techniques to correctly gather relevant evidence from the text.
 190 This also explains the meager gains seen between COSMIR and CoA.

191 As with sequential processing methods like CoA, fact extraction is the most critical component of
 192 COSMIR. If a relevant fact is not correctly extracted, later workers have no reliable way to reconstruct
 193 it unless the fact reappears elsewhere in the text. The remaining components in COSMIR are
 194 explicitly intended to support fact extraction. They produce high-quality clarifying questions to
 195 condition the EXTRACT phase of the WORKER and separate logical fact inference and problem-
 196 refinement into dedicated phases, but the EXTRACT phase of the WORKER remains the key bottleneck
 197 in the performance of COSMIR. We confirm this point with a targeted ablation, we initialize the
 198 PLANNER, the INFER phase of the WORKER, the REFINE phase of the WORKER, and MANAGER agents
 199 with *GPT-4.1* while the EXTRACT phase of the worker uses *Qwen3-14B* (we call this COSMIR-
 200 Extract-Qwen3) and compare the end task performance with initializing all components with *GPT-
 201 4.1* (COSMIR-GPT-4.1) and *Qwen3-14B* (COSMIR-Qwen3). Table 2 shows the results of these
 202 three configurations on the HELMET Long-Context QA benchmarks. We find that COSMIR-
 203 Extract-Qwen3 ablation performs better than COSMIR-Qwen3, especially for the **InfBench-QA** and
 204 **NarrativeQA-256k** benchmarks, but it falls quite short of the performance of COSMIR-GPT-4.1.
 205 The gains over COSMIR-Qwen3 are primarily driven by the higher quality of the other components
 206 in COSMIR-Extract-Qwen3. Just by reducing the quality of the EXTRACT phase of the WORKER in
 207 COSMIR-GPT-4.1, the performance has regressed closer to the performance of COSMIR-Qwen3,
 208 showing that the performance is bottlenecked by the quality of the EXTRACT phase of the WORKER
 agent.

Method	InfBench-QA (ROUGE-F1)	InfBench-MC (Exact Match)	NarrativeQA-256k (ROUGE-F1)
COSMIR-Qwen3	40.76	65.93	31.14
COSMIR-Extract-Qwen3	42.81	65.50	32.37
COSMIR-GPT-4.1	50.74	87.33	37.58

Table 2: Results for the HELMET long-context QA split for different model configurations.
 COSMIR-Qwen3 has all agents use *Qwen3-14B*, COSMIR-Extract-Qwen3 has the EXTRACT phase of
 the WORKER agent use *Qwen3-14B* while all other components use *GPT-4.1* and COSMIR-GPT-4.1
 has all sub-agents use *GPT-4.1*

210 **7 Limitations and Future Work**

211 COSMIR improves evidence aggregation over CoA for long-context reasoning by combining spe-
212 cialized sub-agents with structured memory. However, the method depends critically on extraction
213 quality: missed or low-quality extractions are difficult for later agents to recover and can limit end-
214 task performance. COSMIR also increases per-example orchestration and requires thrice as many
215 LLM calls as CoA. Future work can explore strategies to reduce the overall cost, for example, mixing
216 models of different per-token costs to handle different parts of the COSMIR pipeline. Another limi-
217 tation of the current experiments is that they rely on fixed-length chunks processed in their original
218 order. Further analysis could investigate dynamic chunking strategies and approaches for determin-
219 ing optimal chunks and an effective ordering of those chunks, potentially revealing ways to improve
220 performance even further. Finally, the current evaluation focuses on Long-Context QA benchmarks,
221 the behaviour of COSMIR on other tasks and domains (e.g., summarization, legal/medical text)
222 requires additional study. Extending the technique to a broader set of domains and addressing the
223 extraction bottleneck more efficiently are promising directions for future work.

224 **8 Conclusion**

225 We presented COSMIR, a multi-stage agent architecture that decomposes long-context reasoning
226 into explicit sub-tasks (Planning, Extract, Infer, Refine, Manager) and accumulates evidence in a
227 structured memory separating gathered and inferred facts. In our evaluations, COSMIR improves
228 long-context QA performance relative to chain-of-agents and truncated-context baselines while
229 providing interpretable intermediate artifacts that reveal how evidence was collected and combined.

230 **References**

231 Anthropic. Claude sonnet 4, 2024. URL <https://www.anthropic.com/clause/sonnet>.

232 Vincent-Pierre Berges, Barlas Oguz, Daniel HAZIZA, Wen tau Yih, Luke Zettlemoyer, and Gargi
233 Ghosh. Memory layers at scale. In *Forty-second International Conference on Machine Learning*,
234 2025. URL <https://openreview.net/forum?id=ATqGm1WyDj>.

235 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
236 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
237 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
238 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
239 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
240 dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
241 In *Proceedings of the 34th International Conference on Neural Information Processing Sys-
242 tems*, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bf8ac142f64a-Abstract.html.

244 Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In *Advances
245 in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=Uynr3iPhksa>.

247 Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the
248 memory maze: Beyond context limit through interactive reading, 2023a. URL <https://arxiv.org/abs/2310.05029>.

250 Huaben Chen, Wenkang Ji, Lufeng Xu, and Shiyu Zhao. Multi-agent consensus seeking via large
251 language models, 2023b. URL <https://arxiv.org/abs/2310.20151>.

252 Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-table conference improves
253 reasoning via consensus among diverse LLMs. In *Proceedings of the 62nd Annual Meeting of
254 the Association for Computational Linguistics (Volume 1: Long Papers)*, 2024. URL <https://aclanthology.org/2024.acl-long.381/>.

256 Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarathkrishna Swaminathan, Sihui Dai,
257 Aurelie Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jiri Navratil, Soham Dan, and Pin-Yu

258 Chen. Larimar: Large language models with episodic memory control. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=t8mt4YrPsq>.

261 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
262 factuality and reasoning in language models through multiagent debate. In *Proceedings of the*
263 *41st International Conference on Machine Learning*, 2024. URL <https://dl.acm.org/doi/10.5555/3692070.3692537>.

265 Zafeirios Fountas, Martin Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lam-
266 pouras, Haitham Bou Ammar, and Jun Wang. Human-inspired episodic memory for infinite
267 context LLMs. In *The Thirteenth International Conference on Learning Representations*, 2025.
268 URL <https://openreview.net/forum?id=BI2int5SAC>.

269 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
270 Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
271 and challenges. In *Proceedings of the Thirty-Third International Joint Conference on Artificial*
272 *Intelligence*, 2024. URL <https://www.ijcai.org/proceedings/2024/890>.

273 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
274 Non-parametric continual learning for large language models, 2025. URL <https://arxiv.org/abs/2502.14802>.

276 Mingyu Jin, Weidi Luo, Sitalo Cheng, Xinyi Wang, Wenyue Hua, Ruixiang Tang, William Yang Wang,
277 and Yongfeng Zhang. Disentangling memory and reasoning ability in large language models. In
278 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume*
279 *1: Long Papers)*, 2025. URL <https://aclanthology.org/2025.acl-long.84/>.

280 LangChain. LangChain: Building applications with llms through composability, 2023. URL
281 <https://www.langchain.com/>.

282 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
283 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
284 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the*
285 *34th International Conference on Neural Information Processing Systems*, 2020. URL <https://dl.acm.org/doi/abs/10.5555/3495724.3496517>.

287 Huayang Li, Pat Verga, Priyanka Sen, Bowen Yang, Vijay Viswanathan, Patrick Lewis, Taro Watan-
288 abe, and Yixuan Su. Alt²: A retrieve-then-reason framework for long-context question answering,
289 2024. URL <https://arxiv.org/abs/2410.03227>.

290 Mo Li, L. H. Xu, Qitai Tan, Ting Cao, and Yunxin Liu. Sculptor: Empowering llms with cognitive
291 agency via active context management, 2025. URL <https://arxiv.org/abs/2508.04664>.

292 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization*
293 *Branches Out*, 2004. URL <https://aclanthology.org/W04-1013/>.

294 Hao Liu and Pieter Abbeel. Blockwise parallel transformers for large context models. In
295 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, 2023.
296 URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/1bfd87d2d92f0556819467dc08034f76-Abstract-Conference.html.

298 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
299 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
300 *Association for Computational Linguistics*, 2024. URL <https://aclanthology.org/2024.tacl-1.9/>.

302 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
303 dow extension of large language models. In *The Twelfth International Conference on Learning*
304 *Representations*, 2024. URL <https://openreview.net/forum?id=wHBfxhZulu>.

305 Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Defu Lian, Zhicheng Dou, and Tiejun Huang.
306 Memory never fades: Boosting long context processing with global memory-enhanced retrieval
307 augmentation. In *The Web Conference 2025*, 2025. URL <https://openreview.net/forum?id=8Cggwrvkho>.

309 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
310 Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imitation
311 game: Quantifying and extrapolating the capabilities of language models. *Transactions on Machine
312 Learning Research*, 2023. URL <https://openreview.net/forum?id=uyTL5Bvosj>.

313 Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun Zhao, Xingyao Zhang, Arman Cohan, and
314 Mark Gerstein. MedAgents: Large language models as collaborators for zero-shot medical
315 reasoning. In *Findings of the Association for Computational Linguistics: ACL 2024*, 2024. URL
316 <https://aclanthology.org/2024.findings-acl.33/>.

317 Nalin Wadhwa, Atharv Sonwane, Daman Arora, Abhav Mehrotra, Saiteja Utpala, Ramakrishna B
318 Bairi, Aditya Kanade, and Nagarajan Natarajan. MASAI: Modular architecture for software-
319 engineering AI agents. In *NeurIPS 2024 Workshop on Open-World Agents*, 2024. URL <https://openreview.net/forum?id=NSINt8lLYB>.

321 Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen
322 Zhang, Di Yin, Xing Sun, and Zhoujun Li. MAC-SQL: A multi-agent collaborative framework for
323 text-to-SQL. In *Proceedings of the 31st International Conference on Computational Linguistics*,
324 2025. URL <https://aclanthology.org/2025.coling-main.36/>.

325 Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Aug-
326 menting language models with long-term memory. In *Advances in Neural Information Process-
327 ing Systems*, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/ebd82705f44793b6f9ade5a669d0f0bf-Abstract-Conference.html.

329 Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu Ren, Mehdi Rezagholizadeh, and Armaghan
330 Eshaghi. Beyond the limits: A survey of techniques to extend the context length in large lan-
331 guage models. In *Proceedings of the Thirty-Third International Joint Conference on Artificial
332 Intelligence, IJCAI-24*, 2024a. URL <https://www.ijcai.org/proceedings/2024/0917>.

333 Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
334 Li, Xian Li, Bing Yin, Jingbo Shang, and Julian J. McAuley. MEMORYLLM: Towards self-
335 updatable large language models. In *Forty-first International Conference on Machine Learning,
336 ICML 2024*, 2024b. URL <https://openreview.net/forum?id=p0lKWzdikQ>.

337 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
338 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
339 Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In
340 *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=BAakY1hNKS>.

342 Chaojun Xiao, Penglle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
343 and Maosong Sun. InFLLM: Training-free long-context extrapolation for LLMs with an efficient
344 context memory. In *The Thirty-eighth Annual Conference on Neural Information Processing
345 Systems*, 2024. URL <https://openreview.net/forum?id=bTHFrqhASY>.

346 Sibo Xiao, Zixin Lin, Wenyang Gao, Hui Chen, and Yue Zhang. Long context scaling: Divide and
347 conquer via multi-agent question-driven collaboration, 2025. URL <https://arxiv.org/abs/2505.20625>.

349 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large
350 language models collaboration: An in-depth analysis via debate. In *Findings of the Association for
351 Computational Linguistics: EMNLP 2023*, 2023. URL <https://aclanthology.org/2023.findings-emnlp.508/>.

353 Zhenran Xu, Senbao Shi, Baotian Hu, Jindi Yu, Dongfang Li, Min Zhang, and Yuxiang Wu.
354 Towards reasoning in large language models via multi-agent peer review collaboration, 2023.
355 URL <https://arxiv.org/abs/2311.08152>.

356 Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
357 Inftythink: Breaking the length limits of long-context reasoning in large language models, 2025.
358 URL <https://arxiv.org/abs/2503.06692>.

359 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
360 Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In
361 *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
362 2023. URL <https://dl.acm.org/doi/abs/10.5555/3666122.3666639>.

363 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
364 and Danqi Chen. HELMET: How to evaluate long-context models effectively and thoroughly.
365 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=293V3bJbmE>.

367 Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
368 Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, and Hao Zhou. Memagent: Reshaping long-context
369 llm with multi-conv rl-based memory agent, 2025. URL <https://arxiv.org/abs/2507.02259>.

371 Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han,
372 Zhen Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞ Bench: Extending long context
373 evaluation beyond 100K tokens. In *Proceedings of the 62nd Annual Meeting of the
374 Association for Computational Linguistics (Volume 1: Long Papers)*, 2024a. URL <https://aclanthology.org/2024.acl-long.814>.

376 Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan O Arik. Chain of
377 agents: Large language models collaborating on long-context tasks. In *The Thirty-eighth Annual
378 Conference on Neural Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=LuCLf4BJsr>.

380 Jun Zhao, Can Zu, Xu Hao, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and Xuanjing Huang.
381 LONGAGENT: Achieving question answering for 128k-token-long documents through multi-
382 agent collaboration. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
383 Language Processing*, 2024. URL <https://aclanthology.org/2024.emnlp-main.912>.

384 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: enhancing large
385 language models with long-term memory. In *Proceedings of the Thirty-Eighth AAAI Conference
386 on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial
387 Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence*, 2024.
388 URL <https://ojs.aaai.org/index.php/AAAI/article/view/29946>.

389 Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H. Chi, Denny
390 Zhou, Swaroop Mishra, and Steven Zheng. SELF-DISCOVER: Large language models self-
391 compose reasoning structures. In *The Thirty-eighth Annual Conference on Neural Information
392 Processing Systems*, 2024. URL <https://openreview.net/forum?id=BROvXhmzYK>.

393 **A Appendix**

394 **A.1 Failure Modes of CoA**

395 CoA [Zhang et al., 2024b] exhibits two kinds of major failure modes:-

396 1. **Faulty Fact Extraction:** CoA summaries can be very hyper-focused on the question at
397 hand. Because of this, CoA can fail to gather important facts if they are not immediately
398 relevant to the query. In longer chunk sequences, CoA can fail to gather crucial evidence
399 even when it is relevant to the query. These errors are most evident in Appendix sections
400 [A.1.1](#) and [A.1.3](#).

401 2. **Dropping Facts during the sequence:** In CoA, each worker agent is asked to generate a
402 new summary based on the current chunk and the accumulated summary. Hence, on longer
403 chunk sequences, it is possible for important facts to be dropped when generating the next
404 summary. This can result in important facts whose relevance is established in later chunks
405 being dropped, leading to wrong answers. An example can be seen in Appendix [A.1.2](#).

406 This behaviour can be further exacerbated by the tendency of models to be very conservative
407 when generating the CoA summaries, leading to very short or overly terse summary and ineffective
408 utilization of the provided token budget.

409 **A.1.1 Failing to Extract Broad Information**

410 This error can be most clearly seen in the example used in Figure 1. The question asks where did
411 *Kiara* and *Carter* meet before becoming roommates in Nigeria. To answer this question, the system
412 has to gather the fact that **Kiara met a pale young gentleman at Miss Kiley's house; they had a**
413 **fistfight in the garden** from Chunk c_1 where the identity of the *pale, young gentleman* is a mystery.
414 This mystery is later resolved in a later Chunk c_R , where it is revealed that **Carter is the pale, young**
415 **gentleman**.

416 Figure 1 showcases that COSMIR is able to store such information in the memory. In CoA, the
417 summary produced does not contain any mention of the meeting with the *pale, young gentleman*.
418 The exact summary for the first chunk is as follows:

419 **Summary:**

420

421 Kiara is an orphan raised by her much older sister, Mrs. Stevie Bria, and
422 her kind-hearted brother-in-law, Stevie, a blacksmith, in a rural
423 marsh country. As a child, Kiara has a frightening encounter with an
424 escaped convict on the marshes, whom she secretly helps by stealing
425 food and a file from her home. Kiara grows up feeling common and
426 ashamed of her coarse hands and boots, especially after being exposed
427 to the wealthy and eccentric Miss Kiley and her beautiful but haughty
428 ward, Ernest. Kiara is apprenticed to Stevie as a blacksmith, but longs
429 for a different, more refined life, partly due to his infatuation with
430 Ernest. Throughout her childhood and apprenticeship, Kiara is close to
431 Robyn, a kind and clever girl who becomes part of their household.
432 It was established that Kiara later becomes roommates with Carter in
433 Nigeria, and that Kiara had met Carter once before. However, in the
434 current source text, there is no mention of Carter or Nigeria; the
435 narrative is focused on Kiara's early life in England, her family,
436 apprenticeship, and formative experiences with Miss Kiley, Ernest, and
437 Robyn.
438 Therefore, Kiara, originally from a rural English marshland where she was
439 raised by her sister and apprenticed to a blacksmith, eventually
440 becomes roommates with Carter in Nigeria. Kiara and Carter had met once
441 before, though the details of that meeting are not provided in the
442 current text. The current text provides background on Kiara's
443 upbringing, character development, and relationships, but does not yet
444 describe the circumstances of her meeting with Carter or her move to
445 Nigeria.

446 Listing 1: Failure of CoA in gathering broad information

448 **A.1.2 Dropping facts during Sequential Processing**

449 The problem of CoA dropping facts when processing a sequence of chunks can be seen using the
450 same question in Figure 1. Section A.1.1 showcases an instance of CoA not capturing relevant facts
451 to begin with. But, across multiple CoA runs over this example, it is possible for the fact, **Kiara**
452 **met a pale young gentleman at Miss Kiley's house; they had a fistfight in the garden**, to be
453 gathered from Chunk c_1 . But because the relevance of the fact is not immediately established, the
454 fact can be dropped in the summaries of subsequent chunks which results in an irrecoverable loss of
455 information. This can be clearly seen when we look at the CoA summary generated after Chunk c_1
456 and the summary generated after Chunk c_2

457 ****Summary of the Source Text and Previous Context:****
458 The narrative follows Kiara, a young boy raised by his sister Mrs. Stevie
459 Bria, a harsh and controlling woman, and her husband Stevie, a kind
460 but physically strong blacksmith. Kiara's life is marked by fear and
461 secrecy, as he is coerced into aiding a mysterious convict with a file
462 and food, under threat of violence. The convict, later revealed to be a
463 fugitive from the Hulks (prison ships), is eventually recaptured
464 during a village-wide search. Kiara's interactions with the convict
465 and his sister's harsh treatment shape his sense of self-worth,
466 leading to feelings of inadequacy and a desire to escape his humble
467 life.
468
469 Kiara is apprenticed to Stevie, but his aspirations for a better life are
470 stifled by his sister's domineering nature and the oppressive
471 environment of their home. Later, he visits Miss Kiley, a reclusive and
472 wealthy woman, and her attendant Ernest, who treat him with disdain.
473 Kiara's attempts to improve himself through education and a desire to
474 become a gentleman are met with confusion and rejection, particularly
475 from Ernest. **There, he comes across a pale, young gentleman who fights**
476 **him and knocks him out**. A subplot involves Robyn, a kind and observant
477 girl who becomes part of their household, offering Kiara a sense of
478 camaraderie and practical support.
479
480 There is no mention of Carter or Nigeria in the current source text.
481 Kiara and Carter have met once before but the details of that meeting
482 have not been provided in the current source text.
483

Listing 2: CoA Summary for Chunk c_1

485 ***Summary of the Source Text and Previous Context:****
486 The narrative follows Kiara, a young blacksmith's apprentice raised by
487 his sister Mrs. Stevie Bria and her husband Stevie, a kind but
488 physically imposing blacksmith. Kiara's life is marked by fear and
489 secrecy, as he is coerced into aiding a mysterious convict with a file
490 and food under threat of violence. The convict, later revealed to be a
491 fugitive from the Hulks (prison ships), is recaptured during a village-
492 wide search. Kiara's interactions with the convict and his sister's
493 harsh treatment shape his sense of inadequacy and desire for escape.
494
495 Kiara is apprenticed to Stevie but feels stifled by his sister's
496 domineering nature and the oppressive environment of their home. As
497 Kiara matures, he becomes increasingly dissatisfied with his
498 apprenticeship at the forge and dreams of a better life. His
499 aspirations for a better life are complicated by his sister's disdain
500 and the influence of Miss Kiley, a reclusive and wealthy woman, and
501 her attendant Ernest, who treat him with condescension. Kiara's
502 journey to self-improvement is further complicated by his growing
503 feelings for Ernest and the mysterious benefactor, Mr. Dilan, who tells
504 Kiara that he has "great expectations" and that he is to be brought up
505 as a gentleman in Nigeria.
506
507 There is no mention of Carter in the current source text. The current
508 source text sets up the stage for Kiara to move to Nigeria to become a
509

510 | gentleman but it does not provide any information about Carter and
511 | their meeting with Kiara.

Listing 3: CoA Summary for Chunk c_2

513 | As can be seen in listing 2, the summary generated for Chunk c_1 contains the information about the
514 | meeting with the *pale, young gentleman*. But this information is dropped in the summary for chunk
515 | c_2 as can be seen in listing 3.

516 | A.1.3 Failure in Extracting Specific Information

517 | This example showcases a simple error in fact extraction where CoA fails to gather specifics related
518 | to an event, instead opting to note broad strokes information like narrative context and thematic
519 | throughlines. The query asks **How did Marianne, a character in the context, die?**. The gold
520 | answer notes that Marianne dies by **trying to jump over a fence on a horse**. The death of this
521 | character happens in the latter half of the book, in Chunk c_6 . The specific passage showcasing the
522 | moment of the character's demise from the context is as follows:

523 | And then we seen him way down at the end of the pasture. He must have
524 | jumped the fence right over there. And he come ridin hell-for-
525 | leather up the hill, singin at the top of his voice like he didn't
526 | have a care in the world. I didn't know your pa had such a voice. He
527 | was singin Peg in a Low-backed Car and beatin the horse
528 | with his hat and the horse was goin like mad. He didn't draw rein
529 | when he come near the top and we seen he was goin to jump the
530 | pasture fence and we hopped up, scared to death, and then he yelled:
531 | Look, Lucian! Watch me take this one! But the horse stopped right
532 | on his haunches at the fence and wouldn't take the jump and your pa
533 | went right over his head. He didn't suffer none. He was dead time we
534 | got to him. I guess it broke his neck.

Listing 4: Passage from the Context for the Question

537 | This incident is wrapped in a broader context of Marianne grieving the death of his wife, Lucian
538 | and the emotional and physical toll of the post civil war era. Given this context, CoA is able to note
539 | the broader context about Marianne's grief and post war difficulties but CoA omits the more direct
540 | information related to how the character died. The exact summary is as follows:

541 | **Summary of the Source Text and Previous Context:**
542 | The narrative follows **Debbie O'Kerry Kaitlin**, a Southern woman
543 | navigating the challenges of post-Civil War Reconstruction, personal
544 | ambition, and familial tensions. Earlier summaries indicated that her
545 | father, **Marianne O'Kerry**, an Irish-born plantation owner, was
546 | alive and enduring the war's aftermath, struggling to manage Tara's
547 | estate while maintaining his pride and resilience. However, in the **
548 | current source text** (Chapter XXXIX), it is revealed that **Marianne
549 | O'Kerry dies in June**, shortly after Debbie's return to Jonesboro.
550 | This is confirmed through a message from **Will Blain** and later
551 | elaborated by **Will** during the funeral, where he describes
552 | Marianne's death as a result of his **broken heart following the
553 | death of his wife, Lucian O'Kerry**, and his inability to cope with
554 | the emotional and physical toll of the post-war era. The text
555 | explicitly states that Marianne's death occurs **before Debbie's
556 | return to Atlanta**, and his passing is marked by a **funeral at Tara
557 | **, where his **legacy as a Southern gentleman and fighter for his land
558 | ** is acknowledged. The earlier summary likely omitted this detail, but
559 | the **current text confirms Marianne's death in Chapter XXXIX** due
560 | to grief and the hardships of Reconstruction.

562 | **Answer to the Query:**
563 | In the **current source text** (Chapter XXXIX), **Marianne O'Kerry dies
564 | in June** after the Civil War, primarily due to **grief over the death
565 | of his wife, Lucian**, and the **emotional and physical toll of
566 | Reconstruction**. His death is confirmed via a message from **Will

568 Blain** to Debbie, who returns to Jonesboro to attend the funeral.
 569 During the eulogy, Will explains that Marianne's heart had "died"
 570 with Lucian's passing, leaving him "addled" and unable to recover.
 571 The text does not provide explicit details of his death (e.g., illness,
 572 accident, or natural causes), but it emphasizes his **spiritual and
 573 emotional collapse** as the central cause. This contradicts earlier
 574 summaries that portrayed him as alive, but the **current narrative
 575 definitively states his death** in Chapter XXXIX.

Listing 5: CoA Summary for Chunk *c6*

577 **A.2 Prompts Used in COSMIR**

578 You are an expert research planner. Your task is to devise an exhaustive
 579 research strategy to answer a complex MAIN_QUERY. The goal is not just
 580 to find the direct answer, but to generate a set of broad, overlapping
 581 "Information Nets" that will reliably catch all the necessary facts,
 582 even if they are indirect or their relevance is not immediately obvious
 583 .
 584
 585 **### The Thought Process**
 586
 587 Follow this three-step thinking process to generate your questions:
 588
 589 1. **Deconstruct the Query:** Identify the core entities, the central
 590 event/relationship, and all constraints (temporal, locational, etc.).
 591
 592 2. **Formulate a Multi-Pronged Strategy:** Based on the deconstruction,
 593 define your angles of attack.
 594 * **The Direct Approach:** Formulate a question that tracks the
 595 direct interaction or causal link between the core components of
 596 the query. This is your primary target.
 597 * **The Decomposed Approach (Crucial Step):** Assume the direct
 598 answer might be incomplete or misleading. To find the full context,
 599 investigate each core entity's history *independently* within the
 600 query's constraints. This allows you to discover the underlying
 601 factors and connections that explain the central event.
 602
 603 3. **Generate Broad, Far-Reaching Questions:** Convert your strategy
 604 into a set of questions. These questions should act as directives for a
 605 comprehensive note-taking process.
 606
 607 ---
 608 **### Example of the Thought Process in Action**
 609
 610 **MAIN_QUERY:** "What was the primary reason Project 'Orion' was
 611 cancelled following the acquisition of 'Innovate Corp'?"
 612
 613 **1. Deconstruction:**
 614 * **Core Entities:** 'Project 'Orion'', 'Innovate Corp'.
 615 * **Central Event:** 'cancelled'.
 616 * **Constraints:** 'following the acquisition' (temporal and potential
 617 causal link).
 618
 619 **2. Strategy Formulation:**
 620 * **Direct Approach:** I need to find the officially stated reason for
 621 the cancellation of 'Orion' and see how it connects to the acquisition.
 622 * **Decomposed Approach:** The official reason might not be the whole
 623 story. The real cause lies at the intersection of the two entities'
 624 independent histories. I must build a complete picture of both 'Orion'
 625 and 'Innovate Corp' leading up to the cancellation.
 626 * First, I will research Project 'Orion's' history on its own. What
 627 were its goals, budget, progress, and known problems?

```

629      * Second, I will research 'Innovate Corp'. What technology did they
630      possess? What was the strategic purpose of their acquisition?
631      * By understanding both entities in isolation, I can cross-
632      reference the timelines to uncover the true reason for the
633      cancellation (e.g., 'Innovate Corp's' technology made 'Orion'
634      redundant, the acquisition shifted budget priorities, etc.).
635
636  **3. Generate Questions (The "Information Nets"):***
637  * (From the Direct Approach) -> "Find all official statements, memos,
638  or post-mortems that explicitly state the reason for Project 'Orion's'
639  cancellation."
640  * (From the Decomposed Approach for 'Orion') -> "What is the complete
641  history of Project 'Orion' *before the acquisition*: its stated goals,
642  budget, key personnel, major milestones, and any documented challenges
643  or internal reviews."
644  * (From the Decomposed Approach for 'Innovate Corp') -> "what is the
645  core technology and product line of 'Innovate Corp' at the time of its
646  acquisition. What was the stated business strategy behind the
647  acquisition?"
648  * (To link the contexts) -> "What organizational changes, budget
649  reallocations, or technology integrations occurred between the teams of
650  Project 'Orion' and 'Innovate Corp' after the acquisition was
651  finalized?"
652
653  **MAIN_QUERY:** "Where was the first documented contact between Norse
654  voyagers and the Indigenous peoples of what is now North America?"
655
656  **1. Deconstruction:***
657  * **Core Entities:** 'Norse voyagers', 'Indigenous peoples of North
658  America'.
659  * **Central Event:** 'first documented contact'.
660  * **Constraints:** 'where' (location) and 'first' (chronology); note
661  ambiguity in what counts as "documented" (Norse texts, Indigenous oral
662  history, or archaeology).
663
664  **2. Strategy Formulation:***
665  * **Direct Approach:** Locate the earliest explicit records or securely
666  dated artifacts that document an encounter between Norse voyagers and
667  Indigenous peoples.
668  * **Decomposed Approach (Two overlapping information nets):***
669  *   **Net A** Norse / Euro Records & Material Evidence:** Gather
670  Norse saga passages, contemporaneous chronicles, runic or other
671  inscriptions, and archaeological sites with Norse artifacts in
672  Atlantic/North American regions; extract dates, claimed locations,
673  and any mention of locals.
674  *   **Net B** Indigenous Oral Traditions & Local Archaeology:** Compile
675  Indigenous oral histories, place-names, and archaeological
676  reports that describe encounters with outsiders or show foreign
677  artifacts or cultural change; extract dating, locality, and
678  descriptions.
679  * The union of Nets A and B catches earliest "documentation"
680  regardless of genre.
681
682  **3. Generate Questions (The "Information Nets"):***
683  * (From the Direct Approach) -> "What is the chronologically earliest
684  explicit written accounts or European chronicles claiming Norse contact
685  with Indigenous peoples, with exact quotations and dates."
686  * (From Net A) -> "List archaeological sites in Atlantic Canada /
687  nearby with securely dated Norse artifacts; for each, describe dating
688  evidence and whether Indigenous Norse interaction is evident."
689  * (From Net B) -> "Collect Indigenous oral histories and regional
690  archaeological reports that describe early encounters with seafaring
691  outsiders, including dating and locality details."
692  * (To link the contexts) -> "For each Norse-dated site or saga
693  reference, is there corresponding Indigenous evidence (oral or

```

```

694     archaeological) at the same place/time? For Indigenous-suggested cases,
695     is there any Norse material or European mention nearby?"  

696     * (Edge cases) -> "Could artifacts be trade items rather than evidence  

697     of direct contact? How do radiocarbon and stratigraphic dates constrain  

698     'first' claims?"  

699  

700     ---  

701     ### YOUR TASK  

702  

703     Now, apply this exact same thought process to the following MAIN_QUERY.  

704  

705     After thinking return this output format:  

706     '''yaml  

707     questions:  

708         - "Broad Question from Direct Approach"  

709         - "Broad Question from Decomposed Approach (Entity 1)"  

710         - "Broad Question from Decomposed Approach (Entity 2)"  

711         # ... and so on  

712     gathered_facts: []  

713     inferred_facts: []  

714     answer: ""  

715     '''  

716     MAIN_QUERY: {{query}}  


```

Listing 6: PLANNER Prompt

```

718 Respond with YAML format ONLY. Do not use markdown code blocks or any
719 other formatting.  

720  

721 Extract ALL relevant facts from the CONTEXT_CHUNK that could help answer
722 the MAIN_QUERY.  

723 Pay special attention to:  

724     - Named entities (organizations, satellites, technologies, people)
725     - Relationships between entities (who made what, who operated what)
726     - Historical connections (what came before what, experimental vs
727     operational)
728     - Technical specifications and capabilities  

729  

730 Return the complete updated YAML structure with new facts added:  

731  

732 gathered_facts:  

733     - "new fact from chunk"  

734  

735 MAIN_QUERY: {{query}}  

736 CONTEXT_CHUNK: {{chunk}}  

737 CURRENT_MEMORY:  

738 {{memory}}  


```

Listing 7: EXTRACT Phase Prompt

```

741 Respond with YAML format ONLY. Do not use markdown code blocks or any
742 other formatting.  

743  

744 Based on the gathered facts, make logical inferences that help answer the
745     MAIN_QUERY.  

746 Look for:  

747     - Connections between entities mentioned in different facts
748     - Historical relationships (what led to what)
749     - Organizational relationships (who owns/operates/manufactures what)
750     - Timeline connections (experimental versions leading to operational
751     versions)  

752  

753 MAIN_QUERY: {{query}}  

754  

755

```

```

756 | Return the complete updated YAML structure:
757 |
758 inferred_facts:
759   - "existing inferred facts"
760   - "new logical inferences"
761 |
762 CURRENT_MEMORY:
763 {{memory}}

```

Listing 8: INFER Phase Prompt

```

765 Respond with YAML format ONLY. Do not use markdown code blocks or any
766 other formatting.
767
768 Remove answered questions and optionally add new ones.
769
770 MAIN_QUERY: {{query}}
771
772 Return exactly this YAML structure:
773
774 questions:
775   - "remaining unanswered questions or newly added questions"
776
777 CURRENT_MEMORY:
778 {{memory}}

```

Listing 9: REFINE Sub-agent Prompt

```

781 Respond with YAML format ONLY. Do not use markdown code blocks or any
782 other formatting.
783
784 Based on the gathered facts and inferences, answer this question: {{query}}
785   }
786
787 Analysis approach:
788 1. Identify all relevant entities mentioned in the facts
789 2. Trace relationships and connections between entities
790 3. Follow logical chains to reach the final answer
791 4. Provide a direct, concise answer
792
793
794 {{memory}}
795
796 Return exactly this YAML structure:
797
798 answer: "concise answer here"
799 questions: []
800
801 {TASK_SPECIFIC_INST}

```

Listing 10: MANAGER Prompt