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ABSTRACT

Large language models have achieved notable success across various domains,
yet efficient inference is still limited by the quadratic computation complexity
of the attention mechanism. The inference consists of prefilling and decoding
phases. Although several attempts have been made to accelerate decoding, the
inefficiency of the prefilling phase, especially for long-context tasks, remains a
challenge. In this paper, we observe a locality in query criticality during the pre-
filling phase of long-context processing: adjacent query tokens tend to focus on
similar subsets of the past Key-Value (KV) cache. Based on this observation,
we propose CritiPrefill, a criticality-based segment-wise prefilling method. This
method partitions the input sequence’s queries and KV cache into segments and
blocks, utilizing a segment-wise algorithm to estimate the query criticality. By
pruning non-critical computations between query segments and cache blocks in
the self-attention mechanism, the prefilling process can be significantly acceler-
ated. Extensive evaluations on multiple long-context datasets show up to 2.7x
speedup on Llama3-8B and 3.0x speedup on Yi-9B for 128K context length on a
single A100 GPU, with minimal quality degradation.

1 INTRODUCTION

Large Language Models (LLMs) have been widely applied across various fields, showcasing im-
pressive capabilities in handling long-context tasks such as long text comprehension (Laban et al.,
2023), multi-turn dialogue QA (Yang et al., 2018), in-context learning (Dong et al., 2022), and agent
tasks(Wang et al., 2024). The rapid advancement of open-source LLMs has significantly reduced the
training costs for downstream applications. However, a key challenge remains in the quadratic in-
ference cost of the self-attention mechanism in Transformer layers while processing long sequences
(Wan et al., 2024; Dong et al., 2023; Zhou et al., 2024).

Typically, LLMs are composed of multiple Transformer layers, each containing a self-attention layer
that significantly contributes to the inference cost in long-sequence scenarios (Wang et al., 2020).
Inference within each self-attention layer consists of two phases: the prefilling phase and the de-
coding phase. During the prefilling phase, LLMs calculate the Key-Value (KV) cache for all input
tokens and predict the first output token, which takes the majority of the computation cost dur-
ing inference (Qin et al., 2024a). In the subsequent decoding phase, the model generates tokens
autoregressively by leveraging the most recent query token along with the entire KV cache from
all previous steps. While this phase involves less computation, it is primarily constrained by the
input/output (I/O) latency of the KV cache (Leviathan et al., 2023), resulting in a memory-bound
bottleneck.

To address this challenge, plug-and-play (P&P) methods have been extensively explored for seam-
less integration into any LLM, to reduce inference costs without the need of substantial fine-tuning
expenses (Dao et al., 2022; Kwon et al., 2023; Kachris, 2024). Among those works, recent advances
in efficient decoding (Feng et al., 2024; Li et al., 2024; Zhang et al., 2024) have made remarkable
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Figure 1: Acceleration of CritiPrefill
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Figure 2: Framework of CritiPrefill

progress, especially by identifying key subsets of KV caches based on the last query token at each
decoding step (Tang et al., 2024). By pruning non-critical KV caches, these methods minimize re-
dundant computations, significantly reducing cache I/O latency and accelerating the decoding phase.

However, in typical long-sequence scenarios, such as long-context QA, the input sequence is often
much longer than the output sequence, resulting in a significantly higher prefilling time than the
total decoding time. As shown in Figure 1, when the sequence length reaches 128K, the prefilling
time can account for over 95.6% of the total inference time, indicating that the main bottleneck
in long-sequence tasks lies in the prefilling phase. However, accelerating the prefilling phase re-
mains a significant challenge due to its highly parallel yet computationally intensive nature. Exist-
ing methods for prefilling acceleration typically require architectural changes (Shen et al., 2021; Qin
et al., 2024b; Yang et al., 2023) or extensive fine-tuning (Beltagy et al., 2020; Zaheer et al., 2020;
Tworkowski et al., 2024), which limiting their integration with pretrained LLMs (Rasley et al., 2020;
Shoeybi et al., 2019). This raises a critical question: Can the P&P strategy for critical KV cache
identification, which has promise in the decoding phase, be extended to the prefilling phase?

Nevertheless, it is non-trivial to identify critical KV cache. The token-wise criticality estimation
(Tang et al., 2024), while effective in decoding, introduces significant computational overhead, mak-
ing it impractical for the compute-intensive prefilling phase. However, we observe a key locality
pattern: although the critical subset of the KV cache varies with different query tokens, neighboring
query tokens tend to share similar critical KV caches. Based on this observation, we propose the
CritiPrefill, which leverages segment-wise query criticality estimation for pruning attention compu-
tation, thus accelerating the prefilling phase.

As outlined in Figure 2, the CritiPrefill partitions both query tokens and KV caches into fixed-size
query segments and cache blocks, before the prefilling phase of each layer. A segment-wise al-
gorithm then estimates the criticality of each cache block for each query segment. Additionally,
inspired by inter-layer similarity in LLMs (Dai et al., 2019; Liu et al., 2023; Zhang et al., 2023),
we propose a layer-fusion mechanism to further refine the final criticality score. By pruning non-
critical computation between query segments and cache blocks in the self-attention mechanism, the
CritiPrefill significantly accelerates the prefilling process. We evaluate CritiPrefill across various
long-context QA tasks with different input lengths, showing substantial speedups with minimal ac-
curacy loss. Additionally, tests on the “Needle-in-a-Haystack” task further confirm that CritiPrefill
maintains information retrieval capacity while reducing prefilling time for long sequences, achieving
up to a 2.7x speedup on Llama3-8B and 3.0x on Yi-9B using a single A100 GPU.

2 METHOD

2.1 QUERY CRITICALITY IN ATTENTION MECHANISM

Modern LLMs are generally constructed using multi-layer Transformer blocks, with the self-
attention mechanism as the central operation. During the prefilling phase, the computation in each
layer’s self-attention is heavily dependent on the hidden states X ∈ Rn×d of all input tokens from
the previous layer, which are transformed into Query Q ∈ Rn×d , Key K ∈ Rn×d, and Value
V ∈ Rn×d matrices as follows:

Q = WQX; K = WKX; V = WV X (1)
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The output O is then computed using attention weights A: 1

O = AV where A = softmax(
QKT

√
d

) (2)

The matrix multiplications in self-attention mechanisms result in a quadratic computational cost
relative to sequence length n, which contributes to the significant computational load during the
prefilling phase. In the decoding phase, LLMs use only the query of the last token q = Q[−1] along
with cached KV pairs to autoregressively generate the next token. Although the computational cost
per decoding step is low, large sequence length n can lead to considerable KV cache I/O latency, cre-
ating a memory-bound bottleneck. Fortunately, due to the inherent sparsity of attention weights (Ge
et al., 2023), only a small subset of critical KV cache significantly influences the output generation.
Thus, excluding non-critical portions of the KV cache from self-attention computations does not
degrade generation quality (Li et al., 2024). Furthermore, research on decoding speedup has shown
that these critical KV cache subsets are query-dependent, a phenomenon referred to as query criti-
cality (Tang et al., 2024). This means that each query token q ∈ Q corresponds to a distinct critical
subset of the KV cache. By identifying the relevant subset for the last query token in each decoding
step, the decoding process can be significantly accelerated.

However, applying query criticality to the prefilling phase introduces unique challenges. First, the
prefilling phase already incurs significant computational overhead, and an additional step to identify
critical KV cache subsets would only increase this burden. Second, while token-wise query critical-
ity reduces computation via sparsification, the resulting sparsity is unstructured, as different query
tokens depend on varying critical KV cache subsets. This unstructured sparsity undermines the ben-
efits of highly parallelized matrix multiplications in the prefilling phase, potentially decreasing the
efficiency rather than achieving the intended acceleration.

2.2 LOCALITY PATTERN OF QUERY CRITICALITY

To leverage query criticality for computation pruning, we conduct a deliberated study focusing on the
long-context question answering (QA) task. Our findings reveal a locality pattern in query criticality
during the prefill process. Specifically, for a 4K-length QA context on the Llama3-8B model, we
first identify the critical KV cache subset {K̂i, V̂i} for each query qi ∈ Q:

⟨K̂i, V̂i⟩ = ⟨K[indexi], V [indexi]⟩
where indexi = argtopk(softmax(qiKT ), k = 512) (3)

Figure 3 visualizes the similarity of critical cache subsets for different queries qi and qj , using the

metric |K̂i∩K̂j |
k=512 . The results show that nearby queries tend to share critical KV cache subsets, as

evident by the higher similarity near the diagonal. As the distance between queries grows, this
similarity declines. This criticality locality pattern suggests that adjacent queries show closer criti-
cality, allowing for collective prediction of query segments. Thus, by leveraging the locality, it can
significantly reduce the computational cost of criticality estimation, while exploiting the structured
sparsity from segment-wise criticality.

2.3 PROPOSED METHODS

In this section, we present CritiPrefill, a segment-wise criticality-based method for accelerating the
prefilling process by leveraging the locality pattern in query criticality. This approach improves
efficiency by estimating criticality at the segment level and utilizing structured sparsity to prune
computations within the self-attention mechanism.

2.3.1 ESTIMATING SEGMENT-WISE QUERY CIRITICALITY

As described in Algorithm 1, CritiPrefill estimates segment-wise query criticality segment-wise,
significantly outperforming token-wise approaches in terms of efficiency. First, the Query and KV

1For clarity, we illustrate only a single head in the multi-head attention mechanism, which can be easily
extended to multiple heads in practice.
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Figure 3: Locality Pattern

Cache are firstly divided into segments and blocks. Then, representative queries and keys are se-
lected for each segment and block via element-wise max and min operations. Lines 9-13 calculate
attention scores for these representatives, producing criticality scores between segments and blocks.
Additionally, a layer-fusion mechanism is employed in line 14 to refine the estimation, drawing on
insights from prior works on inter-layer similarity (Elhoushi et al., 2024).

Algorithm 1 Estimation of Query Criticality in One Layer

1: Input: Q,K, V ∈ Rn×d, query ciriticality score from last layer S′ ∈ Rn1×n2

2: Output: query ciriticality score in this layer S ∈ Rn1×n2

3: segment number n1 = n/segment size
4: block number n2 = n/block size
5: Q = Q.reshape(n1, segment size, d)
6: K = K.reshape(n2, block size, d)
7: Qmax = Q.max(dim=1); Qmin = Q.min(dim=1)
8: Kmax = K.max(dim=1); Kmin = K.min(dim=1)
9: S1 = softmax(QmaxK

T
max); S2= softmax(QmaxK

T
min)

10: S3 = softmax(QminK
T
max); S4= softmax(QminK

T
min)

11: Smax = (S1 + S3)/2; Smin = (S2 + S4)/2
12: S = max(Smax, Smin)
13: apply causal mask to S
14: S = αS + (1-α)S′

15: Return S

2.3.2 PRUNING SELF-ATTENTION MECHNISUM

Based on the estimated segment-wise criticality scores, CritiPrefill applies structured pruning to the
self-attention mechanism (Algorithm 2). Rather than standard dense attention, it eliminates non-
critical KV Cache blocks for the computation of each query segment, thereby reducing redundant
computation operations and speeding up the prefilling phase. Thus, the selective attention mecha-
nism accelerates the overall process, while maintaining generation quality.

3 EXPERIMENT

In this section, we conduct experiments on datasets with various sequence lengths and scenarios to
demonstrate the accuracy and acceleration effects of our approach.

3.1 SETTINGS

3.1.1 DATASET

We conduct thorough evaluations across four datasets in both Single-hop (Kočiský et al., 2018) and
Multi-hop QA (Yang et al., 2018) scenarios. For Single-hop QA, where answers come from a sin-
gle piece of evidence, we assess the Loogle Short-dependency QA (SD) (Dasigi et al., 2021) and
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Algorithm 2 Pruned Attention

1: Input: Q,K, V ∈ Rn×d, Query Ciriticality Score S ∈ Rn1×n2 , Critical Budget B
2: Output: Attention Output O
3: segment number n1 = n/segment size
4: block number n2 = n/block size
5: Q = Q.reshape(n1, segment size, d)
6: for j = 1 to n1 do
7: Qj = Q[j]
8: critical block index I = argtopk(S[j], B/block size)

9: extract critical KV cache K̂, V̂ in cache block I
10: Aj = softmax(QjK̂

T

√
d

)

11: Oj = Aj V̂
12: end for
13: concate all Oj to O
14: Return O

MultiFieldQA (MF) (Bai et al., 2024) datasets. For Multi-hop QA, which requires integrating in-
formation from multiple sources, we assess the Multiple Information Retrieval (MIR) (Yuan et al.,
2024) and Comprehension and Reasoning (CR) tasks in Loogle datasets. Following the method-
ology of (Yuan et al., 2024), we categorize each dataset into two groups based on context length:
64k and 128k for evaluation under different context lengths. Additionally, the widely-used ”Needle-
in-a-Haystack” (Liu et al., 2024) test, a synthetic QA task designed to assess long-context retrieval
capabilities, is employed to facilitate a detailed evaluation across various context lengths.

3.1.2 BASELINE

We compare the CritiPrefill method with vanilla LLMs to demonstrate that our approach signifi-
cantly accelerates prefilling with minimal quality loss. Additionally, a CritiPreill method without
the layer-fusion mechanism is also included as an ablation study to illustrate that this mechanism
effectively enhances the accuracy of segment-wise criticality estimation. All methods are based on
two open-source LLMs, Llama3-8B-1M (Touvron et al., 2023), Yi-9B-200K (AI et al., 2024), which
are widely used for long context evaluation due to their moderate parameter size and remarkable ca-
pability of long context processing(Xiong et al., 2023).

3.1.3 PARAMETER SETTINGS

In all experiments, the query segment size is set to 512, the key-value block size to 32, and the
budget size to 1024. The layer-fusion hyperparameter, α, is fixed at 0.25. All experiments employ
Flash Attention (Dao, 2023) and FP16 for efficient computation on Nvidia A100 GPUs. For more
details, please refer to our code at https://github.com/66RING/CritiPrefill.

3.2 EVALUATIONS CROSS MULTIPLE SCENARIOS

The test results for each model across all datasets are summarized in Table 1. Overall, our CritiPrefill
method achieves an average speedup of over 3x across all datasets, with minimal degradation in
quality. Specifically, on the Llama3-8B model, CritiPrefill achieves a 3.0x speedup with only a

Table 1: Quality Scores on Long-Context QA Datasets

Single-Hop. QA Multi-Hop. QA

SD
64k

SD
128k

MF
64k

MF
128k

CR
64k

CR
128k

MIR
64k

MIR
128k Ave.

Llama3-8B 41.77(1.00x) 40.9(1.00x) 26.24(1.00x) 24.08(1.00x) 17.79(1.00x) 18.39(1.00x) 18.01(1.00x) 18.35(1.00x) 25.69(1.00x)
Llama3-8B(ours w/o fusion) 39.72(2.22x) 39.41(3.38x) 25.35(2.49x) 24.05(3.94x) 17.67(2.43x) 15.87(3.66x) 17.31(2.44x) 13.94(3.68x) 24.16(3.03x)
Llama3-8B(ours) 39.55(2.22x) 38.62(3.38x) 27.09(2.48x) 28.56(3.94x) 19.35(2.42x) 16.72(3.67x) 16.96(2.44x) 15.07(3.68x) 25.24(3.03x)
Yi-9B 31.03(1.00x) 16.04(1.00x) 14.23(1.00x) 12.23(1.00x) 10.6(1.00x) 6.77(1.00x) 8.99(1.00x) 5.19(1.00x) 13.13(1.00x)
Yi-9B(ours w/o fusion) 26.37(2.51x) 18.34(4.01x) 9.02(2.86x) 7.51(4.77x) 12.32(2.78x) 12.03(4.39x) 8.49(2.80x) 6.96(4.42x) 12.63(3.56x)
Yi-9B(ours) 27.89(2.52x) 22.19(3.98x) 9.59(2.86x) 8.32(4.71x) 11.16(2.79x) 12.34(4.35x) 9.11(2.80x) 4.56(4.37x) 13.14(3.55x)
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Figure 4: CritiPrefill on Needle-in-a-Haystack Test. This test involves inserting an answer within
a large context and evaluating the retrieval ability in response to the corresponding question. The
Average Score is derived from averaging scores across various context lengths (x-axis) and insertion
depths (y-axis), with a maximum score of 10.

8k 16
k

24
k

32
k

40
k

48
k

56
k

64
k

72
k

80
k

88
k

96
k

10
4k

11
2k

12
0k

12
8k

Context Length

0

10

20

30

40

Pr
ef

illi
ng

 T
im

e 
(s

)

3.0x

2.7x

Yi-9B
Yi-9B (CritiPrefill)
Llama3-8B
Llama3-8B (CritiPrefill)

Figure 5: Prefilling Time on Need-in-a-Haystack Test

slight drop in quality score from 25.69 to 25.24. The Yi-9B model attains a 3.4x speedup, while
the quality score remains nearly unchanged, shifting from 13.13 to 13.14. This demonstrates that
CritiPrefill’s segment-wise estimation algorithm not only effectively approximates query critical-
ity but also successfully implements structured attention pruning, resulting in tangible acceleration
gains. Furthermore, when examining datasets with varying sequence lengths, CritiPrefill’s accel-
eration becomes more pronounced with longer sequences. For instance, on the SD dataset using
Llama3-8B, CritiPrefill achieves speedups of 2.2x and 3.3x at the 64K and 128K sequence lengths,
respectively. This is primarily because, with longer sequences, CritiPrefill can prune more irrelevant
operations during AttentionPrefill, leading to greater performance improvements.

Furthermore, comparing CritiPrefill with CritiPrefill without layer-fusion shows that while there is
almost no difference in speed, our method without layer-fusion shows a significantly lower gener-
ation quality. This indicates that the layer-fusion mechanism effectively enhances the accuracy of
criticality estimation without introducing excessive computational overhead.

3.3 EVALUATIONS ON NEEDLE-IN-A-HAYSTACK TEST

The Needle-in-a-Haystack test, as shown in Figure 4, is conducted to thoroughly evaluate the impact
of the information retrieval capabilities across varying lengths. Both the Llama-3 and Yi models
exhibit nearly lossless performance in the Needle-in-a-Haystack test, ranging from 0 to 128K context
lengths when utilizing CritiPrefill methods. As illustrated in Figure 5, the acceleration provided by
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CritiPrefill becomes increasingly significant as sequence lengths grow. It effectively reduces the
quadratic prefilling time to linear without compromising performance at lower sequence lengths
like 8K-16K.

4 CONCLUSION

In this work, we propose CritiPrefill, a plug-and-play method to accelerate the prefilling phase in
LLMs. Our key insight is identifying a locality pattern where neighboring query tokens rely on simi-
lar critical KV cache. This enables efficient segment-wise criticality estimation and structured prun-
ing of self-attention computation, significantly reducing the computational load during the prefilling
phase. By introducing a layer-fusion mechanism to refine criticality across layers, CritiPrefill en-
hances generation quality without compromising efficiency. Experiments on long-context QA tasks
demonstrate up to 3.0x speedup with minimal accuracy loss on models such as Llama3-8B and Yi-
9B. CritiPrefill provides an effective solution to the long-sequence inference bottleneck, requiring
no architectural changes or fine-tuning, making it highly adaptable for practical applications.
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and Edward Grefenstette. The NarrativeQA Reading Comprehension Challenge. Transactions
of the Association for Computational Linguistics, 6:317–328, 05 2018. ISSN 2307-387X. doi:
10.1162/tacl a 00023. URL https://doi.org/10.1162/tacl_a_00023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.
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