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ABSTRACT

For a given image, traditional supervised image classification using deep neural
networks is akin to answering the question ‘what object category does this image
belong to?’. The model takes in an image as input and produces the most likely
label for it. However, there is an alternate approach to arrive at the final answer
which we investigate in this paper. We argue that, for any arbitrary category ¢,
the composed question ‘Is this image of an object category g’ serves as a viable
approach for image classification via. deep neural networks. The difference lies
in the supplied additional information in form of the target along with the image.
Motivated by the curiosity to unravel the advantages and limitations of the ad-
dressed approach, we propose Indicator Neural Networks(INN). It utilizes a pair
of image and label as input and produces a image-label compatibility response.
INN consists of 2 encoding components namely: label encoder and image encoder
which learns latent representations for labels and images respectively. Predictor,
the third component, combines the learnt individual label and image representa-
tions to make the final yes/no prediction. The network is trained end-to-end. We
perform evaluations on image classification and fine-grained image classification
datasets against strong baselines. We also investigate various components of INNs
to understand their contribution in the final prediction of the model. Our probing
of the modules reveals that, as opposed to traditionally trained deep counterpart,
INN tends to much larger regions of the input image for generating the image
features. The generated image feature is further refined by the generated label
encoding prior to the final prediction.

1 INTRODUCTION

Deep neural networks achieve state of the art in supervised classification across different tasks
(Rawat & Wang| 2017} |Girdhar et al.| [2017; |[Yang et all [2016). Our work focuses on supervised
image classification. Conventionally, while training, the network fy is provided as input a set of
training images X and corresponding labels Y. It learns by predicting the class labels Y = fy (X)
and minimising a predefined loss function E(Y, Y). During inference, the network predicts the
most likely category for the input image. This approach is analogous to asking a person to name the
object present in an image. An alternate approach is to present an image and a class category say
cat and ask if the image is of a cat. However, under this scheme one has to exhaustively query every
known category to arrive at a final answer. Figure [I]illustrates these scenarios in a natural setting.
Prior to the dominance of deep learning based approaches, many methods relied on one-vs-rest
SVM(Cortes & Vapnik, [1993)) trained on handcrafted image features(Sanchez et al., |2013). The
direction saught in this work has a big overlap with the idea of one-vs-rest classification. As we
will see in the subsequent sections, we intend to perform a one-vs-rest classification with a single
model. To the best of our knowledge, this alternate approach for supervised image classification has
not yet been explored in the setting of deep neural networks.

This paper is driven by the curiosity to understand the implications of adopting the plausible alternate
strategy of framing the supervised classification task. Our core contributions are as follows:

e We explore an alternate strategy of performing supervised image classification using labels
as additional cues for inference. To the best of our knowledge this the first work which
provides a unique re-interpretation of the multi-class classification problem.
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Figure 1: The illustration depicts 3 different approaches of recognising the object of interest. (From left to
right) The first person portrays the approach of traditionally trained models. In the middle, is our adopted ap-
proach for recognition. The illustration only shows one of the many queries asked. Lastly, individual responses
from domain experts represent an ensemble of one-class models.

e To model such a strategy with deep neural networks, we propose a novel architecture
termed as Indicator Neural Network(INN). INN produces a binary response conditioned
jointly on the input image and query label. It performs multiple one-vs-rest classifications
to arrive at the final label assignment.

e Our experiments show that the INNs outperform strong baselines on various image classi-
fication datasets. These baselines depict ‘traditional’ route of training an image classifier.

e We qualitatively and quantitatively investigate the various components of INN and high-
light the differences arising due to our pursued structure of the problem.

We have structured the paper as follows: we dive deeper into the motivation behind proposing a
new architecture for supervised image classification in section 2] In section [3] we describe the
said architecture and it’s train and test time methodology. We visit related work w.r.t the proposed
architecture in section[d Section[5|briefly covers the implementation details of the proposed model,
selected baselines and chosen datasets. Through sections [ — [0 we perform various experiments to
obtain insights into strengths and weaknesses of the proposed model. We conclude in section [I0] by
summarising our efforts and discussing the research directions emanating from our work.

2  MOTIVATION FOR A NOVEL ARCHITECTURE

The literature for supervised image classification is vast, as a result, we restrict the discussion
to deep learning approaches. The existing solutions for image classification ranging from
AlexNet(Krizhevsky et al.l [2012) to EfficientNets(Tan & Lel 2019) take the ‘traditional’ direction
for image classification. The traditional direction is depicted in figure [T[left) as a person predicting
the category solely based on the input image. These deep learning solutions generate a probability
distribution over all known categories as a response and ultimately select the category corresponding
to the highest response. The learning of such solutions is backed by categorical cross-entropy
loss(Baum & Wilczekl, (1988} [Solla et al., [1988) which allows a well established framework for
training and inference. Other than changing the base architecture, approaches have also been
proposed which utilize target transformations(Szegedy et al., [2016; Jarrett & van der Schaar} |2020;
Sun et al., 2017), data augmentations(Hongyi Zhang, 2018} [Yun et al.l [2019) to aid supervised
classification. However, these approaches also do not modify the query-response structure of the
classifier. Arguably, predictions of a k-way classification model can be interpreted as answering a
multi-cue query. This can be achieved by focusing on a single output unit. However, we have to
understand that this response is still conditioned only on the input image. Moreover, the learning
process ignores the supplied target label.

A recently proposed approach(Khosla et al., [2020) tries to diverge from the norm by utilizing
contrastive estimation(Gutmann & Hyvirinen, 2010; [Mnih & Kavukcuoglu, 2013) to perform the
task of supervised image classification. In a two step process, it first computes an ideal embedding
space using positive(images of the same category) and negative(images from other categories)
samples. After learning the embedding function, it then trains a traditional classifier(based on
cross-entropy loss) on the computed embeddings. The final response however, is yet again an
answer to the query ‘Which category does this image belong to?” conditioned only on the input
image.



Under review as a conference paper at ICLR 2021

As we noted from the above discussion, the existing methods do not provide us with an appropriate
way to model supervised predictions conditioned on images and labels. Specifically, allowing us
model the query ‘Is this image of a cat?’. As a result, we propose a novel architecture termed
Indicator Neural Networks(INN), which we introduce in the subsequent section.

3 METHOD

We consider a random image-label pair as (x,y). We represent a deep neural network, fy with
learnable parameters 6. Let ¢ represent a one-hot encoded vector of a randomly sampled category.
To infer the ground-truth category for an input image, all pairings of image and class categories are
required to be queried. The class label corresponding to which a largest response is recorded, it can
be assigned as the predicted category for the displayed image. Assuming there are Y’ unique labels
in the data, this would imply Y’ queries for obtaining the predicted category for one image. We
model this approach using INNs, fg(x, 7). The naming is motivated by indicator functions (1y—y)
as for a single input of image and label, the aim of the model is to predict

1, ify=y
0, otherwise.

folw, 3l ) = = { (1)

where, y is the correct label corresponding to . Realistically an INN will output § € [0, 1].

3.1 INN ARCHITECTURE

We break down fj into its components which comprises of an image encoder, label encoder and
predictor denoted respectively as:

for(x) =2z € R,
for(§) =¥ €RY, (2)
fos(z, ¥) =g €[0,1]"

Here, d represents the dimensions of the embedded features. z and v are image and label encodings
respectively. Note, that for generating z the input g is irrelevant, and similarly for ¢ the input
image doesn’t matter. The predictor utilises z and 1 to generate the joint image-label representation
h = zo01 € R o is the element-wise multiplication. It then utilizes / to make the final linear
classification decision. Figure [2] shows the pipeline as described above alongside last layers of a
traditionally trained model for a visual comparison.

Hypothesis: To have a better understanding of what the model is performing under the hood, we
can consider 1) comparable to a 1? attention map. As a result, ¢» will magnify or diminish certain
features in z to produce a refined . We suspect that this reduces the burden of image encoder to
produce strong category discriminative features and allows the network to attend to larger regions
of the input image. But what stops image encoder from focusing on irrelevant regions in the input
image? To answer it, we have to change the perspective with which we observe h. We can also
view h as a non-uniformly scaled label embedding(v) scaled by z). Predictor is necessarily a linear
classification head and for it to function appropriately, z extracted from different images of the
same category should be similar. As, this will allow the predictor to learn meaningful classification
boundaries. As an example, the image encoder will seek common characteristics in all the images
of the category dog.

3.2 INN TRAINING

To train the INN, we utilise positive and negative pairings of images and labels. The target of the
model is to predict no(0) for an incorrect pairing whereas, yes(1) for a correct one. For a batch of
correctly paired input data(sized b), we first extend the batch by concatenating randomly generated
incorrect pairings to it. If N is the desired number of incorrect pairings per image per batch, the
the resulting size of the input batch after the concatenation operation will be (N + 1) x b. By
applying the i.i.d assumption for image-label pairs, we can write the empirical log-likelihood which
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Figure 2: (a) The proposed 2 stream model for INN. The joint image-label representation(h) is computed
from image(z) and label(¢)) representations. This representation is solely responsible for driving the binary
prediction of the model. (b) Last layers of a traditionally trained model.

the network aims to maximize as:
bx(N+1)
log(P(Y|X,Y:0)) = log(I* NV P(gilwi, 51 0) = Z log(P(ilz:,5::6))  (3)

Alternatively, in terms of loss, for a single image(z), input query label(y) and ground-truth class
label(y) the corresponding loss is denoted as L(fg(x, §), 1y=,). We employ binary cross-entropy
for the implementation of loss. We extend the loss for a single image to the entire dataset as,

i<N
D DR P C IR D= CE SNU) St

(@ yex,v) * 1 2 ey —{y}

LIX,Y)=

3.2.1 COMPARISON TO TRADITIONAL TRAINING

It is relevant to point out the differences between an INN and traditional mode of training.

1. Traditionally, the networks designed for supervised classification maximise the likelihood
P(Y|X;6). In our case, the predictions are conditioned both on the input image and the
randomly supplied target.

2. Negative labels are involved indirectly in the loss computation(cross-entropy) due to the
softmax operation (Goodfellow et al., 2016, Chapter 6.2.2.3). The supplied target corre-
sponds to the correct label and the resulting contribution to the loss is from the output unit
corresponding to this target label. In our framework, the negative classes(stemming from
incorrect pairings) are directly involved into the loss computation as we explicitly provide
a dedicated target for them.

3. Backpropagating gradient gﬁ gh for the image encoder branch is scaled by ¢ due the nature
of bi-linear operation. Similarly for label encoder, the gradients are scaled by z. This
aspect allows the model to eventually learn compatible representations to make the final
prediction.

3.3 INN INFERENCE

For inferring the class label of an input image x, we select the input label which yields the largest
response. Formally,
§ = argmax fo(x, §) Vj €Y’ 5)
g

4 RELATED WORK

Two-stream models have been deployed successfully for the tasks of action recognition(Simonyan
& Zisserman, 2014; |Feichtenhofer et al., 2016)), video classification(Wang et al.l[2018), fine-grained
image classification(Lin et al., |2015), multi-label image classification(Yu et al., 2019) and aerial
scene classification(Yu & Liul |2018)) to name a few. Apart from the evident difference in the
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application of these models, the differences lie in the choice of inputs and the function for fusing
the 2 stream outputs.

Many approaches have been proposed which utilize labels as auxiliary inputs in image clas-
sification (Weston et al., 2010; [Frome et al., 2013} [Akata et al.l 2016} |[Sun et al., [2017), text
classification (Weinberger & Chapelle, |2009; (Guoyin Wang, 2018} Dong et al., 2020), and text
recognition(Rodriguez-Serrano et al., |2015). In computer vision, these approaches rely on a
language model(Mikolov et al.l [2013) trained on external data to obtain label embeddings. The
main focus of these approaches (Frome et al., 2013} |Gang Wang & Forsyth, [2009; |Wang & Mori,
2010; |Akata et al., |2016) is to use the pre-learnt embeddings to enforce high similarity between
image representations of contextually similar categories. These methods are targeted towards
zero-shot learning as they rely on enforced similarities to detect novel image categories. As opposed
to the existing line of work, we use one-hot encodings as input to our classifier which removes
the requirement to utilize any external data. Also, we work without explicitly enforcing similarity
constraints on learnt embeddings.

In our training we utilize negative pairing of images and labels. This idea is based on the principle of
noise contrastive estimation(Gutmann & Hyvirinen, 2010). SCL(Khosla et al.l [2020) also follows
this direction to learn meaningful embeddings in their classification approach. Their positive and
negative samples consists of images from same and different categories respectively. In contrast,
we consider the correctly paired image-label combinations as positives and incorrectly paired
image-labels as negatives. Also, ours is a single stage end-to-end differentiable training routine. In
INNSs, we can assign to label encodings the role of a 1¢ attention map(Xu et al., 2015). For image
classification, the existing approaches based on attention(Wang et al.l 2017; [Woo et al.| [2018; [Hu
et al., 2018; Bello et al., [2019; Jetley et al., |2018)) introduce spatial or channel-wise attention at
different depth of a traditional neural network. In contrast to our proposed model, this modification
is made to the image encoder. We can easily replace INN’s image encoder with the one equipped
with such an attention mechanism. This will incorporate a dual attention mechanism at the level of
label fusion and image embedding. However, INN depict one of the simplest ways of modelling
the pursued query structure and it is this formulation which gives rise to attention. Attention based
approaches as mentioned above focus on answering the query *What category does the image
belong to?’. Moreover, we focus our work to compare different approaches for modelling the
classification task rather than different mechanism of performing a traditional classification task.

5 IMPLEMENTATION DETAILS

Datasets: Throughout our paper, we refer to a size of a dataset for the number of unique categories
it contains. For small datasets we use CIFAR-10, STL-10, BMW-10(Ultra fine-grain cars dataset),
CUB-20(formed using 20 categories of CUB-200-2011), and Oxford-IIIT Pets. Study involving
larger dataset utilizes CUB-200. Table provided in appendix[A.2]shows the common statistics of the
utilized datasets.

Architectures: Here we provide brief details of selected baselines and INN. All the models are
trained from scratch to provide an even ground for comparison. Detailed hyper-parameters are
provided in appendix

o Baseline-Traditional(B-T): We’ve selected Resnet-18(He et al., 2015)) trained with cate-
gorical cross-entropy loss as our traditional baseline. It is a widely popular architecture
and portrays the standard manner of training an image classifier(Khosla et al.| [2020; Tan &
Le, 2019). Evaluation with a VGG-11(Simonyan & Zisserman, [2015)) model is shared in
appendix

e Baseline-Multi-Label(B-ML): We train the Resnet-18 as a multi-label classifietNam et al.
(2014). Each of the Y output units is treated independently with its own binary cross-
entropy computation. This allows us to use Y/ — 1 output units as negative targets in
training.

e Supervised Contrastive Learning(SCL)(Khosla et al., [2020): In a much recently pro-
posed approach, the authors make use of contrastive loss based supervised representation
learning. As the second step, a linear classifier is trained on top of learnt representations by
employing standard cross entropy loss. We train Resnet-18 using the official code{ﬂ

"https://github.com/HobbitLong/SupContrast
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(a) Original (c) B-ML (d) SCL

Figure 3: Grad-CAM visualisations on ‘bird’, ‘car’ and ‘truck’ categories of the STL-10 dataset.

Dataset CIFAR-10 STL-10 BMW-10 CUB-20 Pets

B-T 99.82% 2267%  11.96% 25.76%  34.83%
B-ML 85.72% 47.42%  29.83% 44.08% 51.29%
SCL 24.24% 13.25% 4.29% 3.35% 4.19%

INN(N=9) 98.86% 35.06%  34.03% 4221%  57.37%

Table 1: Average proportion of pixels considered salient for the training set. The regions considered salient
are obtained after applying binarization to Grad-CAM heat maps.

o INN: We describe the implementation details of the different components of an INN below.
— Image Encoder: We use a Resnet-18 without the fully connected final layer.
- Label Encoder: We use a 2-layered MLP with no activation(see appendix [C.I|for an
ablation with activations). The number of units per layer are d/2 and d
— Predictor: z and ¢ are combined to form h using element-wise product. h is then
connected to the output units which forms the fully-connected final layer for predic-
tion.

6 EXPERIMENT: WHAT DOES THE NETWORK SEE?

Grad-CAM(Selvaraju et all, 2017) is an approach for interpreting the predictions of a network by
qualitatively assessing the identified salient regions in the input image. It utilises the gradient of
classification output w.r.t. feature map to generate coarse heatmaps, highlighting important spatial
locations in the input image. Recently, Adebayo et al.|(2018)) assessed different approaches for in-
terpreting a network’s prediction. As per their finding, Grad-CAMs generate meaningful heat maps
and passed their meticulously constructed sanity tests. Grad-CAM has been utilised by many ap-
proaches (Yun et all [2019; [Woo et al. 2018) to emphasize on attended regions by the network.
We use Grad-CAM for similar purpose and perform a qualitative and quantitative comparison w.r.t
baselines.

Quantitative analysis: Figure[3|shows the heatmaps produced for sample input images for the base-
line and INN models. We can notice the significant difference in the spatial spread of salient regions.
Comparing the baselines we observe the larger spread on heatmap for B-ML than B-T and SCL. The
heatmaps generated for SCL and B-T appear to be localized to highly distinguishable regions. On
the other hand, the visuals indicate INN to be looking at a wider region for making a label specific
prediction.

Qualitative analysis: To quantify the salient regions we scale the heatmaps between 0 and 1. We
consider pixels with values greater than ¢ = 0.5 as salient. We use the training set for this compari-
son. Since we are focused on assessing how the different attended regions vary across methods, the
utilization of training data does not restrict us from this goal and moreover, provides us with a larger
overlap of accurately predicted samples for computing the salient regions.

TableT] contain the proportion of an image on an average considered salient as per Grad-CAM. The
results are in-line to qualitative assessments we made. For majority of the datasets B-ML and INN
produce larger salient regions of the input image. We do not state that focusing on larger regions is

2Overall, INN introduces approximately d x d/2 additional parameters. For Resnet-18, d = 512
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Approach CIFAR-10 STL-10 BMW-10 CUB-20 Pets
B-T 95.10% 86.27% 24.67% 72.23%  70.8%
B-ML 94.66% 88.15% 41.33% 70.29%  66.66%
SCL(Khosla et al., [2020)  93.86% 86.48%  37.40% 68.76%  80.24%
INN(V =1) 94.67% 84.83% 36.61% 69.51%  74.24%
INN(NV = 3) 94.42% 85.02% 40.91% 72.03%  78.38%
INN(N =17) 94.91% 87.42% 42.12% 73.59%  78.57%
INN(NV =9) 94.80% 90.76%  44.49% 74.36%  80.64%

Table 2: Top-1 accuracy for image classification.

beneficial as compared to more focused distinguishable features. We only aim to support our hy-
pothesis behind the working of an INN. As per our assumption, we hypothesized that the production
of disjoint representations z and v allows for less discriminative features z. Here we interpreted
increase in spatial spread of saliency as producing less discriminative features thereby supporting
our hypothesis.

7 EXPERIMENT: IMAGE CLASSIFICATION

We evaluate the performance of INNs against small datasets(Y’ < 50). To train INNs, we use
K, = K, = 1 as the value of scaling constants in equation 4}

Results: The corresponding results reported in table [2] highlight the effectiveness of INNs. There
are four key observations to be made. Firstly, B-T and B-ML show peculiar trend across datasets.
In STL-10, B-ML outperforms B-T, we hypothesize that as the predictions are based on a larger
input image region which proves beneficial where categories are visually dissimilar. Consequently,
for fine-grained visual classification datasets, where the categories are highly similar, B-T performs
better.

Secondly, there is a significant difference in performance of the baselines and INN(N=9) for ma-
jority of the datasets. For CIFAR-10, the results are comparable. We believe that the small size of
the input image does not provide much room for improvement. To verify this, we conduct an ex-
periment in appendix [A.5] with images of STL-10 resized to 32 x 32. We observe a trend of limited
improvement for resized STL-10 as we did for CIFAR-10, which supports our theory.

Thirdly, as the value of IV increases the performance of INN increases. We believe this is a direct
consequence of providing more negative label examples for a given input image during training. By
providing many more samples, the network can learn better(more compatible) representations.
Lastly, INN out performs contrastive learning based approach, SCL. For CUB-20 and Pets, we ex-
pect further improvement in the performance of INN as the value for IV is smaller than the maximum
allowed for these datasets.

8 EXPERIMENT: IMPORTANCE OF 2 AND %

To understand the relevance of z and ), we train a linear classifier on top of z in the traditional
manner using multi-class cross entropy loss. We compare the accuracy of the model obtained with
that of INN. This will help us understand the nature of z as well as improvements made by ).
Implementation details: Using the train split of the data we gather z'"™ from fy;. Note, that the
input y chosen is irrelevant for producing z. Next, we train a multi-class logistic regression clas-
sifier using stochastic gradient descent on z/"%" ¢*r%m  Additional training details are shared in
appendix For inference, we pass the 2'%! to the learnt classifier and record the predicted class.
The INN models selected for extracting z corresponds to INN(N = 9) in table[2]

Results: Table [3| shows the performance of a classifier trained on top of z in comparison to
INN(N = 9). We observe that for image classification datasets of CIFAR-10 and STL-10, the
classification performance of the two approaches is highly comparable. However, we observe sig-
nificant differences for the fine-grained visual classification datasets. We believe that due to high
visual dissimilarity between categories in CIFAR-10 and STL-10, obtained z is sufficient to perform
the task of classification. However, in fine-grained datasets since the categories are quite visually
similar, ¢ plays an important role in further refining the representations. These observations are
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inline to our hypothesis behind the working of the model. To further highlight the nature of z and 1
we perform additional experiments in appendix

CIFAR-10 STL-10 BMW-10 CUB-20 Pets

z 94.42% 90.54%  35.43% 71.48%  78.42%
INN(NV =9) 94.29% 90.76%  44.49% 74.36%  80.64%

Table 3: Classification using z.

9 EXTENSION TO LARGER DATASETS

So far, we have observed that the approach of utilizing labels as an additional cue allows to perform
the task of multi-class classification. However, the datasets considered only included few unique
categories. In this section, we reflect upon the short comings of adopting our pursued approach and
subsequently the failures of INNs.

e For smaller datasets, larger the value of IV, higher is the classification accuracy. If we ex-
tend this logic to larger datasets such as ImageNet(Deng et al.,[2009), the best value of N
will be close to 1000. Using a traditional batch size(b) of 128 will push the effective batch
size to 128,000, larger than the largest considered for large mini-batch training. meth-
ods(Goyal et al.,|2017). To counter such large values of IV, one can significantly reduce b
which in turn will extend the training time from days to months. In order to draw relevant
conclusions in a reasonable time frame, we limit the discussions in this section to CUB-200
which contains 200 unique categories.

e Latent dimension plays an important in the predictive performance. We conducted exper-
iments on CUB-200 and CUB-20 by varying the latent dimension of the model between
64,128,512, 1024 and observe that impact is more for CUB-200 than CUB-20. The details
of the corresponding experiment are described in appendix [C.3]

e Large imbalance of positive and negative samples arising as a result of increasing N can
destablize an INN training. For similar reasons, we observe B-ML training to collapse
as well. We can balance the weights for positive and negative targets by adjusting their
contribution to the loss, however, we find that this approach impedes INN performance.
As an alternative, instead of training an INN from scratch on larger values of N, one can
initialize the weights from an INN trained on a smaller value N’, where N’ < N. By doing
this, we find that not only INN(/V) surpasses the accuracy of INN(N’) but also performs
comparable to the baseline. The corresponding experimentation details and results are
provided in appendix [C.4]

10 DISCUSSION & CONCLUSION

As opposed to the traditional approach, we explored the applicability of a target driven method.
Specifically, we modelled the question ‘Does the given image belong to category 3’. We showed that
it is possible to tackle the multi-class classification problem from a non-traditional perspective. Our
aim was not to show that the pursued approach is better, rather, we aimed to explore and highlight
the pros and cons of this unexplored paradigm. Our approach adapts classical one-vs-rest approach
in a modern deep learning setting.

To achieve this goal, we introduced INNs which rely on a pair of input image and target label
to produce a response. By inferring exhaustively with all the target categories we arrive at the
final decision. Our study involving class activation maps revealed that INNs utilize much larger
regions of the input image to generate features. We hypothesize the imposed independence on image
embeddings and labels allow the image encoder to tend to larger regions than highly discriminative
features from traditional approaches. We also explored the scenarios where learned image features
are adequate to learn a traditional classifier on top. This observation was made for cases where
the categories are visually dissimilar. Label embeddings refine the coarse image representations
immensely for fine-grained tasks. By pitting INNs against strong baselines we were able to highlight
the strength of our adopted approach in comparision. The INNs outperformed the baselines on all
the datasets(Y’ < 50) considered for image classification and fine-grained image classification.
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Additional experiments on Out-of-distribution(OOD, appendix [C) and label embedding(appendix
analysis helps to broaden our understanding following a one-vs-rest setting. OOD analysis shows
that INN performs comparable to contrastive learning based SCL. An indicative qualitative result on
learnt label embeddings show that similar categories often have nearby label embeddings.

On the down side, we witnessed the difficulties of extending the method to larger datasets. We
consider dependency on latent dimension and N the main reasons for this limitation. To make
the approach scalable, we believe, constructing a smarter negative sampling approach will be the
direction moving forward.

We see numerous avenues for future research. Our proposed direction of training a neural network
is comparable to classical one-vs-rest approaches(Sanchez et al.,|2013). Due to the sudden outburst
and adoption of deep learning approaches, the classical one-vs-rest direction has suddenly phased
out. And, to cover and compare all the aspects of a traditionally trained neural network which
evolved over the past years in a single work is not feasible. As a result, there are multitude of
directions of adopting a one-vs-rest approach as devised in this work. Some directions include
but are not limited to object detection(Ren et al., |2015), image segmentation (Chen et al., 2018)),
anomaly detection(Chandola et al.| [2009). Our main focus will be to extend our experimentation
theme(and not just the INN) to these problems and analyse its subsequent impact. We will publicly
share the source code supplied in supplementary to facilitate brisk research.
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A APPENDIX

A.1 NOTATIONS

Notation Description

X Images of a dataset
Y Ground-truth label corresponding to X
z,y An image and its corresponding label

Y’ Unique class categories in the dataset

U An input class label.

fo Proposed INN architecture

fo1 Image encoder component of an INN

fo2 Label encoder component of an INN

fos3 Predictor component of an INN

N Number of incorrect (z, §) used per batch per correct pair (z, y) in training.
b Batch size consisting of correct x, y pairing
z Output of fy1

W Output of fyo

h Joint image-label representation, v o z

Table 4: Notations

A.2 DATASET STATISTICS

Dataset Y’  #Training #Test Image Size

CIFAR-10(Krizhevsky} 2009) 10 50,000 10,000 32%x32
STL-10(Coates et al., 2011} 10 5,000 8,000 96x96

BMW-10(Krause et al.,[2013) 10 258 254 224 %224
CUB-Z(H 20 515 600 224 %224
Pets(Parkhi et al.| [2012) 37 3,680 3,669 224 %224

CUB-200(Wah et al., [2011) 200 5,994 5,794 224 x224

Table 5: Datasets

A.3 GRAD-CAM VISUALIZATIONS

We provide more visualisations to compare the recognised salient regions across baselines in figure

A.4 EXPERIMENT: VGG IMAGE ENCODER

In this section we replace the image encoder of the INN with a VGG-11(with batch normalisation)
model. For an INN, we use the features from the last convolutional block after an adaptive average
pooling.

Results: Table [6] shows that VGG based INN outperforms the baselines by a large margin. For
CIFAR-10, we suspect that similar to the Resnet based INN the small size of the input image restricts
the added advantage of using target driven approach.

A.5 EXPERIMENT: RESCALED STL-10

For this experiment, we downscale the STL-10 images to 32 x 32 to bring it down to the same size as
that of CIFAR-10. For training, we use identical hyper-parameters as we did for training the model
on unaltered STL-10 dataset.

3Created using 20 categories of CUB-200
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(a) Original (b) B-T (c) B-ML (d) SCL (e) INN

Figure 4: Grad-CAM visualisations on the training images for the STL-10 dataset. Red region indicates the
areas contributing highest towards the prediction of the model.
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Approach CIFAR-10 STL-10 BMW-10 CUB-20 Pets

B-T 91.88% 84.47% 26.3% 68.1%  77.67%
B-ML 92.12% 84.35% 39.7% 68.54%  76.15%

INN(N=9) 92.23% 8557% 48.03%  74.56% 81.62%

Table 6: VGG-11 Top-1 accuracy

Results: We notice in table[7] that the INN performance is quite similar to that of the baseline when
the image size is small. Similar trend was observed in case of CIFAR-10 as well. We believe that
INNs and the baseline both utilize equal portion of the input image to generate representations,
which leads to similar performance in accuracy.

32x32  96x96
B-T 78.52% 86.27%
INN(N =9) 79.65% 90.76%

Table 7: STL-10 accuracy for different image sizes

B EXPERIMENT: LABEL EMBEDDINGS, %)

We have witnessed that INNs rely on ¢ and z to make a correct prediction. Also, depending on the
content of the dataset, ¢ can play a vital role in further improving the performance. In this experi-
mental set up, we aim to explore more about 1. Specifically, how different encoded labels relate to
each other. We believe that the visual content of images drives the learning of label embeddings, i.e.
similar visual categories have nearby label representations. Though the results presented here are
qualitative in nature, we believe they provide adequate evidence to back our claim.
Implementation details: We select INN(N = 9) for CIFAR-10 in this study. We generate
WY = {fp2(§) | V§ € Y’}. Next, we compute L2 distance between every pair of entry in 1"
as a measure of similarity. In table |8| we have reported the nearest matching labels(smallest dis-
tance) for all the categories in the dataset.

Results: Though not perfect, for many source categories, the nearest matching categories tend to
be visually similar. For example, the categories truck-car and bird-airplane. However, we also see
some non-apparent pairings such as deer-car and frog-car.

Source  Airplane  Bird Car Cat Deer Dog Frog Horse Ship Truck
Match  Ship Airplane  Ship Dog Car Horse Car Dog Car  Car

Table 8: Nearest label match for 1)

C EXPERIMENT: OUT-OF-DISTRIBUTION DETECTION

In this section, we experiment the robustness of the learnt classifiers for detecting out-of-
distribution(OOD) images. The standard approach is to utilise the predicted confidence in distin-
guishing in- and out-of-distribution data(Hendrycks & Gimpel, 2017). Following this framework,
we report the AU-ROC for models trained on the chosen datasets while tested on out-of-distribution
datasets of LSUN(Yu et al.l 2015)), Tiny ImageNet(Le & Yang| 2015)), Fashion-MNIST(Xiao et al.,
2017). The out-distribution datasets are standardised using mean and standard deviation of the in-
distribution datasets. The INN models chosen correspond to INN(XN = 9) in table[2]

Results: The results reported in table [9]show that SCL and INN outperform the traditional baselines
by a large margin for majority of the datasets. The comparatively lower performance of INN for
CUB-20 and Pets can be attributed to its limited training. To recall, the corresponding INNs were
trained with NV = 9, and we expect OOD performance to improve as the values of N used in training
is increased.
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In CIFAR-10 STL-10
Out LSUN TIN F-MNIST LSUN TIN F-MNIST
B-T 90.3 86.92 92.2 85.5 79.4 88.75
B-ML  89.14 85.34 92.31 87.5 85.5 89.22
SCL 93.05 89.9 94.2 75.2 84.72 88.8
INN 87.5 84.6 92.09 90.7 86.6 89.79
In BMW-10 CUB-20 Pets
Out LSUN TIN F-MNIST LSUN TIN F-MNIST LSUN TIN F-MNIST
B-T 38.1 35.8 36.9 7252 70.14 37.7 83.72 74.83 91.04
B-ML 525 45.5 35.31 7394 723 59.4 84.0  62.17 90.84
SCL 51.01 524 51.82 62.01 79.34 62.01 96.9 94 99.07
INN 55.07 55.94 60.1 76.51 74.64 54.16 92.46 91.76 93.98

Table 9: AUROC(in %) for out-of-distribution evaluation. Higher is better.
RELU Leaky-RELU  Sigmoid Tanh
90.81% 90.53% 86.5%  90.02 %

None
90.76%

Table 10: Top-1 accuracy for STL-10 under varying activations

C.1 EXPERIMENT: DIFFERENT ACTIVATIONS FOR LABEL ENCODER

In the main paper, the label encoder branch consisted of a 2 layered MLP with no activation. In this
experiment, we apply the following 4 activations to the label encoder units and train INN(V = 9,
b = 32) on the STL-10 dataset.

1. RELU(Glorot et al., 2011}

2. Leaky-RELU(Maas et al.,[2013))
3. Sigmoid

4. Tanh

Results: The results indicate maginally better accuracy for RELU and Leaky-RELU. Tanh and no
activation based models closely follow the accuracy. For sigmoid, the performance is low. Our
hypothesis is that, due to the limited scaling nature of the logistic function, the features of z are
under refined. However, more extensive research is required to arrive at a stronger conclusion. We
hope that our experiment provides an apt working ground for future research in this direction.

To qualitatively assess the contributing regions of the image across activations, we provide Grad-
CAM visualisations in figure E} RELU, Leaky-RELU, Tanh, and No-activation are able to rely on
relevant regions of the input image while making the prediction. In case of Sigmoid, we notice
disorganised regions of attention.

C.2 EXPERIMENT: COMPATIBILITY OF ¥ & 2

To further highlight the fact that INNs do learn compatible representations and rely both on ¢ & z
to make an accurate prediction, we utilise the following 4 variations of ¢ for evaluating test accuracy
on STL-10:

1. y = y: We provide the correct class label as input.

2. §:g €Y’ —{y}: We provide a random incorrect class label as input.
3.y = 1Y": All the values are set to 1 in the input label vector.

4. y = 0Y": All the values are set to 0 in the input label vector.

For evaluation, we record the argmax for each individual query between a yes-no response. If the
representations are compatible we shall see a higher number of yes responses for case 1 than all the
other variations.
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RELU L-RELU Sigmoid Tanh None

Figure 5: Grad-CAM visualisation for different activations used in the label encoder.

Y Y,—y ld Od
85.2% 0.004% 0.0% 0.0%

Table 11: Test accuracy for different input g

Results: Table[TT]shows that label encoding ¢ play a vital role in classification of the input images.
Only when the image is paired with its corresponding ground-truth ¢, INN makes the prediction of
yes majority of the time. For y corresponding to an incorrect class, the number of samples predicted
as yes is quite insignificant. For the other two cases, INN never makes a yes prediction. This shows
that INNs do rely on a compatible z and v to generate a correct class prediction.

Visualisation: To further highlight the compatibility of ¢ and z we generate a UMAP
plot. UMAP is a non-linear dimension reduction technique which has been utilised in
visualising high dimensional data. Figure [6] corresponds to the joint representations generated for
training images(drawn as blobs) and a single test image of the STL-10 dataset(shown as star). For
generating joint representations corresponding to the training set, h*"*", ground-truth y*"*" are
utilised. Whereas, for generating test h'°*!, we provide 7 € Y. Consequently, 10 points are gener-
ated for a single test image. The ground-truth label of the test image corresponds to airplane(integer
label of 0).

The figure shows that only when the input label is a one-hot encoded vector corresponding to the
ground-truth label airplane, h for the test image overlaps with the training cluster(red dashed box).
For other input labels, the test sample is further away from its corresponding ¢ cluster.

C.3 EXPERIMENT: VARYING HIDDEN DIMENSION, d

In this experiment we aim to determine the impact of latent dimension on the training of an INN.
We conduct this experiment on CUB-200 and CUB-20 datasets with N = 1. The latent dimension
is selected from the values {64, 128,512,1024} for a Resnet-18 based INN.

Results: The results in figure [7] indicate the relevance of the dimensions of latent representations.
The impact of the latent dimension is more for CUB-200 than CUB-20. For CUB-200 the accuracy
increases with increase in dimensionality whereas, for CUB-20, the performance saturates roughly
around d/Y" = 10 and decreases later on.
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The results indicate that for training larger datasets we are required to employ networks with com-
paratively larger latent dimensions.

C.4 EXPERIMENT: CLASSIFICATION WITH CUB-200

In order to apply INN to CUB-200 we replace the Resnet-18 image encoder with Resnet-50. The
latent dimension is 2048 for Resnet-50. The baseline for this study is B-T. For B-ML, we found
that the network doesn’t train and obtains an accuracy of 0.5%, which is of a random chance. Even
though, INN trains for small values of NV, it fails to match its performance on larger values. In
order to enable training for an INN when N is large, we initialise the weights from INN(/N'), where
N’ < N. For example, we first train the model with N’ = 9 from scratch and for the subsequent
fine-tuning we select the value N = 15. If we wish to train on a larger value of IV such as 24,
we initialize the weights from previously obtained INN(/N = 15). In this study, we select N &€
15,24,31,41,51 and N’ = 9.

Results: Figure[8|shows the increase in accuracy for an INN with increasing N by applying iterative
fine-tuning. The small increment in accuracy at each step is due to proportionally smaller increment
of N. N = 41 is roughly 20% of the categories of CUB-200. We expect the INN to match and even
surpass with higher values of N. However, we did observe the large jump in training time due to
lowering of b to accommodate for increasing /N. The per epoch time increases from 32 seconds for
INN(NN = 9) to 300 seconds for INN(N = 41).

D TRAINING DETAILS

We firstly cover B-T, B-ML and INN training hyper-parameters. Then we move on to the SCL
training hyper-parameters. Baselines(B-T, B-ML) are referred to as N=0 in this section. Deep
learning framework used is Pytorch(Paszke et al., 2017) version 1.2.

D.1 CIFAR-10

e Training pre-processing: Random(cropping(32x 32, padding=4), rotation(%15), horizontal
flipping), normalisation(train mean, std. dev).

Test pre-processing: Normalisation(train mean and std. dev).

Epochs: 350

Start learning rate: 0.1

Learning rate drop factor: 0.2

Learning rate drop epochs: 75, 150, 225, 275

Batch sizes: (N=0, b=256), (N=1, b=128), (N={3, 7, 9}, b=64)

D.2 STL-10

e Training pre-processing: Random(cropping(96x96, padding=4), rotation(+£15), horizontal
flipping), normalisation(train mean, std. dev).

e Test pre-processing: Normalisation(train mean and std. dev).

e Epochs: 350
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D.3

D.4

D.5

D.6

Start learning rate: 0.1

Learning rate drop factor: 0.2

Learning rate drop epochs: 150, 200, 250, 300

Batch sizes: (N=0, b=128), (N=1, b=128), (N=3, b=64), (N={7,9}, b=32)

BMW-10

Training pre-processing: Resized(300x300), Random(cropping(224x224), horizontal
flipping), normalisation(train mean and std_dev).

Test pre-processing: Center Cropping(cropping(224 x224), Normalisation(train mean and
std_dev).

Epochs: 350

Start learning rate: 0.1

Learning rate drop factor: 0.2

Learning rate drop epochs: 150, 225, 300

Batch sizes: (N={0, 1, 3, 7}, b=32), (N=9, b=16)

CUB-20

Categories: Black_footed_Albatross, Laysan_Albatross, Sooty_Albatross,
Groove_billed_Ani, Crested_Auklet, Least_Auklet, Parakeet_Auklet, Rhinoceros_Auklet,
Brewer_Blackbird, Red_winged_Blackbird, Rusty_Blackbird, Yellow_headed_Blackbird,
Bobolink, Indigo_Bunting, Lazuli_Bunting, Painted_Bunting, Cardinal, Spotted_Catbird,
Gray_Catbird, Yellow_breasted_Chat

These are the first 20 categories as they appeared in torchvision’s(Marcel & Rodriguez,
2010) implementation of CUB-200.

Training pre-processing: Resized(300x300), Random(cropping(224x224), horizontal
flipping), normalisation(train mean and std_dev).

Test pre-processing: Center Cropping(cropping(224 x224), Normalisation(train mean and
std_dev).

Epochs: 350

Start learning rate: 0.1

Learning rate drop factor: 0.2

Learning rate drop epochs: 150, 250, 300

Batch sizes: (N={0, 1, 3, 7, 9}, b=32)

PETS

Training pre-processing: Resized(300x300), Random(cropping(224x224), horizontal
flipping), normalisation(train mean and std_dev).

Test pre-processing: Center Cropping(cropping(224 x224), Normalisation(train mean and
std_dev).

Epochs: 350

Start learning rate: 0.1

Learning rate drop factor: 0.2

Learning rate drop epochs: 150, 225, 300

Batch sizes: (N=0, b=128), (N=1, b=128), (N={3, 7}, b=64), (N=9, b=32)

CUB-200

Training pre-processing: Resized(300x300), Random(cropping(224x224), horizontal
flipping), normalisation(train mean and std_dev).

Test pre-processing: Center Cropping(cropping(224 x224), Normalisation(train mean and
std_dev).

N=0, Epochs=350, Start learning rate = 0.1, Drop factor = 0.2, Drop epochs=[125, 200,
250, 300], batch size=128

N=9, Epochs=500, Start learning rate = 0.1, Drop factor = 0.2, Drop epochs=[100, 200,
300, 400, 450], batch size=64

N=[15, 24, 31], Epochs=300, Start learning rate = 0.005, Drop factor = 0.2, Drop
epochs=[100, 200, 250], batch size=[32, 20, 16]
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e N=41, Epochs=300, Start learning rate = 0.0025, Drop factor = 0.2, Drop epochs=[100,
200, 250], batch size=12

e N=51, Epochs=300, Start learning rate = 0.001, Drop factor = 0.2, Drop epochs=[100, 200,
250], batch size=10

D.7 SCL TRAINING

Image pre-processing steps are identical to those mentioned in the corresponding previous subsec-
tions.
Common parameters: Temperature=0.1, decay(0.0001), cosine(True), and epochs=500.

e CIFAR-10
— Learning rate: 0.05
— Batch size: 256
STL-10
— Learning rate: 0.5
— Batch size: 256
e BMW-10
— Learning rate: 0.1
— Batch size: 128
CUB-20
— Learning rate: 0.5
— Batch size: 128
e Pets
— Learning rate: 0.1
— Batch size: 128

D.8 LINEAR CLASSIFICATION USING z

We have used the SGDClassifier provided by sklearn(Pedregosa et al., [2011) library. Apart from the
loss(loss=‘log’) and tol(tol=1e-5) we use the default values to train the model.
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