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Abstract
Researchers often rely on humans to code (la-001
bel, annotate, etc.) large sets of texts. This is002
a highly variable task and requires a great deal003
of time and resources. Efforts to automate this004
process have achieved human-level accuracies005
in some cases, but often rely on thousands of006
hand-labeled training examples, which makes007
them inapplicable to small-scale research stud-008
ies and still costly for large ones. At the same009
time, it is well known that language models010
can classify text; in this work, we use GPT-3011
as a synthetic coder, and compare it to human012
coders using classic methodologies and met-013
rics, such as intercoder reliability. We find that014
GPT-3 can match the performance of typical015
human coders and frequently outperforms them016
in terms of intercoder agreement across a va-017
riety of social science tasks, suggesting that018
language models could serve as useful coders.019

1 Introduction020

The analysis of textual data–from sources such021

as open responses to surveys, social media posts,022

newspaper articles, legislative transcripts, etc.–023

has become increasingly important for researchers024

across a variety of disciplines. In the social sci-025

ences, for example, analysis of free-form text is026

used to gather information not easily obtained from027

closed-ended survey analysis or observation. Tradi-028

tionally, researchers interested in quantitative con-029

tent analysis of text have hired and trained (mostly)030

undergraduate students to code the material by031

assigning numbers, labels, and/or categories to032

text segments of interest. However, such human033

coding is slow, expensive, and often unreliable,034

even with popular new platforms like Mechanical035

Turk. Given variability in experience and percep-036

tion among coders, researchers hire multiple peo-037

ple to evaluate the same texts, and then calculate038

intercoder agreement as a measure of confidence039

that they have collectively identified that which the040

researchers hope to glean.041

While such an approach works somewhat well 042

for small amounts of text, it is infeasible as a means 043

to analyze the scale of text available in an increas- 044

ingly digital, information-rich world. To address 045

this problem, researchers have developed a number 046

of supervised machine learning (SML) models to 047

code text in the place of humans. While many of 048

these models perform well, they (like the use of hu- 049

man coders) require extensive time and expense as 050

researchers label thousands of examples as training 051

data, tune hyperparameters, etc. 052

It is well-known that language models (LMs), 053

such as GPT (Radford et al., 2019; Brown et al., 054

2020) and BERT (Devlin et al., 2019), can analyze 055

text and classify it. A LM coder might bridge the 056

gap between these approaches and give the best 057

of both worlds; but how closely does their per- 058

formance match that of human coders on a task 059

like coding social science datasets, where objective 060

ground truth might not exist? We do not suggest 061

that LMs can supplant the human researcher’s cru- 062

cial role in qualitative analysis or the nuanced and 063

iterative process of codebook development. Rather, 064

in this paper we ask: given a defined set of cod- 065

ing categories, can LMs be used as serious tools 066

for social scientists wishing to apply labels to text 067

data? Furthermore, can we analyze their output 068

with tools and metrics common to the social sci- 069

ences, and will the results be similar? 070

We show that one such LM, GPT-3 (Brown et al., 071

2020), is able to perform coding tasks at or exceed- 072

ing the level of lightly-trained human coders with 073

only 0-3 exemplars (examples of text labeled with 074

a code), upholding the broader trend of effective 075

transfer in NLP. This proficiency holds across a va- 076

riety of tasks (sentiment, attributes of text, or clas- 077

sification), difficulties (number of possible codes, 078

objective versus subjective, etc.), and co-domains 079

(ordinal versus nominal codes), suggesting that this 080

same model and general method could successfully 081

be used for many other such coding tasks. 082
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Our main contributions are (1) demonstrating083

that large, pre-trained language models can be used084

as reliably as human coders on arbitrarily-sized085

datasets across diverse domains; (2) introducing086

and exploring social science metrics in the context087

of language models; and (3) proposing new social088

science coding tasks as benchmark problems to089

assess language model quality.090

2 Related Work091

Because human coding is time-consuming, costly,092

and subject to imprecision and variability (Soroka,093

2014), many scholars seek automated alternatives.094

Dictionary-based methods (Roberts and Utych,095

2020; Young and Soroka, 2012) work best in cases096

where clearly defined sets of words indicate the097

presence of particular content in the text, but these098

struggle with nuance and generalization (Barberá099

et al., 2021; Grimmer and Stewart, 2013), despite100

the expense of their development and validaton101

(Muddiman and Stroud, 2017).102

Thus, researchers have increasingly turned to su-103

pervised machine learning (SML) methods, such as104

naive bayes, random forests, and SVMs (Grimmer105

and Stewart, 2013; Barberá et al., 2021). Some106

use active learning (Hillard et al., 2008; Colling-107

wood and Wilkerson, 2012; Miller et al., 2020),108

or dictionary-SML ensemble approaches (Dun109

et al., 2021). Unfortunately, all of these require110

a large dataset for training, which is typically hand-111

generated by human coders, meaning that SML112

methods do not fully negate the time and expense113

of human coders. For instance, one study finds that114

100 labeled examples results in a 10 percentage-115

point drop in accuracy compared to 1000 labeled116

examples (Collingwood and Wilkerson, 2012).117

In contrast, we leverage the few-shot capabili-118

ties of LMs to almost entirely eliminate the need119

for hand-coded training data. Some researchers120

have used pre-trained LMs such as BERT (Devlin121

et al., 2019), BART (Lewis et al., 2020), RoBERTa122

(Liu et al., 2019b), XLNet (Yang et al., 2019), and123

ELMo (Peters et al., 2018) in automated content124

analysis. However, this is the first in-depth compar-125

ison between human coders and a LM coder in a126

few-shot learning regime.127

It is easy to compare our approach to SML in128

terms of cost, since the model we study requires no129

additional training or labeled data; it is less straight-130

forward to compare performance. It is common in131

SML classification studies to set rejection thresh-132

olds and ignore instances in which a code cannot 133

be confidently assigned (Sebők and Kacsuk, 2021; 134

Karan et al., 2016). In what follows, we report 135

scores for the entire dataset, meaning they cannot 136

be directly compared to this past work. 137

One critique against work claiming to do few- 138

shot learning is that researchers iterate through 139

many prompts over large validation sets to achieve 140

their results (Perez et al., 2021), essentially over- 141

fitting to the dataset and using an entire dataset 142

of exemplars. We avoid this problem by us- 143

ing a very small validation set to test prompts 144

(n=4 per category) and by being transparent about 145

the small amount of experimentation and prompt- 146

engineering done to achieve our results (Section 147

4.3). We find only minimal (∼5% accuracy boost) 148

gains from prompt engineering. 149

3 Methodology 150

We frame the task of data annotation as that of rea- 151

sonably applying a defined set of codes to passages 152

of text. This is in contrast to both tasks with ob- 153

jective ground truth labels and the more involved 154

and iterative process of discovering novel codes. 155

Through various popular data sources and metrics, 156

we show that LMs perform these coding tasks just 157

as well as humans, and they do so without labeled 158

data. Specifically, we study GPT-3, one of the 159

largest available language models (175 billion pa- 160

rameters). This model–along with others compara- 161

ble in size and training–often generates text that, at 162

least locally, is indistinguishable from that written 163

by a human, seeming to capture a great deal of the 164

ideas, biases, concepts, and relationships present in 165

human-generated text and language, including both 166

(1) helpful linguistic and factual knowledge (Liu 167

et al., 2019a; Amrami and Goldberg, 2018; Jiang 168

et al., 2020; Rogers et al., 2020; Petroni et al., 2020; 169

Bosselut et al.; Bouraoui et al.) and (2) pathologi- 170

cal biases (Bender et al., 2021; Kurita et al., 2019; 171

Basta et al., 2019; Zhang et al., 2020; Zhao et al., 172

2019; Sheng et al., 2019). We leverage these abil- 173

ities by prompting a language model to simulate 174

a similarly-biased human performing coding tasks 175

and analyze the resulting predictive distributions 176

for tokens representing codes. 177

We construct our prompts using a straightfor- 178

ward formula: we provide instructions, categories 179

(if necessary), exemplars (labeled examples of the 180

task), and then the text to classify. We then com- 181

pute GPT-3’s probabilities for the next token over 182
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Using only the following categories
"""
Macroeconomics
Civil Rights, Minority Issues, and Civil Liberties
Health
...
Death Notices
Churches and Religion
Other, Miscellaneous, and Human Interest
"""
Assign the following headlines to one of the categories:
IRAN TURNS DOWN AMERICAN OFFER OF RELIEF MISSION ->
International Affairs and Foreign Aid
In Final Twist, Ill Pavarotti Falls Silent for Met Finale -> Arts and Enter-
tainment
Baseball; Incredibly, Yankees Rally in 9th Again and Win in 12 -> Sports
and Recreation
House Panel Votes Tax Cuts, But Fight Has Barely Begun ->

(a) CAP Example Prompt - New York Times, 3-exemplars

Are the following descriptions of Republicans extreme or moderate?
-angry, racist, close-minded, homophobic: Extreme
-people, hopeful, educated, agreeable: Moderate
-conservative, white, male, religious:

(b) Pig. Partisans Example Prompt - Positivity, 2-
exemplars

Do the following descriptions of Democrats mention personality or charac-
ter traits?
-accepting, tolerant, intellectual, charitable: Yes, the descriptions mention
personality or character traits.
-black, young, female, poor: No, the descriptions do not mention personal-
ity or character traits.
-conservative, white, male, religious:

(c) Pig. Partisans Example Prompt - Traits, 2-exemplars

Figure 1: Example Prompts

its vocabulary and select the token with the high-183

est probability as the model’s coding choice. For184

color-coded examples of prompts, see Figure 1.185

These coding tasks are subjective, noisy, and186

varying in difficulty, and so, as with many datasets187

researchers want to code, there is no “ground truth”188

by which to measure an automated coder’s perfor-189

mance. Therefore, we evaluate GPT-3’s coding190

performance using metrics that differ substantially191

from those used in traditional NLP work, but which192

are common analytic tools in the social sciences:193

we calculate various intercoder agreement mea-194

sures between GPT-3’s codes and the codes gener-195

ated by humans we hired to code the same texts.196

3.1 Metrics197

We now discuss the three central metrics in our198

analysis, and outline when each is appropriate.199

3.1.1 Intraclass correlation (ICC)200

Intraclass correlation is perhaps the most201

commonly-used metric among social scientists202

to measure inter-coder agreement among human203

coders using numerically ordered, (quasi-)204

continuous values in their coding (e.g., rating a205

text by some characteristic on a 1-5 scale). In206

the “PP” coding task that follows, we estimate207

ICC1k (Shrout and Fleiss, 1979) for our human208

coders and GPT-3. ICC scores are between -1209

and 1 and are typically interpreted as follows:210

< 0.5 = poor inter-coder agreement, 0.5 − .75 =211

moderate agreement, 0.75− 0.9 = good, and > 0.9212

= excellent (Cicchetti, 1994; Koo and Li, 2016).213

3.1.2 Joint probability of agreement214

For tasks with un-ordered, categorical codes (as215

in the Congressional and New York Times tasks216

presented below), ICC is not the appropriate metric.217

Instead, we use two different measures. The first,218

joint-probability of agreement, measures the prob- 219

ability of any two coders agreeing. In the 2-coder 220

case, where one of the coders is ground truth, this 221

reduces to raw accuracy. Joint probability agree- 222

ment ranges from 0 to 1. Between two coders, it 223

is calculated as follows: 1
N

∑N
i=1 1(y1,i = y2,i), 224

where N is the number of instances being coded, 225

and y1,i, y2,i are the first coder’s and the second 226

coder’s respective codings of instance i. In the case 227

of K coders, the joint probability agreement is the 228

mean of the pairwise agreements. 229

3.1.3 Fleiss’ kappa 230

Fleiss’ kappa measures the degree to which the 231

proportion of agreement among coders exceeds the 232

agreement of fully random coders (Fleiss, 1971; 233

Fleiss et al., 2003). Used specifically to quantify 234

intercoder agreement for categorical data, this mea- 235

sure ranges from −1 to 1. When κ = 0, it means 236

that the two raters agree at a rate not better than 237

chance. κ < 0 means increasing agreement worse 238

than chance, and κ > 0 means increasing agree- 239

ment greater than chance. 240

4 Experiments 241

In general, we show that GPT-3 can effectively 242

perform coding tasks of varying difficulty across 243

several domains, and with at most a few labeled 244

examples. This speaks to the flexibility of GPT-3 245

as a coder and its ease of use. We show this using 246

data from three datasets: Pigeonholing Partisans 247

(PP), New York Times Headlines (NYT), and Con- 248

gressional Hearings (Congress). 249

We chose these datasets to maximize differences 250

in coding tasks as a means of exploring GPT-3’s 251

limits. The dimensions they span include: 252

• Difficulty: We expect that some tasks will be 253

easy for the language model to master, e.g., 254
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rating positivity (Section 4.1) through senti-255

ment analysis (Radford et al., 2017), and that256

some will be harder, like subjective tasks (Sec-257

tion 4.1) or tasks with a large number of codes258

to choose from (Section 4.2.2).259

• Domains: Section 4.1 explores partisan po-260

larization through descriptions of members261

of both political parties in the U.S., whereas262

Section 4.2.2 defines a schema for categoriz-263

ing newspaper headlines and 4.2.1 does so for264

summaries of congressional hearings.265

• Category Type: Ordinal and binary codes are266

used throughout Section 4.1, while nominal267

and categorical codes are used in Sections268

4.2.1 and 4.2.2.269

GPT-3’s flexibility in adapting to the range along270

all of these dimensions is reason to believe that it271

can readily excel on many coding tasks.272

4.1 Pigeonholing Partisans (PP)273

We first consider the ability of GPT-3 to act as a274

coder with data on Americans’ stereotypes of Re-275

publicans and Democrats (Rothschild et al., 2019).276

These data, collected in 2016, asked individuals to277

list four words or phrases that came to their minds278

when thinking of typical supporters of the Demo-279

cratic and Republican Parties. This procedure is280

common in psychological studies of stereotypes281

(Devine, 1989; Eagly and Mladinic, 1989), and al-282

lows survey takers to describe partisans in their283

own words without being primed by researchers284

and closed-ended answer choices (Presser, 1989;285

Iyengar, 1996). This dataset is too small for other286

kinds of automated coding and an ideal way to con-287

sider how well GPT-3 can classify texts without288

extensive training sets.289

To evaluate how well GPT-3 can serve as a coder290

on these kinds of short, open-ended texts, we re-291

cruited 2873 human coders through the survey plat-292

form Lucid (Coppock and McClellan, 2019) to293

code a total of 7675 texts, each text being coded294

at least three times by a random set of coders, and295

gave them minimal instructions for coding the texts296

on a number of domains.297

Coders rated the texts along five dimensions:298

(1) positivity (general positive/negative valence),299

(2) extremity (extreme or moderate quality of the300

words), and whether the text mentioned (3) charac-301

ter or personality traits, (4) government or policy302

issues, or (5) social groups. Each of these domains303

Human

Human+GPT-3

Human (averaged)+GPT-3

Human+0 coder

Human+1 coder

Human+random coder

Human+random coder

(distrib
ution)

Positivity

Extremity

Groups

Traits

Issues

0.6 0.74 0.74 0.14 0.1 0.45 0.38

0.34 0.35 0.16 0.13 -0.08 0.23 0.22

0.16 0.23 0.24 -0.18 -0.14 0.11 0.11

0.17 0.06 -0.51 -0.51 0.02 0.02 -0.17

0.2 0.21 -0.01 -0.02 -0.26 0.12 0.09

ICC1k for Pigeonholing Partisans

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: PP ICC1k: Note that including GPT-3 in the
class of considered coders increases ICC1k in coding
for all attributes except “Traits”. The opposite happens
when including other, simulated coders.

is important to the theoretical ideas of the origi- 304

nal orientation of the data collection on partisan 305

stereotypes (Rothschild et al., 2019; Busby et al., 306

Forthcoming). While we do not broach this subject 307

in this work, each represents a distinct way of think- 308

ing about party attachments and membership that 309

have different political and social consequences. 310

Then we asked GPT-3 to complete a series of 311

coding tasks on all 7675 texts that are directly anal- 312

ogous those completed by humans. Next, we exam- 313

ined how closely GPT-3 follows individual human 314

coders and human coding in the aggregate, along 315

with how closely humans followed each other. To 316

calculate a correlation statistic, we rely on the prob- 317

abilities produced by GPT-3 for the attribute in 318

question (probability of extreme, traits, or positive, 319

for example) and the untransformed code from the 320

human respondents. We present these correlations 321

in Figure 3. They suggest that GPT-3 performs 322

above human level in every case but one. That is, 323

for positivity, extremity, groups, and issues, GPT-3 324

correlates more strongly with each of the human 325

coders than the human coders do with each other. 326

For traits, GPT-3 correlates with the human coders 327

about as well, or slightly lower, than the humans 328

correlate with each other. This is initial evidence 329

that GPT-3 is typically either more reliable or just 330

as reliable a coder as human coders, a remarkable 331

finding given that GPT-3 was provided no more 332

than 2 exemplars in its “training set”. 333

We also consider ICC scores (Fig. 2). As we em- 334

ploy different coders - that is, coders are randomly 335

assigned to texts and not all texts are scored by the 336

same three coders - we use ICC1k, which accounts 337
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Figure 3: Correlations for PP, calculated with Pearson’s R. Other measures of correlation yield similar results.
Notice how correlation is higher for GPT-3 and every human than between any two humans. There are only two
cells (Humans 1 & 2, 2 & 3 in Traits) strictly greater than any one of GPT-3’s correlations with humans.

for this structure.338

Our focus here is on the increase or decrease in339

ICC when GPT-3’s codes are added to the three340

human codes. If GPT-3 improves the reliability of341

the coding, ICC should improve. If it does not offer342

this benefit, the ICC score should stay the same or343

decrease. We also compare adding GPT-3’s scores344

to adding a variety of simulated scores to ensure345

that the addition of another coder by itself does346

not drive what we observe: (1) a coder who codes347

all texts as 0 (lacking the attribute), (2) a coder348

who codes all texts as 1 (containing the attribute),349

(3) a coder who codes randomly, and (4) a coder350

who codes all texts randomly, but with the same351

overall distribution as GPT-3’s predictions. We also352

consider the ICC values when comparing GPT-3’s353

codes to the average of the human coders (rather354

than individual coders separately).355

The statistics in Figure 2 suggest that adding356

GPT-3 as a coder improves the overall coding for357

2/5 measures (positivity, groups), improves relia-358

bility of the coding for 2/5, (extremity, issues), and359

reduces reliability in 1/5 (traits). Notably, this last360

area is where human coders correlated the least361

with each other (see Figure 3) and may represent a362

fundamentally challenging task.363

Another point to note is the stark difference be-364

tween adding GPT-3 and adding each of the simu-365

lated coders (2nd and 3rd columns vs. 4th+). We366

conclude that GPT-3’s outputs do contain real sig-367

nal and that the boost in ICC is not due to simply368

adding another coder. Furthermore, since adding369

GPT-3’s outputs to the human outputs generally370

either increases or maintains ICC across each at-371

tribute, we conclude that GPT-3 achieves human372

or better performance at this task. Importantly,373

achieving this level of performance required nei-374

ther coding a large-scale dataset (on the order of375

tens of thousands or more) nor a large, labeled set376

of training data for the language model. 377

4.2 Comparative Agendas Project (CAP) 378

CAP aims to provide a coherent framework for doc- 379

umenting media and government attention to vari- 380

ous policy issues in a comprehensive set of policy 381

domains, without reference to the support or op- 382

position stance or ideological framing of the issue 383

in the source material (Baumgartner et al., 2019). 384

CAP datasets aim to be comprehensive, transparent, 385

and replicable (Bevan, 2019), with many housed at 386

the CAP website (www.comparativeagendas.net). 387

More than 200 scholars have used CAP to test a 388

vast range of empirical political science theories 389

(Walgrave and Boydstun, 2019). 390

The CAP master codebook includes at least 21 391

major categories (with others added for some spe- 392

cific applications), and over 200 sub-categories. In 393

order to succeed at this task, GPT-3 must produce 394

a high probability for one of a large, unordered, 395

pre-specified set of tokens that corresponds to the 396

specific content of the input data. 397

Prior efforts to automate coding in the CAP 398

framework have met limited success (Karan et al., 399

2016; Hillard et al., 2008; Purpura and Hillard, 400

2006; Sevenans et al., 2014; Sebők and Kacsuk, 401

2021). Sebok and Kacsuk (Sebők and Kacsuk, 402

2021) are able to achieve an 80%+ F1 score on 403

average across categories, but this is reported after 404

culling over 40% of their dataset due to difficulty 405

of classification. We, on the other hand, provide 406

scores given full coverage of the dataset. Reported 407

performance in various approaches is substantially 408

lower than this (accuracies near or below 50%) for 409

dictionary methods, less efficient SMLs, corpora 410

with less training data, or in specific hard-to code 411

categories, which upper limit our average accuracy 412

exceeds. Again, the highest performing outcomes 413

are achieved by setting rejection thresholds (for 414
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Figure 4: Two measures of GPT-3’s agreement with
human coders compared with humans’ agreement with
human coders, across two datasets.

ambiguous texts or cases where humans or models415

disagree) and either sacrificing coverage or target-416

ing human coders to uncertain cases (Karan et al.,417

2016; Sebők and Kacsuk, 2021). We achieve our418

results with complete coverage, a single model,419

no human disambiguation of difficult cases, and420

minimal need for labeled training data.421

To account for class imbalances and differences422

in baseline probabilities of different tokens, we423

normalize the probability distributions in a manner424

similar to (Zhao et al., 2021). We estimate GPT-3’s425

bias towards a category as the total weight given to426

each category over a balanced validation set, divide427

each category probability by GPT-3’s bias towards428

it, and normalize to sum to 1. We found that this429

produced modest accuracy boosts of 4-5%. If a430

small validation set is available, we recommend431

this calibration technique; however, results were432

qualitatively the same without this calibration.433

4.2.1 CAP: Congressional Hearing434

Summaries (Congress)435

The Congressional Hearing corpus contains the436

Congressional Information Service summary of437

each U.S. Congressional hearing from 1946 to438

2010. These summaries were read by human439

coders and assigned to CAP classifications. GPT-3440

is given the full summary text, meaning the coding441

task is highly comparable between the humans and442

GPT-3. All results are reported for n = 326 texts,443

which constitutes 16 texts for each category minus444

10 for incompleteness in the human codes.445

Our comparison of GPT-3’s codes to the humans’446

is in Figure 4. Both our intercoder agreement met-447

rics tell the same story, and imply a finding that448

holds across metrics: GPT-3 correlates with each449

human just as well as or better than the humans cor- 450

relate with each other. Note that the highest joint 451

agreement (.63) and highest Fleiss’ kappa (.61) 452

both occur between GPT-3 and Human 2. 453

Despite there being no real ground truth for this 454

task, we visualize “accuracy” statistics based on 455

the original dataset’s single coder (Figure 5). The 456

lack of ground truth is validated by a great deal of 457

human disagreement, as the figure makes clear. We 458

see the accuracy for each coder, with categories 459

sorted in order of GPT-3’s accuracy. Interestingly 460

enough, GPT-3 seems to do better at categories that 461

humans do better at, and worse at the categories 462

that humans fail at. Overall, the accuracies were 463

60% for GPT-3, compared to 63%, 66%, and 55% 464

for the three human coders respectively. 465

The high joint agreement and Fleiss’ kappa be- 466

tween GPT-3 and the human coders, as well as the 467

similar accuracies across categories, demonstrate 468

GPT-3 performance on-par with humans and SML 469

methods on this dataset. 470

4.2.2 CAP: New York Times Front Page 471

Dataset (NYT) 472

The second CAP dataset we use is the New York 473

Times Front Page Dataset, generated and con- 474

tributed by Amber Boydstun (Boydstun, 2013). 475

The dataset includes 31034 front page New York 476

Times headlines from 1996 - 2006, along with the 477

policy category label assigned by trained human 478

coders. The categories are adapted for media use, 479

and so include 28 primary classification categories. 480

All results are reported for n = 560 texts, with 20 481

sampled from each of the 28 categories. 482

The original human coders were instructed to 483

read the headline and the first three paragraphs of 484

the article. In our work, GPT-3 is only provided 485

the headline, because the full article text is not 486

available in the public data. To control for this 487

difference in available information, we also had 488

three minimally trained human coders complete an 489

identical classification task to GPT-3. 490

Since the NYT data is in the same structure as 491

the Congress data, we apply the same analyses. For 492

both joint agreement and Fleiss’ kappa (Figure 4), 493

GPT-3 correlates with the humans in the range of 494

how they correlate with each other. We also notice 495

a strong trend between GPT-3’s accuracy and the 496

humans accuracy per category (Figure 6). Unlike 497

Congress, however, there are 3 categories for which 498

the humans all perform better than GPT-3: “Inter- 499

national Affairs and Foreign Aid,” “Government 500
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Figure 5: Congress Accuracy by Coder: Treating the original dataset’s code as “ground truth”, and sorting categories
in descending order based on GPT-3’s score, note how noisy the performance of the human coders is. There is only
1 category that all humans score strictly better on (International Affairs).

Operations,” and “Death Notices.” On the other501

hand, GPT-3 performs better than humans at some502

other categories: “Environment,” “Health,” and503

“Labor.” Despite this discrepancy, GPT-3’s total504

accuracy was 55%, compared to 57%, 59%, 51%,505

and 45% for the four humans respectively. Overall,506

these results demonstrate that GPT-3 on average507

achieves on-par performance with humans for the508

New York Times dataset (remembering that perfor-509

mance is systematically worse or better depending510

on category).511

4.3 Prompt Engineering512

Some elements of prompt engineering seem to mat-513

ter a great deal, and some seem to matter not at all,514

or at least not in any reliable way.515

As an example of the former, one has to be mind-516

ful of where the prompt ends and what next token517

is being modeled. Since generative language mod-518

els sample one token at a time, we need to be able519

to sample a unique first token (usually, a unique520

first word) for each category we attempt to model.521

For example, “very positive” and “very negative”522

both start with the token “very,” so it would be523

impossible for us to compare the two categories524

with a single token sample. Fortunately, all of our525

categories started with unique first tokens, but this526

may not be true for other tasks.527

Another choice impacting results was the presen-528

tation of categories in the question format of the PP529

data. Specifically, GPT-3 performed significantly530

worse when asked to respond to a question with531

the tokens “yes” or “no” than when the choice was532

between substantive alternatives, such as “extreme”533

vs “moderate” or “positive” vs. “negative”. For the534

other three attributes, we found that restating the 535

objective after the “yes” or “no” (e.g., “Yes, men- 536

tions personality or character traits”) substantially 537

helped. These were the only prompt variations 538

attempted for the PP dataset. 539

Other elements seemed to have minimal impact, 540

like the number and type of exemplars. While 541

we know that more labeled training data signifi- 542

cantly improves SML performance (Collingwood 543

and Wilkerson, 2012), it is unclear whether more 544

labeled exemplars to GPT-3 will achieve the same. 545

As shown in Figure 7, we find that one exemplar 546

performs much better than none, but there is little 547

gain in accuracy achieved by providing more than 548

2 or 3 exemplars. We also conducted extensive 549

experiments testing different classes of exemplars 550

(more or less difficult to classify, in the spirit of 551

active learning); this also seemed not to matter (See 552

Appendix B for details). 553

We also tried many variations on the prompt for- 554

mat, including: surrounding categories in quotes; 555

using slashes, pipes, and other delimiters to sepa- 556

rate exemplar headlines from their respective cat- 557

egories; providing lists of example headlines for 558

each category in parentheses right next to the cat- 559

egory; new lines in specific places making bound- 560

aries between exemplars clearer; and other general 561

rephrasing. None of these changes resulted in a 562

marginal accuracy less than 50% or greater than 563

57%. This demonstrates a relative stability of the in- 564

formation retrieval process, allaying some concerns 565

(though not all) that minor changes in wording or 566

punctuation will radically alter coding accuracy. 567

For all of our final prompts used, please refer to 568

Appendix A. 569
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shows no improvement past 2 or 3. This experiment
was done on the NYT dataset.

5 Ethics, Bias, and Future Work570

Our results suggest that GPT-3 can automate spe-571

cific coding tasks comparably to lightly-trained572

human coders. However, much work remains to573

bring this possibility to full fruition, including bet-574

ter calibration, fine-tuning, and bias-handling.575

Language models reflect and even amplify patho-576

logical human biases contained in their training577

data (Zhao et al., 2017), raising concerns about578

their use for annotation, as the LM biases may im-579

pact the results of studies to which they are applied.580

Much work has aimed to quantify and reduce this581

bias (Bordia and Bowman, 2019; Qian et al., 2019).582

Further work is needed along these lines, especially583

in contexts where bias propagation is a threat, be-584

fore these methods are deployed freely.585

However, while LMs exhibit bias, it is neverthe-586

less a known, invariant, and quantifiable property, 587

whereas individual humans’ biases are typically un- 588

knowable. We submit that the ability to recognize 589

and actively compensate for the annotator’s prob- 590

able biases is more important than the magnitude 591

of the biases themselves. Conversely, if a LM can 592

be conditioned or fine-tuned into holding specific 593

biases rather than others, then it could emulate spe- 594

cific heterogeneous populations for a richer, more 595

diverse, and representative coding than what we 596

present in this paper. 597

6 Conclusion 598

We have demonstrated that LMs can potentially be 599

used to code social science datasets and that they 600

can be analyzed with metrics common in the social 601

sciences. Fine-grained analysis shows that GPT-3 602

can match the performance of human coders on 603

average across small and large datasets; with both 604

ordinal and categorical codes; and on tasks of vary- 605

ing complexity. In some cases, it even outperforms 606

humans in increasing intercoder agreement scores, 607

often with no more than 3 exemplars. 608

We hope that these results initiate a two-way 609

dialogue: the social sciences are a rich source of 610

potential applications and benchmarks for LMs, but 611

as LMs play an increasing role throughout sciences– 612

with LMs and humans potentially working side-by- 613

side–it is possible that the field of NLP will need 614

to move beyond traditional notions of accuracy and 615

analyze LMs with methods such as those presented 616

here to ensure their reliability. Harnessing LMs 617

as synthetic coders will open up a new world of 618

possibilities, which is a worthy endeavor indeed. 619
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A Prompts For Each Task 848

A.1 Pigeonholing Partisans 849

• Positivity: 850

Are the following descriptions of 851

PARTY positive or negative? 852

853

-agreeable, reasonable, under- 854

standing, cooperative: Positive 855

-angry, bigoted, racist, homophobic: 856

Negative 857

• Groups: 858

Do the following descriptions of 859

PARTY mention social groups? 860

861

-Christian, privileged, young, 862

white: Yes, mentions social groups. 863

-apathetic, agreeable, pro- 864

environment, political: No, 865

doesn’t mention social groups. 866

• Traits: 867

Do the following descriptions of 868

PARTY mention personality or 869

character traits? 870

871

-accepting, tolerant, intellec- 872

tual, charitable: Yes, mentions 873

personality or character traits. 874

-black, young, female, poor: No, 875

doesn’t mention personality or 876

character traits. 877

• Extremity: 878

Are the following descriptions of 879

PARTY extreme or moderate? 880

881

-angry, racist, close-minded, 882

homophobic: Extreme 883

-people, hopeful, educated, agree- 884

able: Moderate 885

• Issues: 886

Do the following descriptions of 887

PARTY include government or 888

policy issues? 889

890

-aging, religious, accepting, 891

patriotic: No, doesn’t include 892

government or policy issues. 893
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-abortion, medical marijuana, gun894

control, anti-sexism: Yes, includes895

government or policy issues.896

A.2 CAP897

• Congressional Hearings:898

Using only the following categories899

"""900

Macroeconomics901

Civil Rights902

Health903

Agriculture904

Labor905

Education906

Environment907

Energy908

Immigration909

Transportation910

Law and Crime911

Social Welfare912

Housing913

Domestic Commerce914

Defense915

Technology916

Foreign Trade917

International Affairs918

Government Operations919

Public Lands920

Culture921

"""922

Assign the following congressional923

hearing summaries to one of the cat-924

egories:925

Extend defense production act pro-926

visions through1970. -> Defense927

FY90-91 authorization of rural928

housing programs. -> Housing929

Railroad deregulation. -> Trans-930

portation931

To consider Federal Reserve Board932

regulations and monetary policies933

after February 2016 report on mon-934

etary policy. ->’935

• New York Times Headlines936

Using only the following categories937

"""938

Macroeconomics939

Civil Rights, Minority Issues, and940

Civil Liberties941

Health942

Agriculture 943

Labor 944

Education 945

Environment 946

Energy 947

Immigration 948

Transportation 949

Law, Crime, and Family Issues 950

Social Welfare 951

Community Development and 952

Housing Issues 953

Banking, Finance, and Domestic 954

Commerce 955

Defense 956

Space, Science, Technology and 957

Communications 958

Foreign Trade 959

International Affairs and Foreign 960

Aid 961

Government Operations 962

Public Lands and Water Manage- 963

ment 964

State and Local Government 965

Administration 966

Weather and Natural Disasters 967

Fires 968

Arts and Entertainment 969

Sports and Recreation 970

Death Notices 971

Churches and Religion 972

Other, Miscellaneous, and Human 973

Interest 974

""" 975

Assign the following headlines to 976

one of the categories: 977

IRAN TURNS DOWN AMER- 978

ICAN OFFER OF RELIEF 979

MISSION -> International Affairs 980

and Foreign Aid 981

In Final Twist, Ill Pavarotti Falls 982

Silent for Met Finale -> Arts and 983

Entertainment 984

In Times Sq., a Dry Run for New 985

Yearś 2000 -> Arts and Entertain- 986

ment 987

House Panel Votes Tax Cuts, But 988

Fight Has Barely Begun ->’ 989
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We also explored whether some exemplars were 991

better or worse at “teaching” the categories to the 992

model. We considered that for a given category, 993
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Figure 8: Each class of exemplar considered does an
equal amount to help the model’s accuracy. This is sur-
prising, and suggests that the model might learn nothing
from the exemplars besides the format of the task.

an instance could be a better or worse exemplar.994

We might define this by a quantity we’ll call its995

margin: the difference between (1) the probabil-996

ity the model assigns to the correct category and997

(2) the highest probability of the probabilities for998

all the wrong categories. Thus, “prototypical" ex-999

emplars would have high positive margin (model1000

guesses right), “ambiguous" exemplars would have1001

margins with very low absolute values (model torn1002

between multiple categories), and “tricky" exem-1003

plars would have margins with very high negative1004

values (model guesses wrong). In theory, proto-1005

typical exemplars could teach the model about the1006

proper distribution of texts belonging to a category,1007

ambiguous exemplars could teach the model about1008

the boundaries between the distributions of each1009

category, and tricky exemplars could correct the1010

model’s prior on categories by flagging common1011

mistakes made in coding texts from that category’s1012

distribution.1013

To answer this question empirically, we first ran-1014

domly sample 90 candidate exemplars from each1015

category. We then code each with the model given1016

a set of 4 exemplars sampled randomly once and1017

then held constant specifically for this task. Then1018

we sort them by their margin and construct one set1019

of each: prototypical, ambiguous, and tricky exem-1020

plars. Finally, we perform 5 trials where we classify1021

4 instances from each category using an increasing1022

number of these sets of exemplars and measure per-1023

formance. The results, in Figure 8, demonstrate no1024

discernible signal as to which kind of exemplar is1025

best to present to the model in the context window.1026

This is one bit of evidence that this dimension, of1027

the prototypicality vs. ambiguity vs. trickiness of 1028

exemplars, is not at all determinative of a model’s 1029

performance on a coding task, a dimension which 1030

is very important for active learning. 1031
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