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Abstract

Researchers often rely on humans to code (la-
bel, annotate, etc.) large sets of texts. This is
a highly variable task and requires a great deal
of time and resources. Efforts to automate this
process have achieved human-level accuracies
in some cases, but often rely on thousands of
hand-labeled training examples, which makes
them inapplicable to small-scale research stud-
ies and still costly for large ones. At the same
time, it is well known that language models
can classify text; in this work, we use GPT-3
as a synthetic coder, and compare it to human
coders using classic methodologies and met-
rics, such as intercoder reliability. We find that
GPT-3 can match the performance of typical
human coders and frequently outperforms them
in terms of intercoder agreement across a va-
riety of social science tasks, suggesting that
language models could serve as useful coders.

1 Introduction

The analysis of textual data—from sources such
as open responses to surveys, social media posts,
newspaper articles, legislative transcripts, etc.—
has become increasingly important for researchers
across a variety of disciplines. In the social sci-
ences, for example, analysis of free-form text is
used to gather information not easily obtained from
closed-ended survey analysis or observation. Tradi-
tionally, researchers interested in quantitative con-
tent analysis of text have hired and trained (mostly)
undergraduate students to code the material by
assigning numbers, labels, and/or categories to
text segments of interest. However, such human
coding is slow, expensive, and often unreliable,
even with popular new platforms like Mechanical
Turk. Given variability in experience and percep-
tion among coders, researchers hire multiple peo-
ple to evaluate the same texts, and then calculate
intercoder agreement as a measure of confidence
that they have collectively identified that which the
researchers hope to glean.

While such an approach works somewhat well
for small amounts of text, it is infeasible as a means
to analyze the scale of text available in an increas-
ingly digital, information-rich world. To address
this problem, researchers have developed a number
of supervised machine learning (SML) models to
code text in the place of humans. While many of
these models perform well, they (like the use of hu-
man coders) require extensive time and expense as
researchers label thousands of examples as training
data, tune hyperparameters, etc.

It is well-known that language models (LMs),
such as GPT (Radford et al., 2019; Brown et al.,
2020) and BERT (Devlin et al., 2019), can analyze
text and classify it. A LM coder might bridge the
gap between these approaches and give the best
of both worlds; but how closely does their per-
formance match that of human coders on a task
like coding social science datasets, where objective
ground truth might not exist? We do not suggest
that LMs can supplant the human researcher’s cru-
cial role in qualitative analysis or the nuanced and
iterative process of codebook development. Rather,
in this paper we ask: given a defined set of cod-
ing categories, can LMs be used as serious tools
for social scientists wishing to apply labels to text
data? Furthermore, can we analyze their output
with tools and metrics common to the social sci-
ences, and will the results be similar?

We show that one such LM, GPT-3 (Brown et al.,
2020), is able to perform coding tasks at or exceed-
ing the level of lightly-trained human coders with
only 0-3 exemplars (examples of text labeled with
a code), upholding the broader trend of effective
transfer in NLP. This proficiency holds across a va-
riety of tasks (sentiment, attributes of text, or clas-
sification), difficulties (number of possible codes,
objective versus subjective, etc.), and co-domains
(ordinal versus nominal codes), suggesting that this
same model and general method could successfully
be used for many other such coding tasks.



Our main contributions are (1) demonstrating
that large, pre-trained language models can be used
as reliably as human coders on arbitrarily-sized
datasets across diverse domains; (2) introducing
and exploring social science metrics in the context
of language models; and (3) proposing new social
science coding tasks as benchmark problems to
assess language model quality.

2 Related Work

Because human coding is time-consuming, costly,
and subject to imprecision and variability (Soroka,
2014), many scholars seek automated alternatives.
Dictionary-based methods (Roberts and Utych,
2020; Young and Soroka, 2012) work best in cases
where clearly defined sets of words indicate the
presence of particular content in the text, but these
struggle with nuance and generalization (Barberd
et al., 2021; Grimmer and Stewart, 2013), despite
the expense of their development and validaton
(Muddiman and Stroud, 2017).

Thus, researchers have increasingly turned to su-
pervised machine learning (SML) methods, such as
naive bayes, random forests, and SVMs (Grimmer
and Stewart, 2013; Barbera et al., 2021). Some
use active learning (Hillard et al., 2008; Colling-
wood and Wilkerson, 2012; Miller et al., 2020),
or dictionary-SML ensemble approaches (Dun
et al., 2021). Unfortunately, all of these require
a large dataset for training, which is typically hand-
generated by human coders, meaning that SML
methods do not fully negate the time and expense
of human coders. For instance, one study finds that
100 labeled examples results in a 10 percentage-
point drop in accuracy compared to 1000 labeled
examples (Collingwood and Wilkerson, 2012).

In contrast, we leverage the few-shot capabili-
ties of LMs to almost entirely eliminate the need
for hand-coded training data. Some researchers
have used pre-trained LMs such as BERT (Devlin
et al., 2019), BART (Lewis et al., 2020), RoBERTa
(Liu et al., 2019b), XL Net (Yang et al., 2019), and
ELMo (Peters et al., 2018) in automated content
analysis. However, this is the first in-depth compar-
ison between human coders and a LM coder in a
few-shot learning regime.

It is easy to compare our approach to SML in
terms of cost, since the model we study requires no
additional training or labeled data; it is less straight-
forward to compare performance. It is common in
SML classification studies to set rejection thresh-

olds and ignore instances in which a code cannot
be confidently assigned (Sebdk and Kacsuk, 2021;
Karan et al., 2016). In what follows, we report
scores for the entire dataset, meaning they cannot
be directly compared to this past work.

One critique against work claiming to do few-
shot learning is that researchers iterate through
many prompts over large validation sets to achieve
their results (Perez et al., 2021), essentially over-
fitting to the dataset and using an entire dataset
of exemplars. We avoid this problem by us-
ing a very small validation set to test prompts
(n=4 per category) and by being transparent about
the small amount of experimentation and prompt-
engineering done to achieve our results (Section
4.3). We find only minimal (~5% accuracy boost)
gains from prompt engineering.

3 Methodology

We frame the task of data annotation as that of rea-
sonably applying a defined set of codes to passages
of text. This is in contrast to both tasks with ob-
jective ground truth labels and the more involved
and iterative process of discovering novel codes.
Through various popular data sources and metrics,
we show that LMs perform these coding tasks just
as well as humans, and they do so without labeled
data. Specifically, we study GPT-3, one of the
largest available language models (175 billion pa-
rameters). This model-along with others compara-
ble in size and training—often generates text that, at
least locally, is indistinguishable from that written
by a human, seeming to capture a great deal of the
ideas, biases, concepts, and relationships present in
human-generated text and language, including both
(1) helpful linguistic and factual knowledge (Liu
et al., 2019a; Amrami and Goldberg, 2018; Jiang
et al., 2020; Rogers et al., 2020; Petroni et al., 2020;
Bosselut et al.; Bouraoui et al.) and (2) pathologi-
cal biases (Bender et al., 2021; Kurita et al., 2019;
Basta et al., 2019; Zhang et al., 2020; Zhao et al.,
2019; Sheng et al., 2019). We leverage these abil-
ities by prompting a language model to simulate
a similarly-biased human performing coding tasks
and analyze the resulting predictive distributions
for tokens representing codes.

We construct our prompts using a straightfor-
ward formula: we provide instructions,
(if necessary), exemplars (labeled examples of the
task), and then the text to classify. We then com-
pute GPT-3’s probabilities for the next token over



Using only the following categories

Assign the following headlines to one of the categories:

IRAN TURNS DOWN AMERICAN OFFER OF RELIEF MISSION ->
International Affairs and Foreign Aid

In Final Twist, 11l Pavarotti Falls Silent for Met Finale -> Arts and Enter-
tainment

Baseball; Incredibly, Yankees Rally in 9th Again and Win in 12 -> Sports
and Recreation

House Panel Votes Tax Cuts, But Fight Has Barely Begun ->

(a) CAP Example Prompt - New York Times, 3-exemplars

Are the following descriptions of Republicans extreme or moderate?
-angry, racist, close-minded, homophobic: Extreme

-people, hopeful, educated, agreeable: Moderate

-conservative, white, male, religious:
(b) Pig. Partisans Example Prompt - Positivity, 2-
exemplars

Do the following descriptions of Democrats mention personality or charac-
ter traits?

-accepting, tolerant, intellectual, charitable: Yes, the descriptions mention
personality or character traits.

-black, young, female, poor: No, the descriptions do not mention personal-
ity or character traits.

-conservative, white, male, religious:

(c) Pig. Partisans Example Prompt - Traits, 2-exemplars

Figure 1: Example Prompts

its vocabulary and select the token with the high-
est probability as the model’s coding choice. For
color-coded examples of prompts, see Figure 1.
These coding tasks are subjective, noisy, and
varying in difficulty, and so, as with many datasets
researchers want to code, there is no “ground truth”
by which to measure an automated coder’s perfor-
mance. Therefore, we evaluate GPT-3’s coding
performance using metrics that differ substantially
from those used in traditional NLP work, but which
are common analytic tools in the social sciences:
we calculate various intercoder agreement mea-
sures between GPT-3’s codes and the codes gener-
ated by humans we hired to code the same texts.

3.1 Metrics

We now discuss the three central metrics in our
analysis, and outline when each is appropriate.

3.1.1 Intraclass correlation (ICC)

Intraclass correlation is perhaps the most
commonly-used metric among social scientists
to measure inter-coder agreement among human
coders using numerically ordered, (quasi-)
continuous values in their coding (e.g., rating a
text by some characteristic on a 1-5 scale). In
the “PP” coding task that follows, we estimate
ICC1k (Shrout and Fleiss, 1979) for our human
coders and GPT-3. ICC scores are between -1
and 1 and are typically interpreted as follows:
< 0.5 = poor inter-coder agreement, 0.5 — .75 =
moderate agreement, 0.75 — 0.9 = good, and > 0.9
= excellent (Cicchetti, 1994; Koo and Li, 2016).

3.1.2 Joint probability of agreement

For tasks with un-ordered, categorical codes (as
in the Congressional and New York Times tasks

presented below), ICC is not the appropriate metric.

Instead, we use two different measures. The first,

joint-probability of agreement, measures the prob-
ability of any two coders agreeing. In the 2-coder
case, where one of the coders is ground truth, this
reduces to raw accuracy. Joint probability agree-
ment ranges from O to 1. Between two coders, it
is calculated as follows: 4 SN T (i = yi),
where N is the number of instances being coded,
and y1 ;, y2,; are the first coder’s and the second
coder’s respective codings of instance 7. In the case
of K coders, the joint probability agreement is the
mean of the pairwise agreements.

3.1.3 Fleiss’ kappa

Fleiss’ kappa measures the degree to which the
proportion of agreement among coders exceeds the
agreement of fully random coders (Fleiss, 1971;
Fleiss et al., 2003). Used specifically to quantify
intercoder agreement for categorical data, this mea-
sure ranges from —1 to 1. When x = 0, it means
that the two raters agree at a rate not better than
chance. x < 0 means increasing agreement worse
than chance, and x > 0 means increasing agree-
ment greater than chance.

4 Experiments

In general, we show that GPT-3 can effectively
perform coding tasks of varying difficulty across
several domains, and with at most a few labeled
examples. This speaks to the flexibility of GPT-3
as a coder and its ease of use. We show this using
data from three datasets: Pigeonholing Partisans
(PP), New York Times Headlines (NYT), and Con-
gressional Hearings (Congress).

We chose these datasets to maximize differences
in coding tasks as a means of exploring GPT-3’s
limits. The dimensions they span include:

* Difficulty: We expect that some tasks will be
easy for the language model to master, e.g.,



rating positivity (Section 4.1) through senti-
ment analysis (Radford et al., 2017), and that
some will be harder, like subjective tasks (Sec-
tion 4.1) or tasks with a large number of codes
to choose from (Section 4.2.2).

* Domains: Section 4.1 explores partisan po-
larization through descriptions of members
of both political parties in the U.S., whereas
Section 4.2.2 defines a schema for categoriz-
ing newspaper headlines and 4.2.1 does so for
summaries of congressional hearings.

* Category Type: Ordinal and binary codes are
used throughout Section 4.1, while nominal
and categorical codes are used in Sections
4.2.1 and 4.2.2.

GPT-3’s flexibility in adapting to the range along
all of these dimensions is reason to believe that it
can readily excel on many coding tasks.

4.1 Pigeonholing Partisans (PP)

We first consider the ability of GPT-3 to act as a
coder with data on Americans’ stereotypes of Re-
publicans and Democrats (Rothschild et al., 2019).
These data, collected in 2016, asked individuals to
list four words or phrases that came to their minds
when thinking of typical supporters of the Demo-
cratic and Republican Parties. This procedure is
common in psychological studies of stereotypes
(Devine, 1989; Eagly and Mladinic, 1989), and al-
lows survey takers to describe partisans in their
own words without being primed by researchers
and closed-ended answer choices (Presser, 1989;
Iyengar, 1996). This dataset is too small for other
kinds of automated coding and an ideal way to con-
sider how well GPT-3 can classify texts without
extensive training sets.

To evaluate how well GPT-3 can serve as a coder
on these kinds of short, open-ended texts, we re-
cruited 2873 human coders through the survey plat-
form Lucid (Coppock and McClellan, 2019) to
code a total of 7675 texts, each text being coded
at least three times by a random set of coders, and
gave them minimal instructions for coding the texts
on a number of domains.

Coders rated the texts along five dimensions:
(1) positivity (general positive/negative valence),
(2) extremity (extreme or moderate quality of the
words), and whether the text mentioned (3) charac-
ter or personality traits, (4) government or policy
issues, or (5) social groups. Each of these domains

ICC1k for Pigeonholing Partisans
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Figure 2: PP ICClk: Note that including GPT-3 in the
class of considered coders increases ICC1k in coding
for all attributes except “Traits”. The opposite happens
when including other, simulated coders.

is important to the theoretical ideas of the origi-
nal orientation of the data collection on partisan
stereotypes (Rothschild et al., 2019; Busby et al.,
Forthcoming). While we do not broach this subject
in this work, each represents a distinct way of think-
ing about party attachments and membership that
have different political and social consequences.

Then we asked GPT-3 to complete a series of
coding tasks on all 7675 texts that are directly anal-
ogous those completed by humans. Next, we exam-
ined how closely GPT-3 follows individual human
coders and human coding in the aggregate, along
with how closely humans followed each other. To
calculate a correlation statistic, we rely on the prob-
abilities produced by GPT-3 for the attribute in
question (probability of extreme, traits, or positive,
for example) and the untransformed code from the
human respondents. We present these correlations
in Figure 3. They suggest that GPT-3 performs
above human level in every case but one. That is,
for positivity, extremity, groups, and issues, GPT-3
correlates more strongly with each of the human
coders than the human coders do with each other.
For traits, GPT-3 correlates with the human coders
about as well, or slightly lower, than the humans
correlate with each other. This is initial evidence
that GPT-3 is typically either more reliable or just
as reliable a coder as human coders, a remarkable
finding given that GPT-3 was provided no more
than 2 exemplars in its “training set”.

We also consider ICC scores (Fig. 2). As we em-
ploy different coders - that is, coders are randomly
assigned to texts and not all texts are scored by the
same three coders - we use ICC1k, which accounts
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Figure 3: Correlations for PP, calculated with Pearson’s R. Other measures of correlation yield similar results.
Notice how correlation is higher for GPT-3 and every human than between any two humans. There are only two
cells (Humans 1 & 2, 2 & 3 in Traits) strictly greater than any one of GPT-3’s correlations with humans.

for this structure.

Our focus here is on the increase or decrease in
ICC when GPT-3’s codes are added to the three
human codes. If GPT-3 improves the reliability of
the coding, ICC should improve. If it does not offer
this benefit, the ICC score should stay the same or
decrease. We also compare adding GPT-3’s scores
to adding a variety of simulated scores to ensure
that the addition of another coder by itself does
not drive what we observe: (1) a coder who codes
all texts as O (lacking the attribute), (2) a coder
who codes all texts as 1 (containing the attribute),
(3) a coder who codes randomly, and (4) a coder
who codes all texts randomly, but with the same
overall distribution as GPT-3’s predictions. We also
consider the ICC values when comparing GPT-3’s
codes to the average of the human coders (rather
than individual coders separately).

The statistics in Figure 2 suggest that adding
GPT-3 as a coder improves the overall coding for
2/5 measures (positivity, groups), improves relia-
bility of the coding for 2/5, (extremity, issues), and
reduces reliability in 1/5 (traits). Notably, this last
area is where human coders correlated the least
with each other (see Figure 3) and may represent a
fundamentally challenging task.

Another point to note is the stark difference be-
tween adding GPT-3 and adding each of the simu-
lated coders (2nd and 3rd columns vs. 4th+). We
conclude that GPT-3’s outputs do contain real sig-
nal and that the boost in ICC is not due to simply
adding another coder. Furthermore, since adding
GPT-3’s outputs to the human outputs generally
either increases or maintains ICC across each at-
tribute, we conclude that GPT-3 achieves human
or better performance at this task. Importantly,
achieving this level of performance required nei-
ther coding a large-scale dataset (on the order of
tens of thousands or more) nor a large, labeled set

of training data for the language model.

4.2 Comparative Agendas Project (CAP)

CAP aims to provide a coherent framework for doc-
umenting media and government attention to vari-
ous policy issues in a comprehensive set of policy
domains, without reference to the support or op-
position stance or ideological framing of the issue
in the source material (Baumgartner et al., 2019).
CAP datasets aim to be comprehensive, transparent,
and replicable (Bevan, 2019), with many housed at
the CAP website (www.comparativeagendas.net).
More than 200 scholars have used CAP to test a
vast range of empirical political science theories
(Walgrave and Boydstun, 2019).

The CAP master codebook includes at least 21
major categories (with others added for some spe-
cific applications), and over 200 sub-categories. In
order to succeed at this task, GPT-3 must produce
a high probability for one of a large, unordered,
pre-specified set of tokens that corresponds to the
specific content of the input data.

Prior efforts to automate coding in the CAP
framework have met limited success (Karan et al.,
2016; Hillard et al., 2008; Purpura and Hillard,
2006; Sevenans et al., 2014; Sebsk and Kacsuk,
2021). Sebok and Kacsuk (Sebdk and Kacsuk,
2021) are able to achieve an 80%+ F1 score on
average across categories, but this is reported after
culling over 40% of their dataset due to difficulty
of classification. We, on the other hand, provide
scores given full coverage of the dataset. Reported
performance in various approaches is substantially
lower than this (accuracies near or below 50%) for
dictionary methods, less efficient SMLs, corpora
with less training data, or in specific hard-to code
categories, which upper limit our average accuracy
exceeds. Again, the highest performing outcomes
are achieved by setting rejection thresholds (for
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Figure 4: Two measures of GPT-3’s agreement with
human coders compared with humans’ agreement with
human coders, across two datasets.

ambiguous texts or cases where humans or models
disagree) and either sacrificing coverage or target-
ing human coders to uncertain cases (Karan et al.,
2016; Sebdk and Kacsuk, 2021). We achieve our
results with complete coverage, a single model,
no human disambiguation of difficult cases, and
minimal need for labeled training data.

To account for class imbalances and differences
in baseline probabilities of different tokens, we
normalize the probability distributions in a manner
similar to (Zhao et al., 2021). We estimate GPT-3’s
bias towards a category as the total weight given to
each category over a balanced validation set, divide
each category probability by GPT-3’s bias towards
it, and normalize to sum to 1. We found that this
produced modest accuracy boosts of 4-5%. If a
small validation set is available, we recommend
this calibration technique; however, results were
qualitatively the same without this calibration.

4.2.1 CAP: Congressional Hearing
Summaries (Congress)

The Congressional Hearing corpus contains the
Congressional Information Service summary of
each U.S. Congressional hearing from 1946 to
2010. These summaries were read by human
coders and assigned to CAP classifications. GPT-3
is given the full summary text, meaning the coding
task is highly comparable between the humans and
GPT-3. All results are reported for n = 326 texts,
which constitutes 16 texts for each category minus
10 for incompleteness in the human codes.

Our comparison of GPT-3’s codes to the humans’
is in Figure 4. Both our intercoder agreement met-
rics tell the same story, and imply a finding that
holds across metrics: GPT-3 correlates with each

-0.4

-0.0

human just as well as or better than the humans cor-
relate with each other. Note that the highest joint
agreement (.63) and highest Fleiss’ kappa (.61)
both occur between GPT-3 and Human 2.

Despite there being no real ground truth for this
task, we visualize “accuracy” statistics based on
the original dataset’s single coder (Figure 5). The
lack of ground truth is validated by a great deal of
human disagreement, as the figure makes clear. We
see the accuracy for each coder, with categories
sorted in order of GPT-3’s accuracy. Interestingly
enough, GPT-3 seems to do better at categories that
humans do better at, and worse at the categories
that humans fail at. Overall, the accuracies were
60% for GPT-3, compared to 63%, 66%, and 55%
for the three human coders respectively.

The high joint agreement and Fleiss’ kappa be-
tween GPT-3 and the human coders, as well as the
similar accuracies across categories, demonstrate
GPT-3 performance on-par with humans and SML
methods on this dataset.

4.2.2 CAP: New York Times Front Page
Dataset (NYT)

The second CAP dataset we use is the New York
Times Front Page Dataset, generated and con-
tributed by Amber Boydstun (Boydstun, 2013).
The dataset includes 31034 front page New York
Times headlines from 1996 - 2006, along with the
policy category label assigned by trained human
coders. The categories are adapted for media use,
and so include 28 primary classification categories.
All results are reported for n = 560 texts, with 20
sampled from each of the 28 categories.

The original human coders were instructed to
read the headline and the first three paragraphs of
the article. In our work, GPT-3 is only provided
the headline, because the full article text is not
available in the public data. To control for this
difference in available information, we also had
three minimally trained human coders complete an
identical classification task to GPT-3.

Since the NYT data is in the same structure as
the Congress data, we apply the same analyses. For
both joint agreement and Fleiss’ kappa (Figure 4),
GPT-3 correlates with the humans in the range of
how they correlate with each other. We also notice
a strong trend between GPT-3’s accuracy and the
humans accuracy per category (Figure 6). Unlike
Congress, however, there are 3 categories for which
the humans all perform better than GPT-3: “Inter-
national Affairs and Foreign Aid,” “Government
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Figure 5: Congress Accuracy by Coder: Treating the original dataset’s code as “ground truth”, and sorting categories
in descending order based on GPT-3’s score, note how noisy the performance of the human coders is. There is only
1 category that all humans score strictly better on (International Affairs).

Operations,” and “Death Notices.” On the other
hand, GPT-3 performs better than humans at some
other categories: “Environment,” “Health,” and
“Labor.” Despite this discrepancy, GPT-3’s total
accuracy was 55%, compared to 57%, 59%, 51%,
and 45% for the four humans respectively. Overall,
these results demonstrate that GPT-3 on average
achieves on-par performance with humans for the
New York Times dataset (remembering that perfor-
mance is systematically worse or better depending
on category).

4.3 Prompt Engineering

Some elements of prompt engineering seem to mat-
ter a great deal, and some seem to matter not at all,
or at least not in any reliable way.

As an example of the former, one has to be mind-
ful of where the prompt ends and what next token
is being modeled. Since generative language mod-
els sample one token at a time, we need to be able
to sample a unique first token (usually, a unique
first word) for each category we attempt to model.
For example, “very positive” and “very negative”
both start with the token “very,” so it would be
impossible for us to compare the two categories
with a single token sample. Fortunately, all of our
categories started with unique first tokens, but this
may not be true for other tasks.

Another choice impacting results was the presen-
tation of categories in the question format of the PP
data. Specifically, GPT-3 performed significantly
worse when asked to respond to a question with
the tokens “yes” or “no” than when the choice was
between substantive alternatives, such as “extreme”
vs “moderate” or “positive” vs. “negative”. For the

other three attributes, we found that restating the
objective after the “yes” or “no” (e.g., “Yes, men-
tions personality or character traits”) substantially
helped. These were the only prompt variations
attempted for the PP dataset.

Other elements seemed to have minimal impact,
like the number and type of exemplars. While
we know that more labeled training data signifi-
cantly improves SML performance (Collingwood
and Wilkerson, 2012), it is unclear whether more
labeled exemplars to GPT-3 will achieve the same.
As shown in Figure 7, we find that one exemplar
performs much better than none, but there is little
gain in accuracy achieved by providing more than
2 or 3 exemplars. We also conducted extensive
experiments testing different classes of exemplars
(more or less difficult to classify, in the spirit of
active learning); this also seemed not to matter (See
Appendix B for details).

We also tried many variations on the prompt for-
mat, including: surrounding categories in quotes;
using slashes, pipes, and other delimiters to sepa-
rate exemplar headlines from their respective cat-
egories; providing lists of example headlines for
each category in parentheses right next to the cat-
egory; new lines in specific places making bound-
aries between exemplars clearer; and other general
rephrasing. None of these changes resulted in a
marginal accuracy less than 50% or greater than
57%. This demonstrates a relative stability of the in-
formation retrieval process, allaying some concerns
(though not all) that minor changes in wording or
punctuation will radically alter coding accuracy.

For all of our final prompts used, please refer to
Appendix A.
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Figure 6: New York Times Accuracy by Coder: Treating the original dataset code as “ground truth”, and sorting
categories in descending order according to GPT-3’s score, note how noisy the humans’ coding is. Clearly some
areas are easier for human coders (e.g., Death Notices) and some are easier for GPT-3 (e.g., Environment).
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Figure 7: Increasing number of exemplars up to 30
shows no improvement past 2 or 3. This experiment
was done on the NYT dataset.

5 Ethics, Bias, and Future Work

Our results suggest that GPT-3 can automate spe-
cific coding tasks comparably to lightly-trained
human coders. However, much work remains to
bring this possibility to full fruition, including bet-
ter calibration, fine-tuning, and bias-handling.

Language models reflect and even amplify patho-
logical human biases contained in their training
data (Zhao et al., 2017), raising concerns about
their use for annotation, as the LM biases may im-
pact the results of studies to which they are applied.
Much work has aimed to quantify and reduce this
bias (Bordia and Bowman, 2019; Qian et al., 2019).
Further work is needed along these lines, especially
in contexts where bias propagation is a threat, be-
fore these methods are deployed freely.

However, while LMs exhibit bias, it is neverthe-

less a known, invariant, and quantifiable property,
whereas individual humans’ biases are typically un-
knowable. We submit that the ability to recognize
and actively compensate for the annotator’s prob-
able biases is more important than the magnitude
of the biases themselves. Conversely, if a LM can
be conditioned or fine-tuned into holding specific
biases rather than others, then it could emulate spe-
cific heterogeneous populations for a richer, more
diverse, and representative coding than what we
present in this paper.

6 Conclusion

We have demonstrated that LMs can potentially be
used to code social science datasets and that they
can be analyzed with metrics common in the social
sciences. Fine-grained analysis shows that GPT-3
can match the performance of human coders on
average across small and large datasets; with both
ordinal and categorical codes; and on tasks of vary-
ing complexity. In some cases, it even outperforms
humans in increasing intercoder agreement scores,
often with no more than 3 exemplars.

We hope that these results initiate a two-way
dialogue: the social sciences are a rich source of
potential applications and benchmarks for LMs, but
as LMs play an increasing role throughout sciences—
with LMs and humans potentially working side-by-
side—it is possible that the field of NLP will need
to move beyond traditional notions of accuracy and
analyze LMs with methods such as those presented
here to ensure their reliability. Harnessing LMs
as synthetic coders will open up a new world of
possibilities, which is a worthy endeavor indeed.
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A Prompts For Each Task
A.1 Pigeonholing Partisans

* Positivity:

Are the following descriptions of
PARTY positive or negative?

-agreeable, reasonable, under-
standing, cooperative: Positive
-angry, bigoted, racist, homophobic:
Negative

* Groups:

Do the following descriptions of
PARTY mention social groups?

-Christian,  privileged, young,
white: Yes, mentions social groups.
-apathetic, agreeable, pro-
environment,  political: No,

doesn’t mention social groups.

¢ Traits:

Do the following descriptions of
PARTY mention personality or
character traits?

-accepting,  tolerant, intellec-
tual, charitable: Yes, mentions
personality or character traits.
-black, young, female, poor: No,
doesn’t mention personality or
character traits.

* Extremity:

Are the following descriptions of
PARTY extreme or moderate?

-angry, racist, close-minded,
homophobic: Extreme

-people, hopeful, educated, agree-
able: Moderate

e Issues:

Do the following descriptions of
PARTY include government or
policy issues?

-aging,  religious,  accepting,
patriotic: No, doesn’t include
government or policy issues.
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-abortion, medical marijuana, gun
control, anti-sexism: Yes, includes
government or policy issues.

A2 CAP

* Congressional Hearings:

Using only the following categories
Macroeconomics

Civil Rights

Health

Agriculture

Labor

Education

Environment

Energy

Immigration

Transportation

Law and Crime

Social Welfare

Housing

Domestic Commerce

Defense

Technology

Foreign Trade

International Affairs

Government Operations

Public Lands

Culture

Assign the following congressional
hearing summaries to one of the cat-
egories:

Extend defense production act pro-
visions through1970. -> Defense
FY90-91 authorization of rural
housing programs. -> Housing
Railroad deregulation. -> Trans-
portation

To consider Federal Reserve Board
regulations and monetary policies
after February 2016 report on mon-
etary policy. ->’

¢ New York Times Headlines

Using only the following categories
Macroeconomics

Civil Rights, Minority Issues, and
Civil Liberties

Health

12

Agriculture

Labor

Education

Environment

Energy

Immigration

Transportation

Law, Crime, and Family Issues
Social Welfare

Community Development and
Housing Issues

Banking, Finance, and Domestic
Commerce

Defense

Space, Science, Technology and
Communications

Foreign Trade

International Affairs and Foreign
Aid

Government Operations

Public Lands and Water Manage-

ment

State and Local Government
Administration

Weather and Natural Disasters
Fires

Arts and Entertainment

Sports and Recreation

Death Notices

Churches and Religion

Other, Miscellaneous, and Human
Interest

Assign the following headlines to
one of the categories:

IRAN TURNS DOWN AMER-
ICAN OFFER OF RELIEF
MISSION -> International Affairs
and Foreign Aid

In Final Twist, 111 Pavarotti Falls
Silent for Met Finale -> Arts and
Entertainment

In Times Sq., a Dry Run for New
Year$ 2000 -> Arts and Entertain-
ment

House Panel Votes Tax Cuts, But
Fight Has Barely Begun ->’

B Exemplar Types Experiments

We also explored whether some exemplars were
better or worse at “teaching” the categories to the
model. We considered that for a given category,



Accuracy by Exemplar Type

o
S
o

Accuracy
o o o
w o o
w o w
! L

b
0
=}

I
'S
[l

—— Ambiguous
Prototypical

—— Random

—— Tricky

1

>

1<)
s

0.35 T T T T T T
0 1 2 3 4 5
n_exemplars

Figure 8: Each class of exemplar considered does an
equal amount to help the model’s accuracy. This is sur-
prising, and suggests that the model might learn nothing
from the exemplars besides the format of the task.

an instance could be a better or worse exemplar.
We might define this by a quantity we’ll call its
margin: the difference between (1) the probabil-
ity the model assigns to the correct category and
(2) the highest probability of the probabilities for
all the wrong categories. Thus, “prototypical” ex-
emplars would have high positive margin (model
guesses right), “ambiguous” exemplars would have
margins with very low absolute values (model torn
between multiple categories), and “tricky" exem-
plars would have margins with very high negative
values (model guesses wrong). In theory, proto-
typical exemplars could teach the model about the
proper distribution of texts belonging to a category,
ambiguous exemplars could teach the model about
the boundaries between the distributions of each
category, and tricky exemplars could correct the
model’s prior on categories by flagging common
mistakes made in coding texts from that category’s
distribution.

To answer this question empirically, we first ran-
domly sample 90 candidate exemplars from each
category. We then code each with the model given
a set of 4 exemplars sampled randomly once and
then held constant specifically for this task. Then
we sort them by their margin and construct one set
of each: prototypical, ambiguous, and tricky exem-
plars. Finally, we perform 5 trials where we classify
4 instances from each category using an increasing
number of these sets of exemplars and measure per-
formance. The results, in Figure 8, demonstrate no
discernible signal as to which kind of exemplar is
best to present to the model in the context window.
This is one bit of evidence that this dimension, of
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the prototypicality vs. ambiguity vs. trickiness of
exemplars, is not at all determinative of a model’s
performance on a coding task, a dimension which
is very important for active learning.



