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ABSTRACT

State-of-the-art link prediction (LP) models demonstrate impressive benchmark
results. However, popular benchmark datasets often assume that training, valida-
tion, and testing samples are representative of the overall dataset distribution. In
real-world situations, this assumption is often incorrect; since uncontrolled factors
lead to the problem where new dataset samples come from different distributions
than training samples. The vast majority of recent work focuses on dataset shift
affecting node- and graph-level tasks, largely ignoring link-level tasks. To bridge
this gap, we introduce a novel splitting strategy, known as LPShift, which utilizes
structural properties to induce a controlled distribution shift. We verify the ef-
fect of LPShift through empirical evaluation of SOTA LP methods on 16 LPShift
generated splits of Open Graph Benchmark (OGB) datasets. When benchmarked
with LPShift datasets, GNN4LP methods frequently generalize worse than heuris-
tics or basic GNNs. Furthermore, LP-specific generalization techniques do little
to improve performance under LPShift. Finally, further analysis provides insight
on why LP models lose much of their architectural advantages under LPShift.

1 INTRODUCTION

Link Prediction (LP) is concerned with predicting unseen links (i.e., edges) between two nodes in
a graph (Liben-Nowell & Kleinberg, 2003). The task has a wide variety of applications including:
recommender systems, (Fan et al., 2019), knowledge graph completion (Lin et al., 2015), protein-
interaction (Kovács et al., 2019), and drug discovery (Abbas et al., 2021). Traditionally, LP was
performed using heuristics that model the pairwise interaction between two nodes (Newman, 2001;
Zhou et al., 2009; Adamic & Adar, 2003). The success of Graph Neural Networks (GNNs) (Kipf
& Welling, 2017) has prompted their usage in LP (Kipf & Welling, 2016; Zhang & Chen, 2018).
However, GNNs are unable to fully-capture representations for node pairs (Zhang et al., 2021; Srini-
vasan & Ribeiro, 2019). To combat this problem, recent methods (i.e., GNN4LP) empower GNNs
with additional information to capture pairwise interactions between nodes (Shomer et al., 2024;
Chamberlain et al., 2022; Zhang & Chen, 2018; Wang et al., 2023a) and demonstrate tremendous
ability to model LP on real-world datasets (Hu et al., 2020).

While recent methods have shown promise, current benchmarks (Hu et al., 2020) assume that the
training and evaluation data are drawn from the same structural distribution, with the exception
of datasets like ogbl-collab. This assumption often collapses in real-world scenarios, where the
structural feature (i.e., covariate) distribution may shift from training to evaluation. Therefore, it’s
often necessary for models to generalize to samples whose newly-introduced feature distribution
differs from the the training dataset (Wiles et al., 2021; Yao et al., 2022a;b; Bevilacqua et al., 2021).

Consider the three graphs in Figure 1 as samples pulled from a larger graph dataset. In order of ap-
pearance, each of the three graphs represent samples from the: training, validation, and testing splits
of our dataset. Our task is to predict whether new links will form between existing nodes. These
predicted links are shown as dotted lines with colors: “green” = training, “blue” = validation, “red”
= testing. An optimal LP model trained on the first graph sample effectively learns a representation
understanding source and target nodes with 2 Common Neighbors (Zhang & Chen, 2018), making
the model effective at predicting new links in structure-rich scenarios. However, such a model is
likely to fail when predicting links on the subsequent validation and testing samples; the second and
third graph in Figure 1 with 1 CN and 0 CNs, respectively. The learned representation necessary to
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Figure 1: A miniature example of the backward CN LPShift, predicted links between source and
target nodes are represented with dotted lines. The loss of edges cause a structural shift, forcing
models to generalize on fewer Common Neighbors (CNs). Green = 2 CNs, Blue = 1 CN, Red = 0
CNs.

capture the differing pairwise relations in the second and third graphs requires generalizing to a sce-
nario with fewer CNs, and therefore less structural information. As such, the previously-mentioned
scenario represents a case of structural covariate shift, where the training distribution cannot effec-
tively model the testing distribution, defined mathematically as PTrain(X) ̸= PTest(Y ). LPShift,
our proposed splitting strategy, provides a controllable means to induce the scenario shown in Fig-
ure 1 (labelled in experiments as the CN - 2,1 split), as well as fifteen other tested scenarios. More
details on structural shift are included in Section 3.2.

Furthermore, while numerous methods work to account for distribution shifts within graph machine
learning (Li et al., 2022b), there remains little work doing so for LP. Specifically, we observe that
(1) No LP Benchmark Datasets: Current graph benchmark datasets designed with a quantifiable
distribution shift are focused solely on the node and graph tasks (Zhou et al., 2022b; Ding et al.,
2021), with no datasets available for LP. (2) Absence of Foundational Work: There is limited ex-
isting work for distribution shifts relevant to LP (Zhang et al., 2022). Current methods are primarily
focused on detecting and alleviating anomalies within node- and graph-level tasks (Jin et al., 2022;
Bevilacqua et al., 2021; Gao et al., 2023; Wu et al., 2024; Guo et al., 2023; Wu et al., 2023; Sui
et al., 2024; Li et al., 2022b). Additionally, few methods are designed for aiding LP generalization
in any setting (Dong et al., 2022; Zhao et al., 2022; Zhang et al., 2022; Zhou et al., 2022b). Also,
other LP generalization methods which are theorized to improve performance in shifted scenarios
remain crucially untested (Singh et al., 2021; Wang et al., 2023b).

To tackle these problems, this work proposes the following contributions:

• Creating Datasets with Meaningful Distribution Shifts. LP requires pairwise struc-
tural considerations (Liben-Nowell & Kleinberg, 2003; Mao et al., 2024). Additionally,
when considering realistic settings (Li et al., 2024) or distribution shift (Zhu et al., 2024),
GNN4LP models perform poorly relative to models used in graph (Wei et al., 2021; Yuan
et al., 2021) and node classification (Shi et al., 2023; Zhao et al., 2023). To better un-
derstand distribution shifts, we use key structural LP heuristics to split the links into
train/validation/test splits via LPShift. By applying LPShift to generate dataset splits, we
induce shifts in the underlying feature distribution of the links which are relevant to the
link’s formation (Mao et al., 2024). Further justification is provided in Appendix Section L.

• Benchmarking Current LP Methods. To our surprise, GNN4LP models struggle more
than simpler methods when generalizing to data split by LPShift. Despite the existence
of LP generalization methods, such as FakeEdge (Dong et al., 2022) and Edge Proposal
Sets (Singh et al., 2021), there remains little work benchmarking link-prediction models
under distribution shifts (Ding et al., 2021; Dong et al., 2022; Zhu et al., 2024). This lack
of benchmarking contributes to a gap in understanding, impeding the capabilities of LP
models to generalize. This work quantifies the performance of current SOTA LP models
under 16 unique LPShift scenarios and provides analysis as a foundation for improving
LP model generalization. We further quantify the effects of LP and graph-specific gen-
eralization methods, finding that they also struggle to generalize with differing structural
shifts.
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The remainder of this paper is structured as follows. In Section 2, we provide background on the
heuristics, models, and generalization methods used in LP. In Section 3, we detail how the heuristics
relate to our proposed splitting strategy and formally introduce LPShift. Lastly, in Section 4, we
benchmark a selection of LP models and generalization methods on LPShift, followed by analysis
with the intent of understanding the effects of this new strategy.

2 RELATED WORK

LP Heuristics: Classically, neighborhood heuristics, which measure characteristics between source
and target edges, functioned as the primary means of predicting links. These heuristics show limited
effectiveness with a relatively-high variability in results, largely due to the complicated irregular-
ity within graph datasets which only grows worse with larger datasets (Liben-Nowell & Kleinberg,
2003). Regardless of this, state-of-the-art GNN4LP models have integrated these neighborhood
heuristics into neural architectures to elevate link prediction capabilities (Wang et al., 2023a; Cham-
berlain et al., 2022).

For a given heuristic function, u and v represent the source and target nodes in a potential link,
(u, v). N (v) is the set of all edges, or neighbors, connected to node v. f(vi,i+1, u) is a function
that considers all paths of length i that start at v and connect to u. The three tested heuristics are as
follows:

Common Neighbors (Newman, 2001): The number of neighbors shared by two nodes u and v,

CN(u, v) = |N (u) ∩N (v)|. (1)

Preferential Attachment (Liben-Nowell & Kleinberg, 2003): The product of the number of neighbors
(i.e., the degree) for nodes u and v,

PA(u, v) = |N (u)| × |N (v)|. (2)

Shortest Path Length (Liben-Nowell & Kleinberg, 2003): The path between u and v which considers
the smallest possible number of nodes, denoted as length n,

SP(u, v) = argmin
Σ

(Σn−1
i=1 f(vi,i+1, u)). (3)

GNNs for Link Prediction (GNN4LP): LP’s current SOTA methods rely on GNNs for a given
model’s backbone. The most common choice is the Graph Convolutional Network (GCN) (Kipf &
Welling, 2017), integrating a simplified convolution operator to consider a node’s multi-hop neigh-
borhood. The final score (i.e., probability) of a link existing considers the representation between
both nodes of interest. However, (Zhang et al., 2021) show that such methods aren’t suitably expres-
sive for LP, as they ignore vital pairwise information that exists between both nodes. To account for
this, SEAL (Zhang & Chen, 2018) conditions the message passing on both nodes in the target link
by applying a node-labelling trick to the enclosed k-hop neighborhood. They demonstrate that this
can result in a suitably expressive GNN for LP. NBFNet (Zhu et al., 2021) conditions the message
passing on a single node in the target link by parameterizing the generalized Bellman-Ford algo-
rithm. In practice, it’s been shown that conditional message passing is prohibitively expensive to
run on many LP datasets (Chamberlain et al., 2022). Instead, recent methods pass both the standard
GNN representations and an additional pairwise encoding into the scoring function for prediction.
For the pairwise encoding, Neo-GNN (Yun et al., 2021) considers the higher-order overlap between
neighborhoods. BUDDY (Chamberlain et al., 2022) estimates subgraph counts via sketching to infer
information surrounding a target link. Neural Common-Neighbors with Completion (NCNC) (Wang
et al., 2023a) encodes the enclosed 1-hop neighborhood of both nodes. Lastly, LPFormer (Shomer
et al., 2024) adapts a transformer to learn the pairwise information between two nodes.

Generalization in Link Prediction: Generalization methods for LP rely on a mix of link and node
features in order to improve LP model performance. DropEdge (Rong et al., 2020) randomly re-
moves edges with increasing probability from the training adjacency matrix, allowing for different
views of the graph. Edge Proposal Sets (EPS) (Singh et al., 2021) considers two models – a filter and
rank model. The filter model is used to augment the graph with top-k relevant common neighbors,
while the rank method scores the final prediction. (Wang et al., 2023b) built Topological Concen-
tration (TC), which considers the overlap in subgraph features for a given node with each connected
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Algorithm 1 Dataset Splitting Strategy (LPShift)
Require:

G = Initial Graph,
Ψ(., .) = Heuristic function
itrain, ivalid = Heuristic score thresholds
Train, V alid, Test = ∅, ∅, ∅

1: while edge, (u, v) not visited in G do
2: Ψ(u, v) = h(u, v) ▷ Score edge with neighborhood heuristic
3: if h(u, v) ≤ itrain then ▷ Train Split
4: Train← (u, v)
5: else if h(u, v) > itrain and h(u, v) ≤ ivalid then ▷ Valid split
6: V alid← (u, v)
7: else ▷ h(u, v) > ivalid, Test Split
8: Test← (u, v)
9: end if

10: end while
11: return Train, V alid, Test ▷ Return Final Splits

neighbor, correlating well with LP performance for individual links. To improve the performance
of links with a low TC, a re-weighting strategy applies more emphasis on links with a lower TC.
Counter-Factual Link Prediction (CFLP) (Zhao et al., 2022) conditions a pre-trained model with
edges that contain information counter to the original adjacency matrix, allowing models to gener-
alize on information not present in a provided dataset.

3 BENCHMARK DATASET CONSTRUCTION

In this section, we explain how LPShift induces a shift in each dataset’s structure; clarifying the
importance of each structural measure and their application to splitting graph data.

3.1 TYPES OF DISTRIBUTION SHIFTS

We induce distribution shifts by splitting the links based on key structural properties affecting link
formation and thereby LP. We consider three type of metrics: Local structural information, Global
structural information, and Preferential Attachment. Recent work by (Mao et al., 2023) has shown
the importance of local and global structural information for LP. Furthermore, due to the scale-
free nature of many real-world graphs relates to link formation (Barabási & Albert, 1999), we also
consider Preferential Attachment. A representative metric is then chosen for each of the three types,
shown as follows:

(1) Common Neighbors (CNs): CNs measure local structural information by considering only
those nodes connected to the target and source nodes. A real-world case for CNs is whether you
share mutual friends with a random person, thus determining if they are your “friend-of-a-friend”
(Adamic & Adar, 2003). CNs plays a large role in GNN4LP, given that NCNC (Wang et al., 2023a)
and EPS (Singh et al., 2021) integrate CNs into their framework and achieve SOTA performance.
Furthermore even on complex real-world datasets, CNs achieves competitive performance against
more advanced neural models (Hu et al., 2020). To control for the effect of CNs on shifted perfor-
mance, the relevant splits will consider thresholds which include more CNs.

(2) Shortest Path (SP): SP captures a graph’s global structural information, thanks to the shortest-
path between a given target and source node representing the most efficient path for reaching the
target (Russell & Norvig, 2009). The shift in global structure caused by splitting data with SP
can induce a scenario where a model must learn how two dissimilar nodes form a link with one
another (Evtushenko & Kleinberg, 2021), which is comparable to the real-world scenario where two
opponents choose to co-operate with one another (Schelling, 1978; Granovetter, 1978).

(3) Preferential Attachment (PA): PA captures the scale-free property of larger graphs by mul-
tiplying the degrees between two given nodes (Barabási & Albert, 1999). When applied to graph
generation, PA produces synthetic Barabasi-Albert (BA) graphs which retain the scale-free property

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to effectively simulate the formation of new links in real-world graphs, such as the World Wide Web
(Barabási & Albert, 1999; Albert & Barabási, 2002). Similar to CNs, the relevant PA splits will
consider thresholds that integrate higher PA values.

3.2 DATASET SPLITTING STRATEGY

In the last subsection we described the different types of metrics to induce distribution shifts for LP.
The metrics cover fundamental structural properties that influence the formation of new links. We
now describe how we use these measures to split the dataset into train/validation/test splits to induce
such shifts.

In order to build datasets with structural shift, we apply a given neighborhood heuristic to score
each link. This score is then compared to a threshold (itrain, ivalid) to categorize a link as a dif-
ferent sample. As denoted in Alg. 1, the heuristic score of the link (u, v) is h(u, v). The link falls
into: training when h(u, v) < itrain, validation when itrain < h(u, v) ≤ ivalid, and testing when
h(u, v) > ivalid. The new training graph is constructed from the original OGB dataset (Hu et al.,
2020). Validation and testing samples are removed from the new training graph to prevent test-
leakage and limited to 100-thousand edges maximum. The full algorithm is detailed in Algorithm 1
with additional details in Appendix C.

With Figure 2, we provide a small example of how splits are produced by our proposed splitting
strategy. Specifically, Figure 2(a) demonstrates an outcome of the CN split labelled “CN - 1,2”
where sampled edges pulled from the: black-dotted line = training (no CNs), red-dotted line =
validation, (1 CN), and blue-dotted line = testing (≥2 CNs). See Appendix C for information on
Figure 2(b) and Figure 2(c).

(a) CN (b) PA (c) SP

Figure 2: An example of the three splitting strategies: (a) Common Neighbors, (b) Preferential-
Attachment, (c) Shortest-Path. The dashed lines represent a cut on the source and target node that
forms a given edge for our splitting strategy. The color of the line distinguishes the score assigned
by the heuristic.

To test how different LPShift thresholds impact performance, we adjust the itrain and ivalid thresh-
olds to produce 3 varied CN and PA splits; as well as 2 varied SP splits. The variations in split
thresholds were chosen based on two conditions. 1) Structural information within splits varies due
to user-defined thresholds. In the ”Forward” scenario (i.e. CN - 1,2), splits are given increasingly
more structural information between training to validation, giving the model an easier time gener-
alizing under testing. For the ”Backward” scenario (i.e, CN - 2,1), stricter thresholds mean less
structural information between validation to testing; making generalization difficult. 2) The final
dataset split contains a sufficient number of samples. Each LPShift split requires enough split sam-
ples to allow model generalization. Given the limited number of SP split samples, the SP splits
were limited to 2 variants. See Appendix C for more algorithmic details, and Appendix E for more
information on LPShift’s efficiency and usefulness

4 EXPERIMENTS

To bridge the gap for GNN4LP generalizing under distribution shifts, this work addresses the fol-
lowing questions: (RQ1) Is the distribution shift induced by LPShift significant? (RQ2) Can SOTA
GNN4LPs generalize under our proposed distribution shifts? (RQ3) Can current LP generaliza-
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tion methods further boost the performance of current methods? (RQ4) What components of the
proposed distribution shift are affecting the LP model’s performance?

4.1 EXPERIMENTAL SETUP

Datasets: We consider 16 “Forward” and “Backward” LPShift splits of the ogbl-collab and ogbl-ppa
datasets (Hu et al., 2020), for a total of 32 tested splits. The resulting datasets represent tasks in two
separate domains and three shifted scenarios, allowing a comprehensive study of LP generalization
under distribution shift. For both datasets, we create multiple splits corresponding to each structural
property detailed in Section 3.2. For the “Forward” split, denoted as (X,Y, Z), an increase in Y and
Z indicates more structural information available to the training adjacency matrix. The “Backward”
split swaps the training and testing splits from their counterpart in the “Forward” split, resulting
in the training adjacency matrix losing access to structural information as X and Y increase. See
Appendix K for more details.

GNN4LP Methods: We test multiple SOTA GNN4LP methods including: NCNC (Wang et al.,
2023a), BUDDY (Chamberlain et al., 2022), LPFormer (Shomer et al., 2024), SEAL (Zhang et al.,
2021) and Neo-GNN (Yun et al., 2021). We further consider GCN (Kipf & Welling, 2017) as a
simpler GNN baseline, along with the Resource Allocation (RA) (Zhou et al., 2009) heuristic. All
models were selected based on their benchmark performance with the original OGB datsets (Hu
et al., 2020) and their architectural differences detailed in Section 2.

Generalization Methods: We also test the performance of different LP models with multiple gen-
eralization techniques. This includes DropEdge (Rong et al., 2020), which randomly removes a
portion of edges from the training adjacency matrix. Edge Proposal Sets (EPS) (Singh et al., 2021),
which utilizes one LP model to filter edges based on common neighbors and another method to rank
the top-k filtered edges in the training adjacency matrix. Lastly, we consider Topological Concen-
tration (TC) (Wang et al., 2023b), which re-weights the edges within the training adjacency matrix
based on the structural information captured by the TC metric.

Evaluation Setting: We consider the standard evaluation procedure in LP, in which every posi-
tive validation/test sample is compared against M negative samples. The goal is that the model
should output a higher score (i.e., probability) for positive sample than the negatives. To create the
negatives, we make use of the HeaRT evaluation setting (Li et al., 2024) which generates M nega-
tives samples per positive sample according to a set of common LP heuristics. In our study, we set
M = 250 and use CNs as the heuristic in HeaRT.

Evaluation Metrics: We evaluate all methods using multiple ranking metrics as a standard practice
in LP literature (Li et al., 2024). This includes the mean reciprocal rank (MRR) and Hits@20.

Hyperparameters: All methods were tuned on permutations of learning rates in {1e−2, 1e−3} and
dropout in {0.1, 0.3}. Each model was trained and tested over five seeds to obtain the mean and
standard deviations of their results. Given the significant time complexity of training and testing
on the customized ogbl-ppa datasets, NCNC and LPFormer were tuned on a single seed, followed
by an evaluation of the tuned model on five separate seeds. We include additional hyperparameter
details within Appendix Section K

4.2 RESULTS FOR GNN4LP

In order to provide a unified perspective on how distribution shift affects link prediction models,
each GNN4LP method was trained and tested across five seeded runs on versions of ogbl-collab and
ogbl-ppa split by: Common Neighbors, Shortest-Path, and Preferential-Attachment. Examining the
results, we have the following three key observations.

Observation 1: Poor Performance of GNN4LP

As shown in Table 1, RA and GCN consistently out-perform or remain competitive with GNN4LP
models, with more detailed results included in Appendix G. In Table 7 and 8, RA is overwhelmingly
the best-performing, achieving scores at least 6 MRR and 13 Hits@20 higher than the next best
model. However the results for the ogbl-ppa forward split, as shown in Table 9, indicate LPFormer
as the best-performing model on the PA split and NeoGNN on the CN - 3,5 split, albeit with a much
lower average score than demonstrated within the ogbl-collab forward split.
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Given ogbl-ppa’s reduction in performance and the superiority of simpler methods with ogbl-collab,
the structural shift induced by LPShift makes it difficult for GNN4LP to generalize. A key consid-
eration for this result is LPShift’s direct effect on graph structure, which applies a covariate shift to
features (Koh et al., 2021), especially where structure is correlated to the feature distribution.

To further quantify the extent of this correlation with LPShift, we measure the cosine similarity of
each split’s feature distribution, as shown in Appendix D. Additional analysis shown in Figure 5
and 6 indicate the performance effects of LPShift.

Table 1: Mean LP model rank for every tested ’forward’ and
’backward’ LPShift split. Rankings determined by Hits@20.

Split Type Forward Backward
CN SP PA CN SP PA

RA 3.17 1 3 5.33 7 2.33
GCN 2.67 3.75 2.8 2.5 1.25 6
BUDDY 3.67 3.25 4.8 4 1.75 4.33
NCNC 4.33 3.0 5.8 2 4 3.67
LPFormer 5.5 4.25 4 3.5 4 2.33
NeoGNN 4.83 6 3.8 5.17 4 6.5
SEAL 3.83 6.5 3.8 5.5 6 2.83

Observation 2: Performance Differs By
Both Split Type and Thresholds.

As shown in Figure 3, regardless of
whether a model is tested on a “Forward”
or “Backward” split; the change in struc-
tural information for each subsequent split
gradually changes a model’s performance.
We note that the results for ogbl-ppa and
ogbl-collab nearly mirror one another for
any given “Forward” split; where an ogbl-
ppa split increases, the respective ogbl-
collab decreases. On the “Backward”
split, a stark increase is seen across most
splits, indicating that more structural in-
formation between training and validation
improves LP performance (Wang et al., 2023a). The fact that these results include splits produced
by Preferential-Attachment, Global Structural Information (SP), and Local Structural Information
(CN) indicates the effect of any change in structural information when training LP models (Mao
et al., 2023).

Observation 3: Impacts on Performance Vary by Model. All raw model scores are stored in
Appendix Section G within Tables 7 to 14. Common Neighbors: Most models fail to generalize on
the “Backward” CN splits. However, once more Common Neighbors are made available in the CN -
4,2 and CN - 5,3 splits; NCNC performs 2 to 3 times better than other GNN4LP models. Therefore,
indicating that it is possible to generalize with limited local information. Shortest-Path: GNN4LP
Models which rely more on local structural information (i.e. NCNC, LPFormer, and SEAL) typ-
ically suffer more under the “Backward” SP splits, resulting in the models performing 2x to 4x
worse than BUDDY or GCN. Therefore, indicating the necessity for models to adapt in scenarios
with an absence of local structural information. Preferential-Attachment: Model performance on
the PA split is often 2 times higher than the original ogbl-collab (Hu et al., 2020), but reduces drasti-
cally with LPShift’s ogbl-ppa. Therefore, indicating the impact that structural shift incurs on larger
datasets.

Figure 3: The mean scores of the best-performing GNN4LP models tested with our proposed split-
ting strategy. Each line represents a given dataset and split, arranged uniformly between figures. In
the case of decreasing performance, the model with the highest average values was selected.
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4.3 RESULTS FOR GENERALIZATION METHODS

In this section, we apply DropEdge (Rong et al., 2020), EPS (Singh et al., 2021), and TC (Zhao et al.,
2023) on the previously benchmarked GCN (Kipf & Welling, 2017) and BUDDY (Chamberlain
et al., 2022) to determine the feasibility of improving the LP models’ generalization under our
LPShift.

Table 2: The mean change in performance for all splits with a given generalization method applied
to GCN.

ogbl-collab ogbl-ppa
Methods Forward backward Overall Forward backward Overall

DropEdge +4% +2% +3% -1% 0% -0.5%
EPS -39% -40% -40% -35% -15% -25%
TC -9% -35% -22% 0% 0% 0%

Observation 1: LP-Specific Generalization Methods Struggle. As demonstrated in Table 2, the
two generalization methods specific to LP: TC (Wang et al., 2023b) and EPS (Singh et al., 2021)
fail to improve performance under LPShift. EPS always results in a decrease of performance from
our baseline, indicating a failure to adjust for structural changes induced by LPShift. To validate
this, we calculate Earth Mover’s Distance (EMD) (Rubner et al., 1998) between the heuristic scores
of the training and testing splits before and after applying the generalization methods. EPS injects
CNs into the training adjacency matrix, significantly altering the training and testing distributions.
This drastic change is indicated in Figures 4 and 7 with the difference between ’EPS’ and ’LPShift’
EMD scores. Such a change in EMD and the Table 2 results, demonstrate that generalizing under
LPShift requires more than simply updating the training graph’s structure.

Figure 4: The EMD values calculated between the heuristic scores of training and testing samples.
Note: The tested heuristics correspond to their labelled splits, so as to simulate the dataset splitting.

TC decreases ogbl-collab performance, with little effect on ogbl-ppa performance. This is likely due
to LPShift’s distinct split thresholds; meaning there is limited structural overlap between sample dis-
tributions. As such, TC can’t re-weight the training adjacency matrix for improved generalization
to neighborhood information (Wang et al., 2023b; Li et al., 2022a). This result runs contrary to cur-
rent work, where re-weighting is effective for handling distribution shifts in other graph tasks (Zhou
et al., 2022a) and computer vision (Fang et al., 2020).

Observation 2: DropEdge Occasionally Works. As demonstrated in Table 2, DropEdge (Rong
et al., 2020) consistently improves performance on LPShift’s ogbl-collab; with a small detrimental
effect on ogbl-ppa. Figure 4 indicates that DropEdge causes little change in EMD between training
and testing samples. Given that EPS significantly affects EMD scores, DropEdge improving per-
formance is due to minor structural changes in the training adjacency matrix and limited effect on
sample distributions. Additional EMD results are provided in Appendix Section I.
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Figure 5: Three subplots detailing CN distributions for: 1.) the unaltered ogbl-collab dataset 2.) a
Holme-Kim (HK) graph with a random split 3.) the HK graph from 2. split with LPShift’s CN - 5,3
strategy

4.4 DISCUSSION

How effective is LPShift at inducing distribution shifts? The following section will explore the
capability of LPShift to induce a measurably-significant distribution shift in the structure of the ogbl-
collab dataset. We apply the 2-sample Kolmgorov-Smirnov (KS) test (Hodges Jr, 1958) to compare
if training, validation, and testing distributions can be sampled from one another, both before and
after applying LPShift. As a controlled baseline to test LPShift, we generate a Holme-Kim (HK)
graph (Holme & Kim, 2002) with a 40% chance to close a triangle, allowing the HK graph to contain
numerous Common Neighbors without becoming fully-connected. HK graph generation parameters
are included in Appendix D.

The first subplot in Figure 5 extends the reasoning introduced with NCNC (Wang et al., 2023a). As
such, this subplot indicates there is a natural shift for CNs within the original ogbl-collab dataset (Hu
et al., 2020). The p-value of 0, measured across both split permutations, indicates that the training
distribution of CNs is shifted from the validation and testing distributions. The second subplot
depicts a randomly-split HK graph (Holme & Kim, 2002), where CN distributions for each split
match one another, further indicated by the p-values of 1. The third subplot depicts the HK graph
from the second subplot split with LPShift’s CN - 5,3 strategy, resulting in a distinct shift between
all dataset splits, as confirmed by the 0 p-values. As such, LPShift induces structural shift that is as
measurably dissimilar as the structural shift present in the original ogbl-collab dataset, even when
the initial dataset splits are measurably identical. Additionally, the CN - 5,3 split causes the shape
of the HK graph’s CN distributions to become more similar to the shift observed within the original
ogbl-collab dataset, indicating that the ”Backward” LPShift strategy can function like a real-world
distribution shift.

Does GNN4LP generalize and do generalization methods work? As detailed in Section 4, basic
GNN and Heuristic methods perform competitively compared to GNN4LP models. This observation
coupled with the limited success of LP generalization methods, indicates the challenging problem
LPShift poses. As shown in Appendix Section J, the ”Backward” CN and SP splits on ogbl-collab
and all ogbl-ppa splits result in a 30−90% performance decrease from the HeaRT standard (Li et al.,
2024). This is especially notable given the difficulty HeaRT imposes on the original benchmark
setting (Hu et al., 2020). We also note that the majority of PA and forward splits for ogbl-collab result
in a 2-3 times performance increase. This result quantifies the prevailing assumption that GNN4LP
generalize well in scenarios with increasing structural information (Mao et al., 2024; Wang et al.,
2023a). However, LPShift’s ogbl-ppa suffers from the inverse scenario, where the majority of splits
result in a 60−90% decrease in performance. Therefore indicating that LPShift has stronger effects
across dataset domains, particularly when the dataset is larger. DropEdge is the only method to
(Rong et al., 2020) consistently improve LP performance when handling LPShift for the ogbl-collab
dataset. Traditional generalization methods (Arjovsky et al., 2019; Sagawa et al., 2019; Ganin et al.,
2016; Sun & Saenko, 2016), such as VREx (Krueger et al., 2021), achieve some promising results.
However, these gains are typically marginal, especially on the ”Backward” ogbl-collab split; as
indicated in Appendix Section H. Given LPShift’s impact on GNN4LP performance as well it’s
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resistance to current generalization methods, further study is required to eliminate the sensitivity
current GNN4LP models have to structural shift.

How is the proposed distribution shift affecting performance? The EMD calculations for the
training and testing samples show that simply adjusting training adjacency matrix structure is inef-
fective for improving performance under LPShift. To quantify how dataset structure affects perfor-
mance, we follow a similar analysis conducted in (Wang et al., 2023a), as shown in Figure 6. In
which, CN’s predictive performance is measured under LPShift. to provide insight on targeted ways
to impact dataset structure for better generalization.

Figure 6: Three subplots corresponding to: 1.) the ’CN - 1,2’ LPShift on ogbl-collab 2.) the ’CN
- 2,1’ LPShift on ogbl-collab 3.) CN predictor performance for the orginal ogbl-collab, ’CN - 1,2’,
and ’CN - 2,1’ splits.

The first two subplots in Figure 6 depict the density estimates of the CN distribution for the CN - 1,2
and CN - 2,1 LPShift splits of the ogbl-collab dataset. The third subplot depicts the performance of
CN on the datasets depicted in the first two subplots.

Given that LPShift only induces structural shift in affected datasets, it follows that the reduced per-
formance (1% MRR) of the CN ranking, as indicated in Figure 6, on the CN - 1,2 split is due to the
lack of structural information in the training split (CN = 0). After which, CN is required to rank pre-
dictions on valid and test splits with 1 and >2 CNs, respectively. The correlation between structure
and performance becomes especially clear in the CN - 2,1 scenario. The training split contains 2 or
more Common Neighbors, granting the CN predictor access to high amounts of structural informa-
tion, achieving an MRR of roughly 60%. However, since the testing split consists of samples with
zero Common Neighbors, the success on the training split does not transfer, resulting in an MRR of
1%. Given how many GNN4LP models incorporate neighborhood/structural information into their
architectures (Wang et al., 2023a), it follows that GNN4LP’s reduced performance on LPShift’s
forward splits is due to the absence of structural information induced by LPShift.

When one considers GNN4LP’s performance under LPShift, along with results presented in Figure 4
and 6, then augmenting the original graph structure with additional structural information, may
require a finer-scale focus than top-k CNs (Singh et al., 2021) to “repair” the missing structural
components in the adjacency matrix and enhance generalization under LPShift. As such, it would
be pertinent for LP models to extrapolate pairwise information from more varieties of structural
information in order to improve performance in shifted scenarios.

5 CONCLUSION

This work proposes LPShift, a simple dataset splitting strategy for inducing structural shift relevant
for link prediction. The effect of this structural shift was then benchmarked on 16 shifted versions
of ogbl-collab and ogbl-ppa, posing a unique challenge for SOTA GNN4LP models and general-
ization methods. Further analysis with EMD calculations and CN distributions indicate that current
generalization methods do not improve performance under structural shift. As such, LPShift pro-
vides a challenging problem requiring new considerations about how structure functions within link
prediction architectures.
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A REALISTIC SCENARIOS FOR STRUCTURAL SHIFT IN LINK PREDICTION

• Adversarial Recommender Systems = Shortest-Path: A company may want to under-
stand which products to avoid showing to a potential customer without need to hear the
user’s preferences directly. In this scenario, global information, as captured by Shortest-
Path, becomes the most valuable for the specific use-case.

• Social Recommender Systems = Preferential-Attachment: A video-streaming platform
working with independent content creators may wish to understand what drives users to en-
gage with the platform’s content creators, so that engagement can increase for less-popular
creators. As a starting point, the content creators with the most followers may have differ-
ent characteristics that increase engagement versus less-popular creators. So, the streaming
platform may wish to tune their dataset to determine if their recommendation system can
generalize from more to less-popular creators.

• Movie Recommender Systems = Common-Neighbors: A movie-streaming platform
wants to provide suggestions to users that are the most relevant to the user’s current in-
terests. So, the movie platform sorts possible movie recommendations by how much over-
lap the movies share with one another. In order to enhance exposure to new movies that
overlap with a user’s interests, the streaming platform can apply the Common Neighbor
LPShift to their dataset to force the algorithm to generalize in a scenario where movies
may not fully-overlap.

B HEURISTIC CHOICE

Resource Allocation and Adamic-Adar Index were not considered for splitting strategies given that
they build upon the original Common Neighbor formulation. Their inclusion is redundant given our
intentions to induce distinctive structural shifts based on varying structural information, as described
for each heuristic in Section 3.

C SPLITTING STRATEGY – ADDITIONAL ALGORITHMIC DETAILS

This section provides additional details about the way data was formatted before being used as
input for Algorithm 1 of our proposed splitting strategy and the intuition behind how Preferential-
Attachment and Shortest-Path work within the splitting strategy. The details on the algorithm in-
cludes:

• Validation and Testing Edges are limited to 100k edges total.

• PPA Training Edges are limited to 3 million edges total.

• Negative Testing and Validation edges are produced via HeaRT (Li et al., 2024).

• Validation and testing edges that are duplicated with training edges are removed from the
edge index.

• In order to provide overlap within a given dataset, validation and testing edges that do not
connect to training nodes are removed from the edge index.

• After sampling the necessary training edges, the adjacency matrix is extracted from the
edge index, converted to an undirected graph and has any edge weights standardized to 1.

Common Neighbors, Preferential-Attachment and Shortest-Path, as shown in Figure 2(a), 2(b), and
2(c) respectively, are interchangeable within the dataset splitting strategy. Details about how Com-
mon Neighbors functions within the strategy are included in Section 3.2. Figure 2(b) and Figure 2(c)
serve as toy examples and do not correspond directly to any dataset splits tested within our study.
However, the examples illustrated within Figure 2(b) and Figure 2(c) do correspond to how their
given heuristic functions within our splitting strategy.
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For Figure 2(b) or Preferential-Attachment, it determines the degrees between a given source and
target node and then multiples the two to produce the score, based on that score, the sample is then
sorted into a new dataset split.

For Figure 2(c) or Shortest-Path, the heuristic determines the score by determining the minimum
number of nodes necessary to reach the target node from the source node. If there is a link between
the two nodes, we remove the link and then re-add to the adjacency matrix after the score calcu-
lation. The final Shortest-Path score applies the calculated shortest-path length, SP (u, v) as the
denominator in a ratio of 1

SP (u,v) , which is then used to sort the sample into it’s respective dataset
split.

D ADDITIONAL ANALYSIS DETAILS

Anonymous Code is available at the following link:Anonymous Link

Note: We were unable to test CFLP (Zhao et al., 2022) and EERM (Wu et al., 2022) after adapting
their current implementations to our evaluation settings. CFLP experienced an out-of-memory error
on all tested dataset splits. EERM experienced an out-of-memory error on every LPShift split of
ogbl-ppa and exceeded 48 hours per run on ogbl-collab before converging.

The Holme-Kim graph used for analysis in Figure 5 was generated with the following parameters:

• n = 235868, m = 5, pc = 0.4, seed = 42

Table 3: The cosine-similarity of ogbl-collab’s original feature distribution and it’s LPShift versions.
Test permutations include: Train and Test, Train and Valid, Valid and Test. Note: ogbl-ppa is not
measured given it’s use of one-hot encoded feature vectors (Hu et al., 2020)

Split Type CN Splits SP Splits PA Splits
’Forward’ Original (0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 50, 100) (0, 100, 200) (0, 150, 250)

Train/Test 83.50 ± 7.33 87.73 ± 6.12 87.06 ± 6.08 86.45 ± 6.12 84.11 ± 6.94 84.35 ± 6.93 83.92 ± 7.22 87.48 ± 6.16 87.61 ± 6.10
Train/Valid 83.40 ± 7.33 87.42 ± 6.17 86.72 ± 6.14 86.19 ± 6.12 82.12 ± 7.34 82.66 ± 7.45 82.59 ± 7.63 87.55 ± 6.1 87.81 ± 6.17
Valid/Test 86.91 ± 6.58 91.78 ± 4.01 91.01 ± 4.29 90.42 ± 4.41 85.60 ± 6.75 85.97 ± 6.75 85.50 ± 7.14 92.52 ± 3.70 92.45 ± 3.84

’Backward’ Original (2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (100, 50, 0) (200, 100, 0) (250, 150, 0)

Train/Test 83.50 ± 7.33 85.53 ± 6.74 85.97 ± 7.09 86.08 ± 7.29 81.10 ± 7.74 81.99 ± 7.84 82.28 ± 7.96 84.75 ± 6.65 85.08 ± 6.65
Train/Valid 83.40 ± 7.33 85.22 ± 6.79 85.55 ± 7.15 85.62 ± 7.34 82.15 ± 7.79 82.81 ± 7.98 83.22 ± 8.00 85.32 ± 6.64 85.51 ± 6.64
Valid/Test 86.91 ± 6.58 90.45 ± 4.49 90.71 ± 4.43 90.74 ± 4.53 81.86 ± 7.48 82.76 ± 7.72 83.17 ± 7.85 89.94 ± 4.52 90.62 ± 4.46

E TIME TO SPLIT TESTED DATASET SAMPLES

A key consideration for LPShift’s application as a splitting strategy is to alleviate the burden of
gathering new datasets, allowing researchers to control for and then induce a distribution shift in
link-prediction datasets quickly; without requiring an expensive and time-consuming project to
build a new dataset. This consideration is inspired by current graph and node-classification bench-
mark datasets, all of which induce distribution shifts in pre-existing benchmark datasets (Gui et al.,
2022),(Ji et al., 2022),(Koh et al., 2021). LPShift is not meant to replace high-quality benchmark
datasets, especially for distribution shifts, but to serve as a supplement for current datasets and
enhance understanding of LP generalization. Results demonstrating LPShift’s time-efficiency on
tested dataset splits are included below in Table 4.

Table 4: The average time in seconds (s) across 10 runs to generate each ’Forward’ and ’Backward’
split for ogbl-ppa and ogbl-collab.

’Forward’ CN Splits SP Splits PA Splits
(0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 50, 100) (0, 100, 200) (0, 150, 250)

ogbl-collab 7.48 s 7.49 s 7.63 s 53.12 s 52.24 s 19.25 s 19.05 s 19.35 s
ogbl-ppa 177.89 s 177.09 s 178.23 s 2748.64 s 2705.91 s 406.5 s 408.04 s 407.81 s

’Backward’ (2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (100, 50, 0) (200, 100, 0) (250, 150, 0)

ogbl-collab 7.66 s 7.63 s 7.86 s 53.93 s 53.7 s 19.65 s 19.34 s 19.37 s
ogbl-ppa 184.98 s 186.49 s 185.95 s 2715.34 s 2751.56 s 425.3 s 409.93 s 403.55 s
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F SIZE OF DATASET SAMPLES

In this section we detail the number of training, validation, and test edges for all of the newly created
splits detailed in Section 3. There are in Tables 5 and 6 for ogbl-collab and ogbl-ppa, respectively.

Table 5: Number of samples in the ogbl-collab dataset for the forward and backward heuristic splits,
separated into columns allocated for training, validation, and testing splits.

Heuristic Split Train Valid Test

CN

(0, 1, 2) 57638 6920 4326
(0, 2, 4) 237928 20045 14143
(0, 3, 5) 493790 31676 21555

(2, 1, 0) 1697336 23669 9048
(4, 2, 0) 1193456 24097 11551
(5, 3, 0) 985820 25261 11760

SP

(∞, 6, 4) 46880 1026 2759
(∞, 4, 3) 52872 1238 3457

(4, 6, ∞) 1882392 5222 2626
(3, 4, ∞) 1877626 4384 7828

PA

(0, 50, 100) 210465 46626 9492
(0, 100, 200) 329383 62868 25527
(0, 150, 250) 409729 75980 39429

(100, 50, 0) 1882392 64729 41381
(200, 100, 0) 1877626 64202 30983
(250, 150, 0) 457372 65323 30999

Table 6: Number of samples in the ogbl-ppa dataset for the forward and backward heuristic splits,
separated into columns allocated for training, validation, and testing splits

Heuristic Split Train Valid Test

CN

(0, 1, 2) 2325936 87880 67176
(0, 2, 4) 3000000 95679 83198
(0, 3, 5) 3000000 98081 88778

(2, 1, 0) 3000000 96765 92798
(4, 2, 0) 3000000 93210 85448
(5, 3, 0) 3000000 92403 81887

SP

(∞, 6, 4) 17464 149 20
(∞, 4, 3) 134728 4196 1180

(4, 6, ∞) 3000000 90511 458
(3, 4, ∞) 3000000 97121 74068

PA

(0, 5k, 10k) 95671 95671 45251
(0, 10k, 20k) 98562 98562 63178
(0, 15k, 25k) 99352 99352 72382

(10k, 5k, 0) 3000000 90623 44593
(20k, 10k, 0) 3000000 89671 34321
(25k, 15k, 0) 3000000 91995 35088
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G DATASET RESULTS

In this section, we include all of the results for each experiment conducted on the generalization
methods and EMD calculations. Results from Tables 15, 16, 17, and 18 were used for the calcula-
tions demonstrated in Figure 2. Figure 4 was constructed from results within Table 21.

Table 7: ogbl-collab results on the Forward splits. Results reported in MRR with the best bolded
and the second best underlined.

Models CN Splits SP Splits PA Splits
(0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 50, 100) (0, 100, 200) (0, 150, 250)

RA 32.22 29.74 29.86 33.87 33.91 36.87 26.78 24.07
GCN 12.92 ± 0.31 15.20 ± 0.16 17.54 ± 0.19 10.29 ± 0.52 12.94 ± 0.59 20.78 ± 0.25 14.66 ± 0.20 14.03 ± 0.15
BUDDY 17.48 ± 1.19 15.47 ± 0.57 16.60 ± 0.89 16.20 ± 1.40 16.42 ± 2.30 21.27 ± 0.74 14.04 ± 0.76 13.06 ± 0.53
NCNC 9.00 ± 1.02 13.99 ± 1.35 15.04 ± 1.25 14.43 ± 1.36 18.33 ± 1.24 12.76 ± 1.60 6.66 ± 1.24 6.48 ± 1.53
LPFormer 4.27 ± 1.17 13.7 ± 1.48 25.36 ± 2.04 4.6 ± 3.15 15.7 ± 2.87 25.31 ± 5.67 11.98 ± 3.12 12.43 ± 6.62
NeoGNN 5.76 ± 1.69 16.10 ± 0.82 18.22 ± 0.61 6.11 ± 0.73 6.67 ± 1.16 16.65 ± 0.26 11.64 ± 0.49 12.25 ± 0.95
SEAL 7.06 ± 1.67 20.60 ± 6.23 19.78 ± 1.24 2.08 ± 1.50 2.10 ± 1.24 29.06 ± 1.57 20.69 ± 1.51 16.23 ± 3.69

Table 8: ogbl-collab results on the Forward splits. Results reported in Hits@20 with the best
bolded and the second best underlined.

Models CN Splits SP Splits PA Splits
(0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 50, 100) (0, 100, 200) (0, 150, 250)

RA 79.84 79.12 79.38 80.65 79.98 75.94 67.13 62.19
GCN 40.36 ± 1.58 50.49 ± 0.40 57.09 ± 0.69 38.11 ± 2.48 45.52 ± 1.62 62.95 ± 0.37 48.51 ± 0.46 45.92 ± 0.44
BUDDY 56.81 ± 1.99 59.49 ± 0.86 63.09 ± 0.63 52.82 ± 3.76 57.19 ± 3.46 60.19 ± 1.66 46.52 ± 1.55 43.10 ± 0.94
NCNC 37.03±1.34 46.05±1.46 49.76±1.13 48.31±2.95 56.52±3.10 47.22 ± 3.18 28.13 ± 4.06 24.53 ± 3.48
LPFormer 10.93±3.74 54.11±3.85 57.43±3.92 22.15±4.83 50.16±2.96 58.83 ± 8.89 33.39 ± 5.84 34.45 ± 11.73
NeoGNN 27.51 ± 11.67 42.50 ± 8.68 53.85 ± 0.96 17.69 ± 7.32 31.02 ± 10.15 53.23 ± 1.03 38.49 ± 0.83 35.11 ± 1.26
SEAL 25.90 ± 5.29 53.66 ± 12.69 56.48 ± 4.47 4.41 ± 3.16 6.37 ± 2.45 63.25 ± 2.49 53.80 ± 2.72 45.27 ± 7.50

Table 9: ogbl-ppa results on the Forward splits. Results reported in MRR with the best bolded and
the second best underlined.

Models CN Splits SP Splits PA Splits
(0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 5k, 10k) (0, 10k, 20k) (0, 15k, 25k)

RA 4.71 4.45 4.38 32.57 19.84 3.9 3.14 2.72
GCN 8.13 ± 0.38 7.51 ± 0.32 7.12 ± 1.05 5.40 ± 0.57 5.56 ± 0.21 4.19 ± 0.43 4.98 ± 0.52 5.95 ± 0.28
BUDDY 7.90 ± 0.32 3.83 ± 0.24 3.06 ± 0.06 1.24 ± 0.02 5.87 ± 0.16 3.93 ± 0.98 6.38 ± 3.48 2.48 ± 0.03
NCNC 4.26 ± 0.45 6.87 ± 0.36 6.32 ± 0.57 8.91 ± 7.46 5.55 ± 0.45 8.00 ± 0.60 6.90 ± 1.46 8.00 ± 0.78
LPFormer 3.28 ± 0.63 2.46 ± 0.51 4.84 ± 0.73 9.83 ± 5.92 4.94 ± 0.62 9.27 ± 1.78 9.03 ± 1.6 9.07 ± 2.43
NeoGNN 4.50 ± 0.45 5.86 ± 2.87 10.60 ± 3.54 3.13 ± 0.38 3.58 ± 0.45 4.92 ± 0.58 6.29 ± 0.87 8.98 ± 1.10
SEAL 11.91 ± 1.85 4.84 ± 0.10 5.15 ± 0.10 11.14 ± 12.06 2.96 ± 4.58 4.22 ± 0.63 3.43 ± 0.19 3.57 ± 0.74

Table 10: ogbl-ppa results on the Forward splits. Results reported in Hits@20 with the best bolded
and the second best underlined.

Models CN Splits SP Splits PA Splits
(0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 5k, 10k) (0, 10k, 20k) (0, 15k, 25k)

RA 18.09 17.01 16.71 90 63.56 14.93 11.16 9.15
GCN 29.98 ± 1.37 27.70 ± 1.16 25.35 ± 2.38 26.00 ± 6.52 27.00 ± 0.57 14.80 ± 1.08 16.49 ± 0.83 21.06 ± 0.57
BUDDY 26.42 ± 1.21 15.00 ± 1.38 11.38 ± 0.32 23.00 ± 5.70 23.95 ± 0.23 10.87 ± 1.57 14.37 ± 6.07 7.38 ± 0.15
NCNC 19.94±1.43 25.51±0.96 23.23±2.01 32.00 ± 17.54 24.66±2.15 21.00 ± 1.21 16.31 ± 2.03 17.76 ± 1.45
LPFormer 8.12±1.27 9.85±1.49 15.06±1.84 35±14.83 16.36±2.74 22.35 ± 5.09 20.37 ± 3.15 22.03 ± 5.45
NeoGNN 21.80 ± 2.66 18.24 ± 3.22 19.74 ± 3.93 20.00 ± 6.12 16.76 ± 2.96 15.50 ± 0.19 18.26 ± 1.54 22.22 ± 0.78
SEAL 30.76 ± 5.02 18.79 ± 0.25 19.28 ± 0.47 23.00 ± 18.91 10.85 ± 17.73 13.19 ± 1.43 10.62 ± 1.96 10.93 ± 2.08
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Table 11: ogbl-collab results on the Backward splits. Results reported in MRR with the best bolded
and the second best underlined.

Models CN Splits SP Splits PA Splits
(2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (100, 50, 0) (200, 100, 0) (250, 150, 0)

RA 0.6 4.79 15.9 0.69 0.63 33.09 42.28 44.14
GCN 5.78 ± 0.19 5.91 ± 0.05 7.07 ± 0.11 8.69 ± 0.47 6.47 ± 0.37 21.38 ± 0.27 13.36 ± 0.24 11.95 ± 0.35
BUDDY 3.70 ± 0.13 3.55 ± 0.09 5.40 ± 0.04 6.73 ± 0.32 3.71 ± 0.39 24.95 ± 0.92 15.52 ± 0.73 13.36 ± 0.83
NCNC 1.89 ± 1.27 16.48 ± 1.30 19.69 ± 1.52 1.62 ± 0.72 1.08 ± 0.73 14.86 ± 1.59 18.67 ± 2.75 17.39 ± 2.12
LPFormer 2.01 ± 0.95 3.87 ± 0.74 8.36 ± 0.63 3.16 ± 0.62 1.86 ± 0.48 17.76 ± 2.01 27.56 ± 9.10 24.04 ± 11.35
NeoGNN 2.14 ± 0.05 3.48 ± 0.10 9.44 ± 0.38 4.58 ± 0.30 2.55 ± 0.10 13.58 ± 1.12 7.65 ± 0.45 7.86 ± 1.52
SEAL 1.01 ± 0.02 3.38 ± 0.62 8.08 ± 1.96 0.93 ± 0.07 0.80 ± 0.01 31.83 ± 6.44 31.96 ± 6.65 39.58 ± 4.81

Table 12: ogbl-collab results on the Backward splits. Results reported in Hits@20 with the best
bolded and the second best underlined.

Models CN Splits SP Splits PA Splits
(2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (100, 50, 0) (200, 100, 0) (250, 150, 0)

RA 0 11.21 34.95 0 0 66.81 74.92 78.81
GCN 24.14 ± 0.72 22.85 ± 0.41 26.98 ± 0.20 32.91 ± 0.79 27.25 ± 0.38 69.43 ± 0.25 56.29 ± 0.71 54.56 ± 0.67
BUDDY 12.90 ± 0.29 11.69 ± 0.41 19.32 ± 0.51 25.05 ± 1.00 13.46 ± 1.22 73.41 ± 1.53 58.93 ± 1.61 59.17 ± 2.77
NCNC 3.91±1.94 33.02±2.05 50.6±2.69 4.11±0.85 1.33±0.83 53.49 ± 2.87 62.82 ± 5.22 62.57 ± 4.78
LPFormer 4.8±1.84 11.06±1.67 25.81±1.47 11.5±1.47 5.16±0.73 56.69 ± 2.57 63.39 ± 10.27 64.05 ± 8.47
NeoGNN 6.73 ± 0.31 11.42 ± 0.34 29.28 ± 0.88 18.32 ± 1.11 9.16 ± 0.62 43.72 ± 1.71 29.93 ± 2.17 30.89 ± 2.46
SEAL 1.88 ± 1.69 11.55 ± 2.71 23.21 ± 3.40 1.14 ± 0.61 0.00 ± 0.00 72.39 ± 13.93 73.82 ± 4.29 82.46 ± 3.08

Table 13: ogbl-ppa results on the Backward splits. Results reported in MRR with the best bolded
and the second best underlined.

Models CN Splits SP Splits PA Splits
(2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (10k, 5k, 0) (20k, 10k, 0) (25k, 15k, 0)

RA 0.53 0.92 1.17 0.65 0.54 7.4 5.81 5.08
GCN 3.52 ± 0.09 3.02 ± 0.09 2.94 ± 0.05 10.53 ± 0.48 3.38 ± 0.11 1.55 ± 0.07 1.29 ± 0.02 1.28 ± 0.03
BUDDY 1.60 ± 0.05 2.47 ± 0.07 2.56 ± 0.08 9.91 ± 0.32 3.03 ± 0.06 3.15 ± 0.16 2.55 ± 0.16 2.37 ± 0.02
NCNC 2.37 ± 0.15 8.54 ± 0.74 9.04 ± 0.92 5.56 ± 1.02 1.34 ± 0.56 7.33 ± 0.74 6.02 ± 0.85 5.55 ± 0.77
LPFormer 6.04 ± 0.41 4.23 ± 0.46 3.87 ± 0.1 5.9 ± 1.76 1.38 ± 0.46 14.43 ± 4.45 8.43 ± 3.46 6.27 ± 3.87
NeoGNN 0.76 ± 0.02 0.79 ± 0.00 0.86 ± 0.02 4.89 ± 0.13 0.83 ± 0.01 1.52 ± 0.05 1.38 ± 0.04 1.39 ± 0.06
SEAL 1.03 ± 0.54 0.95 ± 0.09 1.35 ± 0.56 1.51 ± 0.72 0.51 ± 0.02 4.88 ± 0.90 4.50 ± 1.10 2.38 ± 0.73

Table 14: ogbl-ppa results on the Backward splits. Results reported in Hits@20 with the best
bolded and the second best underlined.

Models CN Splits SP Splits PA Splits
(2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (10k, 5k, 0) (20k, 10k, 0) (25k, 15k, 0)

RA 0 1.03 1.89 0 0 28.74 23.36 20.28
GCN 13.87 ± 0.40 0.76 ± 0.40 9.87 ± 0.09 32.75 ± 0.86 15.45 ± 0.46 3.01 ± 0.41 1.58 ± 0.18 1.57 ± 0.18
BUDDY 3.22 ± 0.25 8.05 ± 0.42 8.06 ± 0.45 36.86 ± 1.32 13.60 ± 0.43 12.83 ± 0.79 8.84 ± 0.95 8.14 ± 0.15
NCNC 7.52±0.46 18.84±1.83 22.08±1.47 30.35±2.84 2.95±0.83 29.52 ± 2.86 22.41 ± 2.09 19.65 ± 2.61
LPFormer 15.17±0.84 12.12±0.73 11.73±0.79 24.24±3.02 2.45±0.72 46.16 ± 10.94 29.15 ± 14.20 23.51 ± 11.70
NeoGNN 0.01 ± 0.00 0.08 ± 0.01 0.37 ± 0.06 18.25 ± 0.81 0.50 ± 0.03 3.15 ± 0.30 2.13 ± 0.25 2.33 ± 0.33
SEAL 0.95 ± 1.47 0.98 ± 0.27 1.69 ± 1.16 5.15 ± 5.22 0.00 ± 0.00 15.78 ± 4.48 17.43 ± 3.42 8.52 ± 3.15
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Table 15: ogbl-collab results on the forward and backward splits when using DropEdge and TC.

DropEdge TC

Heuristic Split GCN BUDDY GCN BUDDY

CN

(0, 1, 2) 13.92 ± 0.78 15.54 ± 0.98 12.26± 0.28 11.27 ± 2.03
(0, 2, 4) 15.85 ± 0.25 16.16 ± 0.17 12.62± 0.57 12.39 ± 1.43
(0, 3, 5) 17.75 ± 0.11 16.34 ± 0.17 13.3± 0.47 14.99 ± 1.69

(2, 1, 0) 5.96 ± 0.17 2.61 ± 0.09 4.95 ±0.16 5.28 ± 0.05
(4, 2, 0) 6.14 ± 0.065 2.88 ± 0.11 5.37 ±0.13 5.23 ± 0.05
(5, 3, 0) 7.20 ± 0.15 4.99 ± 0.08 6.04± 0.07 6.03 ± 0.10

SP

(∞, 6, 4) 11.94 ± 0.46 12.31 ± 0.51 11.42 ±0.43 7.25 ± 0.81
(∞, 4, 3) 13.87 ± 0.43 17.11 ± 1.02 12.88± 0.43 9.33 ± 1.66

(4, 6, ∞) 9.18 ± 0.52 5.34 ± 0.43 9.09± 4.74 6.88 ± 0.30
(3, 4, ∞) 6.71 ± 0.13 2.93 ± 0.18 3.57± 2.30 6.24 ± 0.13

PA

(0, 50, 100) 20.76 ± 0.19 21.35 ± 0.36 17.55±0.57 18.82 ± 1.35
(0, 100, 200) 14.57 ± 0.20 13.84 ± 0.64 13.22±1.1 12.13±1.04
(0, 150, 250) 13.78 ± 0.28 12.85 ± 0.78 13.03±0.24 10.63±0.55

(100, 50, 0) 21.34 ± 0.65 26.09 ± 0.62 6.4 ± 0.2 15.84 ± 1.13
(200, 100, 0) 12.89 ± 0.59 15.68 ± 0.85 4.3 ± 0.14 9.15 ± 0.39
(250, 150, 0) 11.68 ± 0.37 13.13 ± 0.94 4.4 ± 0.16 6.7 ± 0.2

Table 16: ogbl-ppa results on the forward and backward splits when using DropEdge and TC.

DropEdge TC

Heuristic Split GCN BUDDY GCN BUDDY

CN

(0, 1, 2) 8.20 ± 0.34 7.83 ± 0.27 OOM 5.27 ± 0.34
(0, 2, 4) 7.39 ± 0.33 3.83 ± 0.25 OOM 2.91 ± 0.06
(0, 3, 5) 6.04 ± 0.32 3.06 ± 0.06 OOM 2.67 ± 0.13

(2, 1, 0) 3.50 ± 0.16 1.61 ± 0.04 OOM 3.44 ± 0.08
(4, 2, 0) 3.01 ± 0.07 2.47 ± 0.07 OOM 3.45 ± 0.1
(5, 3, 0) 2.97 ± 0.06 2.56 ± 0.08 OOM 3.55 ± 0.13

SP

(∞, 6, 4) 6.17 ± 0.76 3.86 ± 0.39 OOM 4.0 ± 0.29
(∞, 4, 3) 5.55 ± 0.22 5.87 ± 0.16 OOM 4.82 ± 0.39

(4, 6, ∞) 3.44 ± 0.17 3.86 ± 0.39 OOM 13.2 ± 0.45
(3, 4, ∞) 15.69 ± 0.54 5.87 ± 0.16 OOM 2.89 ± 0.09

PA

(0, 50, 100) 4.19 ± 0.43 3.93 ± 0.98 OOM 3.62 ± 0.21
(0, 10k, 20k) 4.98 ± 0.52 6.38 ± 3.48 OOM 3.13 ± 0.12
(0, 15k, 25k) 5.95 ± 0.28 2.49 ± 0.01 OOM 3.33 ± 1.38

(10k, 5k, 0) 1.51 ± 0.02 3.13 ± 0.1 OOM 1.78 ± 0.16
(20k, 10k, 0) 1.25 ± 0.07 2.56 ± 0.19 OOM 1.5 ± 0.0008
(25k, 15k, 0) 1.28 ± 0.03 2.40 ± 0.03 OOM 1.53 ± 0.04
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Table 17: ogbl-collab results on the forward and backward splits when using EPS for each given
Filter + Rank model configuration.

Heuristic Split GCN + BUDDY BUDDY + GCN RA + GCN RA + BUDDY

CN

(0, 1, 2) 8.50 ± 1.10 5.81 ± 0.11 7.42 ± 0.12 3.94 ± 0.51
(0, 2, 4) 12.85 ± 0.83 5.31 ± 0.22 7.07 ± 0.16 6.61 ± 0.30
(0, 3, 5) 15.35 ± 0.96 5.88 ± 0.16 7.52 ± 0.13 7.16 ± 0.09

(2, 1, 0) 5.46 ± 0.11 4.90 ± 0.08 5.24 ± 0.14 4.32 ± 0.19
(4, 2, 0) 5.36 ± 0.12 4.62 ± 0.16 5.27 ± 0.09 4.45 ± 0.12
(5, 3, 0) 5.96 ± 0.06 5.17 ± 0.09 5.15 ± 0.26 4.93 ± 0.11

SP

(∞, 6, 4) 7.38 ± 0.82 7.10 ± 0.43 7.38 ± 0.42 3.84 ± 0.59
(∞, 4, 3) 9.60 ± 0.39 6.24 ± 0.52 7.07 ± 0.46 7.63 ± 0.25

(4, 6, ∞) 6.86 ± 1.13 6.51 ± 0.24 6.11 ± 0.48 6.86 ± 1.13
(3, 4, ∞) 6.47 ± 0.24 4.86 ± 0.38 5.23 ± 0.23 6.47 ± 0.24

PA

(0, 50, 100) 15.92 ± 1.01 13.84 ± 0.14 13.23 ± 0.21 15.92 ± 1.01
(0, 100, 200) 9.47 ± 0.31 10.85 ± 0.11 10.71 ± 0.10 9.47 ± 0.31
(0, 150, 250) 9.60 ± 0.41 10.33 ± 0.15 9.96 ± 0.06 9.60 ± 0.41

(100, 50, 0) 14.34 ± 1.05 5.23 ± 0.28 5.07 ± 0.21 14.34 ± 1.05
(200, 100, 0) 8.35 ± 0.34 3.06 ± 0.08 2.93 ± 0.06 8.35 ± 0.34
(250, 150, 0) 5.50 ± 0.33 3.14 ± 0.14 2.79 ± 0.07 5.50 ± 0.33

Table 18: ogbl-ppa results on the forward and backward splits when using EPS for each given Filter
+ Rank model configuration.

Heuristic Split GCN + BUDDY BUDDY + GCN RA + GCN RA + BUDDY

CN

(0, 1, 2) 4.48 ± 0.33 OOM 3.53 ± 0.03 4.04 ± 0.26
(0, 2, 4) 3.79 ± 0.28 OOM 3.35 ± 0.03 3.42 ± 0.20
(0, 3, 5) 3.16 ± 0.10 OOM 3.22 ± 0.04 2.95 ± 0.13

(2, 1, 0) 3.19 ± 0.08 OOM 2.79 ± 0.11 2.58 ± 0.09
(4, 2, 0) 3.25 ± 0.09 OOM 2.64 ± 0.02 3.04 ± 0.05
(5, 3, 0) 3.36 ± 0.13 OOM 2.55 ± 0.09 3.10 ± 0.15

SP

(∞, 6, 4) 4.00 ± 0.20 OOM 2.09 ± 0.17 3.89 ± 0.23
(∞, 4, 3) 5.53 ± 0.92 OOM 5.18 ± 0.51 5.53 ± 0.94

(4, 6, ∞) 14.41 ± 0.67 OOM 6.46 ± 0.84 13.63 ± 0.97
(3, 4, ∞) 2.93 ± 0.15 OOM 2.48 ± 0.06 2.51 ± 0.14

PA

(0, 50, 100) 3.66 ± 0.38 OOM 4.34 ± 0.06 3.66 ± 0.38
(0, 100, 200) 3.19 ± 0.22 OOM 4.23 ± 0.03 3.19 ± 0.22
(0, 150, 250) 2.88 ± 0.06 OOM 3.78 ± 0.07 2.88 ± 0.06

(100, 50, 0) 2.05 ± 0.05 OOM 1.43 ± 0.05 2.05 ± 0.04
(200, 100, 0) 1.67 ± 0.03 OOM 1.26 ± 0.02 1.65 ± 0.05
(250, 150, 0) 1.66 ± 0.02 OOM 1.30 ± 0.02 1.64 ± 0.03
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H TRADITIONAL OOD GENERALIZATIOM METHOD RESULTS

Table 19: MRR Results for traditional generalization methods applied to GCN and BUDDY on the
Forward splits for ogbl-collab. Generalization methods that significantly improve performance are
bolded.

Models CN Splits SP Splits PA Splits
(0, 1, 2) (0, 2, 4) (0, 3, 5) (∞, 6, 4) (∞, 4, 3) (0, 50, 100) (0, 100, 200) (0, 150, 250)

BUDDY 17.48 ± 1.19 15.47 ± 0.57 16.60 ± 0.89 16.20 ± 1.40 16.42 ± 2.30 21.27 ± 0.74 14.04 ± 0.76 13.06 ± 0.53

+IRM 1.94 ± 0.16 13.42 ± 2.15 14.18 ± 0.97 4.92 ± 2.55 5.05 ± 0.91 18.17 ± 3.87 9.40 ± 2.22 9.40 ± 1.92
+VREx 14.76 ± 0.58 29.81 ± 0.06 16.32 ± 0.51 11.36 ± 0.92 17.56 ± 0.71 22.36 ± 0.48 14.30 ± 0.26 13.30 ± 0.27

GCN 12.92 ± 0.31 15.20 ± 0.16 17.54 ± 0.19 10.29 ± 0.52 12.94 ± 0.59 20.78 ± 0.25 14.66 ± 0.20 14.03 ± 0.15

+IRM 9.29 ± 0.25 12.15 ± 0.38 12.00 ± 0.61 9.93 ± 0.48 10.15 ± 0.72 18.77 ± 0.52 13.75 ± 0.13 12.08 ± 0.74
+VREx 14.03 ± 0.43 17.58 ± 0.39 17.56 ± 0.16 11.47 ± 0.45 13.96 ± 0.76 21.13 ± 0.35 14.68 ± 0.08 13.81 ± 0.07
+GroupDRO 5.59 ± 0.52 5.03 ± 0.34 5.68 ± 0.32 5.74 ± 0.45 6.61 ± 0.65 9.33 ± 1.28 7.46 ± 0.95 6.10 ± 0.77
+DANN 9.91 ± 0.24 10.43 ± 0.39 12.50 ± 0.37 10.69 ± 0.48 11.21 ± 0.85 21.51 ± 0.15 14.88 ± 0.18 12.97 ± 0.15
+Deep CORAL 9.52 ± 0.36 10.08 ± 0.62 12.40 ± 0.24 10.62 ± 0.51 10.99 ± 0.25 21.50 ± 0.11 14.65 ± 0.22 12.80 ± 0.24

Table 20: MRR Results for traditional generalization methods applied to GCN and BUDDY on the
Backward splits for ogbl-collab. Generalization methods that significantly improve performance
are bolded.

Models CN Splits SP Splits PA Splits
(2, 1, 0) (4, 2, 0) (5, 3, 0) (4, 6, ∞) (3, 4, ∞) (100, 50, 0) (200, 100, 0) (250, 150, 0)

BUDDY 3.70 ± 0.13 3.55 ± 0.09 5.40 ± 0.04 6.73 ± 0.32 3.71 ± 0.39 24.95 ± 0.92 15.52 ± 0.73 13.36 ± 0.83

+IRM 1.81 ± 0.29 2.63 ± 0.16 3.82 ± 0.17 4.93 ± 3.73 1.72 ± 0.21 16.99 ± 3.53 15.76 ± 3.08 12.29 ± 4.12
+VREx 2.65 ± 0.08 3.00 ± 0.11 4.99 ± 0.13 5.10 ± 1.01 18.12 ± 1.41 22.51 ± 0.76 16.01 ± 1.10 17.01 ± 0.65
GCN 5.78 ± 0.19 5.91 ± 0.05 7.07 ± 0.11 8.69 ± 0.47 6.47 ± 0.37 21.38 ± 0.27 13.36 ± 0.24 11.95 ± 0.35

+IRM 4.54 ± 0.54 4.87 ± 0.20 5.18 ± 0.17 6.41 ± 0.35 4.65 ± 0.96 15.15 ± 0.69 10.01 ± 0.57 8.63 ± 0.57
+VREx 5.84 ± 0.31 6.04 ± 0.08 7.22 ± 0.14 8.55 ± 0.42 6.49 ± 0.19 21.30 ± 0.31 13.28 ± 0.28 11.94 ± 0.26
+GroupDRO 2.49 ± 0.07 2.93 ± 0.18 3.04 ± 0.08 4.04 ± 1.24 2.93 ± 1.06 2.63 ± 0.73 2.60 ± 0.32 2.35 ± 0.26
+DANN 6.01 ± 0.15 5.95 ± 0.14 6.49 ± 0.07 14.68 ± 0.38 9.38 ± 0.20 8.62 ± 0.24 8.73 ± 0.54 6.67 ± 0.19
+Deep CORAL 5.98 ± 0.12 6.01 ± 0.15 6.48 ± 0.16 14.73 ± 0.44 9.42 ± 0.09 8.42 ± 0.45 8.57 ± 0.37 6.54 ± 0.17

I EARTH MOVER’S DISTANCE (EMD) RESULTS

Figure 7: The EMD values calculated between the heuristic scores of training and testing samples
on the ”Backward” LPShift splits before and after applying structural generalization methods. Note:
The tested heuristics correspond to their labelled LPShift splits, so as to simulate the dataset splitting.
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Table 21: EMD calculations for ogbl-collab on the forward and backward splits. Scores with a
distance multiple-times different than the baseline are in bold

Heuristic Split Baseline DropEdge EPS - GCN EPS - BUDDY

CN

(0, 1, 2) 1.31 1.31 6.62 3.6
(0, 2, 4) 1.6 1.6 4.91 2.52
(0, 3, 5) 1.45 1.65 3.82 2.22

(2, 1, 0) 1.87 1.15 1.71 2.91
(4, 2, 0) 2.26 1.49 1.29 2.99
(5, 3, 0) 2.28 1.52 0.314 2.14

SP

(∞, 6, 4) 5.93 5.94 0.012 0.012
(∞, 4, 3) 5.35 5.38 0.002 0.003
(4, 6, ∞) 3.6 3.53 1.22 1.22
(3, 4, ∞) 1.85 1.78 3.17 3.23

PA

(0, 50, 100) 1.87 1.89 2.94 3.42
(0, 100, 200) 2.29 2.32 3.59 2.72
(0, 150, 250) 2.34 2.36 3.73 3.08

(100, 50, 0) 4.29 4.3 3.31 2.48
(200, 100, 0) 3.79 3.82 2.84 0.78
(250, 150, 0) 3.48 3.5 2.7 2.48

Table 22: EMD calculations for ogbl-ppa on the forward and backward splits.

Heuristic Split Baseline DropEdge EPS

CN

(0, 1, 2) 2.82 2.82 >24hrs
(0, 2, 4) 3.13 3.13 >24hrs
(0, 3, 5) 3.05 3.19 >24hrs

(2, 1, 0) 3.1 2.36 >24hrs
(4, 2, 0) 3.3 2.55 >24hrs
(5, 3, 0) 3.19 2.44 >24hrs

SP

(∞, 6, 4) 5.81 5.84 >24hrs
(∞, 4, 3) 1.36 1.4 >24hrs

(4, 6, ∞) 2.14 2.14 >24hrs
(3, 4, ∞) 0.72 0.72 >24hrs

PA

(0, 5k, 10k) 2.55 2.55 >24hrs
(0, 10k, 20k) 2.76 2.76 >24hrs
(0, 15k, 25k) 2.78 2.78 >24hrs

(10k, 5k, 0) 2.96 2.96 >24hrs
(20k, 10k, 0) 2.68 2.68 >24hrs
(25k, 15k, 0) 2.48 2.48 >24hrs
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J LPSHIFT’S EFFECT ON HEART PERFORMANCE

Table 23: The percent change in Hits@20 for each LPShift split type and respective split direction
versus the original HeaRT setting (Li et al., 2024) on ogbl-collab. Note: LPFormer was untested
within the HeaRT paper and not included in this table.

”Backward” ”Forward”
Method CN SP PA CN SP PA

RA -36.65% -100% +300.26% +327.08% +330.65% +281.68%
GCN +9.68% +33.8% +267.32% +219.37% +186.0% +233.36%
BUDDY -37.32% -17.5% +273.39% +256.09% +235.57% +213.86%
NCNC +42.39% -86.8% +291.0% +216.11% +255.81% +162.49%
Neo-GNN -24.82% -34.67% +65.69% +196.32% +15.81% +201.32%
SEAL -43.58% -98.35% +353.37% +210.23% -75.11% +250.84%

Table 24: The percent change in Hits@20 for each LPShift split type and respective split direction
versus the original HeaRT setting (Li et al., 2024) on ogbl-ppa. Note: LPFormer was untested within
the HeaRT paper and not included in this table.

”Backward” ”Forward”
Method CN SP PA CN SP PA

RA -97.7% -100% -66.3% -75.85% +7.45% -82.6%
GCN -83.18% -64.76% -97% -59.5% -61.3% -72.5%
BUDDY -91.0% -64.7% -86.1% -75.4% -67.2% -84.48%
NCNC -80.0% -79.7% -71.0% -72.2% -65.5% -86.8%
Neo-GNN -99.8% -85.5% -96.1% -69.25% -72.65% -71.3%
SEAL -98.5% -96.6% -81.9% -71.12% -78.0% -85.0%

K ADDITIONAL TRAINING DETAILS

This section provides relevant details about training and reproducing results not mentioned in Sec-
tion 4.1:

Please consult the project README for building the project, loading data, and re-creating results.
Tuned model hyperparameters are further detailed within their respective run scripts.

Table 25: Fixed Model Hyperparameters by tested LPShift dataset.

Model Dataset Model Layers Predictor Layers Hidden Channels

GCN ogbl-collab 3 3 128
ogbl-ppa 3 3 128

BUDDY ogbl-collab 3 3 256
ogbl-ppa 3 3 256

NCNC ogbl-collab 3 3 256
ogbl-ppa 3 3 256

NeoGNN ogbl-collab 3 3 256
ogbl-ppa 3 3 256

LPFormer ogbl-collab 3 3 128
ogbl-ppa 3 3 128

SEAL ogbl-collab 3 3 256
ogbl-ppa 3 3 256
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• All experiments were conducted with a single A6000 48GB GPU and 1TB of available
system RAM.

• NCNC for all datasets and splits, besides the ogbl-ppa PA splits, considers the ’NCNC2’
variant of NCNC with an added depth argument of 2 (Wang et al., 2023a). For the ogbl-ppa
PA splits, we apply a depth argument of just 1 in order to ensure that a single seeded run
does not exceed 24 hour runtime.

• NeoGNN use 2-hop neighborhoods on the LPShift ogbl-collab datasets and 1-hop on the
LPShift ogbl-ppa datasets.

• Initial tuning on batch size fixed learning rate at 1e−3 and dropout at 0.1. Model
performance and memory complexity was then tested for a single run across a space
of {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536}. This was
done with the intent to balance computational time with performance for full experiments.

• At runtime, training samples are constrained to the same number as validation samples
to prevent overfitting, especially in scenarios where the splitting strategy produces vastly
more training samples than valid samples.

L WHY USE LPSHIFT? PERSPECTIVES ON DISTRIBUTION SHIFT.

• Data Perspective: Link prediction is a task focused on understanding the dynamics when
edges form between nodes; requiring models to effectively understand these dynamics to
determine whether a link will form (or not) (Liben-Nowell & Kleinberg, 2003). As such,
link prediction is more interested in pairwise dynamics than what is necessary for graph
and node classification. Due to this distinction, there is limited overlap between graph/node
classification and link prediction. As such, distribution shifts that are relevant in graph and
node classification do not mean as much in link prediction. For example, we consider
the scaffold shift imposed on molecule datasets within the DrugOOD benchmark (Ji et al.,
2022). This special type of structural shift groups molecules with similar subgraphs to
induce an out-of-distribution scenario. Given that the scaffold shift in DrugOOD is not
associated with the formation of links, then the shift loses it’s relevancy when applied to
models that learn pairwise dynamics necessary for link prediction.

• Model Perspective: Structural heuristics that consider pairwise information are important
for SOTA GNN4LP models. For example, BUDDY (Chamberlain et al., 2022) integrates
RA directly into it’s architecture and NCNC (Wang et al., 2023a) elevates CN into a neural
architecture. The integration of these structural heuristics allow the link prediction models
to achieve SOTA performance. However, as demonstrated in Tables 23 and 24, GNN4LP’s
reliance on structural heuristics leads to degraded performance when LPShift induces struc-
tural shift within the graph dataset. The performance of models less reliant on structure,
such as GCN (Kipf & Welling, 2017), do not degrade as significantly. This indicates that
future models must balance between learning on graph structure and understanding shifts
in link formation to improve performance under LPShift; especially in scenarios analogous
to real-life (i.e. Figure 1).

• Application Perspective: There is a practical difference between graph or node classifica-
tion and link prediction as downstream tasks for graph representation learning (Hu et al.,
2020). Even though a graph or node classification model could consider pairwise dynam-
ics; it is limiting for a link prediction model to only consider node labels when predicting if
edges will form (Yun et al., 2021; Zhang et al., 2021). Pairwise dynamics are distinct in that
they determine how a graph forms on a finer scale, whereas node information constitutes
what a graph is made of (Adamic & Adar, 2003; Barabási & Albert, 1999). The distinct-
ness of these pairwise dynamics then necessitates dedicated evaluation to edge structures
within the graphs. As such, LPShift serves as a measurable means to define a shift in
these pairwise dynamics, allowing evaluation in a controlled setting that is relevant for link
prediction.
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M DATASET LICENSES

The dataset splitting strategy proposed in this paper is built using Pytorch Geometric (PyG). As
such, this project’s software and the PyG datasets are freely-available under the MIT license.

N LIMITATIONS

The proposed dataset splitting strategy is restricted to inducing distribution shifts solely with neigh-
borhood heuristics on static graphs. So, it does not directly consider other types of possible distribu-
tion shifts for the link prediction task (i.e. spatio-temporal (Zhang et al., 2022) or size (Zhou et al.,
2022b) shift). Additionally, since the neighborhood heuristics compute discrete scores produced
from an input graph’s structural information and effectively training GNN4LP models requires no
leakage with validation/testing, it may be difficult to determine the correct thresholds to extract a
meaningful number of samples. For Common Neighbors and Preferential-Attachment, this is espe-
cially relevant with smaller training graphs, given that larger and/or denser graphs have inherently
more edges. Therefore, larger and denser graphs have inherently more possible Common Neighbors
and Preferential-Attachment scores. For Shortest-Path, splitting can be exceptionally difficult for
denser graphs, as demonstrated with the tiny split sizes for ogbl-ppa in Table 6.

O IMPACT STATEMENT

Our proposed dataset splitting strategy mimics the formatting of PyTorch Geometric datasets. This
means that our strategy is simple to implement, enabling future work involved with understanding
this type of structural shift for link prediction and promoting beginner-friendly practices for artificial
intelligence research. Additionally, since the structural shift we propose in this article affects real-
life systems, which integrate link prediction models, this research can provide a foundation for the
improvement of relevant technologies; which holds positive ramifications for society and future
research. No apparent risk is related to the contribution of this work.
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