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Abstract

Aiming to locate the object that emits a specified sound in complex scenes, the
task of sounding object localization bridges two perception-oriented modalities of
vision and acoustics, and brings enormous research value to the comprehensive per-
ceptual understanding of machine intelligence. Although there are massive training
data collected in this field, few of them contain accurate bounding box annotations,
hindering the learning process and further application of proposed models. In order
to address this problem, we try to explore an effective multi-modal knowledge
transfer strategy to obtain precise knowledge from other similar tasks and transfer it
through well-aligned multi-modal data to deal with this task in a zero-resource man-
ner. Concretely, we design and propose a novel Two-stream Universal Referring
localization Network (TURN), which is composed of a localization stream and an
alignment stream to carry out different functions. The former is utilized to extract
the knowledge related to referring object localization from the image grounding
task, while the latter is devised to learn a universal semantic space shared between
texts and audios. Moreover, we further develop an adaptive sampling strategy to
automatically identify the overlap between different data domains, thus boosting
the performance and stability of our model. The extensive experiments on various
publicly-available benchmarks demonstrate that TURN can achieve competitive
performance compared with the state-of-the-art approaches without using any
data in this field, which verifies the feasibility of our proposed mechanisms and
strategies. The code is available at https://github.com/AwalkZY/TURN.

1 Introduction

When interacting with the external environment, humans can gather and integrate much informa-
tion through different types of perception (such as vision, hearing, smell, and taste), thus making
corresponding judgments and decisions based on this. To effectively mimic this ability to bridge
knowledge from various modalities, researchers have been trying to explore the potential of machine
intelligence from different aspects. Among them, as a crucial part of audio-visual learning, the task
of sounding object localization has gained an increasing amount of attention.

Given a specific sound, the goal of sounding object localization is to ascertain the object that emits
it in a complex scene. To tackle this problem, a lot of efforts are made to model the co-occurrence
patterns in the visual and acoustic data and accordingly identify the possible target region. And for
the research and development in this field, there have been numerous aligned data pairs collected into
several publicly-available benchmarks. Nevertheless, few of them contain available box annotations,
which forces the models to acquire knowledge in a weakly supervised manner and increases the
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difficulty in the training process. Apart from this, the annotations in the test split are usually given as
bounding boxes, which keeps consistent with other spatial localization tasks. But restricted by the
architecture and learning paradigm, most of the proposed models can only generate results in the
format of heatmaps but not bounding boxes, bringing much inconvenience to the further utilization of
located regions.

In spite of this, when we look into another subproblem of referring object localization, i.e., image
grounding, we may find that the data in this field are usually equipped with accurate bounding box
annotations, which brings higher information density and better model performances. So is there any
suitable solution to extract and migrate the knowledge from this field to our target scenario? The
answer is Yes. As with the pivot-based alignment strategies adopted in the zero-resource machine
translation [61, 40, 23, 52], we can turn to the datasets of audio retrieval and use a series of aligned
text-audio pairs as intermediaries to establish an efficient knowledge transfer pipeline to tackle
the target problem in a zero-resource manner. Although it sounds straightforward and feasible
theoretically, such a learning scheme is still faced with two kinds of practical challenges: 1) Domain
gap, which consists of the essential discrepancies between all these three data domains. As depicted
in the green part of Figure 1, the queries in image grounding put more emphasis on the appearance,
quantity and spatial relationship of the objects, while those in audio retrieval tend to describe action,
state and temporal change about the targets. Meanwhile, similar gaps also exist in the visual inputs
(illustrated in the red part) and the acoustic data in the other two modality pairs. 2) Modality gap,
which stems from the intrinsic properties within different modalities and the complicated relationships
between them. The noise and redundant information in these three modalities will hamper the transfer
process from different aspects, and the non-monotonic alignment between modalities also makes it
hard to learn cross-modal representation in fine granularity.

Figure 1: The major challenges in our problem setting.

To this end, we propose a novel Two-stream Universal Referring localization Network (TURN) to
handle the problem of sounding object localization in a zero-resource way and reduce the potential
performance degradation from the challenges described above. Specifically, we utilize a localization
stream to model the relationship between visual elements and referring queries so as to unearth
valuable location knowledge from image grounding data. Meanwhile, we develop an alignment
stream to construct a universal semantic space for the linguistic and acoustic data, thus enabling
efficient knowledge transfer to our target task. Moreover, considering that different data items will
affect the transferability of knowledge to a varying extent, we further devise an adaptive sampling
strategy to automatically identify the overlap between various data domains and accordingly modulate
the sampling weights of data, which enhances the stability of the learning process and improves the
all-around performance of our model.

In conclusion, our contributions in this paper can be summarized in the following aspects:

• We explore the task of sounding object localization from a zero-resource perspective for the
first time and discuss the feasibility of transfer-based solutions in this setting.

• We devise a novel adaptive sampling mechanism in the area of multi-modal knowledge
transfer, which can automatically discover the overlap between different data domains and
adjust the sampling weights of data, thus enhancing the comprehensive performance of the
learning model.

• We propose an effective two-stream architecture for the target of zero-resource sounding
object localization. Without using any training data in this field, TURN achieves competitive
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performance on publicly-available benchmarks, including MUSIC and VGGSS, which
demonstrates the feasibility of our proposed solution.

2 Related Work

Audio-Text Representation Learning Cross-modal representation learning aims to capture the
relationship between different modalities and project embeddings to the same latent space. Though
many works have studied image-text [22, 15, 44] and audio-visual representation learning [5, 38, 53],
audio-text representation learning is still under-studied. Some works [38, 8, 35] directly computed
the similarity between embeddings but cannot well encode the semantic and acoustic information
into the embeddings at the same time. Other works such as Chen et al. [12] attempted to learn
interactive cross-modal representation with both acoustic and textual information followed the spirit
of contrastive language–image pre-training, but might be deeply affected by the insufficiency of
training data. Considering that VQ-VAE [56, 6, 68] has shown its outstanding performance in discrete
representation learning, we try to learn the audio-text representation via cross-modal reconstruction
and codebook sharing based on the structure of VQ-VAE.

Transfer Learning Typical transfer learning is usually applied to solve the problem of data
distribution inconsistency between source and target domains. The mainstream approaches in this
area usually tackle this problem from one of these three perspectives: data inputs [16, 3, 66, 11],
intermediate representations [9, 41, 20, 31, 58, 67] and learning paradigms [36, 30, 32, 18, 46].
However, these works are based on the assumption that the source and target domains are conceptually
close and modally consistent. In order to handle the situation where data from the source domain and
target domain are not closely related, Tan et al. [54] formulated the paradigm of Transitive Transfer
Learning (TTL) and exploited an auxiliary annotated intermediate domain to transfer knowledge.
And considering the cost of constructing the intermediate domain, Tan et al. [55] further proposed a
novel learning schema Distant Domain Transfer Learning (DDTL), in which the intermediate domain
will be automatically selected and constructed from multiple datasets without labels, thus achieving
the knowledge transfer between completely unrelated domains. Recently, some researchers have also
discussed the usage of transfer learning strategies in the multi-modal scenarios, which covers the field
of image caption [39], audio caption [71], machine translation [40] and so forth. In this paper, we
further explore the application of transfer learning paradigms in the task of zero-resource sounding
object localization as a complement to this field.

Referring Object Localization Given a complicated scene with multiple objects and a specific
referential query, the task of referring object localization is to ascertain the location of the object that
best matches the given reference. Depending on the modality of queries, this field can be subdivided
into Image Grounding and Sounding Object Localization. In the scenario of image grounding, the
queries are given in natural language descriptions, and fully-annotated data are denoted to facilitate
this area. Consequently, a lot of supervised approaches and architectures are proposed to tackle this
problem, which can be further categorized into proposal-based [24, 28, 34, 59, 60, 62, 69, 72] and
proposal-free ones [17, 33, 47, 64, 63]. The former estimate the confidences of all the pre-defined
proposals and choose the best one in a ranking-based way, while the latter directly regress the
coordinates of bounding boxes based on the fully aggregated and fused representations. When it
comes to acoustic queries, clear box annotations are usually unavailable in the training partition of
previously proposed datasets [14, 48, 70]. Therefore, researchers in this field turn to explore the
solutions [26, 42, 45, 51, 1, 25] based on contrastive learning paradigms and produce pixel-level
heatmap results in a weakly-supervised way. Although sounding object localization shares lots of
commonalities in essence with image grounding, there is still a lack of discussions and analyses of
their relationships and characteristics. In this paper, we make a pioneering attempt to link these two
subproblems and explore modality-independent universal referring object localization.

3 Method

3.1 Problem Formulation

As depicted in Figure 2, our goal is to extract adequate knowledge from the data of image grounding
and modulate it with the assistance of well-aligned audio-text corpora in the field of audio retrieval,
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Figure 2: Overall architecture diagram of our model TURN. Best viewed in color mode and with
zoom-in. The green line is localization stream and other lines are combined to form alignment stream.

thus achieving an acceptable generalization performance on the task of sounding object localization.
For the sake of clarity, we regard the data of image grounding, audio retrieval and sounding object
localization are from the source, intermediate and target domains with the notations of Ds, Dm and
Dt, respectively. Under this definition, this problem setting can be also considered as a knowledge
transfer and generalization from Ds to Dt via Dm. To keep consistent with the other prior works and
the characteristics of different domains, only a limited amount of data from source and intermediate
domains are accessible to the model during training, and the annotated testing data of target domain
will be finally used to measure the overall generalization ability in the evaluation.

3.2 Model Architecture and Data Specification

Overall Network Structure The overall workflow of our proposed model is depicted in Figure 2.
Specifically, our model conducts the calculations in two parallel pathways referred to as localization
and alignment streams in the following descriptions. The localization stream focuses on modeling
dependencies within visual elements and capturing relationships between inputs and queries, thus
accordingly producing the target bounding boxes. In this part, a series of pre-trained backbones are
first utilized to embed the input images into a group of object-aware features. And these features
will be further refined and aggregated with the guidance of query conditions and then used to predict
the coordinates of target regions. Meanwhile, the alignment stream is developed to align the data
distribution of different domains and modalities into a shared space and generate debiased query
conditions to serve as references for the localization stream. In order to construct a semantically
complete latent space of query embeddings, we exploit a group of shared vector quantizers and devise
a cross-reconstruction mechanism to alleviate the domain and modality gaps existing in the input
audio and text data. Moreover, we additionally employ an auxiliary classifier to adjust the sampling
weight during the training phase to help our model adaptively absorb knowledge from different
domains.

Inputs and Annotations Before the detailed descriptions of our proposed architecture, we first
formulate the concrete symbolic definitions of the inputs, annotations and representations. To
begin with, the original data from source, intermediate and target domains are denoted as Ds =
{(Vs,Ts,bs) ∈ (Vs, T s,B)}, Dm = {(Tm,Am) ∈ (Vm, T m)} and Dt = {(Vt,At,bt) ∈
(Vt, T t,B)}. For simplification, we omit the superscript in the following explanations when there is
no need to distinguish between different domains. In these notations, V ∈ [0, 1]3×H×W , T ∈ NLt

and A ∈ RLm×c represent the pixel matrix, word index sequence, and log-mel spectrogram of the
image, text and audio inputs, respectively. As for the annotation format, b = [x, y, w, h] ∈ [0, 1]4

represents the target bounding box of queried object.

3.3 Localization Stream

As the basic component of referring object localization, the localization stream is applied to obtain
location-related knowledge from the source domain and produce target bounding box predictions.
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Given an image containing multiple objects V ∈ [0, 1]3×H×W and a semantically condensed
query condition q ∈ Rd, we first project the visual input into a series of object-aware embeddings
Ṽ = {ṽ1, . . . , ṽnv

} via a pre-trained DETR backbone [10] and a group of multi-layer perceptrons,
where ṽ ∈ Rd and nv is the input sequence length of the DETR encoder.

After the initial extraction procedure, we combine the guidance information from query conditions
into the visual representations via a simple element-wise multiplication. And then, we employ another
transformer encoder component to model the dependencies and relations among these query-aware
visual features and generate a bunch of fully fused representations, which can be given by

v̄ = 1
nv

∑
(Θv(v̂1, v̂2, . . . , v̂nv )), where v̂i = ṽi · q/||ṽi · q||2. (1)

In this formula, the notation Θ(· · · ) stands for the transformer encoder module and we conduct a
l2-norm to prevent numerical instability caused by the dot product calculation.

Finally, we calculate the aggregated representation by averaging all the patch features and utilize a
multi-layer perceptron to generate the prediction of bounding boxes, given by

b̂ = σ(Wv
2(ReLU(Wv

1 v̄ + cv1)) + cv2), (2)

where Wv
1 ∈ Rd×d,Wv

2 ∈ R4×d and cv1, c
v
2 ∈ Rd are all learnable parameters, σ(·) is the sigmoid

function and b̂ ∈ [0, 1]4 is the predicted bounding box.

3.4 Alignment Stream

In the overall knowledge transfer procedure, the alignment stream plays a crucial role in extracting
the domain- and modality-invariant representations from the original inputs and providing query
condition features as the reference of the localization stream.

In the training phase, we first project the text data into a series of continuous word embeddings,
denoted as T̂s = {t̂s1, . . . t̂sLt

} and T̂m = {t̂m1 , . . . , t̂mLt
}, respectively. And the log-mel spectrogram

of audio data will be compressed via a stack of convolutional layers, given as Âm = {âm1 , . . . , âmLa
}.

Afterward, we utilize two transformer encoders to generate context-aware linguistic and acoustic
features and aggregate them into a single semantically-rich representation t̄, ā ∈ Rd, as formulated
in Equation 3. It’s worth noting that the word embedding table and text encoder are shared between
source and intermediate domains so as to filter out the domain-specific bias within the original data.

t̄ = 1
Lt

∑
(Θt(̂t1, . . . , t̂Lt

)), ā = 1
La

∑
(Θa(â1, . . . , âLa

)), (3)

Next, we expect to learn a universal semantic representation space where the data with the same
semantics but from different domains or modalities will be mapped to adjacent positions so that the
localization of target objects can be independent of the query source. Regarding the remarkable
performance of variational autoencoder in fitting distributions of variables, we employ the straight-
through VQ-VAE [56] module to achieve this goal. Following the strategy adopted in [7], we split
the aggregated features into a total of q chunks and utilize a group of codebooks {Ψ1(·), . . . ,Ψq(·)}
to project them into multiple shared semantic spaces and reorganize them into a series of debiased
query representations ť, ǎ ∈ Rd, which will serve as the query condition term q in Equation 1 and
can be given by

ť = [Ψ1(̄t1); · · · ; Ψq (̄tq)], ǎ = [Ψ1(ā1); · · · ; Ψq(āq)], (4)

where [; ] is the concatenation operator and t̄i, āi ∈ Rd/q represents the i-th part of t̄ and ā (i.e.,
t̄ = [̄t1; . . . ; t̄q] and ā = [ā1; . . . ; āq])

Afterward, we further devise a self-cross-reconstruction mechanism to improve the robustness of
query representations and enhance the mutual information between aligned texts and audios.

T̃s = Ωt(̌t
s,Ts

mask), T̃m = Ωt(ǎ
m,Tm

mask), Ãs = Ωa(̌t
m,Am

mask), (5)
where Tmask and Amask are the modified inputs in which a certain proportion of the original data
into the <mask> embedding and Ω(X,Y) is a mask-predict transformer decoder to reconstruct the
masked elements of Y with the reference of X. As formulated in Equation 5, the texts from the source
domain are reconstructed with the guidance of itself and the reconstruction in the intermediate domain
will be performed in a cross-modality way. Thereafter, the aggregated features of one modality will
be able to get modulated in a data-driven manner to serve as reasonable substitutes of the other one.
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3.5 Training and Inference

As mentioned above, the entire architecture can be trained in an end-to-end mechanism. Given the
annotation b from the source domain, we follow the learning strategy adopted in [17] and apply a
combination of regression-based and IoU-based loss functions to optimize the localization stream,
formulated as

Lloc = λ1Lreg(b̂,b) + λ2Liou(b̂,b) (6)
where the Lreg(·, ·) is the smooth l1 loss to optimize the regressions of each coordinate separately,
and Liou(·, ·) is the GIoU loss to conduct an overall constraint on predicted boxes.

As for the alignment stream, the optimization target is composed of the following three aspects, which
will be presented in the logical order of calculations. Initially, in order to maximize the possibility of
mapping the aligned linguistic and acoustic data to the same discrete code, we apply a contrastive
learning paradigm with the InfoNCE loss [50, 57] in every mini-batch to constrain the distribution of
aggregation vectors, given by

Lcontra =
1

b

b∑
i=1

log(
exp(D(̄tmi , ā

m
i )/τc)∑b

j=1 exp(D(̄tmi , ā
m
j )/τc)

), (7)

where b is the size of each mini-batch and τc is the temperature hyper-parameter. D(x,y) measures
the distance between two vectors x and y, and we use the the normalized inner-product to calculate
the cosine-similarity distance in this part.

And next, all the codebooks will conduct calculations in parallel and get optimized in a K-means
based manner individually, which can be abstracted as

Lcode = ||sg[f ]−Ψ(f)||22 + β||f − sg[Ψ(f)]||22, (8)

where f denotes the input of codebooks and sg(·) represents the stop-gradient operation.

Moreover, two reconstruction losses will be utilized to indirectly modulate condition representations,
given by

Lt
recon = Lce(T̃,T), La

recon = Ll1(Ã,A) (9)

where Lce(·, ·) and Ll1(·, ·) are the cross-entropy and l1 loss functions, respectively.

In conclusion, the optimization of alignment stream is summarized as

Laln = λ3Lcode + λ4(La
recon + Lt

recon) + λ5Lcontra, (10)

Finally, the overall loss function is combined as L = Lloc + Laln to learn our proposed architecture,
where λ1, . . . , λ5 are the balancing factors to control the magnitude of corresponding terms. And in
the process of inference, we can simply take the projected embeddings of audio data as the condition
representations to the localization stream and generate the calculation result.

3.6 Adaptive Sampling Strategy

Although we have already obtained a set of domain- and modality-invariant representations and
performed sufficient alignments, the huge inherent gaps between the source and intermediate domains
still heavily hamper the transferability and generalization ability. As illustrated previously, there tend
to be some domain-specific data samples in the corpora. For example, “The half of the sandwich on
the right” might be a good item for image grounding, but there merely exists any acoustic information
in this scenario. And it will also be too abstract to imagine the concrete object corresponding to “A
loud high-pitched sound takes place.” Generally, a sample like “A car was going on the road.” may
serve as an excellent point to bridge knowledge. To this end, we try to estimate the domain-exclusivity
of data items and take this as a reference for data sampling. Specifically, given all the queries from
T s and T m, we first employ an extra classifier Φ(·) to discriminate between them and use the domain
labels to optimize this module, formulated as

Lext = −
∑

ts∈T s

log(σ(Φ(ts)))−
∑

tm∈T m

log(1− σ(Φ(tm))). (11)

After this training procedure, the classifier will respond with higher confidence to the data from the
source domain and lower confidence to those from the intermediate domain. On this basis, we can
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safely assume that ts with lower confidence Φ(ts) and tm with higher Φ(tm) ought to be shared
between these two domains and located within the intersection part.

Consequently, the data sampling weights will be assigned adaptively via the following mechanism.

ws
i =

exp(−Φ(tsi)/τ
s)∑

j exp(−Φ(tsj)/τ
s)
, wm

i =
exp(Φ(tmi )/τ

m)∑
j exp(Φ(tmj )/τm)

, (12)

and we have

τ∗ =
max(Φ(t∗))− min(Φ(t∗))

ln(k)
, (13)

where w∗
i is the probability for the i-th item to be selected into mini-batches in the training phase.

In this formula, the term τ∗ is applied to smooth the distribution of sampling weights and k is the
expected ratio of the maximum and minimum in all weights, constraining the range of possible results
and reducing the impacts of outliers to some extent.

4 Experiments and Results

4.1 Datasets and Metrics

Image Grounding Datasets We choose RefCOCO [65]/RefCOCO+ [65]/RefCOCOg [37] as the
image grounding datasets and conduct in-depth studies on the RefCOCOg dataset. The statistic
information of these three datasets can be found on the webpage of Tensorflow. 3 We follow the data
partitions from Yu et al. [65]4 and only use the training set in the overall learning process.

Audio Retrieval Datasets As for the audio-text datasets, we use Clotho [19] and AudioCaps [29].
Clotho is sourced from the online platform Freesound [21] and contains 4,981 audio samples and
24,905 captions (5 captions for each audio clip). AudioCaps contains video clips and corresponding
natural language captions, and we only use the audio clips extracted from the videos, resulting in
totally 50,960 audio-text pairs for training.

Sounding Object Localization Datasets For the dev set, we use the annotated subset of Flickr-
SoundNet [48], which is built on Flickr-SoundNet dataset [4] and contains 2,786 annotated image-
audio pairs. For the test set, we choose VGGSS [14] and MUSIC [70]. VGGSS is derived from
VGGSound [13] and contains 5,158 audio-image pairs. MUSIC, as a musical instrument video dataset,
consists of 685 untrimmed videos of musical solos and duets spanning 11 instrument categories. We
follow the data process pipeline of Hu et al. [27], and finally we use 489 solo videos for test.

Metrics Following [43, 48, 14], we adopt Consensus Intersection over Union (cIoU) and Area Under
Curve (AUC) to evaluate the performance of our model. It’s noteworthy that cIoU and vanilla IoU
will be equivalent under the circumstance of n = c = 1 as shown in Equation 14.

m̄ = min
(∑n

j=1
mj

c , 1
)
, cIoU({mj}nj=1, m̂) = IoU(m̄, m̂), (14)

where {mj}nj=1 and m̂ are the binary masks converted from ground-truth and predicted boxes.

4.2 Comparisons with State-of-the-art Methods

Though TURN is designed for the zero-resource scenario, it still reaches a counterpart to other
full-resource state-of-the-art sounding object localization methods. Here we compare our TURN with
previous leading methods on VGGSS and MUSIC-Solo as Table 1 and Table 2 respectively. And it
is noteworthy that we retain all the samples with multiple box annotations of VGGSS in the entire
evaluation process. We can find that TURN outperforms all of the previous methods in VGGSS in
both cIoU and AUC metrics. In MUSIC-Solo, the results are similar – TURN obtains the best AUC
among all the methods with a reasonable IoU score. It is also worth noting that the cIoU and AUC
of both datasets suffer a sharp drop when a random vector takes the place of the actual query in the
localization stream (denoted as TURN (w/o Query)). This observation shows that it is unreliable
to retrieve the salient region as the predictions by only the localization stream and further indicates

3https://www.tensorflow.org/datasets/catalog/ref_coco
4https://github.com/lichengunc/refer
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the validity of our proposed knowledge transfer strategy. Apart from this, we can also note that the
IoU@0.5 metric on the MUSIC-Solo dataset is relatively low when compared to other methods. We
infer that this phenomenon may stem from the inherent annotation gap between image grounding and
sounding object localization, and the low proportion of music instruments in the training datasets.

Table 1: Performances on VGGSS dataset.

Method cIoU@0.5 AUC

Attention [48] 17.1 28.7
AVobject [1] 29.7 35.7
HardWay [14] 31.9 37.0
LessMore [49] 32.2 36.6
SSPL [51] 33.9 38.0
TURN (w/o Query) 12.2 26.9
TURN (w/ Query) 34.6 39.1

Table 2: Performances on MUSIC-Solo dataset.

Method IoU@0.5 AUC

Object-that-sound [2] 26.1 35.8
DMC [25] 29.1 38.0
Attention [48] 37.2 38.7
Sound-of-pixel [70] 40.5 43.3
DSOL [26] 51.4 43.6
TURN (w/o Query) 16.9 34.1
TURN (w/ Query) 33.7 45.2

4.3 Ablation Studies

In this part, we conduct ablation studies to verify the effectiveness of each design detail in TURN
according to the results on VGGSS and MUSIC-Solo.

Choice of Source and Intermediate Datasets TURN needs to generalize knowledge from the source
domain to the target domain with the assistance of the intermediate domain. Therefore, we make
a comparison between different selections of source and intermediate datasets, which is illustrated
in Table 3. Consistent with our expectations, the best choice for the source domain is RefCOCOg.
Compared with RefCOCO and RefCOCO+, the grounded textual descriptions in RefCOCOg contain
more details about the object itself, which is vital when aligned to the texts from the intermediate
domain. As for intermediate domain datasets, it is straightforward to find that AudioCaps is more
suitable for the MUSIC-Solo dataset, and Clotho helps VGGSS more. The reason can be attributed to
the fact that AudioCaps contains more instrument-related entries and indicates the names of different
instruments in the descriptions, while the audio quality in Clotho is much higher, and there are
multiple descriptions assigned to the same audio, which reduces noise disturbances in general.

Table 3: The results of different source and intermediate domains on VGGSS and MUSIC-Solo.

Source Intermediate
VGGSS MUSIC

cIoU@0.5 AUC IoU@0.5 AUC

RefCOCO AudioCaps 23.13 33.89 15.87 36.06
RefCOCO+ AudioCaps 27.26 35.27 29.12 43.95
RefCOCOg AudioCaps 33.58 38.57 33.68 45.17
RefCOCO Clotho 16.40 31.50 21.43 41.68

RefCOCO+ Clotho 22.51 33.19 36.47 42.89
RefCOCOg Clotho 34.57 39.07 28.21 42.42

Effect of Different Training Settings In order to verify the effectiveness of regularization terms
in our model, we conduct an individual ablation study on each term. As illustrated in Table 4, the
contrastive loss takes the most significant effect, implying it plays a leading role in the alignment
of data from different modalities. And the codebook loss optimizes the learning process of shared
semantic space, determining the effect of knowledge transfer. Although the reconstruction loss has
no direct influence on representations, it can still improve the performance by enhancing mutual
information between different modalities. In addition, we also evaluate the adaptive sampling strategy,
and the performance margin indicates the benefit it brings to the learning process.

Choice of Hyper-parameters in Codebooks As described in Section 3.4, we use a group of
codebooks to project aggregated features in the alignment stream. Here we investigate how the group
number of codebooks and total codebook size influence the localization performance. From Figure 3,
we can observe that the total codebook size cannot be either too large (depicted by the green line, the
embeddings from different modalities might be scattered into different partitions of the codebook
space) or too small (shown by the blue line, the codebook capacity is not enough). And given a fixed
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Table 4: The performance of different experimental settings on VGGSS dataset.
Contrastive

Loss
Codebook

Loss
Reconstruction

Loss
Adaptive
Sampling

Clotho AudioCaps
cIoU AUC cIoU AUC

✓ ✓ ✓ ✓ 34.57 39.07 33.58 38.57
✓ ✓ ✓ 28.56 36.75 29.24 36.55
✓ ✓ ✓ 30.09 36.55 28.42 36.09
✓ ✓ ✓ 27.53 36.37 27.70 36.13

✓ ✓ ✓ 26.44 34.62 21.21 34.23

total size, the codebook group number should also be tuned in a proper range. According to the
experiment results, when the codebook number is set to be 2 and the total codebook size is set to be
512, TURN gets the highest cIoU and AUC.

Figure 3: Effect of the hyper-parameters of codebooks on VGGSS. The curves of cIoU and AUC are
drawn in the solid lines and the dashed lines, respectively.

Choice of Reconstruction Settings As formulated in Eq. 5, the reconstruction of text and audio
data will be conducted in a Self-Cross manner, which is expected to improve the mutual information
between text and audio pairs and eliminate modality and domain gaps between different data sources.
To evaluate the effect of our reconstruction strategy, we further examine other combinations in the
format of “A-B”, where A denotes the reconstruction type adopted in the source domain and B denotes
the one adopted in the intermediate domain. The performance comparison can be found in Figure
4. It’s worth noting that “No” means “no reconstruction will be applied.”, and “Self / Cross” means
that “the reconstruction will be conducted in a uni- / cross-modality manner”. From Figure 4, we can
find that the reconstruction in each domain is essential and decisive to the final performance, and the
Self-Cross one behaves superior to the other combinations.

Figure 4: The performance of different reconstruction settings on VGGSS dataset.

4.4 Qualitative Analyses

In order to comprehensively evaluate the performance of our TURN, we will analyze some success
cases on both the VGGSS and MUSIC-Solo datasets, which are shown in Figure 5. (The failure ones
will be discussed in the supplementary material 5 .) From these cases, we can easily find that our

5And more details about experiments can also be found in the supplementary material.
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model obtains the basic ability to discriminate the corresponding target according to the specified
sound from a complex scene. Limited by the structural design, when faced with the multi-box
scenarios of the VGGSS dataset, our model can only try to randomly choose one (c) or take their
union (d) as the prediction among multiple equivalent candidates. Although this will result in a lower
metric score, these cases can still qualitatively indicate the satisfactory performance of our proposed
architecture.

(a) Cello Performance (b) Stack Train (c) Thrush Birds (d) Drum Set Performance

Figure 5: Success cases with one or more ground-truth annotations in MUSIC-Solo (a) and VGGSS
(b, c, and d). The predictions and ground-truths are marked in green and red boxes, respectively.

5 Conclusion

In this paper, we develop TURN, an effective two-stream architecture for zero-resource sounding
object localization, which consists of a localization stream and an alignment stream. We explore
the task of sounding object localization from a zero-resource perspective for the first time and
discuss the feasibility of transfer-based solutions in this setting. Without using any training data from
the field of sounding object localization, our proposed TURN reaches a counterpart to other full-
resource SOTA methods on publicly-available benchmarks (including MUSIC and VGGSS), which
demonstrates the feasibility of our TURN. More detailed analyses further verify the effectiveness of
the overall mechanism and architecture, and the qualitative analyses also provide a more intuitive and
comprehensive perception of the results.
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