
BEAST: Efficient Tokenization of B-Splines Encoded
Action Sequences for Imitation Learning

Hongyi Zhou† ∗ Weiran Liao† Xi Huang† Yucheng Tang† Fabian Otto§
Xiaogang Jia † Xinkai Jiang † Simon Hilber † Ge Li † Qian Wang †

Ömer Erdinç Yağmurlu † Nils Blank †,‡ Moritz Reuss † Rudolf Lioutikov†,‡
† Karlsruhe Institute of Technology ‡ Robotics Institute Germany § Microsoft Research

Abstract

We present the B-spline Encoded Action Sequence Tokenizer (BEAST), a novel
action tokenizer that encodes action sequences into compact discrete or continuous
tokens using B-spline. In contrast to existing action tokenizers based on vector
quantization or byte pair encoding, BEAST requires no separate tokenizer training
and consistently produces tokens of uniform length, enabling fast action sequence
generation via parallel decoding. Leveraging our B-spline formulation, BEAST
inherently ensures generating smooth trajectories without discontinuities between
adjacent segments. We extensively evaluate BEAST by integrating it with three
distinct model architectures: a Variational Autoencoder (VAE) with continuous
tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a Vision-
Language Model with an encoder-decoder architecture, demonstrating BEAST’s
compatibility and scalability with large pretrained models. We evaluate BEAST
across three established benchmarks consisting of 166 simulated tasks and on
three distinct robot settings with a total of 8 real-world tasks. Experimental results
demonstrate that BEAST (i) significantly reduces both training and inference
computational costs, and (ii) consistently generates smooth, high-frequency control
signals suitable for continuous control tasks while (iii) reliably achieves competitive
task success rates compared to state-of-the-art methods. Videos and code are
available at https://intuitive-robots.github.io/beast_website/.

1 Introduction

Imitation learning has emerged as a powerful paradigm for training robots to perform complex tasks
by learning from human demonstrations [1–3]. Early works [4, 5] in this field primarily focused
on predicting single-step actions based on the current observation. However, recent research [6]
highlights the importance of learning action sequences to capture the temporal coherence inherent in
human demonstrations. Moreover, by modeling action sequences, we can reduce compounding errors
[7] and create task demonstrations that more closely align with human methods [8]. Given the success
of autoregressive next-token prediction models in natural language processing and other domains
[9–11], it is compelling to explore similar techniques for modeling action sequences, leveraging their
ability to predict and generate coherent sequences effectively.

In natural language processing, tokens typically represent words, which are inherently discrete
elements. This discrete nature allows for effective next-token prediction, which extends well to the
generation and prediction of symbolic actions or in discrete action space. However, a significant
challenge arises when attempting to apply these approaches to sub-symbolic, continuous actions,
which are not inherently discrete. Discretization addresses this issue by compressing the continuous

∗Correspondence to hongyi.zhou@kit.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://intuitive-robots.github.io/beast_website/

action sequence while trying to retaining essential information. This process helps in balancing the
expressivity of the action representation against computational efficiency.

Despite growing interest in this area, effective strategies to create action sequences of discrete tokens
remain underexplored. Existing approaches often focus on single-step tokenization [12–14], vector
quantization [15–17], or compression-based schemes [18]. However, they require training separate
encoder-decoder networks for the tokenizer [15, 19] or produce variable-length token sequences
for inputs of the same duration [18], which complicates applying fast token generation techniques
such as parallel decoding [20]. Furthermore, existing action tokenizers do not consider the smooth
transitions between subsequent action chunks, which could result in undesired jumps at transition.

To address these challenges, we propose the B-spline Encoded Action Sequence Tokenizer (BEAST),
a novel tokenizer that represents continuous action sequences using B-splines [21]. BEAST offers
versatility, allowing for effective integration with both discrete and continuous tokens. Different from
tokenizers based on the vector quantization [15–17], it does not require additional tokenizer training.
BEAST compresses action trajectories into fixed-length token sequences enabling efficient parallel
decoding for faster token generation, requiring 4− 8× fewer tokens than binning-based tokenization.
By using B-spline encoded control points as discrete tokens, BEAST ensures the generation of smooth
action chunks, as well as the continuous connection between consecutive chunks.

Our contributions are: 1) We introduce BEAST, a novel B-spline-based tokenizer designed for
modeling continuous action sequences. 2) We demonstrate the versatility of BEAST by integrating it
into diverse model architectures that accommodate both continuous and discrete objectives. 3) We
conduct extensive evaluations of simulated and real-world robotic tasks, showcasing its effectiveness.
4) We perform thorough ablation studies to assess the impact of various design choices.

2 Related Work

Prior work has explored various action representations for policy learning. The most common
approach is to directly predict low-level actions, such as joint positions or end-effector displacements,
using a supervised learning objective [5, 4, 22]. While simple, these approaches cannot tackle the
multimodality present in human behavior.

To address these limitations, ACT [6] introduces an Action Chunking Transformer trained as a
conditional Variational Autoencoder (CVAE), which models multimodal behavior via a learned latent
space. Instead of predicting single actions, ACT generates entire action chunks in a single inference
step. These chunks are short sequences of actions, which reduces covariate shift and improves
performance. Another line of work focuses on generating action sequences with diffusion models.
Diffusion Policies model complex, multimodal behaviors by iteratively denoising from Gaussian noise
to generate action sequences [7, 23–26]. While effective, these methods require multiple denoising
steps per sequence, making inference comparatively expensive. In contrast, BEAST compresses full
action sequences into compact control-point representations using B-spline approximation. This
significantly reduces the number of predictions needed to model temporally extended behaviors. As a
result, it enables efficient action chunking with smooth transitions, combining the representational
benefits of ACT and diffusion policies with the speed and simplicity of tokenized inference.

A prominent research direction in action sequence representation is Movement Primitives (MPs)
[27–30]. Dynamic Movement Primitives (DMPs) [27, 29] model trajectories using a second-order
dynamical system with a goal attractor, ensuring smooth transitions in position and velocity. However,
DMPs are limited in representing higher-order continuity. To address these limitations, recent
works [30, 31] have explored using B-splines as an alternative representation for MPs. Despite
their effectiveness, existing works have primarily applied MPs within reinforcement learning (RL)
frameworks [32–36, 31] and only utilize them as continuous action representations.

Alternatively, robot actions can be represented as discrete values by discretizing them into a set
of tokens. This discretization scheme is common in many recent Vision-Language-Action models
(VLAs) [12, 37–40, 16, 17]. These models, often based on Transformers, are well-suited to predicting
discrete tokens due to their autoregressive pretraining on language. A common discretization
technique involves dividing the continuous action space into a fixed number of bins [41, 13]. However,
this strategy struggles to effectively model high-frequency robot data. Further it has very low inference
speed. More sophisticated tokenization methods have been proposed. Behavior Transformers [19]

2

0.00

0.25

0.50

0.75

1.00

Ba
sis

 V
al

ue

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=0

0.00

0.25

0.50

0.75

1.00

Po
sit

io
n

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=1

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=2

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=3

0.00 0.25 0.50 0.75 1.00
Normalized Time, Degree P=4

Figure 1: From left to right: Clamped B-Spline Basis P = 0, 1, 2, 3, 4 (top) and their generated
trajectories (Bottom). Given the same control points, a higher degree will lead to smoother trajecto-
ries. All generated trajectories start exactly from the first control point and end at the last control
point. Notably, action chunk is conceptually equivalent to B-Splines of 0-th degree, i.e., split-wise
constants, as shown in the leftmost subplots. This relation is explained in details later in Section 4.1.

use k-means clustering to form discrete action bins, combined with residual offsets via separate
prediction heads. VQ-BeT [15] extends this idea by encoding action chunks into codebook vectors
using a Residual VQ-VAE [15]. While expressive, these methods require training encoder-decoder
networks, which increases system complexity and introduces sensitivity to hyperparameters and
quantization loss. In contrast, BEAST requires no additional tokenizer training and avoids such
instabilities through direct B-spline representation. BEAST does not require any additional tokenizer
training and does not increase training complexity through its direct B-spline representation.

More recently, FAST [18] proposes a compression-based tokenization strategy using discrete cosine
transform and byte-pair encoding [42], resulting in fewer tokens per action chunk. As a consequence,
the resulting action sequences can have varying lengths. This can complicate parallel decoding
during inference. In comparison, BEAST produces fixed-length action representations. Fixed-length
representations at every inference step allow for parallel decoding, significantly speeding up inference.
OpenVLA-OFT [20] investigates how different tokenization strategies impact inference speed and
policy performance in VLAs, showing that parallel decoding and action chunking can indeed lead
to faster inference. However, OpenVLA-OFT does not compress the action tokens themselves,
predicting an individual token for each action. BEAST compresses entire action chunks into a small
set of B-spline control points. This enables both faster decoding and smooth, high-fidelity trajectories.

3 Preliminaries

Problem Formulation. Our goal is to train a policy π(a1:T | s) that capable of mapping a given state
s to a corresponding sequence of actions a1:T which has T time steps and D Degrees of Freedom
(DoF). To make this sequence prediction problem compatible with discrete generative models, we
first transform the continuous action sequence into a sequence of discrete tokens. The goal of action
sequence tokenization is to obtain a discrete token sequence v̄1:J , where each token belongs to a
vocabulary V̄ with size |V̄|, by defining a transformation tokenizer : a1:T → v̄1:J ,

B-Splines (Basis Splines) [43] are widely used in the field of computer graphics and computer-aided
design. A B-Spline curve y is formulated through a linear basis function representation

1-DoF B-Spline: y(u) =

N−1∑
n=0

ΦP
n (u) cn = ΦP (u) c, 0 ≤ P < N, u ∈ [k0, kM], (1)

where c are N control points and u is a continuous parameter, often interpreted as normalized
time. The basis functions ΦP (u) = [ΦP

0 (u), ..,Φ
P
N−1(u)] are N polynomial basis functions of P -th

degree. These basis functions are defined over M intervals determined by M + 1 knots in a vector
[k0, ..., kM], and it satisfies M = N + P [43]. Typically, the knot vector is normalized such that
k0 = 0 and kM = 1. The basis functions ΦP

n (u) are recursively computed using the Cox–de Boor
recursion [44]. We denote all recursive degrees2 as q = 0 : P . For q = 0, the basis functions are

2The B-Spline degree P differs from the recursive degree q. Trajectories are represented by basis functions
of degree P , while lower recursive degree q serve as intermediate representations in the recursive process.

3

Figure 2: Overview of the BEAST Encoding Pipeline: Given a normalized action sequence, the
BEAST pipeline first uses linear regression to extract continuous-valued control points, forming
control point matrices that serve as intermediate continuous representations. These matrices are
then quantized uniformly into discrete values within the range [0, 255] and subsequently flattened to
produce discrete action tokens for auto-regressive next-token prediction or parallel prediction.

defined as piecewise constant and recursively using the (q − 1)-th degree basis for q > 0 with

piecewise constant: Φ0
n(u) =

{
1 if kn ≤ u < kn+1,

0 otherwise.
and (2)

recursive: Φq
n(u) = kq−1

n Φq−1
n (u) + (1− kq−1

n+1)Φ
q−1
n+1(u), (3)

where kq−1
n = (u− kn)/(kn+q − kn).

Clamped B-Spline. In this work, we employ the clamped uniform B-Spline, where the first and
last P + 1 knots are repeated to ensure that the resulting curve starts at the first control point and
ends at the last control point. In Figure 1, we demonstrate the resulting basis functions of degrees
from P = 0 to P = 4, together with their generated trajectories, given the same five control points.
Clamped uniform B-splines are particularly suited for trajectory generation due to their smoothness,
compact representation, and local support, where each control point only affects the curve locally.

Parallel Decoding. Unlike autoregressive generation, which predicts tokens sequentially and thus
requires K forward passes for a sequence of length K, parallel decoding [20] enables the prediction
of the entire output sequence in a single forward pass. This is achieved by feeding the model with K
empty token embeddings and replacing the causal attention mask with a bidirectional mask, allowing
the decoder to infer the entire sequence simultaneously. OpenVLA-OFT [20] leverages this approach
for action sequence generation. In this work, we adopt the parallel decoding strategy to predict all
BEAST tokens in a single pass, improving the inference efficiency without sacrificing accuracy.

4 B-Spline Encoded Action Sequence Tokenizer

In this section, we first describe how BEAST utilizes B-Spline to construct an efficient action sequence
tokenizer that converts action sequences into either continuous or discrete action tokens. We then
explain how smooth transitions between consecutive action sequences are achieved by enforcing the
initial conditions of clamped B-splines. Finally, we discuss strategies for efficient integrating BEAST
with various model architectures that predict discrete or continuous tokens.

4.1 Action Sequence Tokenization with B-Spline Tokenizer

Following prior works in action tokenization [12, 18], we first normalize the input actions such that
the 1st and 99th quantile value of each action dimension in the dataset maps to the range of [−1, 1].
Using quantiles makes the normalization robust against outlier data points.

Figure 2 presents an overview of the tokenization process. We begin by considering the tokenization
of a 1-DoF trajectory. Given a normalized action sequence a1:T = [a1, a2, ..., aT] of length T , our
goal is to determine a set of N control points c, with N ≤ T , that approximate the given action
sequence at spline evaluations y(u)1:T . The linear transformation u = t/T maps from action timestep
to the parametric coordinate of the B-Spline. The spline evaluations y(u)1:T are approximated by
minimizing the least-squares error

c = argmin
c

||y1:T − a1:T ||22 = argmin
c

||ΦP (u)c− a1:T ||22, (4)

4

Figure 3: BEAST-F is a new VLA model that combines BEAST encoding with Florence-2 [45], a
lightweight VLM with 0.77B parameters. BEAST produces uniform-length tokens, which allows
BEAST-F to perform parallel decoding via learnable action embeddings (AE), instead of autoregres-
sive next-token prediction. These discrete tokens are fed into the B-Spline Decoder, which first maps
them to real-valued control points and then transforms those control points into continuous action
sequences. The Pr token denotes an optional proprioceptive state.

where ΦP (u) = [ΦP
1 (u),Φ

P
2 (u), ...,Φ

P
N (u)]⊤ represents precomputed B-spline basis functions

defined over interval u ∈ [0, 1]. Ridge regression estimates the control points in closed form,
c = [c0, c1, ..., cN−1] = (Φ⊤Φ+ λI)−1Φ⊤a1:T , with λ acting as a regularization parameter. This
efficient computation typically introduces only a small overhead, typically 3 to 5 milliseconds per
batch. For a high-dimensional action sequence, i.e. D>1, each DoF is encoded independently into cd,
resulting in a matrix C of shape D×N , that stacks each DoF’s control points, C=[c1, c2, ..., cD]⊤.

To form the final token sequence, this matrix is flattened by interleaving different action dimensions
corresponding to the same basis functions, as illustrated in Figure 2. This flattening strategy preserves
the temporal order inherent in the trajectory segments associated with each basis function.

Remark 1: Connection to Action Chunking. Action chunking, defined as a discrete sequence of
actions a0, a1, ..., aT , is mathematically equivalent to a piecewise constant function generated by
0-th degree B-splines. As demonstrated in Figure 1 left most, each action step at can be identified as
a control point cn of 0-th degree B-Spline basis with t = n, T = N .

4.2 Enforcing Smooth Transition with Clamped B-Spline

Executing long-horizon tasks typically requires producing multiple small action sequences that
connect seamlessly (replanning). While predicting action sequences effectively improves consistency
within individual action chunks, a significant challenge lies in managing discontinuities at transitions
between consecutive chunks, which often result in jerky motion during online execution. Common
approaches to address this issue apply temporal ensembles of actions [6, 46], calculating moving
averages over multiple predictions. However, these temporal ensembles require high-frequency
replanning (typically every timestep) to generate sufficient chunks for effective ensemble averaging,
which significantly constrains execution speed in online applications.

In contrast, BEAST employs clamped B-Spline to ensure smooth transitions between consecutive
action chunks. As introduced in Section 3, clamped B-Spline is a specialized variant of B-Spline
that guarantees to start from the first control point and end at the last control point, which is utilized
to generate seamlessly connected action sequences, as illustrated in Figure 1. To ensure smooth
transitions, we directly set the first control point c0 to the last action of the previous sequence. We
then compute the residual trajectory â by subtracting the contribution of the first basis function:
â = a − c0Φ

P
0 . The remaining control points ĉ = [c1, c2, ...cN−1] are determined by solving the

linear regression problem similar to equation 4: argminĉ ||Φ̂P (u)ĉ− â||2. Through this approach,
BEAST consistently generates action sequences with mathematically guaranteed smooth transitions
between chunks. This will be further discussed in our toy task experiment in Section 5.1.

5

Figure 4: Simulation [6, 47, 48] and real world (Franka Challenge, Aloha, Franka Kitchen) tasks.

0 1 2 3
Time

0.0

0.2

0.4

Po
sit

io
n

BEAST(ours)

0 1 2 3
Time

0.0

0.2

0.4

Po
sit

io
n

Binning

0 1 2 3
Time

0.0

0.2

0.4

Po
sit

io
n

Binning +AC

Figure 5: Comparison among BEAST, single-step binning tokenization and binning tokenization
with action chunking (AC). The comparison is conducted through the same auto-regressive model
with different tokenizers to fit the same ground truth cube splines given the same context points.
BEAST is smooth within each sequence and continuous at the transitions between sequences.

4.3 Combining BEAST tokens with different architectures

Discrete Tokens. We first evaluate BEAST in a simplified setting with a decode-only transformer
(see Figure 10) with CLIP [49] for language encoding and Film-conditioned ResNet-18 [50, 51] as
image encoder. Film-ResNets are used in many prior works given their high efficiency and strong
performance [52, 53, 13] The proprioceptive state of robot is projected to the embedding dimension
with a two-layer MLP. We employ parallel decoding with bi-directional attention to accelerate
the inference. To further demonstrate the scalability of BEAST with large-pretrained models, we
combine BEAST with Florence-2, a small, pretrained VLM with Encoder-Decoder architecture
(0.77B parameters). Following the previous works on autoregressive VLAs [12, 18], we overwrite
the least used 256 tokens in the VLM vocabulary as our action tokens. We also employ a parallel
decoding technique for the Florence variant, which significantly improves the throughput and reduces
the latency for action generation. We provide an in-depth overview in Figure 3.

Continuous Tokens. We also explore the performance of combining BEAST with ACT [6]. ACT
uses a conditional VAE (CVAE) with a Transformer Encoder-Decoder to predict a sequence of actions.
We predict N BEAST continuous tokens (normalized B-Spline control points without quantization),
where each token has the dimension of D, instead of action sequences, this design choice keeps the
temporal order inherent in the trajectory segments. Using BEAST, we reduce the length of predicted
token sequence by 6.67 times (from 100 to 15) without sacrificing the task performance. In addition,
our method enables smooth trajectories without requiring temporal aggregation.

5 Experiments

We conducted extensive evaluations in both simulated and real-world settings, targeting answering
five key research questions (RQs): 1) What advantages does BEAST offer over commonly used
binning-based tokenizers? 2) How does BEAST contribute to the performance on imitation learning
benchmarks? 3) How does BEAST affect the training and inference efficiency? 4) Does BEAST
generalize to real-world scenarios? 5) How do the design choices affect the performance of BEAST?
BEAST is integrated into three different architectures: First, we combine BEAST and Florence-2
[45] and term this VLA variant as BEAST-F. Second, we integrate BEAST into a small decoder-only
transformer trained from scratch, referred to as BEAST-D. Finally, we employ continuous BEAST
tokens on top of a vanilla ACT[6], resulting in (BEAST-ACT). A detailed description of each
architecture is provided in Appendix B. In contrast to many baselines, we test BEAST-F without
second-stage pretraining on large-scale robot datasets.

6

Train→Test Method PrT Action Type VLM No. Instructions in a Row (1000 chains) Avg. Len.

1 2 3 4 5

ABC→D

Diff-P-CNN [7] × Diffusion × 63.5% 35.3% 19.4% 10.7% 6.4% 1.35
MDT [24] × Diffusion × 63.1% 42.9% 24.7% 15.1% 9.1% 1.55
OpenVLA [12] ✓ Discrete ✓ 91.3% 77.8% 62.0% 52.1% 43.5% 3.27
3DDA [54] × Diffusion × 93.8% 80.3% 66.2% 53.3% 41.2% 3.35
MoDE [53] ✓ Diffusion × 96.2% 88.9% 81.1% 71.8% 63.5% 4.01
VPP [55] ✓ Diffusion × 95.7% 91.2% 86.3% 81.0% 75.0% 4.29
BEAST-F (ours) × Discrete ✓ 99.8% 96.5% 89.3% 82.7% 74.4% 4.42

ABCD→D

Diff-P-CNN [7] × Diffusion × 86.3% 72.7% 60.1% 51.2% 41.7% 3.16
MoDE [53] ✓ Diffusion × 97.1% 92.5% 87.9% 83.5% 77.9% 4.39
MDT [24] × Diffusion × 98.6% 95.8% 91.6% 86.2% 80.1% 4.52
BEAST-F (ours) × Discrete ✓ 98.1% 96.2% 93.0% 89.3% 84.8% 4.61

Table 1: CALVIN Benchmark results for ABC and ABCD. The table reports average success rates
for individual tasks within instruction chains and the average rollout length (Avg. Len.) to complete
5 consecutive instructions, based on 1000 chains. Zero standard deviation indicates methods without
reported standard deviations. BEAST-F achieves SoTA performance in both tasks.

Spatial Object Goal Long Average
SR (↑) Rank (↓) SR (↑) Rank (↓) SR (↑) Rank (↓) SR (↑) Rank (↓) SR (↑) Rank (↓)

Diff-P-CNN 78.3 ± 1.1% 6 92.5 ± 0.7% 4 68.3 ± 1.2% 6 50.5 ± 1.3% 6 72.4 ± 0.7% 6
Octo 78.9 ± 1.0% 5 85.7 ± 0.9% 6 84.6 ± 0.9% 4 51.1 ± 1.3% 5 75.1 ± 0.6% 5
OpenVLA 84.7 ± 0.9% 4 88.4 ± 0.8% 5 79.2 ± 1.0% 5 53.7 ± 1.3% 4 76.5 ± 0.6% 4
π0 96.8% 1 98.8% 1 95.8% 1 85.2% 2 94.2% 1
π0-FAST 96.4% 2 96.8% 3 88.6% 3 60.2% 3 85.5% 3
BEAST-F 92.9 % 3 97.5 % 2 93.1 % 2 86.4 % 1 92.5% 2

Table 2: Experimental Results for the LIBERO Benchmarks. SR: Success Rate. Best results in
each column are shown in bold. BEAST-F achieves comparable performance state-of-the-art VLA,
despite with a much smaller model and without robot data pretraining.

5.1 Comparing Against Binning-Based Tokenization

TransferCube Insertion
0

50

100

6
0

54

14

83

21

83

23

Su
cc

es
s

R
at

e
(%

)

DP-CNN π0 ACT BEAST-ACT

Figure 6: ALOHA Benchmark
results. The success rate is reported
over 500 episodes of evaluation.

To answer RQ1, we begin with a 1D toy task to investigate the
advantages of BEAST over binning-based tokenization. We
follow the autoregressive prediction pipeline used in previous
works [12, 18]. Note that BEAST can be used for both autore-
gressive prediction and parallel decoding. A small decoder-only
transformer is trained to predict cubic splines from 3 control
points. We compare against: 1) Single-step binning (denoted
as Binning) [12], which discretizes each action into one of 256
bins, and 2) Chunk-level binning (denoted as Binning+AC),
which discretizes entire action sequences of fixed length. We
generate 2000 trajectories, 1s each at 100Hz resolution. Each
model is trained for 8k steps and evaluated on 200 test se-
quences. BEAST achieves the lowest MSE (0.0004± 0.0005),
outperforming chunked binning (0.0009± 0.0013) and single-step binning (0.0215± 0.0216), with
the latter performing two orders of magnitude worse. To simulate real-world action chunking [7],
we repeat the rollout prediction three times. As visualized in Figure 5, single-step binning fails to
capture temporal structure and produces erratic outputs. Chunked binning captures some temporal
coherence but results in jerky transitions due to discretization and a lack of continuity across chunks.
In contrast, BEAST generates smooth trajectories with minimal error and requires only 5 tokens per
100-step sequence, resulting in an approximately 20x reduction in inference steps.

5.2 Strong Performance on Established Simulation Benchmarks

To answer RQ2, we evaluate BEAST on established simulation benchmarks and compare with other
SoTA imitation learning methods and VLAs.

Simulation Benchmarks. CALVIN [47] features 34 tabletop manipulation tasks with a Franka
Panda robot using delta end-effector control across four scene configurations (splits A-D). The dataset
contains 24, 000 language-annotated demonstrations. We evaluate two settings: CALVIN ABC
(zero-shot generalization) and CALVIN ABCD (scaling with more data). Performance is measured
by success rates on sequential tasks and mean sequence length completion. All evaluations require
policies to follow free-form language instructions and complete 5 tasks in sequence across 1, 000

7

different instruction chains. LIBERO [48] tests a delta-EEF controlled Panda Robot across various
scenes with 130 diverse tasks. We report results on four specialized benchmark settings with 10 tasks
each (Long, Spatial, Object, and Goal). Success is measured as the percentage of successful task
completions across 50 trials per task. ALOHA [6] tests an absolute joint position controlled ALOHA
Robot in two challenging bi-manual manipulation tasks that require high precision.

Baselines. We compare our Vision-Language-Action Model (VLA) against SOTA VLA policies
and specialized approaches, using results reported in prior publications for fair comparison. Our
primary baselines are OpenVLA [12] (7.7B parameters), π0 [56] (3.3B parameters), π0-FAST[18]
(3.3B parameters), and a standard Diffusion Policy using a CNN [7]. For the bi-manual manipulation
tasks, we compare the BEAST-ACT variant with small action chunking models to a vanilla ACT [6],
π0, and a standard Diffusion Policy using a CNN.

Results. Table 1 summarizes the performance of all policies on the CALVIN benchmark, where
BEAST-F outperforms a diverse set of baselines across two settings, establishing a new state of the art.
Unlike the most competitive baselines, BEAST-F achieves these results without relying on additional
pretraining. On the various LIBERO benchmarks, our tokenizer achieves strong performance, being
surpassed only by π0-VLA. However, π0 relies on large-scale pretraining to reach its performance,
whereas BEAST-F remains competitive without it. In the most challenging long-horizon task setting,
LIBERO-LONG, BEAST-F outperforms all baselines. See Table 2 for detailed results. For the
bi-manual tasks (Figure 6), BEAST-ACT and ACT demonstrate significantly better performance than
π0. BEAST-ACT achieved a higher success rate than vanilla ACT in both tasks.

5.3 Advantages in Training and Inference Speed

Method Throughputs (Hz)↑ Latency (s)↓
DP (0.26B) 130.67 0.341
OpenVLA (7B) 6.09 0.164
π0 (3.3B) 288.11 0.104
BEAST-F (0.77B) 617.3 0.019

Table 3: Mean inference efficiency (1000
steps in Bf16). All policies except OpenVLA
use chunking length 50 (48 for DP).

Next, we verify the inference and training efficiency
of BEAST to answer RQ3. Specifically, we consider
the VLA variant BEAST-F and compare it against
several recent VLAs [12, 56, 18], as well as a stan-
dard CNN-based Diffusion Policy[7]. We measure
the inference efficiency on an RTX 4090 GPU. As
shown in Table 3, BEAST-F demonstrates clear com-
putational advantages. It achieves a throughput of
617.3 Hz (e.g., generates approximately 617 actions per second), which is 2.14× faster than π0,
4.72× faster than Diffusion Policy, and 101.4× faster than OpenVLA. In addition, BEAST-F achieves
the lowest latency at just 19 milliseconds, where latency refers to the time taken to generate one
action chunk. These gains are due to the parallel decoding, which enables generating the action
sequence in a single forward pass.

10k 20k 30k
0

0.2

0.4

0.6

0.8

1

Training Steps

Su
cc

es
s

R
at

e

BEAST-F π0 FAST

Figure 7: LIBERO-LONG.

We further evaluate the training efficiency by comparing BEAST-
F against π0 and π0-FAST. To exclude the bias introduced by the
pretraining datasets, we trained all models without robot dataset
pretraining. We report the success rate on LIBERO-LONG bench-
mark every 10k training steps in Figure 7. BEAST-F reaches a
approximate 80% success rate at just 20k steps, whereas π0 reaches
only around 20% at the same point. Notably, π0-FAST shows no suc-
cess till 30k steps. π0-FAST’s poor performance indicates a heavy
reliance on robot dataset pretraining, which further underscores the
training efficiency of our method.

5.4 Tokenizer Comparison under a Unified Backbone

LIBERO-LONG CALVIN ABC-D
0

50

100

30 28

84

46

84
71

86 88

Su
cc

es
s

R
at

e
(%

)

Binning-AR FAST-AR BEAST-AR BEAST-PD

Figure 8: Tokenizer Comparison.

To ensure a fair comparison between different tokenizers with-
out the confounding effects of varying backbone architectures
and different pretraining robot dataset pretraining recipes. We
integrate FAST tokenization and binning tokenization (used
by OpenVLA) into the Florence-2 model [45] without robot
dataset pretraining. This setup enables an unbiased assessment
of tokenizer performance. Both FAST and binning tokeniz-
ers are trained with autoregressive objective (FAST-AR and

8

Towel Fold Sweep Mixer Pour Move Banana Open Oven Move Pot Cube Transfer
0

50

100

49

23

38 40

13

61

80

46

0

47

60

8080 80

67

0

68

0

75

93

70 70

35

77

100

91

70

A
vg

.S
uc

ce
ss

R
at

e
(%

)

ACT FAST π0 BEAST-F BEAST-D BEAST-ACT

Figure 9: Experimental Results on Real-World Robot Tasks. This figure shows the average task
success rate across eight real-world tasks. Each task and method was evaluated over 10 runs (30 runs
for Cube Transfer). Success rates are measured at the sub-task level. Detailed descriptions of all
sub-tasks are provided in Appendix F. BEAST variants achieve strong performance in real world.

Binning-AR), following their original implementations. Figure 8 presents results on the challenging
LIBERO-Long benchmark and the Calvin ABC→D generalization benchmark. The BEAST tokenizer
with parallel decoding (BEAST-PD) achieves the highest task completion ratio in both benchmarks,
followed by BEAST with autoregressive decoding (BEAST-AR). BEAST-AR matches FAST on
LIBERO-long and outperforms it on Calvin ABC→D. Overall, both compression-based tokenizers
(BEAST and FAST) consistently outperform the binning tokenizer across all evaluations.

5.5 Real-World Evaluation with 3 Different Robot Setups

To answer RQ4, we assess the effectiveness of BEAST across diverse real-world scenarios with
varying data collection frequencies. We evaluate BEAST on 8 challenging manipulation tasks across
3 different experimental setups: 1) Franka Challenge: Four tabletop manipulation tasks (Towel Fold,
Sweep, Mixer, Pour) using a joint position-controlled Franka robot with data collected at 20Hz, 2)
Real Kitchen: Three manipulation tasks on a toy kitchen setup (Move Banana, Open Oven, Move
Pot) with data collected at 35Hz, 3) Bi-manual ALOHA: A cube transfer task using a bi-manual
ALOHA robot with data recorded at 60Hz. For each task in the Franka Challenge and Franka
Kitchen setups, we conduct 10 evaluation runs per method, while for the ALOHA cube transfer
task, we performed 30 runs. The average success rate for each task is reported in Figure 9. For
tasks comprising multiple stages, we track intermediate milestones to better evaluate the completion
of each sub-task. Appendix F provides a detailed description of all setups and tasks. We compare
BEAST against π0[56], π0-FAST[18], and ACT [6]. We finetune π0 and π0-FAST from the official
pretrained checkpoints for an additional 60k and 40k steps, respectively. For each method, we train
one multitask model for all four tasks, Real Franka tasks, and another for the Real Kitchen tasks. The
results demonstrate that BEAST-F achieves 52.86% success rate and BEAST-D achieves 76.57%. In
contrast π0 achieves 53.43% and FAST only 28.5%. Interestingly, the smaller model (BEAST-D)
outperforms all the VLAs, including the Florence variant with BEAST. We attribute this effect to
the relatively small real-world dataset of only 50 demonstrations for each task. For the Aloha Cube
Transfer task, we compare BEAST-ACT against the base ACT that directly predicts action sequences
in the joint space. BEAST-ACT achieves 70% success, which is 21% higher than the base ACT.

5.6 Ablation Studies

Variant Avg. Len.
BEAST-F (10) 4.43
BEAST-F (5) 3.88
BEAST-F (15) 4.20
BEAST-F (20) 4.32
BEAST-F (25) 4.23
BEAST-SF 3.98
BEAST-CT 3.93
Binning-F 1.41

Table 4: Average Se-
quence Lengths for
BEAST-F Ablation.

To answer RQ5, we conduct ablation studies to analyze the impact of
various design choices of BEAST. All experiments in this section use
the Florence variant of BEAST and are evaluated on the CALVIN ABC
benchmark. All results are summarized in Table 4.

BEAST vs. Binning-based Tokenizer. We first compare BEAST against
a commonly used binning-based tokenizer in VLAs[12], which discretizes
single-step actions into one of 256 uniformly distributed bins. We imple-
ment this baseline using the same Florence-2 backbone and denote it as
Binning-F. It is trained to perform autoregressive token prediction. As
shown in Table 4, BEAST significantly outperforms the binning-based
approach, improving the average sequence length from 1.41 to 4.43,
underscoring the effectiveness of BEAST as an action tokenizer.

9

Discrete Tokens vs. Continuous Tokens. Next, we study the choices between using discrete tokens
or continuous tokens (denoted as BEAST-CT) as the action representation. In the continuous variant,
the final hidden states of the Florence decoder are directly mapped to continuous BEAST tokens
via a linear layer, and the learning objective is changed from cross-entropy to L1 regression loss.
Results show that discrete tokens yield 12.7% better performance. We attribute this to the greater
expressiveness of discrete representations, which are better suited to model multi-modal distributions.

Choice of Number of Basis Functions. Next, we evaluate how the number of basis functions
affects the policy performance. We evaluate using N = [5, 10, 15, 20, 25] basis functions to model
action chunks of 20 steps, denoted as BEAST-F [N] in Table 4. Fewer basis functions lead to fewer
tokens for prediction, but it also reduces the expressiveness of the B-Spline representation. On the
contrary, more basis functions increase representational power but reduce compression, which can
also negatively influence the performance.

Scaling with Model Size. Finally, we assess the impact of model size on task performance. We com-
pare BEAST-F, which uses Florence-2-large (0.77B parameters), with BEAST-SF, a smaller variant
based on Florence-2-base (0.23B parameters). The larger model achieves an 11.3% improvement in
average sequence length, demonstrating that BEAST benefits from increased model capacity. This
result highlights its potential as a scalable building block for larger VLAs.

6 Conclusion

We present BEAST, a B-spline–based tokenizer for continuous robot actions that compresses arbitrary
trajectories into fixed-length token sequences while preserving smooth transitions between segments.
BEAST supports discrete and continuous outputs and integrates seamlessly with various model archi-
tectures. By exploiting parallel decoding, it delivers fast inference and high compression rates without
sacrificing performance. In extensive experiments—both in simulation and on real robots—BEAST
consistently achieves strong results, demonstrating the effectiveness of our tokenization strategy.

Limitations: Although BEAST delivers strong performance, it is sensitive to the choice of the
number of B-spline basis functions, which can markedly affect task outcomes (Section 5.6). The
optimal count depends on the smoothness and sampling frequency of the trajectory; our experiments
indicate that using 5–10 bases works well for one-second robot trajectories. A heuristic for selecting
the number of basis functions is provided in Appendix A.

Future Work: We plan to extend BEAST to large-scale robot pretraining and to integrate contin-
uous token representations with diffusion- and flow-matching objectives, aiming to further boost
downstream task performance. Preliminary results on combining continuous BEAST tokens with a
flow-matching objective are provided in Appendix D.

7 Acknowledgment

This work was supported by the pilot program Core Informatics of the Helmholtz Association (HGF),
by the German Research Foundation (DFG, grant no. 448648559), and in part by the Helmholtz
Association of German Research Centers. The authors also acknowledge support by the state of
Baden-Württemberg through the HoreKa supercomputer funded by the Ministry of Science, Research
and the Arts Baden-Württemberg, and by the German Federal Ministry of Education and Research.

References
[1] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters,

et al. An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics,
7(1-2):1–179, 2018.

[2] Xinkai Jiang, Paul Mattes, Xiaogang Jia, Nicolas Schreiber, Gerhard Neumann, and Rudolf
Lioutikov. A comprehensive user study on augmented reality-based data collection interfaces
for robot learning. In Proceedings of the 2024 ACM/IEEE International Conference on Human-
Robot Interaction, pages 333–342, 2024. URL https://intuitive-robots.github.io/
HDAR-Simulator/.

10

https://intuitive-robots.github.io/HDAR-Simulator/
https://intuitive-robots.github.io/HDAR-Simulator/

[3] Xinkai Jiang, Qihao Yuan, Enes Ulas Dincer, Hongyi Zhou, Ge Li, Xueyin Li, Xiaogang Jia,
Timo Schnizer, Nicolas Schreiber, Weiran Liao, et al. Iris: An immersive robot interaction
system. In 9th Annual Conference on Robot Learning.

[4] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

[5] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured
data. Robotics: Science and Systems XVII, 2020. URL https://api.semanticscholar.
org/CorpusID:235657751.

[6] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems (RSS), 2023.

[8] Lucy Lai, Ann Zixiang Huang, and Samuel J Gershman. Action chunking as policy compression.
2022.

[9] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In International conference on machine learning, pages 1747–1756. PMLR, 2016.

[10] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. In Interspeech, volume 2, pages 1045–1048.
Makuhari, 2010.

[11] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[12] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

[13] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav
Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,
Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,
Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun
Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at
scale. In arXiv preprint arXiv:2212.06817, 2022.

[14] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[15] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah,
and Lerrel Pinto. Behavior generation with latent actions. In International Conference on
Machine Learning, pages 26991–27008. PMLR, 2024.

[16] Andrew Szot, Bogdan Mazoure, Harsh Agrawal, R Devon Hjelm, Zsolt Kira, and Alexander To-
shev. Grounding multimodal large language models in actions. Advances in Neural Information
Processing Systems, 37:20198–20224, 2024.

[17] Andrew Szot, Bogdan Mazoure, Omar Attia, Aleksei Timofeev, Harsh Agrawal, Devon Hjelm,
Zhe Gan, Zsolt Kira, and Alexander Toshev. From multimodal llms to generalist embodied
agents: Methods and lessons. arXiv preprint arXiv:2412.08442, 2024.

11

https://api.semanticscholar.org/CorpusID:235657751
https://api.semanticscholar.org/CorpusID:235657751

[18] Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

[19] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing
systems, 35:22955–22968, 2022.

[20] Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models:
Optimizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

[21] William J. Gordon and Richard F. Riesenfeld. B-spline curves and surfaces. Computer
Aided Geometric Design, pages 95–126, 1974. URL https://api.semanticscholar.org/
CorpusID:118698454.

[22] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey
Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning.
In Conference on Robot Learning, pages 991–1002. PMLR, 2022.

[23] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal conditioned imitation
learning using score-based diffusion policies. In Proceedings of Robotics: Science and Systems
(RSS), 2023.

[24] Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and Rudolf Lioutikov. Multimodal
diffusion transformer: Learning versatile behavior from multimodal goals. In Robotics: Science
and Systems, 2024.

[25] Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann,
Rudolf Lioutikov, and Franziska Mathis-Ullrich. Movement primitive diffusion: Learning
gentle robotic manipulation of deformable objects. IEEE Robotics and Automation Letters,
2024.

[26] Moritz Reuss, Hongyi Zhou, Marcel Rühle, Ömer Erdinç Yağmurlu, Fabian Otto, and Rudolf
Lioutikov. Flower: Democratizing generalist robot policies with efficient vision-language-flow
models. In Joseph Lim, Shuran Song, and Hae-Won Park, editors, Proceedings of The 9th
Conference on Robot Learning, volume 305 of Proceedings of Machine Learning Research,
pages 3736–3761. PMLR, 27–30 Sep 2025. URL https://proceedings.mlr.press/v305/
reuss25a.html.

[27] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25
(2):328–373, 2013. doi: 10.1162/NECO_a_00393.

[28] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic
movement primitives. Advances in neural information processing systems, 26, 2013.

[29] Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neumann. Prodmp:
A unified perspective on dynamic and probabilistic movement primitives. IEEE Robotics and
Automation Letters, 8(4):2325–2332, 2023.

[30] Weiran Liao, Ge Li, Hongyi Zhou, Rudolf Lioutikov, and Gerhard Neumann. Bmp: Bridging
the gap between b-spline and movement primitives. arXiv preprint arXiv:2411.10336, 2024.

[31] Piotr Kicki, Davide Tateo, Puze Liu, Jonas Günster, Jan Peters, and Krzysztof Walas. Bridging
the gap between learning-to-plan, motion primitives and safe reinforcement learning. In Pulkit
Agrawal, Oliver Kroemer, and Wolfram Burgard, editors, Proceedings of The 8th Conference
on Robot Learning, volume 270 of Proceedings of Machine Learning Research, pages 2655–
2678. PMLR, 06–09 Nov 2025. URL https://proceedings.mlr.press/v270/kicki25a.
html.

[32] Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Gerhard Neumann.
Deep black-box reinforcement learning with movement primitives. In Conference on Robot
Learning, pages 1244–1265. PMLR, 2023.

12

https://api.semanticscholar.org/CorpusID:118698454
https://api.semanticscholar.org/CorpusID:118698454
https://proceedings.mlr.press/v305/reuss25a.html
https://proceedings.mlr.press/v305/reuss25a.html
https://proceedings.mlr.press/v270/kicki25a.html
https://proceedings.mlr.press/v270/kicki25a.html

[33] Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard Neumann. Mp3:
Movement primitive-based (re-) planning policy. arXiv preprint arXiv:2306.12729, 2023.

[34] Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, and Gerhard
Neumann. Open the black box: Step-based policy updates for temporally-correlated episodic
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=mnipav175N.

[35] Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann.
TOP-ERL: Transformer-based off-policy episodic reinforcement learning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=N4NhVN30ph.

[36] Xi Huang, Hongyi Zhou, Ge Li, Yucheng Tang, Weiran Liao, Björn Hein, Tamim Asfour, and
Rudolf Lioutikov. More-erl: Learning motion residuals using episodic reinforcement learning.
IEEE Robotics and Automation Letters, 2025.

[37] Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, Yaxin Peng, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. arXiv preprint arXiv:2409.12514, 2024.

[38] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul
Wohlhart, Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer
web knowledge to robotic control. In 7th Annual Conference on Robot Learning.

[39] Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng,
Ran Cheng, Yaxin Peng, Chaomin Shen, et al. Chatvla: Unified multimodal understanding and
robot control with vision-language-action model. arXiv preprint arXiv:2502.14420, 2025.

[40] Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, and Xuelong Li. Spatialvla: Exploring spatial representations for
visual-language-action models. 2025.

[41] Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

[42] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Katrin Erk and Noah A. Smith, editors, Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162/.

[43] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline techniques.
Springer Science & Business Media, 2002.

[44] C de Boor. Subroutine package for calculating with b-splines. In Los Alamos Sci. Lab. Los
Alamos, NM, USA, 1971.

[45] Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng,
Ce Liu, and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision
tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4818–4829, 2024.

[46] Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650,
2024.

[47] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark
for language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE
Robotics and Automation Letters, 7(3):7327–7334, 2022.

13

https://openreview.net/forum?id=mnipav175N
https://openreview.net/forum?id=N4NhVN30ph
https://openreview.net/forum?id=N4NhVN30ph
https://arxiv.org/abs/2310.08864
https://aclanthology.org/P16-1162/

[48] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024.

[49] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[51] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:
Visual reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[52] Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and
Vikash Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic
augmentations and action chunking, 2023.

[53] Moritz Reuss, Jyothish Pari, Pulkit Agrawal, and Rudolf Lioutikov. Efficient diffusion trans-
former policies with mixture of expert denoisers for multitask learning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=nDmwloEl3N.

[54] Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy
diffusion with 3d scene representations. In 8th Annual Conference on Robot Learning, 2024.
URL https://openreview.net/forum?id=gqCQxObVz2.

[55] Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang,
Koushil Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot
policy with predictive visual representations, 2024. URL https://arxiv.org/abs/2412.
14803.

[56] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

[57] Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit:
Dual attention vision transformers. In European conference on computer vision, pages 74–92.
Springer, 2022.

[58] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[59] Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations.

14

https://openreview.net/forum?id=nDmwloEl3N
https://openreview.net/forum?id=nDmwloEl3N
https://openreview.net/forum?id=gqCQxObVz2
https://arxiv.org/abs/2412.14803
https://arxiv.org/abs/2412.14803

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution is a novel action tokenizer that encodes action sequences
into compact discrete or continuous tokens using B-splines, which is outlined and described
in the abstract and the introduction and the method section. Claims wrt to the performance
of the distilled policies are verified in the experiment section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

15

Answer: [Yes]

Justification: We discuss the limitations of this work in the Sec. 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe how the baselines are implemented in Appendix. C and corre-
sponding hyperparameters to reproduce the experiment results in the Appendix. E.

16

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open source the codes in the near future once they are cleaned up
and anonymity is not a concern anymore. All the experiments we conducted were using
open-source datasets. In the experiments section and appendix F we provide information to
get access to the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide hyperparameter lists for each of the algorithms, how they were
chosen and type of optimizer in appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experiments describe the number of trials and show the deviations in the
result tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]

18

Justification: The used compute resources are described in appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do used pretrained models and open source code base for baselines, which
is clearly stated in both experiment section and appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We plan to open source the code in the future.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

20

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development of this paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Choice of Number of Basis Functions

For finding the optimal N, we recommend starting with a number of basis functions equal to half of
the sequence length. In practice, we typically sample a batch of action sequences from the dataset
(e.g., 100 trajectories or more) and compute the reconstruction mean square error (MSE). An MSE
below 1e-2 (for action sequences that are normalized into the range [−1, 1]) usually indicates that
the chosen number of basis functions allows BEAST to represent the original trajectories well. We
then repeat this process to find the minimal number of basis functions that achieves this threshold,
thereby maximizing compression. Since BEAST does not require separate tokenizer training, this
hyperparameter tuning process can be done in a few minutes across different action spaces and
frequencies.

B Architectures

BEAST-F is a new VLA model that integrates BEAST with the pretrained VLM Florence-2 [45].
Florence-2 is a compact vision-language model with 0.77B parameters, featuring an encoder-decoder
language model architecture paired with a DaViT image encoder[57] that efficiently compresses
images into sequences into just 50 tokens. Florence-2 offers two unique advantages: First, Florence-2
was pretrained with a large-scale dataset focusing on image-grounding with tasks like bounding box
prediction and image segmentation. These objectives are well aligned with robotic manipulation
challenges. In addition, its small size and low image token count make it computational and memory
efficient and enable us to run VLA experiments on consumer-grade hardware. This combination
of task-relevant pretraining and computational efficiency made Florence-2 ideal for exploring our
tokenizers within practical resource constraints.

BEAST-D is a compact Transformer model that integrates discrete BEAST tokens. The architecture
is shown in Figure 10.

Figure 10: Overview of BEAST-D: BEAST-D is a small transformer model that integrates BEAST.
It replaces the causal attention in the decoder-only transformer with bidirectional attention to enable
fast parallel decoding. BEAST-D integrates ResNet as image encoder and CLIP as language encoder.

C Baselines Implementation

π0: π0 is a generalist robot policy that combines a pre-trained VLM backbone with a lightweight
action expert module trained from scratch to generate continuous actions using flow matching. A key
innovation of π0 is its cross-embodiment training strategy, which integrates over 900M timesteps of
data from 7 distinct robot embodiments and 68 manipulation tasks, enabling generalization across
heterogeneous hardware platforms. The model is trained using a two-phase pipeline: a large-scale
pre-training stage leveraging Internet-scale semantic priors, followed by post-training on curated
task-specific data to enhance performance on complex, dexterous tasks.

FAST: FAST introduces a novel compression-based tokenization method, named Frequency-space
Action Sequence Tokenization, for training autoregressive VLA models on high-frequency, dexterous
robot control tasks. Unlike prior VLAs that struggle with discretizing continuous actions at high
frequencies, FAST leverages the Discrete Cosine Transform (DCT) and Byte-Pair Encoding (BPE) to
produce compact, information-rich action tokens, marking a significant advance in training efficiency.

22

D Preliminary Results with Flow Matching

We conduct an additional experiment on combining BEAST’s continuous tokens with flow-matching
loss[58, 59] and a mixture-of-expert backbone[53]. The resulting model, BEAST-Flow achieves
performance comparable to the Flow policy with action chunking on LIBERO-Long, and outperforms
it on Calvin-ABC, while predicting only half as many tokens. The full results are presented in Figure
11. These results highlight the effectiveness of BEAST within a flow-matching framework.

LIBERO-LONG CALVIN ABC-D
0

50

100 91.5

61.6

91.5

63.6

Su
cc

es
s

R
at

e
(%

)

Flow BEAST-Flow

Figure 11: Preliminary Results with Flow Matching.

E Hyperparameters

Hyperparameter LIBERO CALVIN
SPATIAL OBJECT GOAL LONG ABCD→D ABC→D

Action Sequence Length 20 20 20 20 20 20
Number of Basis 10 10 10 10 10 10
Vocabulary Size 256 256 256 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Betas [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95] [0.9, 0.95]
Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch Size 128 128 128 128 32 32
Train Steps (k) 35 35 50 70 30 30

Table 5: Summary of BEAST-F hyperparameters for all simulation experiments.

Hyperparameter REAL KITCHEN REAL FRANKA

Action Sequence Length 80 20
Number of Basis 15 5
Vocabulary Size 256 256
Optimizer AdamW AdamW
Betas [0.9, 0.95] [0.9, 0.95]
Learning Rate 2e-5 2e-5
Batch Size 96 96
Train Steps (k) 60 60

Table 6: BEAST-F hyperparameters for real robot experiments.

23

Hyperparameter REAL KITCHEN REAL FRANKA

Action Sequence Length 80 20
Number of Basis 10 5
Vocabulary Size 256 256
Transformer Layers 6 6
Attention Heads 8 8
Embedding Dim 256 256
Image Encoder FiLM-ResNet18 FiLM-ResNet18
Goal Lang Encoder CLIP ViT-B/32 CLIP ViT-B/32
Attn Dropout 0.1 0.1
Residual Dropout 0.1 0.1
MLP Dropout 0.1 0.1
Optimizer AdamW AdamW
Betas [0.9, 0.999] [0.9, 0.999]
Learning Rate 3e-4 3e-4
Weight Decay (Trans/Other) 0.05 / 0.05 0.05 / 0.05
Batch Size 384 256
Train Steps (k) 60 60
EMA False False

Table 7: BEAST-D hyperparameters for real robot experiments.

F Real Robots Setup & Tasks

F.1 Robot System Details

Real Kitchen. This setup consists of a single Franka Emika robot operating within a simulated
kitchen environment. It is equipped with two OAK-D Lite cameras providing top-down and side
perspectives, each delivering visual input at a resolution of 250×250 pixels. The robot has an
8-dimensional configuration and action space, which includes seven joint and one gripper states.

Real Franka. This configuration features a single Franka Emika robot situated in a general-purpose
tabletop environment designed for more challenging manipulation tasks. Visual observations are
obtained from two Orbbec Femto Bolt cameras, positioned to capture left and right perspectives. The
input images are resized to a resolution of 180×320 pixels. The robot configuration and action space
remain the same as the Franka Kitchen setup.

ALOHA. Based on the ALOHA setup [6], the system incorporates two 6-DoF Trossen ViperX
robotic arms. The environment includes two wrist-mounted and an additional top-mounted Logitech
C920 camera. The combined system operates in a 14-dimensional configuration and action space,
accounting for both arms’ joint and gripper states.

F.2 Tasks Description and Evaluation Metrics

In the Real Kitchen setup, the robot performs pick-and-place tasks, whereas in the Real Franka setup,
the robot is required to execute more diverse manipulation behaviors, such as sweeping or pouring.
For each task performed by the Franka Emika robot, a scoring rubric is defined to quantitatively
evaluate task progression. The specific evaluation criteria for each task are detailed below.

• Open the door: The task begins under one of two initial conditions: with or without an
object placed on the stove. The objective is for the robot to open the oven door. Task
completion is evaluated as a success or a failure. Although the task involves three key
motion phases, as shown in Figure 12 (Open the door), all the policies under evaluation are
capable of completing the task in its entirety once the robot successfully grasps the handle.
A trial is considered successful if the robot fully opens the oven door by first grasping the
handle and then using its fingers to push the opposite side of the door, ensuring that it is
completely open. We conducted four evaluation trials with no object on the stove and one
with a randomly placed object.

• Banana into the pot: In this task, the robot aims to grasp a banana and place it on or into a
pot. The initial conditions are categorized based on the relative positions of the pot and the

24

banana, as well as the position of the banana relative to the corresponding stove. The pot
is assumed to be correctly positioned on the stove. The banana, however, may be placed
directly on the stove in one of three orientations or slightly offset to the left or right. A total
of 10 trials are conducted across these different initial configurations. Task performance is
scored on a scale of 0 to 3, with one point awarded for each of the following criteria: (1)
successfully positioning the banana between the robot’s two fingers, (2) lifting the banana
off the surface, and (3) placing the banana onto or into the pot. If the robot attempts to grasp
more than three times, exhibits jerky hand movements, or significantly displaces the pot
from its original position, the subtask is awarded 0.5 points to reflect partial completion.

• Pot into the sink: This task is similar to the one described previously. The initial conditions
in this task differ based on the relative position between the pot and the two stoves. Task
performance is evaluated using three criteria: (1) successfully positioning the pot between
the robot’s two fingers - note that directly grasping the pot with its handle is considered an
unstable grasp and is awarded 0.5 points, (2) lifting the pot off the surface, and (3) placing
the pot in the sink. In this task, penalties for jerky hand movements are still applied.

• Towel folding: The objective of this task is to neatly fold a towel that is randomly oriented
at the beginning of each trial. One point is awarded for each of the following: lifting a corner
of the towel, completing the fold, and achieving accurate alignment of the folded towel.

• Sweep: In the Sweep task, the positions of the broom, dustpan, and trash vary across
trials. Four pieces of trash are placed on the table for the robot to clean. A maximum
of four points can be awarded, based on the following criteria: successfully grasping the
broom, performing a single sweeping motion, demonstrating the ability to execute multiple
sweeping motions, and sweeping all trash into the dustpan.

• Mixer: In this task, a cup and a mixer are placed on the table. The robot’s objective is to
sequentially (1) open the mixer, (2) grasp the cup, (3) place the cup on the mixer’s platform,
and (4) close the mixer. Task performance is evaluated based on the successful completion
of these four subtasks, with one point awarded for each. Notably, unlike previous tasks, the
language instructions provided to the robot consist of three separate sentences corresponding
to the actions of opening/closing the mixer and placing the cup onto the platform.

• Pour: In the Pour task, the source cup is initially placed on a platform and contains plastic
pellets that simulate liquid. The objective is to pour the pellets into a designated target
cup. Task performance is evaluated out of a maximum of 4 points, awarded based on the
following criteria: (1) successfully grasping the source cup, (2) pouring the pellets into the
target cup, (3) ensuring that all pellets are poured into the target cup, and (4) placing the
source cup back on the platform.

• ALOHA cube transfer: In the cube transfer task, the ALOHA robot is designed to pick
up a randomly placed cube using its right arm and then transfer the cube to its left arm.
The performance of the task is evaluated by assigning scores to three specific steps: (1)
successfully picking up the cube, (2) successfully initiating the transfer with the left arm
making contact with the cube, and (3) the left arm successfully taking possession of the
cube while the right arm releases it.

G Compute Resources

We train and evaluate all the models based on our private clusters. Each node contains 4 NVIDIA
A100, for BEAST-F we use 4 GPUs for training. For BEAST-D and BEAST-ACT, we use one GPU
for training. We report the average training cost in Table 8.

BEAST-F BEAST-D BEAST-ACT

vRAM 64GB 8GB 15GB
steps/hour 6000 10000 11000

Table 8: Training time for each variant.

25

Pot into the
sink

Banana into
the pot

Open the
Door

Fold the
towel

Sweep

Arrange

Pour

Figure 12: Key frames for real world different tasks

26

	Introduction
	Related Work
	Preliminaries
	B-Spline Encoded Action Sequence Tokenizer
	Action Sequence Tokenization with B-Spline Tokenizer
	Enforcing Smooth Transition with Clamped B-Spline
	Combining BEAST tokens with different architectures

	Experiments
	Comparing Against Binning-Based Tokenization
	Strong Performance on Established Simulation Benchmarks
	Advantages in Training and Inference Speed
	Tokenizer Comparison under a Unified Backbone
	Real-World Evaluation with 3 Different Robot Setups
	Ablation Studies

	Conclusion
	Acknowledgment
	Choice of Number of Basis Functions
	Architectures
	Baselines Implementation
	Preliminary Results with Flow Matching
	Hyperparameters
	Real Robots Setup & Tasks
	Robot System Details
	Tasks Description and Evaluation Metrics

	Compute Resources

