
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

NEURAL SPH: IMPROVED NEURAL MODELING OF
LAGRANGIAN FLUID DYNAMICS

Artur P. Toshev†,1, Jonas A. Erbesdobler1, Nikolaus A. Adams1,2 & Johannes Brandstetter3,4

1 Chair of Aerodynamics and Fluid Mechanics, TUM, Germany
2 Munich Institute of Integrated Materials, Energy and Process Engineering, TUM, Germany
3 ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning, JKU Linz, Austria
4 NXAI GmbH, Linz, Austria
† artur.toshev@tum.de

ABSTRACT

Smoothed particle hydrodynamics (SPH) is omnipresent in modern engineering
and scientific disciplines. SPH is a class of Lagrangian schemes that discretize
fluid dynamics via finite material points that are tracked through the evolving
velocity field. Due to the particle-like nature of the simulation, graph neural
networks (GNNs) have emerged as appealing and successful surrogates. However,
the practical utility of such GNN-based simulators relies on their ability to faithfully
model physics, providing accurate and stable predictions over long time horizons –
which is a notoriously hard problem. In this work, we identify particle clustering
originating from tensile instabilities as one of the primary pitfalls. Based on
these insights, we enhance both training and rollout inference of state-of-the-
art GNN-based simulators with varying components from standard SPH solvers,
including pressure, viscous, and external force components. All neural SPH-
enhanced simulators achieve better performance than the baseline GNNs, often
by orders of magnitude, allowing for significantly longer rollouts and significantly
better physics modeling. Code available under https://github.com/tumaer/neuralsph.
Our full Neural SPH paper will be presented at ICML’24, see Toshev et al. (2024b).

GNS GNSg,p

GNSg SPH

Figure 1: Neural SPH improves Lagrangian fluid dynamics, showcased by physics modeling of the
2D dam break example after 80 rollout steps. Different models exhibit different physics behaviors.
Subfigures: GNS (Sanchez-Gonzalez et al., 2020), GNS with corrected force only (GNSg), full SPH
enhanced GNS (GNSg,p), and the ground truth SPH simulation. The colors correspond to the density
relative to the reference density; the system is considered physical within 0.98-1.02.

1 INTRODUCTION

In the sciences, considerable efforts have led to the development of highly complex mathematical
models of our world, with many naturally formulated as partial differential equations (PDEs). Over
the past years, deep neural network-based PDE surrogates have gained significant momentum as a
more computationally efficient solution methodology (Thuerey et al., 2021; Brunton & Kutz, 2023),

1

https://github.com/tumaer/neuralsph


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

transforming amongst others computational fluid dynamics (Guo et al., 2016; Kochkov et al., 2021;
Li et al., 2021; Gupta & Brandstetter, 2022; Alkin et al., 2024), weather forecasting (Rasp & Thuerey,
2021; Weyn et al., 2020; Sønderby et al., 2020; Pathak et al., 2022; Lam et al., 2022; Nguyen et al.,
2023), and molecular modeling (Batzner et al., 2022; Batatia et al., 2022; Merchant et al., 2023).

In computational fluid dynamics (CFD), we broadly categorize numerical simulation methods into
two distinct families: particle-based and grid-based. In Eulerian schemes, the space is discretized,
i.e., fixed finite nodes or control volumes lead to grid-based or mesh-based models. In Lagrangian
schemes, the discretization happens on finite material points, commonly known as particles, which
dynamically move with the local deformation of the continuum. One of the most prominent La-
grangian discretization schemes is smoothed particle hydrodynamics (SPH), originally proposed by
Lucy (1977) and Gingold & Monaghan (1977) for applications in astrophysics. In contrast to grid-
and mesh-based approaches, SPH approximates the field properties using radial kernel interpolations
over adjacent particles at the location of each particle. The strength of the SPH method is that it does
not require connectivity constraints, e.g., meshes, which is particularly useful for simulating systems
with large deformations. Since its foundation, SPH has been greatly extended and is the preferred
method to simulate problems with (a) free surfaces (Marrone et al., 2011; Violeau & Rogers, 2016),
(b) complex boundaries (Adami et al., 2012), (c) multi-phase flows (Hu & Adams, 2007), and (d)
fluid-structure interactions (Antoci et al., 2007).

In deep learning, graph neural networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2017) are
an obvious fit to model particle-based dynamics. Often, predicted accelerations at the nodes are
numerically integrated to model the time evolution of the particles or the mesh, i.e., dynamics are
updated in a hybrid neural-numerical fashion (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020;
Mayr et al., 2023). Most recent applications of GNN-based simulators involve Lagrangian fluid
simulations (Toshev et al., 2023; 2024a; Winchenbach & Thuerey, 2024). One downside of these
GNN-based simulators is the risk of instabilities, which affects both the neural and numerical
components.

It is known that already standard SPH schemes exhibit tensile instability, i.e., numerical instabilities
leading to particle clumping and void regions when negative pressure occurs within what should be
an incompressible fluid (Price, 2012). This has led to the development of improved SPH schemes that
explicitly target the particle distribution (Adami et al., 2013; Zhang et al., 2017a). A review of SPH
literature indicates that even methods seeking to improve other properties, like reducing artificial
dissipation (Zhang et al., 2017b) or handling violent water flows (Marrone et al., 2011), may also
improve the particle distribution, which is therefore the key to preventing such instabilities.

2 SIMULATING LAGRANGIAN DYNAMICS

Smoothed particle hydrodynamics. Smoothed particle hydrodynamics (SPH) approximates
the incompressible Navier-Stokes equations (NSE) by the so-called weakly compressible NSE.
This is necessary because the density of the fluid is defined by radial kernel summation ρi =∑

j mjW (rij |h), where mj represents the mass of the adjacent particles j, and W the radial
interpolation kernel with smoothing length h that operates on the scalar distance rij . This summation
may violate strict incompressibility. However, the weak compressibility assumption typically allows
for up to ∼ 1% density deviation (Monaghan, 2005). This ∼ 1% is also enforced for the weakly
compressible SPH method, while evolving density and momentum:

d

dt
(ρ) = −ρ (∇ · u) , (1)

d

dt
(u) = −1

ρ
∇p︸ ︷︷ ︸

pressure

+
ν

VrefLref
∇2u︸ ︷︷ ︸

viscosity

+ g︸︷︷︸
ext. force

. (2)

Herein, ρ is the density, u the velocity vector, p the pressure, g the external force, ν the viscosity, and
Uref , Lref the reference velocity and length scale. Without loss of generality, we consider Uref = 1,
Lref = 1. We note that either density summation with kernel averaging, or density evolution (Eq. (1))
is used to compute the density, and as we explain later, the former is the preferred and the latter
the more general approach. To evolve the system in time, the above equation(s) are integrated in
time by, e.g., semi-implicit Euler (see Appendix F). However, solving these equations with standard

2



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

SPH methods may still produce artifacts, most notably when particle clumping exceeds the 1%
density-fluctuation requirement (Adami et al., 2013).

SPH particle redistribution. The term responsible for a homogeneous particle distribution in
the SPH method is the pressure gradient term 1

ρ∇p in the momentum equation Eq. (2). In weakly
compressible SPH, the pressure is computed from density through the equation of state

p(ρ) = pref

(
ρ

ρref
− 1

)
. (3)

Thus, for a reliable approximation of the density ρ, the pressure term ensures a repulsive force of
scale pref whenever the density exceeds the given reference value ρref , where typically ρref = 1.
However, the pressure term is not necessarily sufficient for producing a good particle distribution, as
we can see in the bottom part of Fig. 9 in Toshev et al. (2024a). For this reason, more advanced SPH
schemes have been developed, distinguishing between the physical velocity field and the velocity by
which particles are shifted (Adami et al., 2013; Zhang et al., 2017a). These schemes are related to
Arbitrary Lagrangian-Eulerian methods (Hirt et al., 1974) instead of being fully Lagrangian.

3 NEURAL SPH

In this section, we introduce neural SPH, which improves both training and rollout inference of
temporally coarsened GNN-based simulators. Neural SPH comprises a routine to correct for induced
modeling errors due to external forces, and inference-time refinement steps of the system state based
on SPH relaxation methods.

Correction of external forces. In the learning problem formulation by Toshev et al. (2024a), the
GNN-based simulators receive as node inputs a time sequence of the H most recent historic velocities
stacked to uk−H:k = [uk−H , ...uk] and an optional external force vector. Consequently, the GNN-
based simulators are confronted with the underlying instantaneous force and not the effective force,
i.e., the force that acts on the particles upon temporal coarsening. We develop a convolution-based
methodology for estimating the effective force acting on a particle over the span we coarse grain over.
For a detailed discussion we refer to Appendix D.

Correction of particle distribution via SPH relaxation. In order to correct the pathological particle
clustering of learned GNN-based simulators, we add an intermediate step during the rollout of a
learned Lagrangian solver, namely an SPH relaxation step. The idea is that if the learned solver
pushes the system to an unphysical particle configuration, we can reduce density fluctuations by
running an SPH relaxation simulation of up to 5 steps. By SPH relaxation, we refer to the process
of taking the point cloud right after the temporal update of the learned model, and then – solely
based on the particle coordinates – applying an SPH update with the assumption of zero initial
velocities (Litvinov et al., 2015; Fan et al., 2024). We can apply SPH relaxation using the pressure
term in Eq. (2) and/or the viscous term in Eq. (2). One update step of relaxation corresponds to

a = α
−1

ρ
∇p+ αβ∇2u , (4)

p = p+ a , (5)

where we hide the time step and the pre-factors in the hyperparameters α and β. Adding and fine-
tuning these hyperparameters is essential for various reasons: (a) in SPH, it proves challenging to
identify a reference velocity, which is needed for determining the time step size; (b) adhering to
the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928) would most certainly result in
smaller time steps, and most importantly, (c) the step size is implicitly determined by how much the
GNN-based simulator distorts the system. This largest distortion depends on many factors, such as
temporal coarsening steps M and the choice of the GNN-based simulator.

Correction of density at walls and free surfaces. Recall that also existing SPH methods encounter
challenges when predicting the density of a system at free surfaces. On the one hand, density
summation, which is the preferred method for density computation due to implicit mass conservation,
is not directly applicable to free surfaces since it encounters density inconsistencies. On the other
hand, resorting to density-transport equations abandons exact mass conservation. For GNN-based
simulators, we propose a novel way of estimating the density of a system at free surfaces. Our

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

approach combines the SPH requirement that density fluctuations should not exceed ∼ 1% – which
we round up to 2% – with density summation. We extend density summation by (a) setting all
values < 0.98ρref to ρref , and (b) clipping all values > 1.02ρref , i.e. setting them to 1.02ρref .
Modification (a) guarantees that particles at free surfaces are set to the reference condition, preventing
surface instabilities. Modification (b) truncates large outliers akin to gradient clipping when training
a neural network, stabilizing the relaxation dynamics. With this novel density computation routine,
we can also easily work with wall discretizations consisting of one wall layer, whereas standard SPH
typically requires three or more wall layers (Adami et al., 2012). To complete the discussion on
wall boundaries, we use the generalized wall boundary condition approach by Adami et al. (2012) to
enforce the impermeability of the walls.

4 EXPERIMENTS

Our analyses are based on the datasets of Toshev & Adams (2024), accompanying the LagrangeBench
paper (Toshev et al., 2024a). These datasets represent challenging coarse-grained temporal dynamics
and contain long trajectories, i.e., up to thousands of steps. We test the difference in performance
of two popular GNN-based simulators: (i) when the external forces are removed from the model
outputs (indicated by subscript g), (ii) when an SPH relaxation is performed that is implied by a
pressure term (indicated by subscript p), and (iii) when an SPH relaxation is performed implied by a
viscosity term (indicated by subscript ν). The two graph neural networks which we investigated are
the Graph Network-based Simulator (GNS) model (Sanchez-Gonzalez et al., 2020) and the Steerable
E(3)-equivariant Graph Neural Network (SEGNN) (Brandstetter et al., 2022).

Overview results. Our results on 400-step rollouts using the GNS model are summarized in Table 1
and are averaged over all test trajectories and over the trajectory length. See Table 3 for the SEGNN
results. As error measures, we use (a) the mean-squared error of positions (MSE400), (b) the Sinkhorn
divergence, which quantifies the conservation of the particle distribution, and (c) the kinetic energy
error (MSEEkin) as a global measure of the physical behavior. The viscous term is shown only for
reverse Poiseuille flow because it did not improve the performance on the other datasets. We note
that by splitting the test sets into sequences of length 400, we obtain only 12-25 test trajectories,
leading to noisy performance estimates. We discuss the necessity for larger datasets later in this
section. Overall, all neural SPH-enhanced simulators achieve better performance than the baseline
GNNs, often by orders of magnitude, allowing for significantly longer rollouts and significantly better
physics modeling. Below we give more details on the lid-driven cavity experiments, and for more
details on the other datasets, we point to Appendix G.

Model MSE400 Sinkhorn MSEEkin

2D
RPF

GNS 2.7e− 2 3.6e− 7 4.3e− 3
GNSg 2.7e− 2 2.7e− 7 3.7e− 4
GNSg,p 2.7e− 2 2.9e− 8 4.1e− 4
GNSg,p,ν 2.7e− 2 3.0e− 8 1.4e− 4

2D
LDC

GNS 3.3e− 2 3.1e− 4 1.1e− 4
GNSp 1.6e− 2 2.8e− 7 1.2e− 6

2D
DAM

GNS 1.9e− 1 3.8e− 2 4.6e− 2
GNSg 8.0e− 2 1.3e− 2 9.4e− 3
GNSg,p 8.4e− 2 7.5e− 3 2.1e− 3

3D
RPF

GNS 2.3e− 2 4.4e− 7 1.7e− 5
GNSp 2.3e− 2 1.0e− 7 1.5e− 5
GNSg 2.3e− 2 4.4e− 7 4.1e− 5
GNSg,p 2.3e− 2 1.3e− 7 4.1e− 5

3D
LDC

GNS 3.2e− 2 2.0e− 5 1.3e− 7
GNSp 3.2e− 2 1.1e− 6 2.9e− 8

Table 1: Performance measures averaged over a rollout of 400-steps. An additional subscript g
indicates that external forces are removed from the model outputs, subscript p indicates that the SPH
relaxation has a pressure term, and subscript ν that the viscosity term is added to the SPH relaxation.
The numbers in the table are averaged over all test trajectories.

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

4.1 DAM BREAK 2D

We saw a major performance boost on dam break when removing external forces (GNSg), see Table 1.
This simple modification of the training objective improves all considered measures by at least a
factor of 2 and by as much as a factor of 5 on a rollout of the full dam break trajectory, i.e., 400 steps.
Up to 20-step rollouts, GNSg training does not improve the position error, which is in accordance
with Sanchez-Gonzalez et al. (2020). However, as the simulation length goes beyond 50 steps,
numerical errors quickly accumulate and lead to artifacts like the one visible in the top part of Fig. 1.
This particular failure mode in the front part of the dam break wave develops by first compressing
the fluid to as much as 1.5ρref , and then the smallest instability in the tip causes particles to fly up.
From there on, GNS starts acting as if the right wall has already been reached and fails to model the
double wave structure from the reference solution, see Figs. 3 to 6.

The high compression levels in the bulk fluid are not solved yet. However, by running an addi-
tional SPH relaxation with as few as three steps (GNSg,p), we recover the correct dynamics with a
significantly higher precision as measured by the Sinkhorn divergence and the kinetic energy MSE.

4.2 LID-DRIVEN CAVITY 2D

In the lid-driven cavity (LDC) example, we see yet another failure mode of the vanilla GNS model:
the learned model pushes particles away from the fast-moving lid into the lower half of the domain,
which has profound consequences. On the one hand, the pressure at the bottom increases to an extent
such that particles continuously pass through the bottom wall (see the bottom wall of the top left plot
in Fig. 2). On the other hand, since too few particles reside close to the lid, the shearing forces are
underrepresented, yielding a loss of kinetic energy, i.e., dynamics are lost.

de
ns

ity
ve

l.
m

ag
ni

tu
de

GNS GNSp SPH

Figure 2: Density and velocity magnitude of 2D lid-driven cavity after 400 rollout steps (left to right):
GNS, GNSp, SPH. The colors in the first row correspond to the density deviation from the reference
density; the system is considered physical within 0.98-1.02.

5 CONCLUDING REMARKS

We introduced neural SPH, a framework for improved training and inference of GNN-based simulators
for Lagrangian fluid dynamics simulations. We demonstrate the utility of our toolkit on seven diverse
2D and 3D datasets and on two state-of-the-art GNN-based simulators, GNS and SEGNN. We
identify particle clustering originating from tensile instabilities as one of the primary pitfalls of
GNN-based simulators. Through the proposed external force treatment and SPH relaxation step,
distribution-induced errors are minimized, leading to more robust and physically consistent dynamics.
Compared to other methods, neural SPH does not require a differentiable solver and increases the
inference time only by a fixed and rather small amount.

5



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

ACKNOWLEDGEMENTS

The authors thank Fabian Thiery, Christopher Zöller, and Steffen Schmidt for helpful discussions on
SPH at free surfaces.

AUTHOR CONTRIBUTIONS

A.T. conceived the ideas of SPH relaxation and the proposed external force treatment, implemented
them, ran the experiments, and wrote the first version of the manuscript. J.E. contributed the Dirichlet
energy metric and wrote the literature review on density summation at free surfaces. N.A. and J.B.
supervised the project from conception to design of experiments and analysis of the results. All
authors contributed to the manuscript.

REFERENCES

Stefan Adami, Xiangyu Hu, and Nikolaus A Adams. A generalized wall boundary condition for
smoothed particle hydrodynamics. Journal of Computational Physics, 231(21):7057–7075, 2012.

Stefan Adami, XY Hu, and Nikolaus A Adams. A transport-velocity formulation for smoothed
particle hydrodynamics. Journal of Computational Physics, 241:292–307, 2013.

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers. arXiv preprint arXiv:2402.12365, 2024.

Carla Antoci, Mario Gallati, and Stefano Sibilla. Numerical simulation of fluid–structure interaction
by sph. Computers & structures, 85(11-14):879–890, 2007.

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher
order equivariant message passing neural networks for fast and accurate force fields. Advances in
Neural Information Processing Systems, 35:11423–11436, 2022.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric
and physical quantities improve e(3) equivariant message passing. In ICLR, 2022.

Steven L. Brunton and J. Nathan Kutz. Machine Learning for Partial Differential Equations. arXiv
preprint arXiv:2303.17078, March 2023.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020
(oc20) dataset and community challenges. Acs Catalysis, 11(10):6059–6072, 2021. doi: 10.1021/
acscatal.0c04525.

Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen differenzengleichungen der
mathematischen physik. Mathematische annalen, 100(1):32–74, 1928.

Yu Fan, Xiaoliang Li, Shuoguo Zhang, Xiangyu Hu, and Nikolaus A Adams. Analysis of the particle
relaxation method for generating uniform particle distributions in smoothed particle hydrodynamics.
2024. doi: 10.13140/RG.2.2.29175.80806.

Xiang Fu, Albert Musaelian, Anders Johansson, Tommi Jaakkola, and Boris Kozinsky. Learning
interatomic potentials at multiple scales. arXiv preprint arXiv:2310.13756, 2023a.

6



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, and
Tommi S. Jaakkola. Forces are not enough: Benchmark and critical evaluation for machine
learning force fields with molecular simulations. Transactions on Machine Learning Research,
2023b. ISSN 2835-8856. Survey Certification.

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and application
to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–389, 1977.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 481–490, 2016.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Cyrill W Hirt, Anthony A Amsden, and JL Cook. An arbitrary lagrangian-eulerian computing method
for all flow speeds. Journal of computational physics, 14(3):227–253, 1974.

XY Hu and Nikolaus A Adams. An incompressible multi-phase sph method. Journal of computational
physics, 227(1):264–278, 2007.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Jonathan Klimesch, Philipp Holl, and Nils Thuerey. Simulating liquids with graph networks. arXiv
preprint arXiv:2203.07895, 2022.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21):e2101784118, 2021.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexan-
der Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. GraphCast:
Learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794,
2022.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In ICLR, 2021.

Sergey Litvinov, XY Hu, and Nikolaus A Adams. Towards consistence and convergence of conserva-
tive sph approximations. Journal of Computational Physics, 301:394–401, 2015.

Leon B Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal,
vol. 82, Dec. 1977, p. 1013-1024., 82:1013–1024, 1977.

Salvatore Marrone, Matteo Antuono, A Colagrossi, G Colicchio, D Le Touzé, and G Graziani.
δ-sph model for simulating violent impact flows. Computer Methods in Applied Mechanics and
Engineering, 200(13-16):1526–1542, 2011.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes
Brandstetter. Boundary graph neural networks for 3d simulations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 9099–9107, 2023.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, pp. 1–6, 2023.

Joe J Monaghan. Smoothed particle hydrodynamics. Reports on progress in physics, 68(8):1703,
2005.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

7



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet: A Global Data-
driven High-resolution Weather Model using Adaptive Fourier Neural Operators. arXiv preprint
arXiv:2202.11214, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Daniel J Price. Smoothed particle hydrodynamics and magnetohydrodynamics. Journal of Computa-
tional Physics, 231(3):759–794, 2012.

Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a resnet
pretrained on climate simulations: A new model for weatherbench. Journal of Advances in
Modeling Earth Systems, 13(2):e2020MS002405, 2021.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim
Salimans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. Metnet: A neural weather model
for precipitation forecasting. arXiv preprint arXiv:2003.12140, 2020.

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.
Physics-based Deep Learning. arXiv preprint arXiv:2109.05237, 2021.

Artur Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus Adams. Lagrangebench:
A lagrangian fluid mechanics benchmarking suite. Advances in Neural Information Processing
Systems, 36, 2024a.

Artur P. Toshev and Nikolaus A. Adams. Lagrangebench datasets, January 2024. URL https:
//doi.org/10.5281/zenodo.10491868.

Artur P. Toshev, Gianluca Galletti, Johannes Brandstetter, Stefan Adami, and Nikolaus A. Adams.
Learning lagrangian fluid mechanics with e(3)-equivariant graph neural networks. In Frank Nielsen
and Frédéric Barbaresco (eds.), Geometric Science of Information, pp. 332–341, Cham, 2023.
Springer Nature Switzerland. ISBN 978-3-031-38299-4.

Artur P Toshev, Jonas A Erbesdobler, Nikolaus A Adams, and Johannes Brandstetter. Neural sph:
Improved neural modeling of lagrangian fluid dynamics. arXiv preprint arXiv:2402.06275, 2024b.

Artur P Toshev, Harish Ramachandran, Jonas A Erbesdobler, Gianluca Galletti, Johannes Brandstetter,
and Nikolaus A Adams. Jax-sph: A differentiable smoothed particle hydrodynamics framework.
arXiv preprint arXiv:2403.04750, 2024c.

Damien Violeau and Benedict D Rogers. Smoothed particle hydrodynamics (sph) for free-surface
flows: past, present and future. Journal of Hydraulic Research, 54(1):1–26, 2016.

Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global weather prediction
using deep convolutional neural networks on a cubed sphere. Journal of Advances in Modeling
Earth Systems, 12(9):e2020MS002109, 2020.

Rene Winchenbach and Nils Thuerey. Symmetric basis convolutions for learning lagrangian fluid
mechanics. arXiv preprint arXiv:2403.16680, 2024.

Chi Zhang, Xiangyu Y Hu, and Nikolaus A Adams. A generalized transport-velocity formulation for
smoothed particle hydrodynamics. Journal of Computational Physics, 337:216–232, 2017a.

Chi Zhang, XY Hu, and Nikolaus A Adams. A weakly compressible sph method based on a
low-dissipation riemann solver. Journal of Computational Physics, 335:605–620, 2017b.

8

https://doi.org/10.5281/zenodo.10491868
https://doi.org/10.5281/zenodo.10491868


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A DAM BREAK PLOTS

In this section, we show some more examples of dam break trajectories. Roughly one-third of GNS
trajectories have the same artifacts at step 80 as test trajectory 0 (see Figs. 3 and 4). Roughly half
of the GNS trajectories show large amounts of particles leaving the box on the right at step 80 (see
Fig. 5). Only a few GNS simulations behave better at step 80 (see Fig. 6).

G
N

S
G

N
S g

G
N

S g
,p

SP
H

step 80 step 240

Figure 3: Dam break steps 80 and 240 of test rollout 0. Extends Fig. 1.

G
N

S
G

N
S g

G
N

S g
,p

SP
H

step 80 step 240

Figure 4: Dam break steps 80 and 240 of test rollout 13.

9



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

G
N

S
G

N
S g

G
N

S g
,p

SP
H

step 80 step 240

Figure 5: Dam break steps 80 and 240 of test rollout 14.

G
N

S
G

N
S g

G
N

S g
,p

SP
H

step 80 step 240

Figure 6: Dam break steps 80 and 240 of test rollout 15.

B HYPERPARAMETERS OF GNS MODEL

These hyperparameters were tuned on the GNS-10-128 model.

Dataset loops α β
2D RPF 3 0.02 0.2
2D LDC 5 0.03 –
2D DAM 3 0.03 –
3D RPF 1 0.005 –
3D LDC 1 0.02 –

Table 2: Tuned hyperparameters used in our experiments.

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

C RPF 2D PLOTS

Figure 7: Velocity and acceleration magnitude histogram of 2D reverse Poiseuille flow after 400
rollout steps (average over all rollouts). Extends Fig. 9.

D TEMPORAL COARSENING OF EXTERNAL FORCES

We make two observations related to the learning of temporally coarsened Lagrangian dynamics
under the influence of external forces:

1. The impact of the external force g is already included in the dynamics given by the past
velocities uk−H:k. Thus, providing a constant force vector, i.e., gravitational force, as
model input might be necessary when training equivariant models, but as Sanchez-Gonzalez
et al. (2020) show in their appendix C2, the GNS model does not improve when external
force information is added. However, in the general case of systems with spatially varying
forces, having force vectors as inputs is crucial. An example is the reverse Poiseuille flow,
which has a positive force in x direction when y > 1 and a negative force when y < 1 (see
Appendix E).

2. By predicting the full acceleration a, the GNN-based simulators are forced to model gravity
implicitly. One might argue that gravity is just a bias term in the last decoder layer, and thus,
a GNN-based simulator should be able to model gravitational effects quite easily. However,
we observe that for a GNS model trained on dam break (see Fig. 1 top part), the bias term in
the last layer is more than an order of magnitude smaller than the respective gravitational
acceleration.

Especially the latter observation hints that GNN-based simulators indeed mainly learn velocity
correlations as suggested by Klimesch et al. (2022). By looking at Eq. (2), and by using the
superposition principle, we suggest splitting the terms on the right-hand side of this equation into

11



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

[...] + g. If considering temporal coarsening of GNN-based simulators over M SPH steps, and given
that the dataset is generated by running an SPH simulation with a constant time step ∆tSPH , the
steps over which the GNN-based simulator integrates are M∆tSPH . In the case of a constant force
g, this leads to an effective external force after M SPH steps of gFD

M = (M∆tSPH)2g, where the
second power comes from double integration of acceleration to positions, see Appendix F. Thus,
when removing the accumulated external force from the target acceleration, i.e.,

atarget = GNN(Xtk−H−1:tk ,g) + gFD
M , (6)

the model is forced to disentangle the interactions between external forces and internal dynamics,
i.e., the other two terms on the right-hand side of Eq. (2). We attain a powerful formulation of the
learning problem since the dynamics are controlled more explicitly, as showcased in Fig. 1 and in
Figs. 3 to 6 in Appendix A.

However, if the force g varies over space and/or time, its separation becomes trickier. In this case,
modeling the correct effective external force requires (i) precise information on the forces that act on a
given particle over each of the M steps we want to coarse-grain over, and (ii) taking the average over
these contributions, i.e., gFD

M = (M∆tSPH)2 1
M

∑M
m=1 gm. Since we typically do not have access

to such information, we propose a convolution-based solution. In the case of a spatially varying but
constant in time force field, we use the standard deviation of velocities over the dataset σu as a proxy
of how much a particle moves perpendicularly to the force field, as this perpendicular motion is what
we want to smoothen for. We then convolve the force function with a Gaussian distribution N (0, σ2

u)
with the standard deviation σu and thus smoothen the force function to account for the effective force
exerted on a particle that moves across regions with variable forcing.

This convolution can be implemented in two ways: (i) If the function is simple enough, i.e., an
analytical solution exists, we can use it directly. (ii) Alternatively, we may evaluate the instantaneous
external force at the current particle coordinates and then apply an SPH kernel convolution, which is
very similar to a convolution with a Gaussian, except that it has compact support. Applying a kernel
W (r|h) with h = σu enables us to effectively smoothen any given force function. As a side remark,
applying a convolution with an SPH kernel W (·|h) of a particular h over the mass of each adjacent
particle is exactly what density summation does.

E FORCING OF REVERSE POISEUILLE FLOW

The forcing step function of the reverse Poiseuille flow (RPF) is given by:

f(x, y, z) =

{
[−1, 0, 0] , if y > 1

[1, 0, 0] otherwise .
(7)

For the two-dimensional case, the z value can be ignored. We use the analytical solution of the
convolution of the forcing step function with a Gaussian kernel of width that corresponds to the
standard deviation of the velocities over the dataset. In this special case, the convolution has an
analytical solution given by the error function erf. For the jump in the middle, we obtain the solution

fsmooth(x, y, z) = [−erf
(
y − 1√
2σ

)
, 0, 0] . (8)

We use the finite difference approximation between consecutive coordinate frames to approximate the
standard deviation of the velocity. For 2D RPF, the velocity standard deviation is [0.036, 0.00069],
and for 3D RPF [0.074, 0.0014, 0.0011]. We first convert these two standard deviation vectors to
their isotropic versions, assuming that the velocity components are independent Gaussian random
variables, i.e., using the quadratic mean. This leads to σ2D = 0.025 and σ3D = 0.043. We round
the numbers and use the values σ2D = 0.025 and σ3D = 0.05 in our experiments. The result of this
smoothing procedure can be seen in Fig. 8.

12



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

1.0 0.5 0.0 0.5 1.0
force

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y-
ax

is

force
force * (0, )

Figure 8: Forcing step function of the 2D reverse Poiseuille flow before (blue) and after convolution
with normal distribution N (0, 0.0252) (orange).

F TEMPORAL COARSENING

Semi-implicit Euler:

u1 = u0 +∆ta0 (9)
p1 = p0 +∆tu1 (10)

= p0 +∆tu0 +∆t2a0 (11)
u2 = u1 +∆ta1 (12)

= u0 +∆t(a0 + a1) (13)
p2 = p1 +∆tu2 (14)

= (p0 +∆tu0 +∆t2a0) + ∆t(u0 +∆t(a0 + a1)) (15)

= p0 +∆t2u0 +∆t2(2a0 + a1) (16)
...

uM = u0 +∆t

M−1∑
m=0

am (17)

pM = p0 +M∆tu0 +∆t2
M−1∑
m=0

(M −m)am . (18)

If am is a constant number, we can simplify the last part to:

uM = u0 +M∆ta (19)

pM = p0 +M∆tu0 + 0.5M(M + 1)∆t2a . (20)

If we now compute the target effective acceleration by finite differences of positions, we end up with

uFD
0 = (p0 − p−M )/∆tFD (21)

uFD
M = (pM − p0)/∆tFD (22)

aFD
0 = (uFD

M − uFD
0 )/∆tFD = (pM − 2p0 + p−M )/∆tFD2

. (23)

13



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

By substituting the semi-implicit Euler rule after M steps into this finite differences approximation
and setting ∆tFD = 1 for simplicity, we get an effective acceleration of

aFD
iM = p(i+1)M − 2piM + p(i−1)M (24)

= M(∆tu0((i+ 1)− 2i+ (i− 1))

+ 0.5∆t2a(((i+ 1)2M + (i+ 1))− 2(i2M + i) + ((i− 1)2M + (i− 1))))
(25)

= M
(
0 + 0.5∆t2a(2M)

)
(26)

= (M∆t)2a . (27)

G DETAILED RESULTS

GNN-based simulators. The Graph Network-based Simulator (GNS) model (Sanchez-Gonzalez
et al., 2020) is a popular learned surrogate for physical particle-based simulations and our main
model. The architecture is kept simple, based on the encoder-processor-decoder principle, where the
processor consists of multiple graph network blocks (Battaglia et al., 2018). Our second model, the
Steerable E(3)-equivariant Graph Neural Network (SEGNN) (Brandstetter et al., 2022) is a general
implementation of an E(3) equivariant GNN, where layers are directly conditioned on steerable
attributes for both nodes and edges. The main building block is the steerable MLP, i.e., a stack of
learnable linear Clebsch-Gordan tensor products interleaved with gated non-linearities. SEGNN
layers are message-passing layers where steerable MLPs replace the traditional non-equivariant MLPs
for both message and node update functions. These two models were chosen as they present the
current state-of-the-art surrogates for Lagrangian fluid dynamics (Toshev et al., 2024a), and also
because they are representative of two fundamentally different classes of GNNs: non-equivariant
(GNS) and equivariant (SEGNN).

Implementation of SPH relaxation. In our experience, it suffices to perform the relaxation operation
for 1-5 steps, depending on the problem. We summarize the used hyperparameters in Table 2 and ??.
Given that the learned surrogate is trained on every 100th SPH step, these additional SPH relaxation
steps only marginally increase the rollout time – by a factor of 1.05-1.15 per relaxation step for a
10-layer 128-dimensional GNS model simulating the 2D RPF case. In the same table, we observe
an increase in runtime for 3D RPF and GNS-10-128 of roughly 1.4x per relaxation step, but we
believe that this comes from the much more compute-intense neighbor search, which is reevaluated at
every relaxation step. However, as the relaxation does not need to be implemented in a differentiable
framework (we currently adopt JAX-SPH (Toshev et al., 2024c)), more efficient implementations,
e.g. in C++, can significantly reduce these runtimes. For more compute-intense models like SEGNN
the slowdown factor reduces, as the relaxation has a fixed computational cost independent of the
particular GNN model.

Most computational overhead of the relaxation is due to its neighbor list, which has significantly more
edges than the default neighbor list of the GNN-based simulators. The GNN graph generation uses the
default radial cutoff distance from LagrangeBench, which corresponds to roughly 1.5 average particle
distances. In contrast, the SPH relaxation uses the Quintic spline kernel with a cutoff of 3 average
particle distances, i.e., the SPH relaxation operates on 2d more edges, with dimension d ∈ {2, 3}.
Therefore, our approach can be regarded as a multiscale approach, similar to the learned multi-scale
interatomic potential presented by (Fu et al., 2023a). The difference is that in our approach, only the
part using the smaller cutoff is a neural network, and the longer-range interactions simply stabilize
the system in terms of better density distributions.

G.1 REVERSE POISEUILLE FLOW 2D

The external force for the reverse Poiseuille flow 2D dataset is provided as a function corresponding
to the instantaneous force, but when we train towards the effective dynamics over multiple original
solver steps, we need to adjust this force. In particular, when predicting the effective dynamics over
M = 100 temporal coarse-graining steps provided by LagrangeBench, a reverse Poiseuille flow
particle might jump back and forth across the boundary that separates the left- and right-ward forcing.
Thus, it is not possible to infer the aggregated external force directly from only knowing the particle

14



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

coordinates at step M . We, therefore, apply a convolution of a Gaussian function with the forcing
function (Appendix E). Since the forcing in RPF is a step function, this specific convolution possesses
an analytical solution, i.e., the error function erf(·). We use erf(·) as a drop-in replacement to the
original force function. See Appendix E for more details and visualization of the force before and
after the convolution.

Correction of external forces. When removing external forces for the training of the GNS
model (GNSg), we observed that using the original, i.e., not smoothed, forces leads to highly
unstable dynamics in the shearing region, which causes the failure of the dynamics after less than
50 steps. When switching to the smoothed force function, the system becomes much more stable
to perturbations and significantly improves the kinetic energy error. It is important to note that the
kinetic energy is paramount to RPF, as this physical system is characterized by constant kinetic
energy up to small fluctuations.
Looking at the 20-step position MSE reported in LagrangeBench, the GNSg training leads to worse
performance, roughly by a factor of 1.5. This is important to note because we trade off worse
short-term behavior in favor of better long-rollout performance, with the latter being the practical
use-case we target. In this context, the LagrangeBench datasets pre-define a split of 50/25/25, which
is far from enough if we want stable error estimates on rollouts of 400-step length, as also discussed,
e.g., in Fu et al. (2023b).

Correction via SPH redistribution. In addition to external force subtraction, we found it beneficial
to use the pressure (p) and viscous (ν) terms during relaxation, termed GNSg,p,ν . Viscosity, which
manifests itself in shearing forces, in general, refers to the idea that if two fluid elements are close
to each other but move in opposite directions, then they should both decelerate. Thus, to apply
viscosity, we need to again approximate velocities by finite differences between consecutive positions
of particles.

In Figs. 7 and 9, we show histograms over velocity magnitudes to quantify how the different correction
terms impact the dynamics. Firstly, the original GNS model loses its high-velocity components over
time, resembling a diffusion process, which makes it more stable with respect to perturbations, but, at
the same time, leads to wrong kinetic energy. Secondly, simply changing the training objective by
removing the external force (see GNSg) already mitigates the problem of missing high velocities.
And by adding the viscous term, which is especially relevant in the shearing region, to the density
gradient term, we almost perfectly recover the target velocity distribution.

Figure 9: Velocity magnitudes histogram of 2D reverse Poiseuille flow after 400 rollout steps
(averaged over all rollouts). Our GNSg,p,ν matches the ground truth distribution of SPH.

G.2 LID-DRIVEN CAVITY 2D

We fix both these issues with an SPH relaxation, forcing particles to be homogeneously distributed
within the box. The mechanism is the pressure gradient term from Eq. (4), which pushed particles
away from high-density regions, termed GNSp. The only part we haven’t discussed yet is how to
ensure that particles do not leave the box by passing through the walls. We use the simple and
effective approach laid out in the generalized wall boundary condition paper by Adami et al. (2012).
The idea of this approach is to enforce the impermeability of the walls by setting the pressure of the
dummy wall particles to the average pressure of their adjacent fluid neighbors, see Eq. (27) in Adami
et al. (2012), and, thus, constructing a setting of zero pressure gradients normal to the walls. This
trick also solved the problem of dam break particles leaving the box upon the first contact of the
fluid with the right wall (see top left part of Fig. 5). The way in which this boundary condition
implementation enters one step of the SPH relaxation loop is the following: (1) density computation
for fluid particles, (2) pressure computation for fluid particles through the equation of state, (3)

15



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

computation of pressure of wall particles via weighted summation over the pressure of adjacent fluid
particles, and (4) evaluation of the pressure gradient term, which gives the forces used to integrate the
momentum equation Eq. (4) through Eq. (5).

G.3 3D DATASETS

On 3D LDC, we observe a similar behavior as for the 2D LDC case: particles without SPH relaxation
are compressed in the lower half, and again, through our relaxation, we improve the distribution, i.e.,
the Sinkhorn divergence, by a factor of 20, and also the kinetic energy by a factor of 4.
Improving the performance of the 3D RPF datasets proved to be more complicated. Moving the
external force out of the model outputs doesn’t seem to improve the dynamics, and the SPH relaxation
also doesn’t contribute much to the kinetic energy error. We attribute these results to the fact that the
error of the baseline model is already rather low in absolute terms, and there isn’t much potential for
improvement based on better particle distributions – see Sinkhorn of GNS on 3D RPF in Table 1,
which is as low as 4.4e− 7.
Finally, this 3D RPF result lets us conclude that it is necessary to define a threshold of when a learned
GNN-based simulator performs well enough in the sense of the requirements of the downstream
task of interest. Here, we refer to physical thresholds like the chemical accuracy in computational
chemistry or the energy and forces within threshold (EFwT) quantity used by the Open Catalyst
project (Chanussot et al., 2021), both of which are designed to quantify whether a computational
model is useful for practical applications. We leave the derivation of such thresholds for Lagrangian
fluid simulations to future work.

G.4 SEGNN RESULTS

We applied the same modifications to the SEGNN model (Brandstetter et al., 2022) without any
further tuning of the neural SPH hyperparameters and summarize the results in Table 3. This is useful
not only for better comparability but also to show that proper SPH relaxation often depends more on
the case than on the model – for example, moving the external force out of the 2D RPF case results
in a 40 times lower kinetic energy error. However, in some cases, the GNS and SEGNN models
behave quite differently. For example, when we change the treatment of the external force in dam
break without applying additional wall boundary condition tricks, we observe many particles falling
through the bottom wall around step 200. Adding the relaxation and wall boundary conditions, this
problem is solved.

H SEGNN RESULTS

For all SEGNN results, we use the hyperparameters from Table 2.

Model MSE400 Sinkhorn MSEEkin

2D
RPF

SEGNN 2.7e− 2 3.3e− 7 4.3e− 3
SEGNNg 2.8e− 2 3.3e− 7 1.2e− 4
SEGNNg,p 2.8e− 2 3.5e− 8 1.6e− 4
SEGNNg,p,ν 2.8e− 2 3.8e− 8 7.3e− 4

2D
LDC

SEGNN 7.6e− 2 2.3e− 3 9.1e+ 0
SEGNNp 1.8e− 2 5.8e− 7 1.6e− 5

2D
DAM

SEGNN 1.5e− 1 3.4e− 2 1.9e− 2
SEGNNg 1.6e− 1 2.1e− 2 1.9e+ 1
SEGNNg,p 8.6e− 2 4.9e− 3 2.6e− 3

3D
RPF

SEGNN 1.2e− 1 1.0e− 4 1.5e+ 3
SEGNNp 2.6e− 2 1.3e− 5 1.8e− 2
SEGNNg 2.7e− 2 2.6e− 6 9.5e− 3
SEGNNg,p 2.6e− 2 7.9e− 7 5.7e− 3

3D
LDC

SEGNN 3.3e− 2 2.3e− 5 1.7e− 7
SEGNNp 3.3e− 2 2.0e− 6 1.8e− 7

Table 3: Result from a 400-step rollout of the SEGNN model.

16


	Introduction
	Simulating Lagrangian dynamics
	Neural SPH
	Experiments
	Dam Break 2D
	Lid-Driven Cavity 2D

	Concluding Remarks
	Dam break plots
	Hyperparameters of GNS model
	RPF 2D Plots
	Temporal Coarsening of External Forces
	Forcing of Reverse Poiseuille Flow
	Temporal Coarsening
	Detailed Results
	Reverse Poiseuille Flow 2D
	Lid-Driven Cavity 2D
	3D Datasets
	SEGNN Results

	SEGNN Results

