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Abstract
In many real-world scenarios, interested variables
are often represented as discretized values due
to measurement limitations. Applying Condi-
tional Independence (CI) tests directly to such
discretized data, however, can lead to incorrect
conclusions. To address this, recent advancements
have sought to infer the correct CI relationship
between the latent variables through binarizing
observed data. However, this process inevitably
results in a loss of information, which degrades
the test’s performance. Motivated by this, this
paper introduces a sample-efficient CI test that
does not rely on the binarization process. We
find that the independence relationships of latent
continuous variables can be established by ad-
dressing an over-identifying restriction problem
with Generalized Method of Moments (GMM).
Based on this insight, we derive an appropriate
test statistic and establish its asymptotic distribu-
tion correctly reflecting CI by leveraging node-
wise regression. Theoretical findings and Empir-
ical results across various datasets demonstrate
that the superiority and effectiveness of our pro-
posed test. Our code implementation is provided
in https://github.com/boyangaaaaa/DCT.

1. Introduction
Conditional independence tests for discrete variables are
fundamental in statistical analysis and widely applied across
various disciplines. Traditional methods including the chi-
squared test (F.R.S., 2009), the G-test (likelihood ratio test)
(McDonald, 2009), and measures based on conditional mu-
tual information (Kubkowski et al., 2021) are well estab-
lished and extensively used. However, a critical yet often
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Figure 1. Illustration of data generative processes using causal
graphical models: (a) fork, (b) and (c) chain. The discretization
process maps latent continuous variables (white nodes) to observ-
able discrete variables (gray nodes), denoted with a tilde (∼).

overlooked issue is whether the analyzed variables are truly
discrete or if they are inherently continuous but appear
discrete due to measurement limitations.

In many real-world applications, data collection methods
impose unavoidable discretization. That is, continuous
variables are artificially binned into categories because of
constraints in measurement precision. This phenomenon
across various fields, including finance (Changsheng &
Yongfeng, 2012; Damodaran, 2012), psychology (Mossman
et al., 2017; Johnson et al., 2019), and recommendation sys-
tems (Sparling & Sen, 2011; Dooms et al., 2013). In these
domains, inherently continuous variables—such as stock
prices, cognitive ability scores, and user preferences—are
frequently transformed into discrete scales, often leading to
biases in statistical inference.

When discretization occurs, traditional CI tests can fail to
capture the true CI relationship. As shown in Figure1 where
we illustrate the discretization process with a causal graphic
model (Pearl, 2000), for all CI tests unaware of discretiza-
tion, the intent is to test the CI of latent continuous variables
X1, X3 given X2, what is actually being tested is their dis-
cretized counterparts X̃1, X̃3 given X̃2. According to the
faithfulness assumption (Spirtes et al., 2000), we can in-
fer that X1 ⊥⊥ X3|{X2} while X̃1 ̸⊥⊥ X̃3|{X̃2}. This
mismatch between the latent continuous variables and their
discretized counterparts causes traditional CI tests, when
applied to discretized observations, to draw incorrect conclu-
sions about the true CI relationships of interested variables.

Recent work Discretization-Aware CI test (DCT) (Sun et al.,

by the author(s).
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2024) has attempted to address this issue by establishing
the correct relationship between discretized data and latent
variables through binarization of the observed data. While
this approach facilitates more accurate CI testing by sim-
plifying the data structure, it inherently leads to a loss of
information. The reduction of data to binary form can sig-
nificantly degrade the performance of CI tests, especially in
settings with small sample sizes where the preservation of
information is crucial for reliable statistical inference.

Motivated by the limitations of existing methodologies, this
paper aims to introduce a sample-efficient CI test that cir-
cumvents the need for binarization, thereby preserving the
full richness of the data. Our approach leverages the Gen-
eralized Method of Moments (GMM) to address the over-
identifying restrictions problem, enabling the estimation of
covariance of latent continuous variables without sacrificing
information. We then adopt the strategy of DCT to derive
test statistics and their asymptotic distribution for CI test-
ing, utilizing nodewise regression (Callot et al., 2019). The
paper seeks to contribute as follows:

• We propose Discretization-Aware CI Test with GMM
(DCT-GMM), a novel CI test tailored for discretization.

• We provide a theoretical analysis proving that DCT-GMM
is consistent and has lower variance than DCT, making it
more sample efficient. (Ziegel, 2002).

• We empirically demonstrate DCT-GMM’s effectiveness
and superiority over state-of-the-art CI tests, particularly
in small-sample regimes.

2. Related Work
Conditional Independence Test Testing for CI is a fun-
damental concept in statistics, with linear Gaussian models
traditionally dominating due to their simplicity and inter-
perability. These models assume linear dependencies and
Gaussian noise, providing closed-form solutions for testing
through metrics like partial correlation (Yuan & Lin, 2007;
Peterson et al., 2015; Mohan et al., 2012; Ren et al., 2015).
However, the linear Gaussian assumption restricts the gen-
erality. Recent CI testing advancements leverage kernel
methods for nonlinear continuous relationships (Fukumizu
et al., 2004). Methods like KCI (Zhang et al., 2012) and
RCI (Strobl et al., 2019) analyze partial associations, while
KCIP (Doran et al., 2014) employs sample permutations to
simulate CI. For discrete variables, G2 (Aliferis et al., 2010)
and conditional mutual information (Zhang et al., 2010) are
standard tests. A recent advance on permutation-based rank
test, MPRT (Dong et al., 2025), can also be used to test van-
ishing partial correlation in the presence of discretization.

Prior work DCT (Sun et al., 2024) moves the first step to-
wards the CI test specifically for the discretization scenario.

Their approach can be decomposed into three steps: 1. The
calculation of estimated covariance Σ̂, based on the prop-
erty that the proportion of both observed variables exceeding
their means reflects the underlying covariance, solved using
a single equation. 2. The deviation of covariance matrix
Σ̂−Σ∗ follows a multivariate normal distribution utilizing
Z-estimator(Vaart, 1998). 3. The deviation of precision
matrix Ω̂ − Ω∗ also follows a multivariate normal distri-
bution utilizing node-wise regression (Callot et al., 2019).
However, despite having multiple solvable equations from
the discretized observations, only one parameter of interest
exists per variable pair, leading to an over-identification is-
sue. Efficiently utilizing all available information is the key
challenge, motivating us to explore the usage of GMM.

Generalized Method of Moments GMM (Newey, 2007;
Hansen, 1982) is a statistical estimation technique offer-
ing a principal solution to the over-identification problem.
Suppose θ denotes a p × 1 vector, xi denotes the obser-
vation of a data sample where i ∈ (1, . . . , n) is the index.
fi(θ) = f(xi,θ) be a m × 1 vector of functions. For the
true parameter θ∗, we will have

E[fi(θ∗)] = 0.

Using ĝ(θ) = 1
n

∑n
i=1 fi(θ) denote the sample average of

the fi(θ). The A is a m×m positive semi-definite matrix.
The GMM estimator is given by

θ̂ = argmin
θ

ĝ(θ)TAĝ(θ),

providing a framework for valid inference (Newey, 2007).
In our case, by properly designing the moment functions
and selecting the parameter of interest, GMM can efficiently
fulfill the objective of estimation and addressing the over-
identification issue.

3. DCT-GMM: Discretization-Aware CI Test
with GMM

Notation Throughout this work, we use Xj to denote
the j-th component of the vector of variables X =
(X1, . . . , Xp) with finite observations {x1

j , . . . , x
n
j }. We

denote the sample mean given n samples by En[Xj ] =
1
n

∑n
i=1 x

i
j while its true expectation is E[Xj ]. Similarly,

the empirical probability is represented by Pn, and the true
probability by P. For a parameter α, its true value is α∗

and its estimation is α̂. For a matrix X, X−T denotes the
transpose of its inverse. We use X−j to represent all other
columns of X without Xj . Similarly, X−j−j is the subma-
trix of X without jth column and jth row, and the X−jj is
the vector of jth column without jth row. For a full notation
table, please refer to Appendix A.1.

Problem Setting In this paper, we adopt the same non-
paranormal model as DCT (Sun et al., 2024). Specifically,
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we consider a set of independent identically distributed
(i.i.d.) p-dimensional random discrete variables, denoted
as X̃ = (X̃1, X̃2, . . . , X̃j , . . . , X̃p). For each discrete
variable X̃j with finite observations {x̃1

j , . . . , x̃
n
j }, there

exists a corresponding latent Gaussian variable Xj . The
transformation from Xj to X̃j is governed by an unknown
monotone nonlinear function gj and a thresholding function
fj . The function fj ◦ gj : X → X̃ maps the continuous
domain of Xj onto the discrete domain X̃j . Specifically,
for each variable Xj , there exists a finite constant vector
dj = [dj,1, . . . , dj,M−1] characterized by strictly increasing
elements such that

X̃j = fj(gj(Xj)) =


1 gj(Xj) < dj,1,

m dj,m−1 < gj(Xj) < dj,m,

M gj(Xj) > dj,M−1.

(1)

Equivalently, we can conclude X̃j = m, for
g−1
j (dj,m−1) < Xj < g−1

j (dj,m), where m is an integer
ranging from 1 to M . That is, there exists a finite constant
vector cj = [g−1

j (dj,1), . . . , g
−1
j (dj,M−1)] acting as the

"discretization boundary" that partition the Xj into M cate-
gories. We refer M as the cardinality of the discrete variable
X̃j . Without loss of generality, we assume X ∼ N(0,Σ)
with Σ = (σj1j2) and σjj = 1. That is, we assume the
original continuous variables X follow a multivariate nor-
mal distribution with zero mean and unit variance on the
diagonal of Σ. We provide a detailed discussion regarding
its rationality and w.l.o.g in Appendix B.

Objective We aim to develop a CI test to infer the cor-
rect CI relationship between latent continuous variables
X = (X1, . . . , Xp), which are the interested ones given
their discretized observations X̃ only. By assuming a lin-
ear Gaussian of original continuous variables, our objec-
tive directly transfers to deduce the statistical inference of
covariance matrix Σ = (σj1j2) for independent test and
precision matrix Ω = Σ−1 = (ωjk) for CI test (Baba et al.,
2004). Specifically, the covariance σj1j2 = 0 indicates that
Xj1 ⊥⊥ Xj2 , and the precision coefficient ωjk = 0 indi-
cates that Xj ⊥⊥ Xk|X−{jk}, where X−{jk} represents all
other variables in X except Xj and Xk. Technically, we
are interested in two key tasks:

• Estimation: Obtain σ̂j1j2 and ω̂jk serving as the estima-
tion of the corresponding true parameters with only dis-
cretized observations available.

• Inference: Derive the distribution σ̂j1j2 − σ∗
j1j2

for inde-
pendence test and ω̂jk − ω∗

jk for CI test.

In the subsequent section, we develop our theoretical frame-
work through three key steps. First, we demonstrate that for
any pair of continuous variables Xj1 and Xj2 with their cor-
responding discretized observations X̃j1 and X̃j2 , we can

effectively construct both the estimator σ̂j1j2 and character-
ize the distribution of σ̂j1j2−σ∗

j1j2
using GMM. Second, we

establish that the nodewise regression parameter βj,k serves
as an effective surrogate for the precision matrix element
ωjk. Finally, we show the asymptotic normal distribution of
β̂j,k−β∗

j,k by analyzing its relationship with the component
distributions of σ̂j1j2 − σ∗

j1j2
.

3.1. GMM for covariance estimation and inference

Estimating discretization boundaries The discretiza-
tion scheme maps the Xj onto a finite set of dis-
crete values according to the discretization boundaries,
maintaining the ordinal relationship of the original con-
tinuous variable while reducing its resolution. For
ease of notation, we denote the augmented discretiza-
tion boundary c∗j := [c∗j,0, c

∗
j,1, . . . , c

∗
j,M−1, c

∗
j,M ] =

[−∞, g−1
j (dj,1), . . . , g

−1
j (dj,M−1),+∞]. We further de-

note Φ(·) as the cumulative distribution function (cdf) of
the standard normal distribution. Our available observation
consists of binned discrete values. Since Xj ∼ N(0, 1) ac-
cording to the assumption, we conclude that P(X̃j = m) =
P(c∗j,m−1 < Xj < c∗j,m). That is, the probability of observ-
ing a discrete value corresponds to the probability of the
original continuous variable falling into a particular region.
Although the true probability is not directly accessible, it
can be estimated by calculating the sample proportion of the
observations within each bin. Specifically, we can obtain
the estimation of the discretization boundaries

ĉj,m = Φ−1(

m∑
k=1

τ̂j,k), (2)

where τ̂j,k is the empirical probability defined as τ̂j,k :=

Pn(X̃j = k) = 1
n

∑n
i=1 1(x̃

i
j = k), serving as the esti-

mation of the true probability τj,k := P(X̃j = k). The
indicator function 1(condition) is 1 if the condition hold
true, 0 otherwise. This formulation provides a closed-form
solution for estimating the discretization boundaries from
observed discrete data.

Estimate covariance through single equation The chal-
lenge lies in estimating the latent covariance σj1j2 with
discretized values. For a pair of continuous variables Xj1

and Xj2 , the discretization scheme essentially creates a
"grid". Each cell represents a specific combination of dis-
cretized values for both variables. When we count how
many samples fall into one cell, the sample proportion
within each cell provides an empirical estimate of the joint
probability density, which can be expressed as Pn(X̃j1 =

m, X̃j2 = k) , serving as the estimation of the true proba-
bility P(c∗j1,m−1 < Xj1 < c∗j1,m, c∗j2,k−1 < Xj2 < c∗j2,k).

According to our assumption that the latent variables fol-
low a multivariate normal distribution, the true probability
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above is given by Φ(c∗j1,m−1, c
∗
j1,m

, c∗j2,k−1, c
∗
j2,k

;σ∗
j1j2

),
which is the cdf of a bivariate normal distribution with the
true covariance σ∗

j1j2
integrated over the rectangular region

defined by [c∗j1,m−1, c
∗
j1,m

]× [c∗j2,k−1, c
∗
j2,k

]. For a specific
form of the function, please refer to Appendix A.2.

For notational convenience, we define τ̂j1j2,mk :=

Pn(X̃j1 = m, X̃j2 = k) as the empirical joint probability,
and τj1j2,mk := P(X̃j1 = m, X̃j2 = k) as the true probabil-
ity. We use τ̂ ij1j2,mk = 1(x̃i

j1
= m, x̃i

j2
= k) as the indica-

tor of sample i. The empirical cell density can be easily com-
puted from the observation as τ̂j1j2,mk = 1

n

∑n
i=1 τ̂

i
j1j2,mk.

The estimated covariance σ̂j1j2 can then be obtained by
solving following equation:

τ̂j1j2,mk = Φ(ĉj1,m−1, ĉj1,m, ĉj2,k−1, ĉj2,k;σj1j2), (3)

where ĉ can be computed using Eq. (2). We call the equation
above a "bridge equation", which provides a direct solution
to recovering the underlying covariance by only using the
discretized observations.

However, this formulation presents an overidentification
challenge. For any pair of discrete variables X̃j1 and X̃j2

with cardinalities M and K respectively, we obtain M ×K
distinct cells, each corresponding to its own equation. This
results in an overdetermined system with M ×K equations
but only one parameter of interest σj1j2 . This overidentifi-
cation is a key limitation of DCT (Sun et al., 2024), which
utilizes only a single equation despite the availability of mul-
tiple informative constraints. In the following section, we
demonstrate how GMM acts as a principled framework for
efficiently leveraging all available information from these
multiple equations, thereby offering a preciser solution.

Move from single equation to multiple equation For a
pair of variables X̃j1 and X̃j2 with cardinality M and K
correspondingly, we define the parameters of interest θ =
(σj1j2 , cj1 , cj2) ∈ RM+K−1. Let fi(θ) = f(x̃i

j1
, x̃i

j2
,θ) ∈

RMK referred as the moment function with the form:

fi(θ) =

 τ̂ ij1j2,11 − Φ(cj1,0, cj1,1, cj2,0, cj2,1;σj1j2)
...

τ̂ ij1j2,MK − Φ(cj1,M−1, cj1,M , cj2,K−1, cj2,K ;σj1j2)

 . (4)

For the true parameter θ∗, the population moment condition
satisfies E[fi(θ∗)] = 0. The detailed derivation of this
condition can be found in Appendix F.1. Let the sample
analogue of the moment condition be ĝ(θ) = 1

n

∑n
i=1 fi(θ).

Given a positive semi-definite matrix A ∈ RMK×MK as
weighting matrix, the GMM estimator is given by

θ̂ = argmin
θ

ĝ(θ)TAĝ(θ). (5)

This formulation leverages all M ×K moment functions
simultaneously to obtain the estimation θ̂, efficiently uti-
lizing the available information from the discretized obser-
vations. The estimated covariance σ̂j1j2 is nothing but the

first element of θ̂. The next question is, how to construct
the distribution σ̂j1j2 − σ∗

j1j2
. Given this, we propose the

following theorem:

Theorem 3.1. Under the null hypothesis that the original
continuous variables Xj1 ⊥⊥ Xj2 , with the moment function
fi(θ) defined as Eq. (4), when number of samples n → +∞,
the estimator σ̂j1j2 is asymptotically normal distributed:

√
n(σ̂j1j2 − σ∗

j1j2
) = − 1

n

∑n
i=1

[
(ĜTAĜ)−1ĜTAfi(θ

∗)
]
1
, (6)

which will converge in distribution to N(0,V11),

• where V = (GTAG)−1GTASAG(GTAG)−1, and
V11 is its first entry,

• G = E[∂fi(θ
∗)

∂θ∗ ] is the expectation of the Jacobian matrix
of the moment function at true parameter θ∗,

• Ĝ = En[
∂fi(θ̂)

∂θ̂
] is sample average of the Jacobian matrix

of moment function at estimated parameter θ̂,

• S = E[fi(θ∗)fi(θ
∗)T ] is the covariance matrix of the

moment function fi(θ
∗).

The detailed derivation can be found in Appendix F.2. Since
we never have the access to the true parameters θ∗ and
the true expectation E[·], in practice, we can plug in their
estimation En[

∂fi(θ̂)
∂θ ] and En[fi(θ̂)fi(θ̂)

T ] to calculate the
variance of the asymptotic distribution. For the weighting
matrix A, theoretically, any positive semi-definite matrix is
applicable to the theorem above. A common choice could
be the identity matrix.

Two-step GMM Apparently, the choice of weighting ma-
trix A plays an important role in determining the statistical
property of the GMM. Specifically, A directly influences
the variance of the distribution σ̂j1j2 − σ∗

j1j2
. The question

is how to choose A optimally to minimize the asymptotic
variance of the estimator. According to the classical theory
of GMM (Hansen, 1982), we have the following lemma:

Lemma 3.2. Suppose the choice of A
p→ S−1, where S =

E[fi(θ∗)fi(θ
∗)T ] is the covariance matrix of fi(θ∗) for the

true parameters θ∗, then

√
n(σ̂j1j2 − σ∗

j1j2
) = − 1

n

∑n
i=1

[
(ĜTAĜ)−1ĜTAfi(θ

∗)
]
1
, (7)

will converge in distribution to a normal distribution with
variance N(0,V11), where V = (GTS−1G)−1, strictly
smaller in the positive semi-definite sense compared to the
asymptotic covariance matrix in the one-step GMM estima-
tor given in Theorem 3.1. Here, G and Ĝ have the same
definition as in Theorem 3.1.
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The detailed derivation is provided in Appendix F.3. In
practice, the procedure begins by estimating the parameter
of interest using a predefined weighting matrix, such as
the identity matrix. Next, the covariance of the moment
functions is used to construct the optimal weighting matrix,
enabling the final GMM estimator to efficiently re-estimate
the parameters. This two-step GMM approach is a well-
established technique for achieving asymptotic efficiency,
and its superiority is empirically validated in Section 4.

The estimated covariance σj1j2 serves as an indicator of
unconditional independence. Following the framework pro-
posed by (Sun et al., 2024), we build such a CI test utilizing
nodewise regression.

3.2. Nodewise regression for constructing CI test

In this subsection, we follow (Sun et al., 2024) and leverage
the nodewise regression to derive the CI test. For com-
pleteness, we present the main results here and refer to the
original paper for a detailed treatment. The practical imple-
mentation is also discussed at the end of this subsection.

By assuming the X follows a multivariate normal distri-
bution, our task of constructing CI test is equivalent to (1).
computation of ω̂jk based on the discretized observations;
(2). construction of ω̂jk − ω∗

jk. Targeting both tasks, the
nodewise regression is leveraged, which shows that:

• The regression parameter βj,k can serve as an effec-
tive surrogate for testing the null hypothesis that Xj ⊥⊥
Xk|X−{jk}, i.e., ωjk = 0.

• The formulation of β̂j,k−β∗
j,k can be expressed as a linear

combination of σ̂j1j2 − σ∗
j1j2

, which allows us to derive
its distribution and facilitating the CI test.

The following lemma establishes the key properties of node-
wise regression that support this approach.

Lemma 3.3. [Nodewise Regression Properties] (Sun et al.,
2024) For a p-dimensional multivariate normal variable
X = (X1, . . . , Xp) ∼ N(0,Σ) with covariance matrix Σ
and precision matrix Ω = Σ−1 = (ωjk)1≤j,k≤p. For any
j ∈ {1, . . . , p}, consider the nodewise regression where
each Xj is regressed on all other variables:

Xj =
∑
k ̸=j

Xkβj,k + ϵj ,

where βj,k is the regression coefficient of Xk in predicting
Xj , βj = (βj,k)k ̸=j ∈ Rp−1 is the vector of all coefficients,
and ϵj is the residual term. Then the following relationships
hold:

βj,k = −ωjk

ωjj
, j ̸= k.

βj = Σ−1
−j−jΣ−jj ∈ Rp−1.

(8)

The derivation can be found in Appendix F.4.1. The first
row of Eq. (8) indicates that βj,k is a scaled version of ωjk.
Since ωjj will never be zero due to the positive definiteness
of Ω, testing if βj,k = 0 is exactly the same as testing
ωjk = 0. Thus, βj,k serves as an effective surrogate of ωjk.
Now our focus transfers to calculating β̂j,k and deriving the
distribution of β̂j,k − β∗

j,k.

We further note that the second row of Eq. (8) constructs
a consistent relationship between βj and the covariance
matrix Σ. Thus, we can conduct its estimation as β̂j =

(β̂j,k)j ̸=k = Σ̂−1
−j−jΣ̂−jj , where the estimated covariance

terms can be obtained through solving Eq. (5).

Statistical Inference for βj,k Nodewise regression trans-
fers the parameter of interest from ωjk to βj,k. While the
estimation of βj,k has been effectively solved, the next ques-
tion is how to construct the distribution of β̂j,k−β∗

j,k. Fortu-
nately, we have already established the asymptotic distribu-
tion of σ̂j1j2−σ∗

j1j2
. Therefore, if we can express β̂j−β∗

j as
a linear combination of σ̂j1j2 −σ∗

j1j2
, the problem is readily

solved, as β̂j−β∗
j will be a linear combination of dependent

asymptotically normal random variables. The underlying
relationship between these variables is as follows:

β̂j − β∗
j = −Σ̂−1

−j−j

(
(Σ̂−j−j −Σ∗

−j−j)β
∗
j − (Σ̂−jj −Σ∗

−jj)
)
. (9)

The derivation of this result is provided in Appendix F.4.2.
For notational convenience, we express the difference be-
tween the estimated and true covariances as:

σ̂j1j2 − σ∗
j1j2 =

1

n

n∑
i=1

ξij1j2 , (10)

where the specific form of ξij1j2 is given in Theorem 3.1
and Lemma 3.2. We further denote Σ̂−j−j − Σ−j−j =
1
n

∑n
i=1 Ξ

i
−j−j and Σ̂−jj − Σ−jj = 1

n

∑n
i=1 Ξ

i
−jj are

matrix form of ξij1j2 .

Conditional Independence Test We apply the follow-
ing theorem for the CI test, with proof provided at Ap-
pendix F.4.2 for completeness:

Theorem 3.4. (Sun et al., 2024) Under the null hypothesis
that Xj and Xk are conditional statistically independent
given a set of variables X{−jk}, i.e., βj,k = 0, the statistic

β̂j,k = (Σ̂−1
−j−jΣ̂−jj)[k], (11)

where [k] denotes the element corresponding to the variable
Xk in Σ̂−1

−j−jΣ̂−jj , has the asymptotic distribution:

√
n(β̂j,k − β∗

j,k)
d→ N(0,V), where

• V = a[k]T 1
n

∑n
i=1 vec(B

i
−j)vec(B

i
−j)

Ta[k],
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𝛼 = 0.05

Figure 2. Comparison of results of Type I and Type II error (1-power) for discretized observations. DCT-GMM_one uses one-step GMM
with A setting as identity, and DCT-GMM_two uses two-step GMM with A setting as the sample covariance of moment functions.

• Bi =

[
Ξi

−jj
T

Ξi
−j−j

]
, and β̃j is β∗

j whose β∗
j,k = 0,

• a[k] =

[
−(Σ̂−1

−j−j)
T
[k],:

vec
(
(Σ̂−1

−j−j)
T
[k],:β̃

T
j

)], and vec is row-wise

vectorization of a matrix, and (Σ̂−1
−j,−j)[k],: denotes the

row in Σ̂−1
−j,−j that corresponds to Xk.

Practical implementation for DCT-GMM In practical
implementation, we estimate the regression parameter β̂j

and set β̂j,k = 0 as a substitute for β̃j to calculate variance
and conduct the confidence interval test. Specifically, we
derive β̂j,k using the estimation equation in Equation (11),
where estimated covariance terms are calculated utilizing
GMM. As discussed in Section 3.1, we consider two GMM
estimators: naive GMM (also called one-step GMM, the
one without carefully designing A) and two-step GMM.
In this paper, we empirically validate the effectiveness of
both, whereas A is chosen as an identity matrix for the one-
step GMM and the En[fi(θ̂)fi(θ̂)

T ] for the two-step GMM
following Lemma 3.2. The pseudo-code of both approaches
is provided in Appendix C.

Under the null hypothesis of conditional independence
(βj,k = 0), we substitute the calculated β̂j,k into the distribu-
tion defined in Theorem 3.4 to obtain the p-value. Statistical
inference follows a standard hypothesis testing approach: if
the p-value is less than the predefined significance level α
(typically 0.05), we conclude that the tested pairs are con-
ditionally dependent. Conversely, if the p-value exceeds α,
we fail to reject the null hypothesis and deduce the tested
pairs are conditionally independent.

3.3. Comparison with DCT

One of the motivations behind DCT-GMM is to address the
insufficient data utilization in DCT. This naturally raises
the question: Is DCT-GMM necessarily superior to DCT?
Toward this question, we propose the following theorem:
Theorem 3.5. (Informal) When n → +∞, by constructing
the moment functions properly, the DCT-GMM with two-
step GMM has a lower variance than DCT.

The formal theorem and detailed derivation can be found
in Appendix G. Intuitively, if we construct the moment
functions the same as DCT, we will reach the estimator with
the same variance. However, the GMM framework allows
the introduction of additional moment functions, thereby
reducing the variance. We empirically validate the theorem
in Section 4.3.

4. Experiment
We applied the proposed test DCT-GMM to synthetic dataset
to evaluate its performance compared with baselines includ-
ing DCT (Sun et al., 2024), Fisher-z test (Fisher, 1921),
Chi-square test (F.R.S., 2009). Specifically, we investigate
its Type I and Type II error in different scenarios and its
application in causal discovery. The experiments investigat-
ing its performance in denser graphs and effectiveness in
real-world dataset can be found in Appendix E.

4.1. On the Effect of the Cardinality of Conditioning Set
and the Sample Size

We conducted an experimental study to examine the be-
havior of Type I and Type II error probabilities under two
distinct experimental designs. The first design explores the
impact of sample size variation, specifically testing sam-
ple sizes of n = (200, 500, 1000, 2000) while maintaining
a single conditioning variable, noted as D = 1. In the
second design, we fixed the sample size at n = 2000 and
systematically varied the number of conditioning variables
D = (1, . . . , 5). We assumed that all variables in the condi-
tioning set are influential and affect the confidence intervals
of the tested pairs. Each experimental configuration was
replicated 2,000 times to ensure robust statistical analysis.
We use X and Y to denote the tested pairs and Z to denote
the variables being conditioned on.

To assess the accuracy of the derived asymptotic null distri-
bution, we evaluated whether the Type I error probability
aligns with the predetermined significance level α = 0.05.
We first generate Z as an independent multivariate normal
distribution whose mean and variance are randomly sampled
from a uniform distribution U(0, 1). We then generate cor-
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(a) Fixed samples 𝑛 = 2000, changing number of nodes 𝑝 = (4,6,8,12)

(b) Fixed nodes 𝑝 = 10, changing sample size 𝑛 = (100,500,1000,2000)

Figure 3. Experimental result of skeleton discovery on synthetic data for changing number of nodes (a) and changing sample size (b).
Fisherz_oracle is the Fisher-z test applied to original continuous data. We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).

responding X and Y using Z, structured as
∑D

i=1 aiZi+Ei

(for the first scenario, D = 1), where ai is a scalar sampled
from a standard normal distribution and Ei follows a stan-
dard normal distribution. This ensures that X ⊥⊥ Y | Z.
The data are then discretized into three levels, with random
boundaries set based on the support of each variable, pro-
ducing the discretized observations X̃, Ỹ , and Z̃. The first
two columns of Figure 2 show the resulting Type I error at
a significance level of α = 0.05.

A robust statistical test should minimize the Type II error,
thereby maximizing statistical power. To evaluate the power
of the proposed DCT-GMM, we first generate X and Y
as independent pairs following a normal distribution, with
mean and variance randomly sampled from a uniform distri-
bution U(0, 1). We then generate the conditioning variable
Z as Zi = aiX + biY + Ei, where ai and bi are scalars
randomly drawn from a standard normal distribution, and
Ei follows a standard normal distribution, i.e., X ̸⊥⊥ Y | Z.
The same discretization approach is applied here. The last
two columns of Figure 2 illustrate the Type II error rates for
both varying sample sizes and changing cardinalities of the
conditioning set scenarios.

According to the first row of Figure 2, DCT-GMM (for both
steps) and DCT show superior performance in maintain-
ing Type I error close to the significance level across all
sample sizes and conditioning set cardinalities, while other
baselines, which do not account for discretization, exhibit
significantly higher Type I errors. As the sample size in-

creases, both the Chi-Square and Fisher-Z tests tend to yield
larger Type I errors because these methods measure whether
X̃ ⊥⊥ Ỹ | Z̃. More samples only reinforce incorrect conclu-
sions. Additionally, DCT-GMM demonstrates significantly
higher power compared to DCT, particularly for small sam-
ple sizes. This advantage arises from DCT-GMM’s ability
to utilize more information by solving multiple equations,
highlighting its superiority and effectiveness.

4.2. Application in Causal Discovery

CI testing plays a pivotal role in causal discovery, which
aims to uncover causal relationships from observational data.
Two fundamental assumptions—faithfulness and the causal
Markov condition—allow causal structures, represented by
a Directed Acyclic Graph (DAG) G, to be inferred from
statistical independence relations. Based on these principles,
constraint-based methods like the PC algorithm (Spirtes
et al., 2000) recover graph structures through CI testing.
However, discretization compromises the reliability of CI
tests, leading to incorrect dependence assertions and distort-
ing the inferred DAG.

To validate the effectiveness of DCT-GMM, we follow the
setting of (Sun et al., 2024) and apply the PC algorithm with
different CI testing methods on a synthetic dataset. Specifi-
cally, the true DAG is generated using the Bipartite Pairing
(BP) model (Asratian et al., 1998), with weights drawn from
a uniform distribution U ∼ (1, 3) and incorporating noise
following a standard normal distribution. The number of
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𝑎 			𝜎!" = 0 𝑏 		𝜎!" = 0.5

Figure 4. Comparison of Variance and MSE of estimated covariance using DCT and DCT-GMM.

edges in the DAG is one fewer than the number of nodes.
While this graph is relatively sparse, the main focus of DCT-
GMM is to correct CIs incorrectly judged as conditional
dependence due to discretization. As the number of edges
increases, such cases of true CI become rarer. We also in-
vestigate the performance of DCT-GMM in denser graphs,
detailed in Appendix E.1.

The continuous data is then discretized into three levels, with
boundaries randomly generated according to each variable’s
support. The experiment is divided into two cases: In the
first, we fix the sample size at n = 2000 while varying the
number of nodes p = (4, 6, 8, 12). In the second, we fix
the number of nodes at p = 10 and explore sample sizes of
n = (100, 500, 1000, 2000).

We compare DCT-GMM (both steps) against the Fisher-
Z test (Fisher, 1921), the Chi-square test (F.R.S., 2009),
and the previous work DCT (Sun et al., 2024) applied to
discretized data. Additionally, we apply the Fisher-Z test to
the original continuous data as a theoretical upper bound.
Since the PC algorithm can only identify the causal graph
up to a Completed Partially Directed Graph (CPDAG), we
apply the same orientation rule from (Dor & Tarsi, 1992),
implemented by (Chandler Squires, 2018), to convert the
returned CPDAG to a DAG for easier comparison. For
each setting, we run 10 graph instances with different seeds
and report the mean and standard deviation of F1-score,
precision, recall, and Structural Hamming Distance (SHD)
in Figure 3 for skeleton discovery and Figure 5 for DAG
comparison in Appendix D.

Experimental results show that DCT-GMM consistently out-
performs DCT across all metrics, particularly recall, align-
ing with its higher statistical power demonstrated in Sec-
tion 4.1. Moreover, DCT-GMM significantly outperforms
the Chi-square and Fisher-Z tests, especially at large sam-
ple sizes, where the performance of these traditional tests
deteriorates as the sample size increases. This phenomenon
underscores the importance of discretization-aware CI test:
for all tests not aware of discretization, increasing the sam-
ple size only reinforces incorrect conclusions with greater
confidence. The lower recall observed in DCT-GMM and
DCT compared to other baselines is expected, as other base-

lines tend to misinterpret conditional independence as de-
pendence, leading to denser inferred graph structures.

4.3. Empirical Comparison of DCT and DCT-GMM

To validate the superiority of DCT-GMM over DCT, we
conducted experiments to examine the variance and Mean
Square Error (MSE) of their respective covariance estima-
tors. Both methods adopt the same nodewise regression
framework to transition from σ̂j1j2 − σ∗

j1j2
to β̂j,k − β∗

j,k.
Therefore, evaluating the covariance estimator directly re-
flects the performance of the CI test.

For a given pair of variables X and Y , we denote
the covariance estimated by DCT as σ̂D

XY and that by
DCT-GMM as σ̂G

XY . We empirically assess the stabil-
ity and accuracy of these estimators by comparing their
variance and MSE across varying sample sizes n =
(100, 200, 500, 1000, 2000) under the scenario that the true
covariance σXY = (0, 0.5) and fixed discretization level
M = 3. The Figure 4 shows the results.

As shown in Figure 4, DCT-GMM consistently outperforms
DCT. Specifically, the variance of σ̂G

XY is consistently lower
than that of σ̂D

XY across all evaluated sample sizes. Addi-
tionally, the MSE of σ̂G

XY is smaller, indicating a more
accurate estimation. These experimental results validate the
superiority and improved sample efficiency of DCT-GMM,
providing support for Theorem 3.5.

5. Conclusion
In this paper, we propose DCT-GMM, a novel sample-
efficient CI test to address challenges in CI testing with
discretized data. By formulating parameter estimation as
an overidentification problem and leveraging GMM, DCT-
GMM surpasses existing methods, achieving lower estima-
tion variance and greater statistical power, particularly in
small-sample scenarios. Its proven effectiveness in causal
discovery highlights its practical utility, bridging the gap
between discretized observations and latent variable rela-
tionships in both synthetic and real-world datasets.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix for

“A Sample-Efficient Conditional Independence Test in the Presence of Discretization”

A. Notation Table and Function Form
A.1. Notation Table

Category Description

Number and Indices
n Number of samples
p Number of variables
j1, j2, j, k Index of a variable j1, j2, j, k ∈ (1, . . . , p)
Random Variables
X A vector of Gaussian variables
X̃ The discretized counterparts of X
Σ Covariance of X
Σ−j−j Submatrix of Σ with j-th row and j-th column removed
Σ−jj j-th column of Σ with j-th row removed
Ω Precision matrix of X , equals to Σ−1

X−{jk} All other variables of X with Xj and Xk removed
cj The discretization boundaries mapping Xj to X̃j

Xj j-th component of the X
σj1j2 Covariance between Xj1 and Xj2

ωjk Precision coefficient ωjk

xi
j i-th sample of Xj

x̃i
j i-th sample of X̃j

cj,k One component of cj
τj,k True probability of X̃j has the value k

τj1j2,mk True probability of X̃j1 has the value m, and X̃j2 has the value k.
βj,k Regression coefficient of Xk in predicting Xj

βj Vector of all coefficients regressing Xj

ξij1j2 Influence function component, it represents the influence of the i-th observation on the
covariance estimation error

Ξi Matrix form of ξi

Estimation of Variables
σ̂j1j2 Estimated covariance of Xj1 , Xj2

Σ̂ Estimated covariance matrix, also the matrix form of σ̂j1j2

ω̂jk Estimation of ωjk

ĉj,k Estimation of cj,k, calculated using Equation (2)
τ̂j,k Estimation of τj,k, the sample probability that X̃j equals to k

τ̂j1j2,mk Estimation of τj1j2,mk, the sample probability that X̃j1 equals to m and X̃j2 equals to k

β̂j Estimation of β̂j , calculated as Σ̂−1
−j−jΣ̂−jj

Functions and Operators
P True probability
Pn Sample probability
E[Z] Expectation of a random variable Z
En[Z] Sample mean of a random variable Z over n samples
1 Indicator function: is 1 if the condition is true, 0 otherwise
Φ(z) Cumulative distribution function of a standard normal distribution integrated from −∞ to z
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Category Description

Φ(a, b, c, d;σj1j2) Cumulative distribution function of a bivariate normal distribution with covariance σj1j2

integrated over the rectangular region defined by [a, b]× [c, d].

Notations of GMM
fi(θ) Moment function defined in 4
gi(θ) Sample mean of moment functions given n samples gi(θ) = 1

n

∑n
i=1 fi(θ)

A Weighting matrix of GMM
G The expectation of the Jacobian of the moment function G = E[∂fi(θ

∗)
∂θ ]

S Covariance matrix of moment function S = E[fi(θ∗)fi(θ
∗)T ]

A.2. Cumulative Distribution Function of Bivariate Normal Distribution

The probability density function of a bivariate normal distribution with random variables Xj1 , Xj2 , mean 0, unit variance
and covariance σj1j2 is given by:

ϕ(xj1 , xj2 ;σj1j2) =
1√

1− σ2
j1j2

exp

(
−
x2
j1
− 2σj1j2xj1j2 + x2

j2

2(1− σ2
j1j2

)

)
. (12)

The cdf of the bivariate normal distribution with the covariance σ∗
j1j2

integrating over the rectangular region defined by
[c∗j1,m−1, c

∗
j1,m

]× [c∗j2,k−1, c
∗
j2,k

] is

Φ(c∗j1,m−1, c
∗
j1,m, c∗j2,k−1, c

∗
j2,k;σ

∗
j1j2) =

∫ c∗j1,m

c∗j1,m−1

∫ c∗j2,k

c∗j2,k−1

ϕ(xj1 , xj2 ;σ
∗
j1j2)dxj1dxj2 . (13)
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B. Discussion of Assumptions
Rationality of the assumption A primary limitation of this work lies in the assumption of a multivariate normal distribution
for the latent continuous variables, which, to some extent, restricts its generality. However, it is important to emphasize
the inherent challenge of proposing a valid conditional independence test in a discretization scenario without relying on
appropriate assumptions.

To accurately infer conditional independence relationships within this framework, three key components are required: 1. A
meaningful statistic — capable of capturing the conditional independence among latent variables. 2. A consistent estimator
— the statistic must be computable solely from discretized observations. 3. Statistical inference — the null distribution of
the statistic must be derivable. The discretization drastically reduces available information, making these components less
straightforward to implement compared to scenarios where all variables are directly observable.

Without a parametric assumption, deriving a meaningful statistic is already challenging, let alone performing its statistical
inference. We adopt the same framework of (Sun et al., 2024), relying on the property that with a parametric assumption,
the covariance of the original latent variables is computable, and for Gaussian variables, the covariance matrix corresponds
to the independence and conditional independence among variables.

w.l.o.g of the assumption One question that may intrigue readers is why the assumption of zero mean and unit variance is
made without loss of generality. The answer is straightforward: we can always adjust the discretization function and its
boundaries to produce equivalent results for models with non-zero means and varying variances.

To illustrate, consider an intuitive example. Suppose we observe a discrete variable X̃j with n samples, where half are
labeled as "ones" and the other half as "twos." This discrete distribution could correspond to multiple continuous variables.
For instance, a continuous variable Xj ∼ N(0, 1) with a discretization boundary at 0 and another variable X ′

j ∼ N(1, 2)

with a discretization boundary at 1 would yield exactly the same discretized observations X̃j . Thus, the framework presented
in this paper supports mapping the same discretized observations to multivariate normal distributions with any mean and
variance, i.e., the zero mean and unit variance assumption is without loss of generality.
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C. Pseudo Code

Algorithm 1 one step DCT-GMM
1: Require:

• Observed data matrix X̃ ′ ∈ Rn×d

• Tested pair indices j1, j2 with j1 ̸= j2

• Conditioning set C ⊆ {1, . . . , d} \ {j1, j2}

• Significance level α

2: Rearrange Data Matrix
X̃ =

[
X̃ ′[:, j1], X̃

′[:, j2], X̃
′[:,C]

]
∈ Rn×p, where p = 2 + |C|

3: Initialize Covariance Matrix
Σ̂← Ip (identity matrix of size p× p)

4: for q ← 1 to p do
5: for k ← q + 1 to p do
6: Obtain the Cardinality of X ′[:, q] as Q
7: Obtain the Cardinality of X ′[:, k] as K
8: Set the naive weighting matrix A← IQK

9: Compute covariance σ̂qk through minimizing Equation (5)
10: Update covariance matrix:

Σ̂[q, k]← σ̂qk Σ̂[k, q]← σ̂qk (ensuring symmetry)

11: end for
12: end for
13: Extract Submatrices (j1 and j2 correspond the first and second column of X̃ due to the regroup)

• Let Σ̂−1−1 ∈ Rp−1×p−1← the submatrix of Σ̂ without 1st column and 1st row

• Let Σ̂−11 ∈ Rp−1 be the 1st column of Σ̂ with first row removed

14: Compute Test Statistics
β̂1,2 ← Σ̂−1

−1−1Σ̂−11

15: Formulate Null Distribution

Φ(z)← Cumulative distribution function of the Normal Distribution defined in Thm. 3.4

16: Calculate p-value
p-value← 2 ·

(
1− Φ

(
|β̂1,2|

))
17: Make Decision
18: if p-value > α then
19: Conclude: Xj1 ⊥⊥ Xj2 | XS

20: else
21: Conclude: Xj1 ̸⊥⊥ Xj2 | XS

22: end if
23: Return The conditional independence decision
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Algorithm 2 two step DCT-GMM
1: Require:

• Observed data matrix X̃ ′ ∈ Rn×d

• Tested pair indices j1, j2 with j1 ̸= j2

• Conditioning set C ⊆ {1, . . . , d} \ {j1, j2}

• Significance level α

2: Rearrange Data Matrix
X̃ =

[
X̃ ′[:, j1], X̃

′[:, j2], X̃
′[:,C]

]
∈ Rn×p, where p = 2 + |C|

3: Initialize Covariance Matrix
Σ̂← Ip (identity matrix of size p× p)

4: for q ← 1 to p do
5: for k ← q + 1 to p do
6: Obtain the Cardinality of X ′[:, q] as Q
7: Obtain the Cardinality of X ′[:, k] as K
8: Set the naive weighting matrix A← IQK

9: Obtain estimated parameters θ̂ through minimizing Equation (5)
10: Set the weighting matrix A← En[fi(θ̂)fi(θ̂)

T ], where fi(θ) defined in Equation (4)
11: Resolve Equation (5) with updated A to calculate the estimated covariance σ̂qk

12: Update covariance matrix:
Σ̂[q, k]← σ̂qk Σ̂[k, q]← σ̂qk (ensuring symmetry)

13: end for
14: end for
15: Extract Submatrices (j1 and j2 correspond the first and second column of X̃ due to the regroup)

• Let Σ̂−1−1 ∈ Rp−1×p−1← the submatrix of Σ̂ without 1st column and 1st row

• Let Σ̂−11 ∈ Rp−1 be the 1st column of Σ̂ with first row removed

16: Compute Test Statistics
β̂1,2 ← Σ̂−1

−1−1Σ̂−11

17: Formulate Null Distribution

Φ(z)← Cumulative distribution function of the Normal Distribution defined in Thm. 3.4

18: Calculate p-value
p-value← 2 ·

(
1− Φ

(
|β̂1,2|

))
19: Make Decision
20: if p-value > α then
21: Conclude: Xj1 ⊥⊥ Xj2 | XS

22: else
23: Conclude: Xj1 ̸⊥⊥ Xj2 | XS

24: end if
25: Return The conditional independence decision
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D. Figure of Main Experiments: Causal Discovery

(a) Fixed samples 𝑛 = 2000, changing number of nodes 𝑝 = (4,6,8,12)

(b) Fixed nodes 𝑝 = 10, changing sample size 𝑛 = (100,500,1000,2000)

Figure 5. Experimental result of DAG discovery on synthetic data for changing number of nodes (a) and changing sample size(b).
Fisherz_oracle is the Fisher-z test applied to original continuous data. We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).
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E. Additional Experiments
E.1. Denser Graph

DCT-GMM is most effective in cases where discretization causes true conditional independencies to be incorrectly
identified as dependencies. Its performance is therefore particularly strong in sparse graph settings, where true conditional
independence relationships are abundant. However, to comprehensively evaluate a test’s statistical power—its ability to
correctly identify true conditional dependencies—it is crucial to examine its performance in dense graph scenarios. To this
end, we conduct experiments with p = 10 nodes and n = 2000 samples, varying the edge density (p+2, p+4, p+6, p+8).
The underlying continuous data follows a multivariate Gaussian distribution, with the true DAG G generated using the
BP model. We perform 10 independent trials with different random seeds and present both skeleton discovery and DAG
reconstruction results in Fig. 6.

Experimental results show that DCT-GMM continues to outperform other baselines in terms of precision and SHD. As the
number of edges increases, the advantage of discretization-aware CI tests (DCT-GMM and DCT) gradually diminishes due
to the decreasing prevalence of conditional independence cases. Notably, DCT-GMM maintains superior recall, consistent
with the findings from the main causal discovery experiment.

Figure 6. Experimental comparison of causal discovery on synthetic datasets for denser graphs with p = 10, n = 2000 and edges varying
p+ 2, p+ 4, p+ 6, p+ 8. We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on both skeleton and DAG.
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E.2. Real-world Experiment

N10

[I worry about things]

N3

[I often feel blue]

N4

[I seldom feel blue]

N10

[I worry about things]

N3

[I often feel blue]

N4

[I seldom feel blue]

Fisher-z test and Chi-square test DCT DCT-GMM

N10

[I worry about things]

N3

[I often feel blue]

N4

[I seldom feel blue]

(a) 𝛼 = 1𝑒!"

(b) 𝛼 = 1𝑒!#

Fisher-z test and Chi-square test DCT DCT-GMM

N10

[I worry about things]

N3

[I often feel blue]

N4

[I seldom feel blue]

N10

[I worry about things]

N3

[I often feel blue]

N4

[I seldom feel blue]

N10

[I worry about things]

N3

[I often feel blue]

N4

[I seldom feel blue]

Figure 7. PC algorithm applied on the real-world dataset with Fisher-z test, Chi-square test, DCT and DCT-GMM for different significance
level α. Red edge are found by other baselines while DCT-GMM removes.

To validate the effectiveness of DCT-GMM, we conduct experiments on the Big Five Personality dataset, where each
variable has 5 discrete values representing agreement levels (1=Disagree to 5=Agree). For example, "N3=1" indicates "I
disagree that I worry about things.". This setting aligns well with DCT-GMM, as agreement levels are inherently continuous
but observed as discrete categories. This dataset has been closely examined by Dong et al. (2024a) and Dong et al. (2024b),
yet it does not solve the discretization problem. We focus on three variables: [N3: I worry about things], [N10: I often
feel blue], and [N4: I seldom feel blue]. Using the PC algorithm for causal discovery, we compare DCT-GMM with the
Chi-square and Fisher-Z tests. Results are shown in Fig. 7.

Experimental results validate both the effectiveness and superiority of DCT-GMM. Notably, both discretization-aware CI
tests (DCT and DCT-GMM) successfully remove the edge between N3 and N4, whereas other baselines fail. The inferred
graph directly aligns with our motivating causal graph illustrated in Figure 1. Furthermore, DCT-GMM demonstrates a
stronger ability to capture conditional independence relationships. Increasing the significance level α generally makes CI
tests more prone to inferring conditional dependence. While DCT fails at α = 10−3, DCT-GMM remains robust, correctly
identifying that N3 ⊥⊥ N4 | N10.

18
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F. Proof and Derivations
F.1. Proof of Moment Condition

In this part, We show the derivation that E[fi(θ∗)] = 0. For the moment functions fi(θ∗) defined in Equation (4) with the
parameters achieving their optimal θ = θ∗, we have the specific form:

fi(θ) =

 τ̂ ij1j2,11 − Φ(c∗j1,0, c
∗
j1,1

, c∗j2,0, c
∗
j2,1

;σ∗
j1j2

)
...

τ̂ ij1j2,MK − Φ(c∗j1,M−1, c
∗
j1,M

, c∗j2,K−1, c
∗
j2,K

;σ∗
j1j2

)

 .

For any m ∈ (1, . . . ,M), k ∈ (1, . . . ,K), the cdf term Φ(c∗j1,m−1, c
∗
j1,m

, c∗j2,k−1, c
∗
j2,k

;σ∗
j1j2

) represents the area of this
bivariate normal distribution integrated over the region defined by [c∗j1,m−1, c

∗
j1,m

]× [c∗j2,k−1, c
∗
j2,k

]. In probability terms,
this corresponds to

P(c∗j1,m−1 < Xj1 < c∗j1,m, c∗j2,k−1 < Xj2 < c∗j2,k).

For its corresponding counterpart of the discrete domain, the relation holds

Φ(c∗j1,m−1, c
∗
j1,m, c∗j2,k−1, c

∗
j2,k;σ

∗
j1j2) = P(X̃j1 = m, X̃j2 = k).

Recall the definition that τ̂ ij1j2,mk = 1(x̃i
j1

= m, x̃i
j2

= k) is the indicator function of the sample i. Its expectation is
equivalent to the corresponding probability:

E[τ̂ ij1j2,mk] = P(X̃j1 = m, X̃j2 = k).

We note that Φ(·;σ∗
j1j2

) is a constant with respect to the sample, we can take expectations over fi(θ∗) term-wise:

E[fi(θ)] =

 E[τ̂ ij1j2,11]− Φ(c∗j1,0, c
∗
j1,1

, c∗j2,0, c
∗
j2,1

;σ∗
j1j2

)
...

E[τ̂ ij1j2,MK ]− Φ(c∗j1,M−1, c
∗
j1,M

, c∗j2,K−1, c
∗
j2,K

;σ∗
j1j2

).


Substituting both E[τ̂ ij1j2,11] and Φ(c∗j1,0, c

∗
j1,1

, c∗j2,0, c
∗
j2,1

;σ∗
j1j2

) as P(X̃j1 = m, X̃j2 = k), each term evaluates to zero,
giving:

E[fi(θ∗)] = 0.

This concludes the proof.

F.2. Proof of Theorem 3.1

In this part, we show the detailed derivation of Theorem 3.1. Recall the definition of GMM defined in Equation (5), we are
trying to minimize

Ĵ(θ) = ĝ(θ)TAĝ(θ),

where the ĝ(θ) ∈ RMK is the sample mean of the moment functions, and the θ ∈ RM+K−1 is the interested parameters.
When the interested parameter θ = θ̂, we define the Jacobian matrix

Ĝ =
∂ĝ(θ̂)

∂θ̂
∈ RMK×(M+K−1).

Using the chain rule, we have
∂Ĵ(θ̂)

∂θ̂
= 2ĜTAĝ(θ̂).

We note that when the interested parameter θ = θ̂, which is the minimum of Ĵ(θ), its gradient should be zero:

2ĜTAĝ(θ) = 0. (14)
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Leveraging Taylor expansion, we have

ĝ(θ∗) = ĝ(θ̂) + Ĝ(θ∗ − θ̂) + . . . ,

where the second-order terms and more are omitted. Rearrange the equation above, we have

ĝ(θ̂) = ĝ(θ∗)− Ĝ(θ∗ − θ̂). (15)

Substituting back into the first-order condition Equation (14), the Equation (15) becomes

2ĜTA
(
ĝ(θ∗)− Ĝ(θ∗ − θ̂)

)
= 0. (16)

Simplify and rearrange terms, we have the difference between the estimator and the true parameter:

θ̂ − θ∗ = −(ĜTAĜ)−1ĜTAĝ(θ∗)

= − 1

n

n∑
i=1

(ĜTAĜ)−1ĜTAfi(θ
∗).

According to the Central Limit Theorem, when n → +∞, the sample average of the moment functions should be
asymptotically normal:

1

n

n∑
i=1

fi(θ
∗)

d→ N(0,E[fi(θ∗)fi(θ
∗)T ]/n).

Since the mean is zero due to the definition. We note that the Jacobian term

Ĝ =
∂ĝ(θ̂)

∂θ̂
= En[

∂fi(θ̂)

∂θ̂
]

due to the sample terms are irrelevant with the parameter θ. According to the Law of large numbers, when n → +∞, the
estimated parameter θ̂

p→ θ∗. Thus, the Jacobian

Ĝ
p→ G := E[

∂fi(θ
∗)

∂θ∗ ].

Let S := E[fi(θ∗)fi(θ
∗)T ] for simplicity of the notation, according to Slutsky’s theorem, we have

√
n(θ̂ − θ∗)

d→ N
(
0, (GTAG)−1GTASAG(GTAG)−1

)
. (17)

Since σj1j2 is nothing but the first element of the θ, we conclude that

√
n(σ̂j1j2 − σj1j2)

d→ N
(
0,
[
(GTAG)−1GTASAG(GTAG)−1

]
11

)
, (18)

which concludes the proof.

F.3. Proof of Lemma 3.2

In this part, we show the detailed derivation of Lemma 3.2. Our proof is divided in to two parts: we first
show the specific form of variance will follow when A

p→ S−1. We then establish it superiority by showing
(GTAG)−1GTASAG(GTAG)−1 ⪰ (GTS−1G)−1.

When n → +∞, the positive semi-definite weighting matrix A converges to the S−1, the variance of the original
asymptotical defined in Theorem 3.1, will be written as:

(GTAG)−1GTASAG(GTAG)−1 = (GTS−1G)−1GTS−1SS−1G(GTS−1G)−1

= (GTS−1G)−1GTS−1G(GTS−1G)−1

= (GTS−1G)−1.

(19)
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That is, √
n(θ̂ − θ∗)

d→ N
(
0, (GTS−1G)−1

)
. (20)

Since σj1j2 is nothing but the first element of the θ, we conclude that

√
n(σ̂j1j2 − σj1j2)

d→ N
(
0,
[
(GTS−1G)−1

]
11

)
, (21)

which concludes the first part of the proof. We now dive into the second part.

First, we factor S = CCT , where C ∈ RMK×MK which is non-singular. Second, we let

H = (GTAG)−1GC− (GTS−1G)−1GTC−T .

Third, we not that
HC−1G = 0.

Fourth, we verify that
(GTAG)−1GTASAG(GTAG)−1 = HHT + (GTS−1G)−1.

Since HHT is positive semi-definite, the (GTS−1G)−1 is a lower bound of (GTAG)−1GTASAG(GTAG)−1, which
concludes the proof.

F.4. Proof of Thm. 3.4

We note that the following proof is a direct copy from (Sun et al., 2024). We include it here for completeness.

F.4.1. DERIVATION OF EQUATION 8

Consider our latent continuous variables X = (X1, . . . , Xp) ∼ N(0,Σ) and do nodewise regression

Xj = X−jβj + ϵj , (22)

where X−j is the submatrix of X with Xj removed. We can divide its covariance Σ and its precision matrix Ω = Σ−1 into
the predictor X−j and outcome variable Xj in our regression:

Σ =

(
Σjj Σj−j

Σ−jj Σ−j−j

)
Ω =

(
Ωjj Ωj−j

Ω−jj Ω−j−j

)
. (23)

Just like regular linear regression, we can get

n → ∞, βj = Σ−1
−j−jΣ−jj . (24)

From the invertibility of a block matrix[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
. (25)

If A and D is invertible, we will have[
A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
. (26)

Thus, we can get:
Ωjj = (Σjj −Σj−jΣ

−1
−j−jΣ−jj)

−1;

Ωj−j = −
(
Σjj −Σj−jΣ

−1
−j−jΣ−jj

)−1
Σj−j(Σ−j−j)

−1.
(27)
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Move one step forward:
−Ω−1

jj Ωj−j = Σj−j(Σ−j−j)
−1. (28)

Take transpose for both sides, as long as Ω is a symmetric matrix and Ω−jj = ΩT
j−j , we will have

−Ω−1
jj Ω−jj = Σ−1

−j−jΣ−jj = βj . (29)

We should note testing Ω−jj = 0 is equivalent to testing βj = 0 as the Ωjj will always be nonzero. The variable Ω−jj

captures the CI of Xj with other variables. As long as the variable Ωjj is just one scalar, we can get

βj,k = −ωjk

ωjj
(30)

capturing the CI relationship between variable Xj with Xk conditioning on all other variables.

F.4.2. DETAILED DERIVATION OF INFERENCE FOR βj

Nodewise regression allows us to use the regression parameter βj as the surrogate of Ω−jj . The problem now transfers to
constructing the inference for βj , specifically, the derivation of distribution of β̂j − βj . The overarching concept is that we
are already aware of the distribution of σ̂j1j2 − σj1j2 and we know that there exists a deterministic relationship between βj

with Σ. Consequently, we can express β̂j − βj as a composite of σ̂j1j2 − σj1j2 to establish such an inference. Specifically,
we have

β̂j − βj = Σ̂−1
−j−jΣ̂−jj −Σ−1

−j−jΣ−jj

= Σ̂−1
−j−j

(
Σ̂−jj − Σ̂−j−jΣ

−1
−j−jΣ−jj

)
= −Σ̂−1

−j−j

(
Σ̂−j−jβj −Σ−j−jβj +Σ−j−jβj − Σ̂−jj

)
= −Σ̂−1

−j−j

(
(Σ̂−j−j −Σ−j−j)βj − (Σ̂−jj −Σ−jj)

)
,

(31)

where each entry in matrix (Σ̂−j−j −Σ−j−j) and (Σ̂−jj −Σ−jj) denotes the difference between estimated covariance
with true covariance.

Suppose that we want to test the CI of the variable X1 with other variables, j = 1. then

Σ̂−1−1 −Σ−1−1 =

σ̂22 . . . σ̂2p

. . .
σ̂p2 . . . σ̂pp

−

σ22 . . . σ2p

. . .
σp2 . . . σpp

 (32)

:=
1

n

n∑
i=1

ξi22 . . . ξi2p. . .
ξip2 . . . ξ

i
pp

 , (33)

where {ξij1j2} are i.i.d random variables with specific form defined in Theorem 3.1 for one-step GMM and Lemma 3.2 for
two-step GMM correspondingly. Put them together:

β̂1 − β1 =


β̂1,2 − β1,2

β̂1,3 − β1,3

. . .

β̂1,p − β1,p

 = −Σ̂−1
−1−1

1

n

n∑
i=1



ξi22 ξi23 . . . ξi2,p
ξi32 ξi33 . . . ξi3p
. . . . . . . . . . . .
ξip2 ξip3 . . . ξipp



β1,2

β1,3

. . .
β1,p

−


ξi21
ξi31
. . .
ξip1


 . (34)

As 1
n

∑n
i=1 ξ

i
j1j2

is asymptotically normal, the who vector of β̂1 − β1 is a linear combination of Gaussian distribution.
However, We cannot merely engage in a linear combination of its variance as they are dependent with each other. For
example, if Y1, Y2 are dependent and we are trying to find out V ar(aY1 + bY2), we should have

V ar(aY1 + bY2) =
[
a b

] [ V ar(Y1) Cov(Y1, Y2)
Cov(Y1, Y2) V ar(Y2)

] [
a
b

]
. (35)
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Now, suppose we are interested in the distribution of β̂1,2 − β1,2, we have

β̂1,2 − β1,2 =
1

n

n∑
i=1

(Σ̂−1
−1−1)[2],:



ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p



β1,2

β1,3

. . .
β1,p

−


ξi2,1
ξi3,1
. . .
ξip,1


 , (36)

where (Σ̂−1
−1−1)[2],: is the row of index of X2 of Σ̂−1

−1−1 ([2] denotes the index of the variable, e.g., (Σ̂−1
−1,−1)[2],: represents

the first row of Σ̂−1
−1,−1 since the row of first variable is removed. ). For ease of notation, we define

Y i = Ξi
−1,−1 =


ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p

 ∈ Rp−1×p−1, vi := Ξi
−1,1 =


ξi2,1
ξi3,1
. . .
ξip,1

 ∈ Rp−1, (37)

u := (Σ̂−1
−1,−1)

T
[2],: ∈ Rp−1 w :=


β1,2

β1,3

. . .
β1,p

 ∈ Rp−1.

We can rewrite the equation as

β̂1,2 − β1,2 = − 1

n

n∑
l=1

u(Y iw − vi).

We note that Y i, vi are variables, and u,w are constants (just like the example aY1 + bY2). We further let m = p− 1 to
simplify the notation. We can thus write the equation above as vector form:

β̂1,2 − β1,2 = − 1

n

n∑
l=1

[
u1, . . . , um, u1w1, u1w2, . . . , umwm

]


−vi1
. . . ,
−vim
Y i
11

Y i
12

. . .
Y i
mm


= − 1

n

n∑
i=1

[uT , vec(uwT )T ]

[
−vi

vec(Y i))

]
,

where uk represents the k-th element of vector u and Y i
jk represents the entry in j-th row and k-th column of matrix Y i,

vec represents the row-wise vectorization of a matrix, e.g,

vec(Y l) =


Y11

Y12

Y13

. . .
Ymm

 ∈ Rm2

.

Similar as equation 35, the variance is calculated as

V ar
(√

n(β̂1,2 − β1,2)
)
=

1

n

n∑
l=1

[uT , vec(uwT )T ]

[
−vl

vec(Y i)

] [
−vl

vec(Y i)

]T [
u

vec(uwT )

]
.

Now we go back to use the notations of ξ and Σ. Under the null hypothesis that X1 ⊥⊥ X2|Xothers, i.e., β1,2 = 0. We thus
use β̃1 to denote β1 where β1,2 = 0. Let

Bi
−1 =


ξi21 ξi31 . . . ξip1
ξi22 ξi23 . . . ξi2p
ξi32 ξi33 . . . ξi3p
. . . . . . . . . . . .
ξip2 ξlp3 . . . ξipp

 =

[
Ξi

−11
T

Ξi
−1−1

]
,
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and

a[2] =

[
−(Σ̂−1

−1,−1)
T
[2],:

vec
(
(Σ̂−1

−1,−1)
T
[2],:β̃

T
1

)]
Similarly as (35), The variance is calculated as

V ar
(√

n(β̂1,2 − β1,2)
)
= a[2]T 1

n

n∑
l=1

vec(Bi
−1)vec(Bi

−1)
Ta[2],

Simply replace the index 1, 2 as general index j, k, the distribution of β̂j,k − βj,k is

β̂j,k − βj,k
d→ N(0,a[k]T 1

n2

n∑
l=1

vec(Bi
−j)vec(Bi

−j)
T )a[k]).

In practice, we can plug in the estimates of βj to estimate the interested distribution and do the CI test by hypothesizing
βj,k = 0.
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G. Formal Claim of Theorem 3.5 and Derivation
In this section, we try to demonstrate the theoretical advantage of DCT-GMM over DCT. Specifically, the variance of
β̂j,k − β∗

j,k obtained using DCT-GMM is consistently lower than that of DCT. Since DCT-GMM and DCT adopt exactly
the same strategy to transition from σ̂j1j2 − σ∗

j1j2
to β̂j,k − β∗

j,k, which is simply a linear combination of σ̂j1j2 − σ∗
j1j2

. A
reduction in the variance of σ̂j1j2 − σ∗

j1j2
directly translates to a reduction in the variance of β̂j,k − β∗

j,k is. Thus, our task is
to prove the variance of the estimator of covariance using DCT, denoted VarDCT(σ̂j1j2 − σ∗

j1j2
), is consistently greater than

the one of two-step DCT-GMM, denoted VarGMM(σ̂j1j2 − σ∗
j1j2

).

The proof is organized into two parts:

1. Review of Variance Derivation of DCT: We first provide an review of the derivation for VarDCT(σ̂j1j2 − σ∗
j1j2

). 2.
Moment Function Selection: Next, we show that with appropriate moment functions, VarDCT(σ̂j1j2 − σ∗

j1j2
) equals

VarGMM(σ̂j1j2 − σ∗
j1j2

). We then directly use the property of GMM that incorporating valid moment functions lead to less
variance, which concludes the proof.

G.1. Review of Variance Derivation of DCT

We begin with the derivation of VarDCT(σ̂j1j2 − σ∗
j1j2

) with a particular focus on discrete case. For discretized observed
variable pair X̃j1 and X̃j2 , DCT implicitly treats it as a pair of binary variables. Recall the definitions in DCT, we have
interested parameters θ = (σj1j2 , hj1 , hj2), with the function

g(θ) =
1

n

n∑
i=1

fi(θ) =

τ̂ ij1j2 − Φ̄(hj1 , hj2 ;σj1j2)
τ̂ ij1 − Φ̄(hj1)
τ̂ ij2 − Φ̄(hj2)

 . (38)

For the true parameters θ∗ = (σ∗
j1j2

, h∗
j1
, h∗

j2
), we have

g(θ∗) =
1

n

n∑
i=1

fi(θ
∗) =

τ̂ ij1j2 − Φ̄(h∗
j1
, h∗

j2
;σ∗

j1j2
)

τ̂ ij1 − Φ̄(h∗
j1
)

τ̂ ij2 − Φ̄(h∗
j2
)

 , (39)

and the function of estimated parameters

g(θ̂) =
1

n

n∑
i=1

fi(θ̂) =

τ̂ ij1j2 − Φ̄(ĥj1 , ĥj2 ; σ̂j1j2)

τ̂ ij1 − Φ̄(ĥj1)

τ̂ ij2 − Φ̄(ĥj2)

 = 0, (40)

where

• τ̂ ij1j2 = 1(x̃i
j1

> En[X̃j1 ], x̃
i
j2

> En[X̃j2 ]) serving as the estimation of τ ij1j2 = 1(x̃i
j1

> E[X̃j1 ], x̃
i
j2

> E[X̃j2 ])

• τ̂ ij1 = 1(x̃i
j1

> En[X̃j1 ]) serving as the estimation of τ ij1 = 1(x̃i
j1

> E[X̃j1 ]).

• Φ(x, y; z) =
∫ x

−∞
∫ y

−∞
1

2π
√
1−z2

(exp−u2
1−2zu1u2+u2

2

2(1−z2) )du1du2 is the cumulative distribution function of a bivariate
normal distribution.

• Φ̄(x) = 1− Φ(x), Φ̄(x, y; z) = 1− Φ(x, y; z)

• Φ(x) =
∫ x

−∞
1√
2π

exp−u2

2 du is the cumulative distribution function of a standard normal distribution.

Our objective is to construct the distribution of σ̂j1j2 − σj1j2 , equivalently θ̂ − θ. By leveraging the Taylor expansion, we
can construct the following equation

g(θ̂) = g(θ∗) +
∂g(θ∗)

∂θ∗ (θ̂ − θ∗) + . . . (41)
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where ∂g(θ∗)
∂θ∗ is the Jacobian matrix of function g at θ∗. The second terms and more are omitted here. Rearrange terms,

since g(θ̂) equals to zero, we have

θ̂ − θ∗ =
∂g(θ∗)

∂θ∗

−1

g(θ∗), (42)

if the Jacobian is invertible, which will always be true in this framework. Express g(θ∗) in vector form, we have

θ̂ − θ∗ =
∂g(θ∗)

∂θ∗

−1
1

n

n∑
i=1

τ̂ ij1j2 − Φ̄(h∗
j1
, h∗

j2
;σ∗

j1j2
)

τ̂ ij1 − Φ̄(h∗
j1
)

τ̂ ij2 − Φ̄(h∗
j2
)

 . (43)

When n → +∞, the first term Jacobian matrix ∂g(θ∗)
∂θ∗ will converge to E[∂fi(θ

∗)
∂θ∗ ]. It’s noteworthy that E[fi(θ

∗)] = 0
according to the definition. By leveraging the Central limit theorem, we have

n → +∞,
1

n

n∑
i=1

fi(θ
∗) ∼ N

(
0,

1

n
E[fi(θ

∗)fi(θ
∗)T ]

)
. (44)

Thus, we have

θ̂ − θ∗ ∼ N

(
0,

1

n
E[

∂fi(θ
∗)

∂θ∗ ]−1E[fi(θ
∗)fi(θ

∗)T ]E[
∂fi(θ

∗)

∂θ∗ ]−T

)
(45)

G.2. Moment Function Selection and Additional Moment Functions

We note that this derivation process is pretty similar to the one using GMM. Intuitively, if the moment functions of GMM
are the same as Equation (38), we may have a similar distribution. We now provide the formal statement of the Theorem 3.5:

Theorem G.1. For GMM whose a subset of moment functions g(θ) are the same as Equation (38), with additional moment
functions defined in Equation 4, have strictly less variance than DCT, whose variance is given in (45).

We now provide the proof of the theorem above. With appropriate moment functions, the variance of the σ̂j1j2 −σj1j2 gotten
using two-step DCT-GMM, is exactly the same as V arGMM (σ̂j1j2 − σj1j2). Specifically, for the interested parameters
θ = (σj1j2 , hj1 , hj2), we define the moment function the same as Equation (38). Specifically, we are solving the following
minimization problem:

θ̂ = argmin
θ

g(θ)TAg(θ), (46)

with the moment condition E[fi(θ
∗)] = 0 satisfied for the true parameters θ∗. According to Lemma 3.2,

θ̂ − θ∗ ∼ (0,
1

n
(GTAG)−1) (47)

for the two-step estimation where

• G = E[∂fi(θ
∗)

∂θ∗ ]

• S = E[fi(θ
∗)fi(θ

∗)T ]

• A = S−1.

Since G is invertible 1, we can rewrite
(GTAG)−1 = G−1SG−T , (48)

which is the same as the variance in Equation (45). That is, V arGMM (σ̂j1j2 − σj1j2) = V arDCT (σ̂j1j2 − σj1j2). However,
GMM accommodates additional moment functions (solvable equations as in Equation 3). Based on the property of
GMM (Newey, 2007), adding valid moment functions (moment functions defined in Equation 4) generally reduces the
variance of the parameter estimates, which concludes the proof.

1One may check DCT for the analytic form of G, which will be a triangular matrix with non-zero diagonal entries.
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