Under review as submission to TMLR

Subgraph Permutation Equivariant Networks

Anonymous authors
Paper under double-blind review

Abstract

In this work we develop a new method, named Sub-graph Permutation Equivariant Networks
(SPEN), which provides a framework for building graph neural networks that operate on
sub-graphs, while using a base update function that is permutation equivariant, that are
equivariant to a novel choice of automorphism group. Message passing neural networks have
been shown to be limited in their expressive power and recent approaches to over come this
either lack scalability or require structural information to be encoded into the feature space.
The general framework presented here overcomes the scalability issues associated with global
permutation equivariance by operating more locally on sub-graphs. In addition, through
operating on sub-graphs the expressive power of higher-dimensional global permutation
equivariant networks is improved; this is due to fact that two non-distinguishable graphs
often contain distinguishable sub-graphs. Furthermore, the proposed framework only requires
a choice of k-hops for creating ego-network sub-graphs and a choice of representation space
to be used for each layer, which makes the method easily applicable across a range of graph
based domains. We experimentally validate the method on a range of graph benchmark
classification tasks, demonstrating statistically indistinguishable results from the state-of-the-
art on six out of seven benchmarks. Further, we demonstrate that the use of local update
functions offers a significant improvement in GPU memory over global methods.

1 Introduction

Machine learning on graphs has received much interest in recent years with many graph neural network
(GNN) architectures being proposed. One such method, which is widely used, is the general framework of
message passing neural networks (MPNN). These provide both a useful inductive bias and scalability across
a range of domains (Gilmer et al., [2017)).

However, Xu et al| (2019)); Morris et al.| (2019b)
showed that models based on a message passing

framework with permutation invariant aggregation Original Graph Original Graph
functions have expressive power at most that of the
Weisfeiler-Lehman (WL) graph isomorphism test WL indistinguishable
(Weisfeiler & Leman|, |1968)). Therefore, there ex- "gisomorphic graphs
WL Coloured Graph WL Coloured Graph

ist many non-isomorphic graphs that a model of this
form cannot distinguish between. Figure [I] provides
an example of two non-isomorphic graphs which to
a message passing update function are indistinguish-
able.

)] o) Figure 1: The initial graph on the left is non-isomorphic
This presents an natural question of is it possible to to the graph on the right. Despite this the WL graph

design a GNN that improves the expressive power isomorphism test cannot distinguish between the two
of MPNNs? Many methods have been proposed to graphs

address this question, but most often an increase in
expressivity must be traded off against scalability.
We present the background into existing methods which attempt to tackle this question in Section [2}

Under review as submission to TMLR

Our approach. We design a framework to create provably more expressive and scalable graph networks.
We achieve this through incorporating symmetry structures in graphs, by considering a graph equivariant
update function which operates over sub-graphs. Our framework, dubbed Subgraph Permutation Equivariant
Networks (SPEN), is developed from the observation that operating on sub-graphs both improves the scalability
and expressive power of higher-dimensional GNNs, whilst unlocking a natural choice of automorphism groups
which further increases the expressive power of the network. Our framework consists of:

1. encoding the graph as a bag of bags of sub-graphs,
2. utilising a k-order permutation equivariant base encoder, and

3. constraining the linear map to be equivariant to the automorphism groups of the bags of sub-graphs.

Sub-graphs each have a symmetry group and our framework captures this in two ways. Each sub-graph has a
permutation symmetry, which is induced by a permutation of the nodes in the graph. In addition, there is a
symmetry across sub-graphs whereby sub-graphs are associated to an automorphism group. We therefore
construct a neural network comprising of layers that are equivariant to both permutations of nodes and the
automorphism groups of sub-graphs. We achieve this by utilising a permutation equivariant base encoder
with feature space constrained by the direct sum of different order permutation representations. Further, we
constrain the linear map comprising each layer to be equivariant to the automorphism groups of the bags of
sub-graphs. This necessitates that sub-graphs belonging to different automorphism groups are processed by a
kernel with different weights, while for sub-graphs belonging to the same automorphism group the kernel
shares weights. This leads to us creating a sub-graph extraction policy which generates a bag of bags of
sub-graphs, where each bag of sub-graphs corresponds to a different sub-graph automorphism group.

Main contributions

1. A general framework for learning on graphs through utilising bags of sub-graphs.
2. A novel choice of automorphism groups with which to constrain the linear map to be equivariant to.
3. A more scalable framework for utilising higher-dimensional permutation equivariant GNNs.

4. A more expressive model than higher-dimensional permutation equivariant GNNs and sub-graph
MPNNSs.

5. A comprehensive theoretical analysis of the proposed framework in terms of both the expressive
power and scalability.

6. An experimental evaluation of the proposed framework under certain parameter choices, demonstrating
strong results on benchmark graph tasks.

2 Background

More expressive graph neural networks (GNNs) exist which can be grouped into three different groups: (1)
those which design higher-dimensional GNNs, (2) those which use positional encodings through pre-coloring
nodes, and (3) those which use sub-graphs/local equivariance. Several architectures have been proposed of
the type (1) which design a high-order GNN equivalent to the hierarchy of k-WL tests (Maron et al. 2018;
2019; [Morris et al., 2019bja; Keriven & Peyrél [2019; |Azizian & Lelargel [2021]). Despite being equivalent to the
k-WL test, and hence having provably strong expressivity; these models lose the advantage of locality and
linear complexity. As such, the scalability of such models poses an issue for their practical use, with Maron
et al.| (2018) showing that the basis space for permutation equivariant models of order k is equal to the 2k‘"
Bell number, which results in a basis space of size 2 for order-1 tensors, 15 for order-2 tensors, 203 for order-3
tensors, and 4140 for order-4 tensors, demonstrating the practical challenge of using higher-dimensional GNNs.
Several architectures have also been proposed of type (2) where authors seek to introduce a pre-coloring or
positional encoding that is permutation invariant. These comprise of pre-coloring nodes based on pre-defined

Under review as submission to TMLR

substructures (Bouritsas et al.| [2020)) or lifting graphs into simplicial- (Bodnar et al. |2021b]) or cell complexes
(Bodnar et al., [2021a)). These methods require a pre-computation stage, which in the worst-case finding
substructures of size k in a graph of n nodes is O(n*). Finally sub-graphs/local equivariance of type (3)
have been considered to find more expressive GNNs. Local graph equivariance requires a (linear) map that
satisfies an automorphism equivariance constraint. This is due to the nature of graphs having different local
symmetries on different nodes/edges. This has been considered by [de Haan et al.| (2020) though imposing
an isomorphism/automorphism constraint on edge neighbourhoods and by Thiede et al.| (2021) by selecting
specific automorphism groups and lifting the graph to these. Although the choice of automorphism group
chosen by [de Haan et al.| (2020) leads to little weight sharing and requires the automorphism constraint to be
parameterized, while those proposed by [Thiede et al|(2021)) and Xu et al.| (2021)) do not guarantee to capture
the entire graph and requires a hard-coded choice of automorphism group. |Xu et al.| (2021 also propose
a method for searching across different sub-graph templates, although this still requires some hard-coding.
Operating on sub-graphs has been considered as a means to improve GNNs by dropping nodes (Papp et al.,
2021; |Cotta et al., |2021)), dropping edges (Rong et al.l [2019)), utilising ego-network graphs (Zhao et al., 2021]),
and considering the symmetry of a bag of sub-graphs (Bevilacqua et al.; [2021]).

3 Subgraph Permutation Equivariant Networks (SPEN)

In this section, we introduce the SPEN framework. It consists of (1) a subgraph selection policy, (2) an
automorphism equivariant graph neural network. This section presents the core concepts of the model which
contribute to the improved expressivity. The overall architecture of the SPEN model is presented in Figure [2]
Further, the breakdown of an automorphism equivariant layer within our framework is presented in Figure [3]
In addition, in Figure [4] we detail an example breakdown of one of the mapping functions used within our
model. Finally, Figure [5| shows a visualisation of some of the bases used within the mapping functions in the
automorphism equivariant functions. In addition, we present a more general overview of the architectural
details of the SPEN framework in Appendix The key definitions required to understand our framework
are provided below, with further useful definitions provided in Appendix [A]]

3.1 Definitions

In this work we consider graphs as concrete graphs and utilise sub-concrete graphs in our framework. The
sub-graphs are extracted as k-ego network sub-graphs. This leads us to define the graphs and sub-graphs.

Definition 3.1. A Concrete Graph G is a finite set of nodes V(G) C N and a set of edges £(G) C V(G) xV(G).

The set of node ids may be non-contiguous and we make use of this here as we extract overlapping sub-graphs
and perform the graph update function on this bag of sub-graphs. The natural numbers of the nodes are
essential for representing the graphs in a computer, but hold no actual information about the underlying
graph. Therefore, the same underlying graph can be given in may forms by a permutation of the ordering of
the natural numbers of the nodes. Throughout the paper we refer to concrete graphs as graphs to minimise
notation.

Definition 3.2. In tensor format the values of G are encoded in a tensor A € RIV(GIxIV(G)[xd,

The node features are encoded along the diagonal and edge features encoded in off-diagonal positions.
Definition 3.3. A sub-Concrete Graph H is created by taking a node i € V(G), and extracting the nodes
j € V(G) and edges (i,7) C V(G) x V(G), according to some sub-graph selection policy.

In this work we consider the sub-graph selection policy as a k-ego-network policy. For brevity we refer to
sub-concrete graphs as sub-graphs throughout the paper.

Definition 3.4. A k-Ego Network of a node is its k-hop neighbourhood with induced connectivity.

In this work we are interested in the symmetries between graphs. For this we considered the automorphism
symmetries of graphs through consideration of the automorphism group. Here we consider the automorphism

Under review as submission to TMLR

group of the permutation group and therefore make some necessary definitions for the consideration of groups
and their representations.

Definition 3.5. A group representation p of the group G is a homomorphism p : G — GL(V) of G to the
group of automorphisms of V' (Fulton & Harris| |2013]). A group representation associates to each g € G an
invertible matrix p(g) € R™*™. This can be understood as specifying how the group acts as a transformation
on the input.

Definition 3.6. A feature space is a vector space V with a group representation p acting on it. The choice
of group representations on the input and output vector spaces of a linear map constrains the possible forms
the linear map can take.

Definition 3.7. A tensor representation can be built up from some base group representations p(g) through
the tensor operations dual (), direct sum (), and tensor product (®). This allows for tensor representations
to be constructed that are of increasing size and complexity.

Definition 3.8. A kernel constraint is taken to mean a restriction of the space a kernel or linear map can
take between two vector spaces. The symmetric subspace of the representation is the space of solutions to
the constraint Vg € G : p(g)v = v, which provides the space of permissible kernels.

As was said previously, we are interested in the symmetries between graphs. Here we explore the automorphism
symmetries of graphs and hence define what an automorphism group is. Further, we define a naturality
constraint for a linear map as this governs a symmetry condition up to graph isomorphism.

Definition 3.9. Automorphism groups.

Let X be some mathematical object for which we can formulate the notion of homomorphism (or isomorphism).
Then an automorphism of X is an isomorphism 0 : X — X’; in other words, it is a permutation of X which
happens also to be a homomorphism satisfying

(xoy)d =x6o0yb.

Let Aut(X) be the set of all automorphisms of X'. Then Aut(X) is a group, the automorphism group of X.
This can also be considered for a group rather than a general object X and therefore we can talk about the
automorphism group of a group.

Definition 3.10. A Graph isomorphism, ¢ : G — G’ is a bijection between the vertex sets of two graphs
G and G, such that two vertices u and v are adjacent in G if and only if ¢(u) and ¢(v) are adjacent in G'.
This mapping is edge preserving, i.e. satisfies for all (z,7) € V(G) x V(G):

(i,4) € £(G) <= (8(0), 6(j)) € E(G).

An isomorphism from the graph to itself is known as an automorphism.

Definition 3.11. The naturality constraint for a linear map states that for a graph G and linear map
fa : p(G) = p'(G) the following condition holds for every graph isomorphism ¢:

P (9)o fa = farop(e).

Following the definitions it is noteworthy that when considering the permutation symmetries of a graph and
looking at the automorphism group, there can be no automorphic mapping between a graph with four nodes
and a graph with five nodes. This is due to there being no permutation of the four nodes features such that
they yield the five nodes features.

In this paper we are interested in the symmetries of the symmetric group S,,. This constraint can be solved
for different order tensor representations (Maron et al., [2018} [Finzi et all 2021)). We present the space of
linear layers mapping from k-order representations to k’-order representations in Figure

Under review as submission to TMLR

Stack Multiple Layers

fg"u3 fsrr3 fI:SHs
i
p2 = p1 B p2 P1Ep2 = p1 B p2 p1Dp2 — po
e Spa Spa Spa
jﬂ " f1 " flc "
Averag
p2 — p1 D p2 p1 & p2 = p1 D p2 p1 D p2 — po verage MLP Output
f:"a I Sys kaH5
P2 = p1D P2 PLB p2 = pL B P2 P19 p2 = po
m @ ® @ (%) © m ®

Figure 2: (1-2) Splitting the graph into sub-graphs. (3) Place sub-graphs into bags , where each bag holds
sub-graphs of a specific size. (4) Process the bags of sub-graphs with an automorphism equivariant linear
map. (5) Stack multiple layers each comprising of an automorphism equivariant mapping function. (6) Add a
final automorphism equivariant mapping function. (7) Each automorphism group is averaged. (8) An MLP is

KPq KA
V44 gl g

000 006 @@@ 00 9000

‘ OO0 000 00O

. : @@\@ [@le)e)a)]) ,,/ M/@@@

' ol 000 A A
8 ”\ R 0060] oo

0050 00606 00000

00000

(@) ®) (©)
Figure 3: This figure breaks down what a single automorphism equivariant layer within our model looks like.
In Figure [2| this corresponds to looking inside a single dashed box in (5). Here we see in (a) that the input to
the layer is a vector space transforming under the group representation p; & ps corresponding to graphs and
sets as inputs. These processed by automorphism equivariant update functions f, where there is an fS#i for
each automorphism group. (b) Following the automorphism equivariant update function we re-insert the
vector space features back into their respective nodes in the original graph, and (c) re-extract back into the
respective sub-graphs. This can be seen as a form of narrowing and promotion and allows information to
propagate between sub-graphs.

3.2 Sub-graph Selection Policy

Sub-graphs can be extracted from a graph in a number of ways, by removing nodes, by removing edges,
extracting connectivity graphs at nodes, or extracting connectivity graphs at edges to name a few. In this work
we focus on k-ego network sub-graphs. These are sub-graphs extracted by considering the k-hop connectivity
of the graph at a selected node and extracting the induced connectivity. The sub-graph selection policy of
k-ego networks therefore extracts a sub-graph for each node in the original graph.

In this work we process graphs as bags of sub-graphs. In general the size of the sub-graphs, |H,|, extracted
for a graph are not all the same size, and thus |H,| varies from sub-graph to sub-graph. We therefore go
further than representing each graph as a bag of sub-graphs and represent each graph as a bag of bags
of sub-graphs, where each bag of sub-graphs hold sub-graphs of the same size, i.e. Sp: is the bag of sub-

Under review as submission to TMLR

graphs for sub-graphs of size |H,,| = i. The graph is therefore represented as the bag of bags of sub-graphs
G={{Syi...Sux}} = {{{{H}, ... H}}, ..., {{HF, ..., H*}}}}, for sub-graphs H, with bags of sub-graphs
which are each of size a, ..., c containing sub-graphs of sizes i, .., k respectively.

In Chapter [f] we demonstrate how our choice of sub-graph selection policy improves the expressivity of
the overall model. Further, in Chapter] and [5] we show that the choice of sub-graph selection allows the
method to scale better than global approaches. Finally, in Chapter we show that using k-ego network
sub-graphs yields sub-graphs which are typically much smaller than the original graph. This both feeds
into the improved ability of our method to scale to larger graphs and provides a smaller more compact
automorphism group compared to an approach such as node removed sub-graphs. As a result our method
requires less parameterisation of the automorphism group than other automorphism equivariant approaches.

3.3 Automorphism Equivariant Graph Network Architecture

The input data represented as a bag of bags of sub-graphs has a symmetry group of both the individual
sub-graphs and of the bags of sub-graphs. We construct a graph neural network that is equivariant to
this symmetry. This can be broken down into three parts: (1) the automorphism symmetry of the bags of
sub-graphs, (2) the permutation symmetry of sub-graphs within bags of sub-graphs and the original graph
permutation symmetry, (3) sub-graph linear maps.

An overview of the architecture is detailed in Figure [2] where each component is described: (1-2) The first
component of our SPEN model comprises of splitting the graph G into sub-graphs H; ... H,, for a graph
with n nodes. For this we use a k-ego network policy extracting a sub-graph for each node in the input
graph. (3) Secondly, we place sub-graphs Hj ... H,, into bags Sy ... Sys, where each bag holds sub-graphs
of a specific size, with 7...j being the different sizes |H| of sub-graphs. The extracted sub-graphs are used as
fully-connected graphs with zero features for non-edges; this results in each bag of sub-graphs representing
an automorphism group. Here it is worth noting that the figure shows three bags of sub-graphs or three
automorphism groups, while in general there does not have to just be three automorphism groups and this
can vary. (4) We then process the bags of sub-graphs with an automorphism equivariant linear map. This
comprises of multiple separate functions f, with a different function processing each automorphism group, i.e.
f(f 7% s the function mapping the automorphism group corresponding to the bag Sgs of sub-graphs in layer
0. This is a map from a 2-order permutation representation, i.e. graphs, to the direct sum of a 1-order and
2-order permutation representation. (5) We then stack multiple layers each comprising of an automorphism
equivariant mapping function. Each of the automorphism groups is updated with a function mapping from
the direct sum of a 1-order and 2-order permutation representation to the direct sum of a 1-order and 2-order
permutation representation. (6) The final layer in the model is again an automorphism equivariant mapping
function were each automorphism group is mapped from the direct sum of a 1-order and 2-order permutation
representation to a 0-order representation. (7) Each automorphism group is averaged. (8) An MLP is used to
update the feature space.

3.3.1 Automorphism Symmetry

We have defined the sub-graph selection policy used, which results in the input graph, G, being represented as
a bag of bags of sub-graphs, {{Sgi...Sgx}}. As each bag of sub-graphs holds sub-graphs of a different size,
each forms a different automorphism group. Therefore, we have different feature spaces for different sub-graph
sizes, i.e. p(Spi) # p(SHsi). A linear layer acting on sub-graphs should therefore operate differently on
sub-graphs from different automorphism groups. This is demonstrated in Figure [2] (4,5,6) by having different
linear map f for each bag of sub-graphs (fiSH3'7 fl.SH4 , fiSH ®). This is defined more rigorously through the
concept of naturality. Given a linear layer mapping from a feature space acted upon by p,, to a feature space
acted upon by p!, for each sub-graph H a (linear) map can be detailed as fy : pm(H) — pl,,(H). However,
given two isomorphic sub-graphs H and H’ are the same graph up-to some bijective mapping, we want fy
and fg to process the feature spaces in an equivalent manner. This naturality constraint is therefore similar
to the global naturality constraint on graphs G, for sub-graphs, H:

p'(¢) o fu = fur o p(®). (1)

Under review as submission to TMLR

This constraint (Equation 1)) says that if we first transition from the input feature space acted upon by
p(H) to the equivalent input feature space acted upon by p/(H) via an isomorphism transformation p(¢) and
then apply fg we get the same thing as first applying fy and then transitioning from the output feature
space acted upon by p'(H) to p'(H') via the isomorphism transformation p’(¢). Since p(¢) is invertible, if
we choose fy for some H then we have determined fp for any isomorphic H' by fr = p'(¢) o fu o p(¢)~ 1.
Therefore, for any automorphism ¢ : H — H, we get an equivariance constraint p'(¢) o fg = fg o p(¢). Thus,
a layer in the model must have for each automorphism group a map fy that is equivariant to automorphisms.
Therefore our choice of sub-graph selection policy, extracting bags of sub-graphs, aligns with the naturality
constraint, in that we require a mapping function f°#¢ for each bag of sub-graphs.

3.3.2 Permutation Symmetries Within Bags of Sub-graphs

The order of sub-graphs in each bag of sub-graphs is arbitrary and changes if the input graph is permuted.
This ordering comes from the need to represent the graph in a computer and the ordering is tracked through
the use of concrete graphs. It would therefore be undesirable for the output prediction to be dependent
upon this arbitrary ordering. This is overcome in the choice of insert and extract functions used to share
information between sub-graphs demonstrated in Figure |3l At the end of a linear layer in our model node and
edge features from the original graph can be represented multiple times, i.e. it occurs in multiple sub-graphs.
We therefore average these features across sub-graphs through and insert and extract function and in doing
this ensure the output is invariant to the ordering of sub-graphs in each bag.

3.3.3 Sub-graph Linear Maps

Each sub-graph has a symmetry group that is given by permu-

tation of the order of nodes in the graph. This group is denoted

S, for a graph of n nodes. The group S,, acts on on the graph M z—'/»
via (0 A)ij = Ag-1(s)o-1(j)- Sub-graphs, H, therefore have a : m /’2
symmetry group Sy, < .S, and we are interested in constructing

graph neural network layers equivariant to this symmetry group. Jo1—p2

The graph is an order-2 tensor and the action of the permutation ® ® @ ® ® /

group can be generalised to differing order tensors. For example,
the set of nodes in a graph is an order-1 tensor. For the case of
a linear mapping from order-2 permutation representations to
order-2 permutation representations, the basis space was shown
to comprise of 15 elements by Maron et al.| (2018]). Similarly,
the constraint imposed by equivariance to the group of permuta-
tions can be solved for different order representation spaces and
we provide an example of all mappings between representation
spaces from order 0-2 in Figure []] We are not restricted to
selecting a single input-output order permutation representation
space and can construct permutation equivariant linear maps
between multiple representations separately through the direct
sum @. For example the direct sum of order 1 and 2 representations is given by p; @ po. We utilise this to
build the linear mapping functions, f°ui, shown in Figures [2| (4,5,6) and [3| (a) to use linear maps between
feature space acted on by different representations p. An example of how this map breaks down into individual
functions mapping from and to a graph feature space acted on by 2-order permutation representations and a
set feature space acted on by 1-order permutation representations is provided in Figure |4l Further, what the
bases utilised within each of these functions mapping between feature spaces acted upon by different order
representations is given in Figure

/u%m — ® ® @ ® ®

Figure 4: An example of what a function
box in Figure [2] breaks down into. This
example is for a function f H mapping from
a representation p; @ pa — p1 & p2. This
demonstrates there is a mapping function
from ps to po, from ps to p1, from py to po,
and from p; to p1, as well as ps is a group
representation for graphs and p; is a group
representations for sets.

Due to the construction of a sub-graph the sub-graphs inherit node ids from the original graph. Therefore, a
permutation of the order of the nodes in the original graph corresponds to an equivalent permutation of the
ordering of the nodes in the sub-graphs. In addition, as the permutation action on the graph does not change
the underlying connectivity, the sub-graphs exacted are individually unchanged up-to some isomorphism.
Therefore, a permutation of the graph only permutes the ordering at which the sub-graphs are extracted.

Under review as submission to TMLR

po—>pPo P1L—>P1 P2 P2

Po—pP1 Po P2 PLP2
N ———— NG
pPL—>po P2 =P P2 P1
Figure 5: Bases for mappings to and from different order permutation representations, where py is a k-order
representation. Each color in a basis indicates a different parameter. ps — py is a mapping from a graph to a

graph, and has 15 learnable parameters. Further, there are mappings between different order representation
spaces and higher order representation spaces.

3.4 Related Work

We have largely discussed the related methods to our work in Section [2} Despite this, we provide a more
extensive explanation of some other methods in Appendix and demonstrate how some of these methods
can be implemented within our framework in Appendix [A-4]

4 Analysis of Expressivity and Scalability

In this section we study both the expressive power of our architecture by its ability to provably separate
non-isomorphic graphs and the scalability by its ability to process larger graphs that its predecessor.

4.1 WL Test and Expressive Power

The Weisfeiler-Lehman (WL) test (Weisfeiler & Leman| [1968) is a graph isomorphism test commonly used as
a measure of expressivity in GNNs. This is due to the similarity between the iterative color refinement of the
WL test and the message passing layers of a GNN. The WL test is a necessary but insufficient condition,
which is not able to distinguish between all non-isomorphic graphs. The WL test was extended to the k-WL
test, which provides increasingly more powerful tests that operate on k-tuples of nodes.

WL analogue for sub-graphs. One component of our model is the idea of operating on sub-graphs
rather than the entire graph, more specifically our architecture operates on ego-network sub-graphs. We
therefore seek to formalise our intuition that operating on sub-graphs will improve the expressive power of
the base model. We present a color-refinement variant of the WL isomorphism test that operates on a bag of
sub-graphs.

Definition 4.1. The sub-graph-WL test utilises a color refinement of ¢/ = HASH(c!, g, N ¢, C) where
HASH(+) is an injective function, ./\/;f g is the node neighbourhood of v within the ego-network sub-graph 5,
and C! is the multiset of v’s colors across sub-graphs.

Theorem 4.2. Sub-graph- WL is strictly more powerful than 162-WL.

In Appendix [A22] we prove Theorem [£.2] This yields the result that even for a simple 1-WL expressive
function in the GNN, such as message passing, the model is immediately more expressive than 1&2-WL.

Comparing SPEN to the WL test. We have already shown that when considering a graph update
function that operates on a bag of k-ego network sub-graphs, even if the update function itself has limited
expressivity, it is more expressive than 1&2-WL. SPEN utilises a natural permutation equivariant update

Under review as submission to TMLR

function through operating on a bag of bags of sub-graphs. The naturality constraint of our model states
that each automorphism group of sub-graphs should be processed by a different (linear) map. In addition, we
utilise higher-dimensional GNNs. Both of these choices are expected to increase the expressive power of our
model.

Proposition 4.3. For two non-isomorphic graphs G' and G? sub-graph-WL can successfully distinguish
them if (1) they can be distinguished as non-isomorphic from the multisets of sub-graphs and (2) HASH(-) is
discriminative enough that HASH(c!, o1, N 1, CY) # HASH(c!, g2, N} g2, C}) .

This implies that despite the sub-graph policy increasing the expressive power of the model, it is still
limited by the ability of the equivalent to the HASH(-) function’s ability to discriminate between the bags of
sub-graphs. The naturality constraint of our model processing each automorphism group with a different
higher-dimensional GNN is therefore expected to increase the expressive power of our model over sub-graph
methods utilising a MPNN.

Theorem 4.4. SPEN is strictly more powerful than sub-graph MPNN.

We demonstrate the claim of Theorem similarly to |Bouritsas et al.|(2020); de Haan et al.| (2020). We use a
neural network with random weights on a graph and compute a graph embedding. We say the neural network
finds two graphs to be different if the graph embeddings differ by an 5 norm of more than € = 1072 of the
mean {5 norms of the embeddings of the graphs in the set. The network is said to be most expressive if it only
finds non-isomorphic graphs to be different. We test this by considering a set of 100 random non-isomorphic
non-regular graphs, a set of 100 non-isomorphic graphs, a set of 15 non-isomorphic strongly regular graphsE
and a set of 100 isomorphic graphs. Table [1| shows that a simple invariant message passing (GCN) (Kipf &
Welling| [2016)) as well as a simple invariant message passing model operating on sub-graphs (SGCN), which
we created, are unable to distinguish between regular and strongly regular graphs. Further, it is shown that
PPGN (Maron et all[2019) can distinguish regular graphs but not strongly regular graphs, although a variant
of PPGN that uses high order tensors should also be able to distinguish strongly regular graphs. On the
other hand, our SPEN model is able to distinguish strongly regular graphs. Therefore, our model is able to
distinguish non-isomorphic graphs that a sub-graph MPNN cannot and is strictly more powerful.

Table 1: Rate of pairs of graphs in the set of graphs found to be dissimilar in expressiveness experiment.
An ideal method only find isomorphic graphs dissimilar. A score of 1 implies the model can find all graphs
dissimilar, while 0 implies the model finds no graphs dissimilar.

Model Random Regular Str. Regular Isom.

GCN 1 0 0 0
SGCN 1 0 0 0
PPGN 1 0.97 0 0
SPEN 1 0.98 0.97 0

4.2 Scalability

Global permutation equivariant models of the form found by Maron et al.| (2018) operate over the entire
graph. They therefore scale with O(n?), for graphs with n nodes. Our method operates on k-ego network
sub-graphs where a sub-graph is produced for each node in the original graph. Our method therefore scales
with O(nm?), where m is the number of nodes in the k-ego network sub-graph. It is therefore clear that if
n = m, theoretically, our method scales more poorly than global permutation equivariant models, although
this would imply the graph is fully-connected and every sub-graph is identical. In this situation extracting
sub-graphs is irrelevant and only 1 sub-graph is required (the entire graph) and hence if n = m our method
scales with that of global permutation equivariant models. The more interesting situation, which forms
the majority of graphs, is when n # m. When m < n our method scales more closely with methods that

1See http://users.cecs.anu.edu.au/~bdm/data/graphs.html!

http://users.cecs.anu.edu.au/~bdm/data/graphs.html

Under review as submission to TMLR

scale linearly with the size of the graph and it is for this type of data that our method offers a significant
improvement in scalability over global permutation equivariant models.

We empirically show how SPEN and global permutation equivariant methods scale depending on the size of
n and m by analysing the GPU memory usage of both models across a range of random regular graphs. We
utilise random regular graphs for the scalability test as it allows for precise control over the size of the overall
graph and sub-graphs. We compare the GPU memory usage of both models across a range of graph sizes
with a sub-graph size of m = 3, 6,and 9. Through analysing the graphs in the TUDataset, which we make
use of when experimenting on graph benchmarks, we note that the average sub-graph sizes range between 3
and 10 (see Table , justifying the choice of sub-graphs in the scalability tests. Figure @ shows that the
Global Permutation Equivariant Network (GPEN) (Maron et al. 2018) cannot scale beyond graphs with 500
nodes. On the other hand, our method (SPEN) scales to larger graphs of over an order of magnitude larger.
In the situation where m = 3 GPEN can process graphs of size up to 500 nodes, while our SPEN can process
graphs of size up to 10,000 nodes using less GPU memory.

@25 __
e
gZO —e— SPEN m=3 .
§15< —e— SPEN m=6
> —e— SPEN m=9
210‘ *- GPEN
%J 5] " 1 TITAN RTX Limit
2
o 01
10! 102 103 104
Graph Size

Figure 6: Computational cost of global permutation equivariant model (GPEN) and our (SPEN) model with a
very similar number of model parameters for varying average size graphs. For this test we constructed random
regular graphs of varying size using the NetworkX package (Hagberg et al., |2008)). For SPEN sub-graphs
were constructed using a 1-hop ego network policy. As is demonstrated by the log-axis, SPEN can process
graphs an order of magnitude larger than global methods.

5 Experiments

5.1 Graph Benchmarks

We perform experiments with our method to back up the theoretical analysis and answer three main questions:
(1) Does our method out perform the the base graph neural network used in terms of validation accuracy?
(2) Does our approach achieve better performance on real graph benchmarks than current state-of-the-art
methods in terms of validation accuracy? (3) Does the method scale better than the base graph neural
network used in real benchmark tasks?

Datasets. We tested our method on a series of 7 different real-world graph classification problems from
the TUDatasets benchmark of (Yanardag & Vishwanathan| [2015)). Five of these datasets originate from
bioinformatics, while the other two come from social networks. We highlight some interesting features of each
dataset. We note that both MUTAG and PTC are very small datasets, with MUTAG only having 18 graphs
in the test set when using a 10% testing split. Further, the Proteins dataset has the largest graphs with an
average number of nodes in each graph of 39. Also, NCI1 and NCI109 are the largest datasets having over
4000 graphs each, which one would expect to lead to less spurious results. Finally, IMDB-B and IMDB-M
generally have smaller graphs, with IMDB-M only having an average number of 13 nodes in each graph. The
small size of graphs coupled with having 3 classes appears to make IMBD-M a challenging problem.

Methods in comparison. We compare to a wide range of alternative methods, including sub-graph based
methods, higher-dimensional GNN methods, and automorphism equivariant methods. We focus specifically
on IGN (Maron et al 2018) as this method uses an order-2 permutation equivariant tensor representation
space for the linear map and is therefore the most similar to our base GNN model. |Bevilacqua et al.| (2021))

10

Under review as submission to TMLR

Table 2: Comparison between our SPEN model and other deep learning methods. Larger mean results are
better with the standard deviation around the mean given in (). Methods in comparison are: GDCNN
Zhang et al., [2018), PSCN (Niepert et al., 2016), DCNN (Atwood & Towsley, [2016), ECC (Simonovsky &
Komodakis, [2017), DGK (Yanardag & Vishwanathan| 2015)), DiffPool (Ying et al., [2018)), CCN (Kondor et al.,
2018), IGN (Maron et all [2018), GIN (Xu et all [2019), 1-2-3 GNN (Morris et al. |2019b)), PPGN (Maron|
et al.l 2019), LNGN (GCN) (de Haan et al., 2020), GSN (Bouritsas et al.l 2020), SIN (Bodnar et al.,|2021b),
CIN (Bodnar et al., [2021a)), and DSS-GNN (GC) (EGO) (Bevilacqua et all |2021). All scores statistically
indistinguishable (via Welch’s ANOVA) from the highest mean in each benchmark have a gray background,
whilst the highest mean values are in bold.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M
size 188 344 1113 4110 4127 1000 1500
classes 2 2 2 2 2 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 19.7 13
Results
GDCNN 85.8 (1.7) 58.6 (2.5) 75.5 (0.9) 74.4 (0.5) NA 70.0 (0.9) 47.8 (0.9)
PSCN 89.0 (4.4) 62.3 (5.7) 75 (2.5) 76.3 (1.7) NA 71 (2.3) 45.2 (2.8)
DCNN NA NA 61.3 (1.6) 56.6 (1.0) NA 49.1 (1.4) 33.5 (1.4)
DGK 87.4 (2.7) 60.1 (2.6) 75.7 (0.5) 80.3 (0.5) 80.3 (0.3) 67.0 (0.6) 44.5 (0.5)
CCN 91.6 (7.2) 70.6 (7.0) NA 76.3 (4.1) 75.5 (3.4) NA NA
IGN 83.9 (13.0) 58.5 (6.9) 76.6 (5.5) 74.3 (2.7) 72.8 (1.5) 72.0 (5.5) 48.7 (3.4)
GIN 89.4 (5.6) 64.6 (7.0) 76.2 (2.8) 82.7 (1.7) NA 75.1 (5.1) 52.3 (2.8)
PPGN v1 90.5 (8.7) 66.2 (6.5) 77.2 (4.7) 83.2 (1.1) 81.8 (1.9) 72.6 (4.9) 50 (3.2)
PPGN v2 88.9 (7.4) 64.7 (7.5) 76.4 (5.0) 81.2 (2.1) 81.8 (1.3) 72.2 (4.3) 44.7 (7.9)
PPGN v3 89.4 (8.1) 62.9 (7.0) 76.7 (5.6) 81.0 (1.9) 82.2 (1.4) 73.0 (5.8) 50.5 (3.6)
LNGN (GCN) 89.4 (1.6) 66.8 (1.8) 71.7 (1.0) 82.7 (1.4) 83.0 (1.9) 74.8 (2.0) 51.3 (1.5)
GSN-e 90.6 (7.5) 68.2 (7.2) 76.6 (5.0) 83.5 (2.3) NA 77.8 (3.3) 54.3 (3.3)
GSN-v 92.2 (7.5) 67.4 (5.7) 74.6 (5.0) 83.5 (2.0) NA 76.8 (2.0) 52.6 (3.6)
SIN NA NA 76.5 (3.4) 82.8 (2.2) NA 75.6 (3.2) 52.5 (3.0)
CIN 92.7 (6.1) 68.2 (5.6) 77.0 (4.3) 83.6 (1.4) 84.0 (1.6) 75.6 (3.7) 52.7 (3.1)
DSS (EGO) 91.5 (4.9) 68.0 (6.1) 76.6 (4.6) 83.5 (1.1) 82.5 (1.6) 76.3 (3.6) 53.1 (2.8)
SPEN 93.3 (6.5) 71.3 (9.7) 74.8 (3.2) 83.7 (1.5) 83.4 (1.2) 75.2 (3.1) 48.7 (2.0)

test their DSS-GNN on multiple different sub-graph policies and here we compare to the method utilising
k-hop ego networks as this is the most similar variant to our method.

Implementation and experimental details. We utilise a 1-hop ego network sub-graph policy for all of the
experiments. Further, we use a base GNN model that maps between p; @ p2 permutation equivariant tensor
representation space, with the final layer mapping to a pg permutation equivariant tensor representation
space. We constrain out model to be equivariant to the automorphism groups of the bags of sub-graphs. For
MUTAG, PTC, NCI1, and NCI109 we directly constrain the model to the automorphism groups of the bags
of sub-graphs. For PROTEINS, IMDB-B, and IMDB-M there exists some bags of sub-graphs which comprise
of a single sub-graph. As this would lead to no weight sharing between these sub-graphs and and any other
sub-graphs we parameterize the automorphism constraint to bunch bags of sub-graphs which contain few
sub-graphs. Further implementation and experimental details can be found in Appendix [A-6]

Table 2] compares our SPEN model to a range of other methods on benchmark graph classification tasks from
TUDatasets (Morris et al. [2020). We perform statistical significance analysis using Welch’s ANOVA method
for comparing multiple means with different variances. We consider the null hypothesis that the means are
equal and to reject this null hypothesis the p value is required to be below 0.05. We therefore make bold all
the methods indistinguishable from the state-of-the-art method, see Appendix [A.7] for more details on the
statistical significance analysis. Comparing out method (SPEN) to a higher-dimensional global permutation
equivariant (IGN) demonstrates that our method significantly outperforms the base GNN model on four
datasets and is statistically indistinguishable on the remaining three. Table [2| also highlights that our method
is statistically indistinguishable from the state-of-the-art result on six out of seven datasets, and achieves a
larger mean on three of these datasets. This demonstrates that our method performs competitively across

11

Under review as submission to TMLR

the range of datasets. The strong results produced by our method suggests that our framework’s improved
expressivity is beneficial for learning on graph classification tasks. Further discussion on the statistical
significance is provided in Appendix [AZ7] which highlights that previous methods which claim state-of-the-art
are not achieving this in a statistically meaningful way.

Figure [7] demonstrates that the improved scalability of our methods on regular graphs carries over onto
graphs on real-world benchmarks. This demonstrates that our method offers a significant improvement in
scalability over global permutation equivariant models.

25
@ ----- 1 TITAN RTX Memory Limit
0201 o GPEN
> SPEN
515
g 10
=
2 5
O -

0

MUTAG PTC PROTEINS
Average Number of Graph Nodes

Figure 7: Computational cost of a global permutation equivariant model (GPEN) and our method (SPEN)
with a very similar number of model parameters and batch size for datasets with varying average size graphs
from the TUDatasets. For SPEN sub-graphs were constructed using a 1-hop ego network policy.

6 Future Work

From Table [2] it is clear that IMDB-M is a dataset for which our method has weaker performance. As stated
in Section [A6.2] between hidden layers in our network, for the experiments in this paper, we only make
use of order 1 and 2 representations. As it was shown by [Maron et al.| (2019) that increasing the order
of the permutation representation increases the expressivity in line with the k-WL test, the expressivity
of our method could be improved through the consideration of higher order permutation representations.
Further, we parameterized the automorphism constraint in IMDB-M and therefore exploring alternative
parameterizations of this constraint could lead to improved results.

7 Conclusion

We present a graph neural network framework for building models that operate on k-ego network sub-graphs
that respects both the permutation symmetries of individual sub-graphs and is equivariant to the automorphism
groups across bags of sub-graphs. The choice of sub-graph policy leads to a novel choice of automorphism
groups for the bags of sub-graphs. The framework is more scalable than global higher-dimensional GNNs
through the use of sub-graphs and we have both theoretically and experimentally demonstrated this. We
have shown that SPEN is provably more expressive than the base higher-dimensional permutation equivariant
GNN and sub-graph MPNNs through the choice sub-graph selection policy, permutation equivariant base
GNN, and automorphism equivariant kernel constraint. We have provided theoretical analysis demonstrating
the expressivity of the framework. Finally, we have shown that SPEN performs competitively across multiple
graph classification benchmarks, achieving statistically indistinguishable accuracy compared to the state-
of-the-art method on six out of seven datasets. We believe that our framework is a step forward in the
development of graph neural networks, demonstrating theoretically provable expressivity, scalability, and
experimentally achieving strong performances on benchmark datasets.

12

Under review as submission to TMLR

References

Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. Incidence networks for geometric deep
learning. arXiv preprint arXiv:1905.11460, 2019.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in neural information
processing systems, pp. 1993-2001, 2016.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
1xHgXYN4bwl.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Bala-
murugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. arXiv
preprint arXiv:2110.02910, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Lio, Guido Montufar, and Michael
Bronstein. Weisfeiler and Lehman go cellular: CW networks. arXiv preprint arXiv:2106.12575, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montfar, Pietro Lio, and Michael
Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial networks. arXiv preprint
arXiw:2103.03212, 2021b.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. arXiv preprint arXiv:2006.09252, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations.
Advances in Neural Information Processing Systems, 34, 2021.

Pim de Haan, Taco S Cohen, and Max Welling. Natural graph networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 3636-3646. Curran Associates, Inc., 2020. URL lhttps://proceedings.neurips.cc/paper/2020/
file/2517756c5a9bebac007fe9bb7fb92611-Paper. pdf.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. arXiv preprint arXiv:2104.09459, 2021.

William Fulton and Joe Harris. Representation theory: a first course, volume 129. Springer Science &
Business Media, 2013.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1263-1272, 2017.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using
networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

Jason Hartford, Devon Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh. Deep models of interactions
across sets. In International Conference on Machine Learning, pp. 1909-1918. PMLR, 2018.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. Advances in
Neural Information Processing Systems, 32:7092-7101, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural networks
to the action of compact groups. In Proceedings of the International Conference on Machine Learning, pp.
2747-2755, 2018.

13

https://openreview.net/forum?id=lxHgXYN4bwl
https://openreview.net/forum?id=lxHgXYN4bwl
https://proceedings.neurips.cc/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf

Under review as submission to TMLR

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant composi-
tional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
In International Conference on Learning Representations, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. In
H. Wallach and H. Larochelle and A. Beygelzimer and F. d'Alché-Buc and E. Fox and R. Garnett (ed.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/bb04af0f7ecacedaae62035497dal387-Paper. pdf.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards scalable
higher-order graph embeddings. arXiv preprint arXiv:1904.01543, 2019a.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602-4609, 2019b.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. ICML Graph Representation
Learning and Beyond (GRL+) Workshop, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning, pp. 2014-2023, 2016.

P4l Andras Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN: random dropouts
increase the expressiveness of graph neural networks. Advances in Neural Information Processing Systems,
34, 2021.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep graph convolutional
networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural networks
on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3693-3702,
2017.

Erik Henning Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
arXiv preprint arXiw:2103.01710, 2021.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which
appears therein. NTI, Series, 2(9):12-16, 1968.

Fengli Xu, Quanming Yao, Pan Hui, and Yong Li. Automorphic equivalence-aware graph neural network.
Advances in Neural Information Processing Systems, 34:15138-15150, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1365-1374, 2015.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. In Advances in neural information processing
systems, pp. 4800-4810, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN with
local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

14

https://proceedings.neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as submission to TMLR

A Appendix

A.1 Mathematical Background
A.1.1 Group Theory

Definition A.1. A group is a set G with a binary operation o, usually denoted (G, o) satisfying the following
laws:

(GO) (Closure law): For all g,h € G, goh € G.

(G1) (Associative law): go (hok) = (goh)ok for all g,h, k € G.

(G2) (Identity law): There exists e € G such that goe =eog =g for all g € G.
(G3) (Inverse law): For all g € G, there exists h € G with hog=goh =e.

Definition provides a definition of a group, where a group is commonly written as (G, o), although where
the binary operation is not ambiguous we will write a group as G. The commutative law is not included
within the definition of a group, although if a group also satisfies go h = h o g for all g,h € G then the group
is called commutative or abelian.

Example A.2. Real numbers and addition.
The set R together with the binary operation + yields a group (R, +). This is the group of real numbers
with the binary operation of addition.

To show that (R, +) in Example is a group we need to consider each of the axioms.

(GO) For all g,h € R we need to check that g + h € R. From the definition of R is clear that addition of two
number yields a real number.

(G1) The order of summation of real numbers does not impact the result and hence g+ (h+ k) = (¢ + h) + k
for all g, h, k € R, so it is associative.

(G2) It is known that adding zero to a real number does not change it, hence 0 € R satisfies g+0=0+g =g
for all g € R, and it has an identity.

(G3) Finally, for each real number there exists the negative equivalent, such that for all g € R there exists
—g € R satisfying —g+g=9g+ —¢g=0.

Therefore we can conclude that (R, +) is a group.

Definition A.3. Subgroup
Given a group G, a sub-group of G is a subset of G which, using the same operation as in G, is itself a group.
A subgroup H of G is denoted by H < G.

Definition A.4. Group homomorphism.
Given two groups G and H, a homomorphism 6 : G — H is a function 6 from G to H that satisfies the
condition

(9192)0 = (910)(920) V91,92 € G.

A homomorphism that is one-to-one and onto is called an isomorphism. G and H are called isomorphic is
there is an isomorphism between the two groups. Two groups being isomorphic means that from the point of
view of abstract algebra they are the same, even if their elements are completely different.

A.1.2 Category Theory

This section does not provide a complete overview of category theory, nor even a full introduction, but aims
to provide a sufficient level of understanding to aid the reader with further sections of the paper, where
we believe presenting the comparison between models from a category theory perspective makes more clear
the distinctions between them. A category, C, consists of a set of objects, Ob(C), and a set of morphisms
(structure-preserving mappings) or arrows, f : A — B, A, B € Ob(C). There is a binary operation on
morphisms called composition. Each object has an identity morphism. Categories can be constructed from
given ones by constructing a subcategory, in which each object, morphism, and identity is from the original
category, or by building upon a category, where objects, morphisms, and identities are inherited from the
original category. A functor is a mapping from one category to another that preserves the categorical structure.

15

Under review as submission to TMLR

For two categories C and D a functor F' : C — D maps each object A € Ob(C) to an object F(A) € Ob(D)
and maps each morphism f: A — B in C to a morphism F(f): F(A) — F(B) in D.

Definition A.5. A groupoid is a category in which each morphism is invertible. A groupoid where there is
only one object is usually a group.

A.2 WL Variants and Proofs for Section [4]

Definition A.6. (Vertex coloring). A vertex coloring is a function mapping a graph and one of its nodes to
a "color" from a fixed color palette.

Generally, a vertex coloring is a function ¢ : V — C, (G, v) + ¢&, where V is the set of all possible tuples of

the form (G,v) with G = (V, E) the set of all finite graphs and v € V.

Definition A.7. (Vertex color refinement). Let ¢, d be two vertex colorings. We say that d refines ¢ when for
all graphs G = (Vg, EY), H = (VH, EH) and all vertices v € V&, u € V we have that ¢& = df = & = cH.
We write d C c.

When working with a specific graph pair G', G?, the refinement d of ¢ is written d Cg1 g2 ¢, when, in
particular, it holds that Vv € VGl,u € VG2, d§r = dS? = G = G-,

The 1-WL test represents a graph as a multiset (or histogram) of colors associated with its nodes. This
coloring induces a partitioning of the nodes into color classes, where two nodes belong to the same partition
is and only if they have the same coloring. The algorithm starts from some initial coloring and iteratively
updates the coloring, leading to at each step, where the algorithm does not terminate, a finer-grained node
partitioning. Each of these iterations is a refinement step, since, if ¢ indicates the coloring computed at
iteration ¢ then the subsequent coloring at iteration ¢ + 1 is given by ¢!*! Cg g ¢!

Definition A.8. (Sub-graph-1-WL (Zhao et al., [2021)). Sub-graph-1-WL generalises the 1-WL test by
replacing the color refinement step c/™t = HASH(Star!(v)) with ¢/™* = HASH(G'[N(v)]), Vv € V. Where
G[Nk(v)] is the k-hop egonet.

We start by proving that sub-graph-WL is at least as expressive as 1-WL. For this we first characterise our
sub-graph-WL to make the comparison between a refinement strategy for a bag of sub-graphs and those
which operate on graphs.

Definition A.9. (Sub-graph-WL node refinement). For a graph G = (V, E) we denote S¢ as a bag of
sub-graphs generated by taking the k-hop ego net of each node v € V. The color refinement for node v at
time step ¢ > 0, C?, is given by the set of node colors across the sub-graphs, denoted as {{cf) yttHesq-

Lemma A.10. b C a. That for all graphs G = (V! E') and G?> = (V2, E?) and all nodes v € V!, w € V2
that by, = by = Gy = Ay .

Proof. For such a node refinement policy, inclusive of node refinement across sub-graphs, [Bevilacqua et al.
(2021)) show that, for b the node coloring from a sub-graph-WL refinement and a the node coloring from a
WL refinement, b = a. It then follows that for all graphs G = (V! E') and G? = (V2, E?) and all nodes
ve VL we V?that by, = by = ay = -

Lemma A.11. Sub-graph-WL is at least as powerful as sub-graph-1-WL in distinguishing non-isomorphic
graphs.

Proof. We denote a colorings by the sub-graph-1-WL algorithm, b colorings on each sub-graph by the
sub-graph-WL algorithm, and ¢ coloring on each node within a sub-graph by the sub-graph-WL algorithm.
We also denote S*, S? as the bags of sub-graphs from G!, G? respectively. If |[S| # |S?| then the two
graphs are trivially distinguished by sub-graph-WL. In the case where |S!| = |S?| we seek to show that if
sub-graph-1-WL (Zhao et al.l |2021) identifies non-isomorphic graphs then so does sub-graph-WL.

First recall that sub-graph-1-WL at time step ¢t deems two graphs non-isomorphic if the following two are
assigned two different multisets of node colors:

{{aylv € V1) # {{ay lw € V"3,

16

Under review as submission to TMLR

while sub-graph-WL deems them non-isomorphic when the following two are assigned two different multisets
of subgraph colors:

[i # (s D).

If it is given that sub-graph-1-WL distinguishes between two graphs at iteration T, then by Lemma
bT C aT. In addition, Bevilacqua et al. (2021) prove that for such a coloring at T a sub-graph refinement
policy such as sub-graph-WL is refined by the coloring generated at 7'+ 1 on any pair of sub-graphs:
VH,,Hy, € ST U 82 T+ CH, H, bT. The proof follows from the definition of the refinement step in an
algorithm for a bag of sub-graphs, namely, the inclusion of a term which refines over the multiset of node
colors across sub-graphs implies that if CI' = CI then bl = bL. This gives that if sub-graph-1-WL can
distinguish between two graphs at time step 7" then the sub-graph refinement policy yields distinct colors to
any pair of sub-graphs. Therefore, sub-graph-WL can distinguish between two graphs that sub-graph-1-WL
can and is at least as expressive.

This provides the necessary detail for the proof of Theorem To prove that sub-graph-WL is strictly more
powerful than 1&2-WL we could instead prove that sub-graph-1-WL is strictly more powerful than 1&2-WL
and then by Lemma the proof that sub-graph-WL is strictly more powerful than 1&2-WL is complete.
In fact, |Zhao et al.| (2021)) prove that sub-graph-1-WL is strictly more powerful than 1&2-WL by presenting
a pair of non-ismorphic graphs that sub-graph-1-WL distinguishes but 1-WL cannot. Therefore, we can
conclude that our sub-graph-WL is strictly more powerful than 1&2-WL.

A.3 Previous Methods
A.3.1 Global Equivariant Graph Networks

Global Permutation Equivariance. Global permutation equivariant models have been considered by
Hartford et al.[(2018));|Maron et al.| (2018;/2019); Albooyeh et al.|(2019)), with Maron et al|(2018) demonstrating
that for order-2 layers there are 15 operations that span the full basis for an permutation equivariant linear
layer. These 15 basis elements are shown in Figure [5| with each basis element given by a different color in the
map from representation ps — po. Despite these methods, when solved for the entire basis space, having
expressivity as good as the k-WL test, they operate on the entire graph. Operating on the entire graph
features limits the scalability of the methods. In addition to poor scalability, global permutation appears to
be a strong constraint to place upon the model. In the instance where the graph is flattened and an MLP is
used to update node and edge features the model would have n* trainable parameters, where n is the number
of nodes. On the other hand, a permutation equivariant update has only 15 trainable parameters and in
general 15 < n?.

Viewing a global permutation equivariant graph network from a category theory perspective there is one
object with a collection of arrows representing the elements of the group. Here the arrows or morphisms
go both from and to this same single object. The feature space is a functor which maps from a group
representation to a vector space. For a global permutation equivariant model the same map is used for every
graph.

91
()
— G~
g2 AN_e

Symmetric Group

Global Naturality Global natural graph networks (GNGN) consider the condition of naturality, (de Haan
et al., [2020). GNGNSs require that for each isomorphism class of graphs there is a map that is equivariant
to automorphisms. This naturality constraint is given by the condition p/'(¢) o K¢ = Kgr o p(¢), which
must hold for every graph isomorphism ¢ : G — G’ and linear map Kg. While the global permutation
equivariance constraint requires that all graphs be processed with the same map, global naturality allows for

17

Under review as submission to TMLR

different, non-isomorphic, graphs to be processed by different maps and as such is a generalisation of global
permutation equivariance. As is the case for global permutation equivariant models, GNGNSs scale poorly as
the constraint is placed over the entire graph and linear layers require global computations on the graphs.

Viewing a GNGN from a category theory perspective there is a different object for each concrete graph,
which form a groupoid. Then, there is a mosphism or arrow for each graph isomorphism. These can either be
automorphisms, if the arrow maps to itself, or isomorphisms if the arrow maps to a different object. The
feature spaces are functors which map from this graph category to the category of vector spaces. The GNG
layer is a natural transformation between such functors consisting of a different map for each non-isomorphic
graph.

o e

S
G
GO
Groupoid of Concrete Graphs

A.3.2 Local Equivariant Graph Networks

Local equivariant models have started to receive attention following the successes of global equivariant models
and local invariant models. The class of models that are based on the WL test are not in general locally
permutation equivariant in that they still use a message passing model with permutation invariant update
function. Despite this, many of these models inject permutation equivariant information into the feature
space, which improves the expressivity of the models (Bouritsas et al., [2020; Morris et al.l 2019a; |Bodnar
et al} 2021bja). The information to be injected into the feature space is predetermined in these models by a
choice of what structural or topological information to use, whereas our model uses representations of the
permutation group, making it a very general model that still guarantees expressivity.

In contrast to utilising results from the WL test covariant compositional networks (CCN) look at permutation
equivariant functions, but they do not consider the entire basis space as was considered in Maron et al.| (2018)
and instead consider four equivariant operations (Kondor et al., |2018). This means that the permutation
equivariant linear layers are not as expressive as those used in the global permutation equivariant layers.
Furthermore, in a CCN the node neighbourhood and feature dimensions grow with each layer, which can be
problematic for larger graphs and limits their scalability. Another local equivariant model is that of local
natural graph networks (LNGN) (de Haan et al.,2020). An LNGN uses a message passing framework, but
instead of using a permutation invariant aggregation function, it specifies the constraint that node features
transform under isomophisms of the node neighbourhood and that a different message passing kernel is used
on non-isomorphic edges. In practice this leads to little weight sharing in graphs that are quite heterogeneous
and as such the layer is re-interpreted such that a message from node p to node g, k,qvp, is given by a function
k(Gpq,vp) of the edge neighbourhood G, and feature value v, at p. In comparison to our method LNGN
amounts to choosing a different automorphism group, where a LNGN is equivariant to the edge sub-graph
when performing the message passing. On the other hand, we utilise the k-ego network sub-graphs of each
node in the graph. As was noted by the authors of LNGN their choise of automorphism group leads to little
weight sharing and requires parameterising. While it is still possible for some datasets, namely those which
are particularly heterogeneous, that our choice of automorphism group requires parameterising, in practise
this was not required on most datasets, which allows us to use the true automorphism group. We also utilise a
different base update function in comparison to LNGNs, where we use a higher-order permutation equivariant
update function and a LNGN uses a GCN.

Viewing a LNGN from a category theoretic perspective there is a groupoid of node neighbourhoods where
morphisms are isomorphisms between node neighbourhoods and a groupoid of edge neighbourhoods where
morphisms are ismorphisms between edge neighbourhoods. In addition, there is a functor mapping from edge
neighbourhoods to the node neighbourhood of the start node and a functor mapping similarly but to the tail

18

Under review as submission to TMLR

node of the edge neighbourhood. The node feature spaces are functors mapping from the category of node
neighbourhoods to the category of vector spaces. Further, composition of two functors creates a mapping from
edge neighbourhoods to the category of vector spaces. A LNG kernel is a natural transformation between
these functors.

Groupoid of Edge Neighbourhoods

Another local equivariant graph network, which makes use of an automorphism group symmetry, is that of
Autobahn (Thiede et al.| [2021), where this approach uses the automorphism groups of cycles and paths. This
choice again differs from ours. A key difference can be seen that our method is general in the way it can
be used on any graph dataset while Autobahn is designed specifically for molecular datasets. Our choice of
automorphism group and sub-graph selection policy ensures that the information of every node is made use
of in the model, which Autobahns choice of automorphism group can lead to nodes being ignored.

Another method, which does not make use of automorphism group equivariance, makes use of sub-groups
and graph symmetries, is ESAN (Bevilacqua et al., |2021)). This work explores multiple sub-graph selection
policies and is therefore different from our work in that we chose one specific sub-graph selection policy. Our
choice of sub-graph selection policy leads to a natural choice of automorphism group, which requires less
parameterisation than previous works and improves scalability. On the other hand, ESAN does not consider
automorphism groups and therefore this is not a consideration of their work and their method focuses on
comparing the expressivity of different sub-graph selection policies.

In addition, k-reconstruction GNNs (Cotta et al., |2021)) also consider sub-graphs, although here vertex
removed sub-graphs are considered, which is different to the sub-graph choice we made. Removing single
nodes from a graph would not yield the same improvement in scalability as we demonstrate in our method due
to each sub-graph being almost the same size as the original graph, while we demonstrated using k-ego network
sub-graphs yields sub-graphs which are much smaller than the original graph in practise. Furthermore, in our
work we show how the combination of sub-graph selection policy, automorphism equivariance constraint and
higher-order permutation GNN update functions improves expressivity beyond 1-WL, while k-reconstruction
GNNs compare to 1-WL.

Finally, the GRAPE model (Xu et al., [2021) is somewhat similar to Autobahn in that they use sub-graph
templates to select the automorphism constraint, although it appears that for GRAPE this is chosen to
be more general than for Autobahn. This still differs from our sub-graph selection policy and has to be
pre-determined before building a model. On the other hand, our method, using a k-ego network policy, has
the automorphism constraint driven by the data, ensuring the approach is applicable across a range of graph
datasets.

19

Under review as submission to TMLR

A.4 Implementing other models within our framework

In the datasets used, for graph classification benchmark tasks, the input to the model is a graph with
node and edge features, this can be represented as 2°¢ order permutation representation, so the input
representation would be j = 2. The convolution can then map from this representation, p;, to multiple
different representation spaces, pg @ p1 @ --- @ p;. Subsequent convolutions can then map from these
multiple permutation representations, pg ® p1 @ - -+ @ p;, to multiple different permutation representations,
Po D p1 D -+ D p;. The choice of representations used can be made depending on a trade off between
expressivity and computational cost, as lower order representation spaces have less expressivity, but also
lower computational cost.

Local Natural Graph Networks (LNGNs) (de Haan et al.l [2020) take the input feature space and embed
this into an invariant scalar feature of the edge neighbourhood graph. This is the same as using specific
choice k-hop sub-graph creation and permutation representation space for the sub-graph convolution. In the
case of LNGNs the choice would be k = 1 and mapping the input feature space to representation py creating
a permutation invariant feature space. Then any graph neural network with invariant features can be used,
in the paper the choice made is to use a GCN (Kipf & Welling, 2016|), which can also be covered by our
framework. Here the choice would again be to use k = 1 when creating the subgroups and using a subgraph
convolution with representation spaces pg — pg.

Global Equivariant Graph Networks (EGNs) (Maron et all |2018) use a choice of k = n, for n-node
graphs when creating the sub graphs, which corresponds to not selecting a sub graph and instead operating
over the entire graph. They then use the representation space ps — po mapping from a graph feature space
to a graph feature space.

Local Permutation Equivariant Graph Networks (LPEGN) (Ours) In our paper we choose to use
k =1 throughout to keep inline with the vast majority of previous work on graph neural networks, but we
use a representation space of p; @ p2 — p1 @ p2 in the hidden layers of the model and we note that this was
simply a choice that seemed a simple case to present as a comparison with previous work in the benchmark
classification task.

A.5 Architectural Details of the SPEN Framework

The main figure outlining the model concept is provided in Figure [2] The first stage in the model is to split
the input graph into a bag of sub-graphs. To do this we utilise a k-ego network policy, where for each node
in the input graph we extract the neighbouring nodes and the induced connectivity of these nodes up to
k-hop away from the initial node. This induced connectivity sub-graph is then extracted and becomes one of
the sub-graphs within the bag. This process is repeated for each node in the input graph, creating a bag of
sub-graphs. This can be seen in step (2) in Figure

At this point the input graph is represented as a bag of sub-graphs. The next step in the model is to split
these into there corresponding automorphism groups. As these are sub-graphs with permutation symmetry
the automorphism groups are defined as

Aut(H) = {0 € S,|A” = A}, 2)

where A is the adjacency matrix of H and o is a permutation action on the sub-graph. Due to the choice of
sub-graph selection policy, where the induced connectivity is extracted, we can consider missing edges in
the sub-graph as zero feature edges. This is the same approach as would be taken in [Maron et al.| (2018)
and all approaches which operated on a dense adjacency matrix of the graph. Therefore, each sub-graph
automorphism group is fully determined by the size of the sub-graph, namely the number of nodes in the
sub-graph. Then each sub-graph is placed in a bag of sub-graphs such that each sub-graph within the bag
belongs to the same automorphism group. These two steps of finding the sub-graphs and placing into bags of
sub-graphs such that each bag corresponds to a single automorphism group can be combined into one step.
This is achieved by placing the sub-graphs into the correct automorphism group bag of sub-graphs as each
sub-graph is extracted. This can be seen as moving to step (3) in Figure

20

Under review as submission to TMLR

Now the input graph is represented by multiple bags of sub-graphs, each bag corresponding to a different
automorphism group. Next we considered step (3) in Figure [2 As our model operated on sub-graphs we
use a graph neural network architecture. Here we choose to use permutation equivariant neural networks
and utilise a general approach for operating on higher-order objects. A general recipe for building group
equivariant neural networks was provided in |[Kondor & Trivedi (2018]). Following this formalism, we treat
any object that transforms under a group action as a function on the group. In the case of an object which
transforms under a 0-order permutation this would correspond to a single node, and an example of this would
be a graph after being pooled. Here, in the case of a single feature dimension, there is just a single weight
and this is an uninteresting case where there is actually nothing to permute. An object which transforms
under a 1l-order permutation is a set and an object which transforms under a 2-order permutation is a graph.
This concept can be extended to objects which transform under higher order permutations. In addition, we
can map between different order permutations. Enforcing permutation equivariance within a neural network
layer mapping between an input and output object which we require to transform under a permutation group
action places a restriction over the weights in the model. It is possible to find bases for a mapping between
different objects transforming under different order permutation transformations, which provides the number
of permissible weights for a single feature dimension neural network. We provide an example of some of these
bases functions in Figure [5] Here we use the notation p; to represent an object which transforms under an
i-order permutation transformation. Following this, we use the notation p; — p; to denote a mapping between
an object transforming under an i-order permutation transformation and an object transforming under an
j-order permutation transformation. We have used the notation p due to this being the common notation to
use for representations in group theory. [Kondor & Trivedi| (2018) defined the group convolution and made
the connection to Fourier analysis, where the function is decomposed into irreducible representations. These
irreducible representations can be combined using the direct sum to create other group representations, for
example p; = p, D pp.- Here we are making use of permutation representations to restrict the space of the
linear update function such that we use the bases shown in Figure [5| and hence the use of p.

Now that we have the general recipe for constructing higher order permutation equivariant graph neural
networks, we consider the specifics of the linear update function used within our model. In our model we
construct a graph neural network which comprises of mappings between objects which transform under
different order permutation transformations. Our model uses a different set of weights to perform the linear
update mapping for each automorphism group. This can be viewed as building a separate graph neural
network for each automorphism group; despite this, the choice of mappings, i.e. the feature dimension
and order of objects, is kept the same for each automorphism group. This different set of weights which
performs the linear mapping within the graph network is symbolised in Figure [5] by showing three GNNs for
automorphism groups A2, A3, A4, for this example graph. This explains the linear map (4) which produces
the outputs (5) in the figure.

At this point, the key concepts of the model are explained, namely the splitting of the graph into sub-graphs
which are stored in separate bags for each automorphism group, the core GNN update functions which
comprise of higher-order permutation update functions, and the automorphism constraint placed over the
model via the enforced weight sharing in the model. Following this, there is an averaging of node and edge
features across the sub-graphs. This comprises the linear update function of the model and a choice of
non-linearity can be used. In our experiments we used the ELU non-linearity. The entire model is composed
by stacking multiple of these layers and, in the case of a graph classification task, adding a pooling layer. In
the notation of our framework a set or graph pooling layer is a map from an object which transforms under a
1 or 2-order permutation transformation to a 0-order permutation transformation respectively.

A.6 Implementation Details and Datasets
A.6.1 TUDatasets

We present the range of graph sizes and sub-graph sizes when utilising a 1-ego network sub-graph extraction
policy in Table [3]

21

Under review as submission to TMLR

Table 3: Different range of graph sizes and sub-graph sizes for each dataset considered from TUDatasets.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M
Graph Sizes 10-28 2-109 4-620 3-111 4-111 12-136 7-89
Sub-graph Sizes 2-5 2-5 1-26 2-5 1-6 1-135 1-88
Mean Sub-graph Size 3.2 3.0 4.7 3.2 3.2 9.8 10.1

A.6.2 Model Architecture

We consider the input graphs as an input feature space that is an order 2 representation. For each local
permutation equivariant linear layer we use order 1 and 2 representations as the feature spaces. This
allows for projection down from graph to node feature spaces through the basis for po — p1, projection
up from node to graph feature spaces through the basis for p; — p2, and mappings across the same order
representations through ps — ps and p; — p1. The final local permutation equivariant linear layer maps to
order 0 representations through ps — pg and p; — pg for the task of graph level classification. In addition to
the graph layers, we also add 3 MLP layers to the end of the model.

Despite these specific choices which were made to provide a baseline of our method for comparison to existing
methods the framework we present is much more general and different representation spaces can be chosen.
Therefore, different permutation representation spaces, p1 @ p2 @ - - - @ p;, can be chosen for different layers in
the model and a different k value can be chosen when creating the sub-graphs.

A.6.3 Implementation details

For all experiments we used a 1-hop ego networks as this provides the most scalable version of our method.
We trained the model for 50 epochs on all datasets using the Adam optimizer. We considered the evaluation
procedure as was conducted in (Bevilacqua et al., [2021; [Xu et al. 2019; [Yanardag & Vishwanathan, |2015;
Niepert et al.,[2016)). Specifically, we conducted 10-fold cross validation and reported the average and standard
deviation of validation accuracies across the 10 folds. For all datasets we use 6 automorphism equivariant
layers with base GNN utilising p; @ ps representation space.

A.6.4 Sub-graph Compute Run-time

The current implementation of the model computes the sub-graphs on the fly, although this could be moved
into a pre-processing stage which would speed up run-time of the model and slow down the pre-processing
stage. Here, in Table [d] we provide the run-time of the computation of the sub-graphs for each dataset to
provide an idea of how long this process takes in our 1-hop SPEN model.

Table 4: Run-time to compute sub-graphs for each dataset from TUDatasets when using a 1-hop ego-net
sub-graph selection policy.

Dataset Sub-graph Compute Run-time [s]
MUTAG 0.90
PTC 2.26
PROTEINS 14.25
NCI1 31.21
NCI109 30.96
IMDB-B 17.79
IMDB-M 19.75

22

Under review as submission to TMLR

A.7 Further Results Discussion

In addition to the comparison across datasets in Table [2] Figures [8] [0] and [14] show the test
accuracy distribution of the SPEN method and compares to other methods from Table [2| This shows for the
smaller datasets that the spread of test accuracy’s is larger leading to our method and others presenting large
standard deviations over the results. Comparing the SPEN results to the other methods here highlights that
the SPEN result is competitive across a range of datasets. For the NCI1 and NCI109 datasets the distribution
of results of our method highlights the strong performance of the SPEN method. For IMDBB and IMDBM
the distribution of results for the SPEN method also highlights that it is competitive on these datasets.

We also present analysis of the statistical significance of test accuracies from each method across the seven
datasets considered. Here we make use of the Welch’s ANOVA method for comparing the means of multiple
scores with different variances. We consider the null hypothesis that the means are equal and to reject this
null hypothesis the p value is required to be below 0.05. Tables [f] and [6] show that for leading methods SPEN,
CIN, GSN, CCN, and DSS the p values between each of these methods is greater than 0.05 and therefore we
cannot reject the null hypothesis, and thus conclude that the means are not significantly different. Despite
this our SPEN method does produce statistically significantly better results than some benchmark results.
Table [7] compares the statistical significance of results on the Proteins dataset, which is one where our method
appears to perform more poorly ranking 15th for mean values. Here we show that when comparing the
leading results of PPGN, CIN, IGN, DSS, GSN, and SIN there is no statistical significance between our mean
accuracy and theirs. Therefore we can conclude that there is no significant difference between the means and
our method is comparable with SOTA results. Tables [§] [0} and [I0] also show that for leading methods the p
values between each of these methods is greater than 0.05 and therefore we cannot reject the null hypothesis,
and thus conclude that the means are not significantly different. Despite this our SPEN method does produce
statistically significantly better results than some benchmark results. Finally, Table [11] does show statistically
significant results between our method and leading methods and therefore our method is under-performing
on this dataset. This is something we seeks to explore and improve in the future. Overall the analysis of
the statistical significance of results by our SPEN method and other benchmark results highlights that the
mean accuracy’s from recent leading methods are not significantly different. This is the same across each
recent method claiming SOTA on some benchmark datasets and not an exclusive result to our method. This
highlights that our method is competitive with SOTA methods across a range of benchmarks.

0.401 — GDCNN
PSCN
—— DGK
0.35 CCN
IGN
—— GIN
0.30 PPGN v1
> PPGN v2
@ PPGN v3
§0'25 —— LNGN (GCN)
- —— GSN-e
£20.20{ — GSN-v
5 —— CIN
a DSS
E 0.151 — SPEN
= SPEN
0.10
0.05
0.00 —
70 75 80 85 90 95 100

Test Accuracy [%]

Figure 8: Comparison between our SPEN method and other methods on the MUTAG dataset. Results for
the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table @

23

Under review as submission to TMLR

0.30 —— GDCNN
—— PSCN
—— DGK
—— CCN
0.25 IGN
— GIN
PPGN v1
> PPGN v2
K] 0.20 PPGN v3
g —— LNGN (GCN)
- —— GSN-e
= 0.15 —— GSN-v
a — CIN
2 DSs
2 —— SPEN
0.10 = SPEN
DR
0.05 i g N |
! A T
0.00 ——=c = = S
30 40 5 60 70 80 90 100

Test Accuracy [%]

Figure 9: Comparison between our SPEN method and other methods on the PTC dataset. Results for
the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table El

o

o]
(2]
9
e}
4
=z

o
~
o
[a]
~

— GIN
PPGN v1
PPGN v2
PPGN v3
—— LNGN (GCN)

Probability Density
o o o o
w > o o

o
N

o
i

o
=)

55 60 65 70 75 80 85 90
Test Accuracy [%]

Figure 10: Comparison between our SPEN method and other methods on the PROTEINS dataset. Results
for the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table E}

24

Under review as submission to TMLR

PPGN v1

PPGN v2

PPGN v3
—— LNGN (GCN)

Probability Density
o o o
N w IN

e
A

o
=)

50 60 70
Test Accuracy [%]

Figure 11: Comparison between our SPEN method and other methods on the NCI1 dataset. Results for
the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table

1.2 IGN

PPGN v2
PPGN v3
—— LNGN (GCN)

o o =
o © o
[%)
<
m
=2

Probability Density

©
IS

0.2

|
4

0.0 65 70 75 80

Test Accuracy [%]

Figure 12: Comparison between our SPEN method and other methods on the NCI109 dataset. Results for
the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table E}

25

Under review as submission to TMLR

o
o

i
U

PPGN v3
—— LNGN (GCN)
—— GSN-e
— GSN-v

SIN
—— CIN
Dss

©
IS

o
w

Probability Density

o
N

0.1

0.0

55 60 65 70 75 80 85 90
Test Accuracy [%]

Figure 13: Comparison between our SPEN method and other methods on the IMDB-B dataset. Results for
the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table El

Probability Density
o I o o e o
w » w o ~ ©

o
N

o
i

o
=)

25 30 35 40 45 50
Test Accuracy [%]

Figure 14: Comparison between our SPEN method and other methods on the IMDB-M dataset. Results for
the SPEN method are also presented as a histogram of the 10-fold runs. Each other method is given as a
Gaussian distribution with mean and standard deviation as is presented in Table E}

26

Under review as submission to TMLR

67°'0 €80 €L°0 07'0 60°0 talyl 810 €7'0 LT°0 900 650 c0'0 01°0 10°0 NHdS

670 €9°0 18°0 GgL'o0 cc’0 67°0 L€°0 9.'0 8¢'0 TIT'0 160 00 raly T0°0 SSsa
€8°0 €9°0 L8°0 0¢'0 €1'0 ce’0 €¢'0 g0 ¢¢’0 800 cL’0 €00 ¥1°0 10°0 NID
€L°0 180 180 ¥9°0 8¢'0 €7°0 €0 G9°0 9¢'0 010 98°0 80°0 92’0 €00 A-NSD
070 gL'0 080 ¥9°0 €9°0 L0 c9°0 86°0 690 8T°0 9.0 €20 LS80 80°0 9-NSD
60°0 ¢¢’0 €10 8¢'0 €9°0 00'T 780 0.0 00'T ¢c'0 LEO 90°0 6.0 00°0 NONT
gco 67'0 C€0 €7°0 ¥L0 00'T 68°0 LL°0 00'T 120 €40 LV°0 68°0 020 €A NDdd
8T1°0 LE'0 €20 €0 c9'0 780 68°0 99°0 .80 I€0 [47at 9¢°0 L6°0 €¢'0 ¢A NDdd
€V°0 9.0 ¢80 g9°0 86°0 0.0 LL°0 99°0 ¥L0 020 9.0 T€°0 €9°0 €T°0 A NDdd
LT°0 8¢'0 ¢C0 9¢°0 69°0 00'T 00'T L8°0 v.L0 ¥¢0 97°0 €€°0 98°0 80°0 NID
90°0 IT°0 800 0T°0 8T°0 ¢c’0 L2°0 T€°0 02’0 ¥e'0 ¢1'o <o 92’0 99°0 NDOI
690 .60 ¢L'0 98°0 9.0 L€°0 €90 cvo 9.0 9’0o C¢I'0 11°0 geo €00 NOD
c00 ¥0'0 €00 80°0 €20 90'0 Lv°0 9¢'0 T€°0 €0 ¢ro 110 €0 €10 MOd
0T1°0 Gc’0 VIO 920 L2670 6.0 68°0 L6°0 €9°0 980 920 ge’o ¥€0 g0'0 NOSd
10°0 10°0 100 €00 80°0 000 02’0 €¢'0 €1'0 800 990 €00 €T°0 G0'0 NNOADO

NHIS SSd NID ANSOD 9NSO NONT €ANDdd ¢ANDdd TANDdd NID NOI NOOD 3MDOd NOSd NNDAD

's, £9vIN00% JUaIePIp 9onpoid S[EPOUW 0M} JY) 9PN[OU0D SNy} pue sisoyjodAy [nu s1yy 399(o1 03 parmbal st 6O weys ssof Jo anpea-d y “Aoeinooe
aures oY} seonpolid [opow yoes jey) St sisojodAY [[nu oy [, 'senjea-d se weAld jaseiep HYININ Y3} U0 SINSAI Jo SIsATeue juedyrusIs [Bd1ISI1)elS G d[qe],

27

Under review as submission to TMLR

8¢'0 0¥0 6¢°0 €7°0 81°0 700 110 61°0 01°'0 000 98°0 10°0 c0'0 000 NHdS

8€°0 ¥6°0 280 G6°0 9¢'0 01°0 0€'0 €49°0 92’0 000 6€°0 000 ¥0°0 000 SSsa
0o ¥6°0 9.0 00°T LV0 80°0 taly L70 ¢¢’0 000 170 00°0 €00 00°0 NID
62°0 ¢80 940 6.0 9.'0 €T°0 8¢'0 290 ¥e€'0 100 8¢'0 000 90°0 000 A-NSD
€V°0 G660 00T 6.0 9¢'0 110 0€0 [asul] Lc’0 100 970 10°0 90°0 00°0 9-NSD
8T1°0 9¢'0 L¥V0 9.°0 9¢'0 c1'o 170 8L°0 9¢'0 000 €10 000 700 00°0 NONT
¥0°0 0T'0 800 €T°0 11°0 c1'o 64°0 62°0 690 LT°0 c0'0 92°0 780 60°0 €A NDdd
1T°0 0€'0 4c0 8¢'0 0€'0 170 6S°0 790 86'0 .00 60°0 60°0 €7'0 €00 ¢A NDdd
61°0 €9°0 L¥VO 290 g0 8L°0 62°0 ¥9°0 090 <00 910 c0'0 LT°0 T0°0 A NDdd
0T1°0 9¢’'0 ¢C0 €0 L2°0 9¢'0 64°0 86°0 090 .00 L00 80°0 €7'0 €00 NIO
000 000 000 10°0 T0°0 000 LT°0 200 c0'0 200 000 TG0 02’0 L6°0 NDOI
98°0 6€0 I¥V0 820 97°0 €1°0 20’0 60°0 91°0 200 000 000 T0°0 00°0 NOD
10°0 000 000 000 T0°0 000 9¢'0 60°0 c0'0 800 TS0 000 6¢'0 120 MOd
c00 ¥0'0 €00 90°0 90°0 ¥0°0 780 €7°0 LT°0 €V'0 020 10°0 62°0 80°0 NOSd
000 00°0 000 000 000 000 60°0 €00 10°0 €00 L6°0 000 12°0 80°0 NNOADO

NHIS SSd NID ANSOD 9NSO NONT €ANDdd ¢ANDdd TANDdd NID NOI NOOD 3MDOd NOSd NNDAD

'8, £oeIMode JUAIYIP 9onpolid S[EPOW 0M) JRT[} dPTOU0D SN} pue SISAIodAT [NU ST} 490[01 04 parmbai st go°() wer) ssof jo anea-d y "Aoeinooe
aures o1 seonpoid [opou YPed et} ST sTsaTjodAT [nu o], senfea-d se UoAIS joseIep O T,J oY) UO SINSOI JO SISATeu® Juesyrusis [ed1)s1)els 9 o[qe],

28

Under review as submission to TMLR

¢e'0 120 920 ¢6'0 geo T0°0 L€°0 70 020 I1€'0 6€0 00 00°0 88'0 [y} NHJS

ce0 ¥8°0 960 9€'0 00T 100 L6°0 €6°0 8L°0 ¢80 00T Ggo 000 ge'o 870 SSa
12°0 780 8L'0 L2°0 g8'0 000 68°0 8L°0 ¢6°0 €90 980 L€0 000 ¢c’0 T€°0 NID
92°0 96'0 8.0 €0 96°0 000 c6°0 96°0 1.0 €8°0 960 870 000 82'0 6€°0 NIS
¢6°0 9€¢'0 L0 TE€O 8¢°0 01°0 6€°0 €70 ralyl 660 1I7V'0 16°0 00°0 ¢80 6S°0 A-NSD
geo 00'T 4980 960 8¢'0 T0°0 L6°0 €6°0 6.0 €8°0 00T 8¢°0 000 8¢'0 160 9-NSD
10°0 10°0 000 000 01°0 10°0 200 00 000 000 <¢00 00°0 00°0 00°0 000 NONT
L€°0 60 680 €60 6€°0 L6°0 c0'0 06°0 £€8°0 080 160 6S°0 000 07’0 g0 €A NDdd
17°0 €60 8L0 960 €V°0 €6°0 c0'0 06°0 cL0 160 €670 290 000 7o 64°0 ¢A NDdd
020 8L'0 ¢6'0 ILO raly 6.0 000 €8°0 cL'0 LG°0 080 €0 000 120 6¢°0 A NDdd
1€°0 c8'0 €90 €80 6€°0 €80 000 080 16°0 280 ¥8°0 649°0 000 €€°0 Lv°0 NID
6€°0 00'T 980 960 170 00T c0'0 L6°0 €6°0 08°0 780 c9°0 000 (4t} Gg'o NOI
070 Gg¢'0 LE0 870 160 8¢°0 000 6S°0 290 ¥€0 690 <290 000 170 Gg'o MHd
00°0 00'0 000 000 000 000 00°0 000 00°0 00°0 000 000 000 000 000 NNOA
88°0 Ge'0 ¢co0 8CO ¢80 8¢°0 000 00 o 12°0 €€0 ¢ro 70 000 9¢'0 NOSd
g0 87’0 1€0 6€0 64°0 16°0 000 cg'0 6G°0 62°0 V0 990 geo 00°0 9¢'0 NNOAD

NHdS SSd NID NIS A-NSD °9NSO NONT €A2NDdd ¢ANDdd TANODdd NID NDI MOAd NNDAd NOSd NNDAD

's A0RINooe JUSISYPIP 90NpoId S[EPOW OM) R} dPN[OU0D SN} pue sisayjodAY [[nu sIy) 39961 03 parsmbar st g () wey) ssof Jo anfea-d y AdevInooe sures
oY} seonpoid [opowr yoes ey} SI sisojodAy [[nu oy [, ‘sonjea-d se uoAI3 10seep SNIAIOMJ 92 U0 SHNSOI JO SISA[eur JURIYIUSIS [ed1)s13elS), 9[qe],

29

¥.0 960 9¥0 16°0 16°0 ¥1°0 000 T0°0 170 8T°'0 000 000 000 000 000 000 NHJS

vL0 ¥6°0 990 00'T 00°T LT°0 00°0 10°0 Gg'o €¢’0 000 000 000 00°0 000 000 ssd
G6°0 ¥6°0 G9°0 96°0 96°0 740 10 ¥1°0 8L'0 gg¢’'0 000 000 ¥0°0 000 000 000 NID
970 ge¢'0 990 cL'0 L0 €6°0 LT°0 cz'0 €L°0 €60 000 000 G0°0 000 000 00°0 NIS
16°0 00°'T 960 ¢LO 00'T 790 LT°0 02’0 98°0 ¥9'0 000 000 200 000 000 000 A-NSD
16°0 00T 960 ©TLO0 00'T ¥9°0 LT°0 020 98°0 ¥9'0 000 000 200 000 000 00°0 9-NSD
¥1°0 LT°0 PS¢0 €60 790 ¥9°0 70°0 80°0 6€°0 00'T 000 000 000 00°0 000 000 NONT
000 000 TT°0 ATO LT°0 LT°0 ¥0°0 £€8°0 100 G0'0 000 10°0 62°0 000 000 000 €4 NDdd
10°0 1000 ¥#I'0 ¢c'0 02’0 0¢°0 80°0 €8°0 0’0 01°0 000 00°0 [ealtl 000 000 000 ¢A NDdd
170 Ga'0 8L0 €L0 98°0 98°0 6€°0 T0°0 c0'0 gv’'0 000 000 000 000 000 000 A NDdd
810 €60 990 €60 790 ¥9°0 00'T G0'0 01°0 il 00'0 000 00°0 000 00°0 00°0 NIO
000 00’0 000 000 000 000 000 000 000 000 000 ¢c’0 000 000 .00 16°0 NDOI
000 00'0 000 000 000 000 000 T0°0 000 000 000 <20 10°0 000 00'T 81°0 NOD
000 000 ¥0°0 <00 L0°0 200 000 6¢°0 ¢c’0 000 000 000 10°0 000 000 000 MOd
000 000 000 000 000 000 00°0 000 000 000 000 000 000 000 000 000 NNOd
000 00’0 000 000 00°0 00°0 00°0 000 000 000 000 100 00'T 000 000 10°0 NOSd
000 00’0 000 000 000 000 000 000 000 000 000 160 8T°0 000 00°0 10°0 NNOAD

NHdS SSAd NID NIS ANSOD °NSO NONT €ANDdd ©¢ANDdd TANDdd NID NOI NDOD MDA NNOAd NOSd NNOAD

Under review as submission to TMLR

'S, £9RIN00% JUSISHIP 9onpoid S[EPOUW 0MY) JRY} 9PN[OU0D SN} pue siseyjodAy [nu s1yy 309(e1 03 parmbail st gO'(wey) ssof jo anfea-d y Aoeinooe
aures o1} seonpoid [epour yora Jet) SI sise(jodAY [[nu oy], 'sonfea-d se UaAId josejep TION 9} UO S}NSaI JO SISATeur juedyrudis [edo19s1e)s g 9[qR],

30

LT°0 9€°0 8¢°0 G0'0 100 ¥0°0 000 000 00°0 NHJS
LT°0 €00 €9°0 99'0 0€'0 8¢'0 000 000 000 SSa
9€°0 G0'0 cc’0 c0'0 000 10°0 000 000 00°0 NID
8¢°0 €9'0 ¢C0 0€'0 ¢1'o LT°0 000 000 000 NONT
G0'0 99'0 200 0€0 [} 090 000 000 00°0 €4 NOdd
10°0 0€'0 000 ¢1'o [4y1} 00'T 000 000 10°0 ¢A NDdd
00 8¢'0 100 LT°0 090 00'T 000 000 €00 A NDdd
000 000 000 000 000 000 000 ¥0°0 00°0 NDI
000 000 000 000 000 00°0 000 70°0 000 NOD
000 000 000 000 000 T0°0 €00 00’0 000 MOd

NIdS SSA NID NONT €ANDdd <SANDdd TANDdd NOI NOD MDA

31

Under review as submission to TMLR

'S, £ovIN00% JUSISHIP 9onpoid S[OPOUW 0MY) JRT} 9PN[OU0D SN} pue sisoyjodAy [nu s1yy 409(e1 03 parmbail st gO°(wey) ssof Jo anfea-d y “Aoeinooe
aures o1 seonpoid [ppour yora ety st siser(jodAy [[nu oy J, 'senjea-d se UoAlS joseIep GOTIDN U2 UO SNSAI JO SISATRUR JURIYIUSIS [RIIISIIRIG 16 O[R],

Under review as submission to TMLR

L7'0 080 840 61°0 60°0 L0 T€°0 60°0 8T°0 960 €10 000 00°0 000 000 NHJS

LV°0 290 990 1.0 ¥€0 L2°0 ST'0 €00 200 ga’0 900 000 000 00°0 00°0 SSa
08°0 290 00'T 8¢'0 810 9¢'0 raly) 200 ¥1°0 080 110 000 000 000 000 NID
8L°0 G9°'0 00T €€°0 g1'0 160 €20 90°0 €T°0 080 600 000 000 000 00°0 NIS
61°0 1.0 8€0 €€0 €v°0 00 80°0 10°0 €00 ge'0o ¢o00 000 00°0 000 000 A-NSD
60°0 ¥e'0 8T°0 ST0 €7°0 €00 ¥0°0 000 T0°0 8T°'0 100 000 000 000 000 9-NSD
L0 L0 990 190 70°0 €00 L€°0 1T°0 1¢°0 80 910 00°0 00°0 00°0 000 NONT
T€°0 GT'0 90 €T0 80°0 ¥0°0 L€°0 €L°0 80 ov'o 0.0 T0°0 000 €€°0 ¥1'0 €A NDdd
60°0 €00 .00 900 100 000 11°0 €L°0 a8°0 61°0 €60 000 000 Sv'o S1'o ¢A NDdd
8T°0 00 P10 €T0 €00 10°0 12°0 L8°0 @80 8¢'0 080 10°0 000 LE°0 €T°0 A NDdd
96°0 gg¢'0 080 080 ge'0 8T1°0 .80 070 61°0 820 12°0 000 000 ¥0°0 10°0 NID
€1°0 90'0 IT°'0 600 0’0 10°0 91°0 0.0 €6°0 08°0 120 c0'0 000 19°0 8¢'0 NOI
000 00'0 000 000 000 000 000 T0°0 000 T0°0 000 <¢00 000 000 000 MHd
00°0 00'0 000 000 000 000 00°0 000 00°0 00°0 000 000 000 000 000 NNOA
000 00'0 000 000 000 000 000 €€°0 av'o L€°0 ¥00 190 000 000 €20 NOSd
000 000 000 000 000 000 000 ¥1°0 ST°0 €T°0 100 8Z0 000 00°0 €¢'0 NNOAD

NHdS SSd NID NIS A-NSD °9NSO NONT €A2NDdd ¢ANDdd TANODdd NID NDI MOAd NNDAd NOSd NNDAD

'S, A0RINOoR JUSISYPIP 90NpPoId S[EPOW OM]) e[} SPN[OU0D SN} pue sIsoyjodAY [[nu siy) 1091 03 paxmbar st gO'() weyy ssof Jo anfea-d y -Adeinooe
oures oY) soonpolid [opowt Yoes jey[} ST SISOYI0dAY [[nU oY, ‘sonjea-d se uoAld joseiep g-gIN] oY} U0 SHNSAI JO SISATeue JUedYIUSIS [ed13S19RIS (0T 9[qR],

32

Under review as submission to TMLR

000 000 000 10°0 000 c0'0 61°0 gT'o 62°0 000 00T 000 000 T0°0 cc’0 NHdS

000 LL0 S9°0 €L°0 6€°0 g1°0 60°0 100 €00 €4°0 100 000 000 00°0 00°0 Ssa
000 LL°0 68°0 G6°0 8¢'0 8¢'0 91'0 100 L0°0 LL0 100 000 000 000 000 NID
000 G9°'0 680 G6°0 cc'0 €0 61°0 T0°0 60°0 880 ¢00 000 000 000 00°0 NIS
10°0 €L°0 960 <960 6¢°0 9¢°0 120 10°0 1T°0 780 <200 000 000 00°0 00°0 A-NSDO
000 660 820 ¢CO0 620 ¥0°0 0’0 000 T0°0 91°'0 000 000 000 000 000 9-NSD
¢c0'0 g1'0 820 ¥E€0 9€°0 70°0 LS80 €00 €€°0 7’0 .00 000 000 00°0 00°0 NONT
61°0 600 910 610 120 0’0 L9°0 90°0 GgLo0 €0 L20 000 000 000 ¥0°0 €ANDdd
S1°0 1000 100 100 10°0 000 €0°0 90°0 200 ¢c0'0 LT0 ¥6°0 000 a80 ralt) CANDdd
6¢'0 €00 L00 600 1T°0 T0°0 €€°0 GL'0 200 0T'0 6€0 000 000 000 90°0 TANDdd
000 €4°0 LL0 880 80 91°0 170 €20 c0'0 0T°0 c0'0 000 000 000 00°0 NID
00T 1000 100 <00 c0'0 000 .00 L2°0 LT°0 6€°0 c0'0 000 000 00 70 NOI
000 000 000 000 000 000 00°0 000 ¥6°0 000 000 000 000 970 000 MOd
000 000 000 000 000 000 000 000 000 00°0 000 000 000 00°0 000 NNDA
100 000 000 000 000 000 00°0 000 g8'0 000 000 ¢00 970 000 c0'0 NOSd
[4all} 000 000 000 000 000 000 700 rall) 90°0 000 ¥¥0 000 000 200 NNOAD

NHIS SSAd NID NIS A-NSD ©°9NSO NONT €ANDdd ¢ANDdd TANDdd NID NDI MDA NNOAd NOSd NNOAD

'S, A0RINOoR JUSISYPIP 90NpPoId S[EPOW OM]) e[} SPN[OU0D SN} pue sIsoyjodAY [[nu siy) 1091 03 paxmbar st gO'() weyy ssof Jo anfea-d y -Adeinooe
oures o} seonpold [opour yoed ey) s siseyjodAy [nu oy, ‘sonjes-d se uoAld joseiep N-GINT oY) UO S NSoI Jo SISATeur JUROYIUSIS [eo1IS1eIS (1T 9[qR],

33

	Introduction
	Background
	Subgraph Permutation Equivariant Networks (SPEN)
	Definitions
	Sub-graph Selection Policy
	Automorphism Equivariant Graph Network Architecture
	Automorphism Symmetry
	Permutation Symmetries Within Bags of Sub-graphs
	Sub-graph Linear Maps

	Related Work

	Analysis of Expressivity and Scalability
	WL Test and Expressive Power
	Scalability

	Experiments
	Graph Benchmarks

	Future Work
	Conclusion
	Appendix
	Mathematical Background
	Group Theory
	Category Theory

	WL Variants and Proofs for Section 4
	Previous Methods
	Global Equivariant Graph Networks
	Local Equivariant Graph Networks

	Implementing other models within our framework
	Architectural Details of the SPEN Framework
	Implementation Details and Datasets
	TUDatasets
	Model Architecture
	Implementation details
	Sub-graph Compute Run-time

	Further Results Discussion

