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Abstract

Mathematical problem solving remains a challenging test of reasoning for large
language and multimodal models. However, existing benchmarks are limited in
size, language coverage, and task diversity. We introduce MathNet, a large-scale,
multilingual, and multimodal dataset of Olympiad-level problems. MathNet spans
40 countries, 10 languages, and two decades of competitions, comprising 13,026
expert-authored problems with solutions across diverse domains.
MathNet supports two tasks: (i) mathematical comprehension and (ii) mathematical
retrieval, an underexplored but essential capability. For retrieval, we construct
39K pairs of mathematically equivalent problems to enable equivalence-based
evaluation. Experimental results show that even state-of-the-art reasoning models
(72% and 66% accuracy for GPT-5 and Gemini 2.5 Pro) are challenged, while
embedding models exhibit substantial difficulty in retrieving equivalent problems.
MathNet provides the largest multilingual Olympiad dataset and the first retrieval
benchmark for mathematical equivalence, which we will publicly release. 1

1 Introduction

Recent LLMs and LMMs have made rapid strides on mathematical reasoning benchmarks, from
grade-school arithmetic to competition mathematics [2, 10, 18]. In 2025, public reports claimed
gold-medal–level performance at the International Mathematical Olympiad (IMO) by advanced AI
systems [7, 19]. Moreover, there have been multiple incidents of AI systems reportedly solving open
mathematical problems [17, 4].

Despite these advances, progress remains constrained by the lack of large, diverse, and systematically
annotated benchmarks. Existing Olympiad-level datasets are typically drawn from community
platforms such as AoPS and are predominantly English-only (see Table 1), restricting both linguistic
and cultural coverage. To address this gap, we present MathNet—the first large-scale, multilingual,
and multimodal dataset of Olympiad-level problems. Curated over two decades from 40 countries
and spanning 10 languages, MathNet comprises 13,026 expert-authored problems across a wide range
of mathematical domains. Its scale, diversity, and expert quality provide an unprecedented foundation
for exploring mathematical generalization, cross-lingual transfer, and analogical reasoning.

Building on this foundation, we focus on a fundamental yet underexplored capability: retrieving
mathematically equivalent or related problems. Unlike general semantic retrieval [14, 13, 15, 5],
mathematical retrieval must be sensitive to symbolic structure, invariances, and transformations.
For example, the problem of solving x2 + y2 = 1 is equivalent to one that poses

√
a2 + b2 = 1,

1The dataset, benchmark, and demos are available at http://mathnet.netlify.app/.
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Figure 1: Overview of MathNet. (a) Dataset of 13K Olympiad-level problems across 40 countries
and 10 languages with expert-authored solutions. (b) Benchmark tasks: comprehension (solution
generation) and retrieval (equivalence-based problem matching).

or to a geometric formulation constraining a 2D vector to unit norm |u|2 = 1. Crucially, however,
these are not equivalent to solving x+ y = 1. Current retrieval models fail to make this distinction:
due to superficial lexical overlap [3], they often rank a problem containing x+ y = 1 as closer to
x2 + y2 = 1 than to the truly equivalent formulations.

A similar difficulty arises in research search. When mathematicians want to locate papers relevant to
an expression such as pi+1 − pi ≤ Πi, they often resort to paraphrased keyword queries like “bounds
between consecutive primes,” rather than retrieval based on symbolic structure.

This paper introduces MathNet, a benchmark designed to evaluate math-aware retrieval and its
role in reasoning. Our contributions are:

1. Dataset. A 13K-problem corpus of Olympiad-style math with aligned LaTeX and natural-
language statements, expert solutions, and metadata spanning 40+ countries and 10 languages.

2. New Annotations and Similarity Axes. 39,078 synthetic problem pairs with labeled equivalence
classes, enriched with a principled taxonomy of similarity axes (invariance, resonance, and
affinity) and 82 common math Olympiad concepts.

3. Large-Scale Evaluation. Benchmarking across 16 models on two primary tasks that measure
mathematical comprehension and retrieval quality.

2 Dataset

We introduce MathNet, a large-scale benchmark designed to evaluate the reasoning and retrieval
abilities of large language models (LLMs) and large multimodal models (LMMs). The benchmark
contains both text-only and interleaved text–image problems, presented in multiple languages to
broaden accessibility. In total, MathNet comprises 13,026 problems with expert-written solutions.

A key feature of MathNet is its fine-grained taxonomy of mathematical similarity, which enables
systematic analysis of model performance across varying levels of structural and semantic overlap.
We also define a novel retrieval task that tests models’ ability to identify structurally related problems.
Baseline models and evaluations highlight the benchmark’s utility in assessing both problem-solving
accuracy and mathematical understanding.
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Benchmark Size Languages Evaluation Type Multimodal Source Difficulty

GSM8k [2] 8,500 EN Numeric Answer × Crowdsourced grade-school problems Grade School
MATH [10] 12,500 EN Numeric Answer × Competition / textbook problems High School
MATH-Vision [21] 3,040 EN Expression / Proof ✓ Math Competitions High School Olympiad
CMMLU [16] 1,594 ZH MCQ × Chinese exam materials High School / College
MMLU [9] 2,554 EN MCQ × University / professional exams College-Level Knowledge
C-Eval [11] 3,362 ZH MCQ × Chinese college entrance / certification exams College Entrance Exams
MMMU [22] 3,007 EN MCQ / Expression ✓ Multimodal academic exams (college level) College-Level Multimodal
AGIEval [23] 3,300 EN & ZH MCQ / Expression × University entrance / qualification exams University Entrance Exams
JEEBench [1] 515 EN MCQ / Numeric Answer × Indian JEE Advanced past papers JEE Advanced Exam

OlympiadBench [8] 6,142 EN & ZH Proof / Expression ✓ AoPS Forum Olympiad Level
OlympicArena [12] 3,233 EN & ZH Proof / Process Evaluation ✓ AoPS Forum Olympiad Level
Omni-Math [6] 4,428 EN Proof / Process Evaluation ✓ AoPS Forum / Contest Pages Olympiad Level

MathNet (ours) 13,026 EN, ZH, ES, RU Proof / Process Evaluation ✓ Official Country Booklets Olympiad Level
AR, RO, DE, FA and National Contests
DE, UK

Table 1: Comparison of mathematical reasoning benchmarks across different sizes, languages, eval-
uation types, and difficulty levels. We include both unimodal and multimodal datasets, spanning
grade-school to Olympiad-level mathematics. Our proposed MathNet expands coverage to 10 lan-
guages and focuses on proof- and process-based evaluation with authentic national contest problems.

Data sources. Unlike prior benchmarks that rely on community platforms such as AoPS, MathNet is
curated exclusively from officially published national contest materials, ensuring expert quality and
consistency. The benchmark draws from 643 contest volumes across 40 countries (2006–2025). Full
details are in Appendix A.1.

Pipeline overview. To construct the dataset, we standardized raw PDFs into structured Markdown,
extracted aligned problem–solution pairs, and verified correctness through cross-model agreement.
The pipeline uses multilingual OCR, LLM-based extraction, and dual-model validation with Humans
and LLMs. For a complete description of each stage (document ingestion, solution retrieval, and
semantic verification), see Appendix A.2.

Data Preparation and Release Our benchmark includes 13,026 problems, with 2,000 designated
for model-based evaluation as MathNet-ot. We sample 1,000 problems across subjects to create
MathNet-val for hyperparameter tuning or small-scale testing. MathNet-val problems have step-
by-step solutions, supporting research like process-level evaluation. The remaining problems form
MathNet-test, the official test set with unreleased answers for formal testing. The results in this paper
are based on the entire benchmark dataset, including MathNet-ot, MathNet-val, and MathNet-test.

Figure 2: Problem–solution Extraction and Validation Pipeline.

3 Experiments

We evaluate on MathNet under two benchmarks: (a) Math Comprehension and (b) Math Retrieval.
For comprehension, we follow the Omni-MATH protocol [6], using GPT-4o as the judge (98%
agreement with human annotations). For retrieval, we test embeddings from state-of-the-art models.
For more details refer to A.7.
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Table 2: Experimental results on MathNet, expressed as percentages, with the highest score in each
setting underlined and the highest scores across all settings bolded. When calculating the overall
accuracy, for code generation problems, if any generated code for a problem passes all test cases, the
problem is considered correct.

Algebra Number Theory Geometry Discrete Mathematics Macro-average Micro-average

LLMs

Llama-4-Maverick-17B 49% 50% 57% 31% 46.75% 46.29%
DeepSeek-V3 68% 38% 56% 36% 49.50% 45.59%

LLMs + reasoning

Gemini 2.5 Pro 74% 69% 61% 61% 66.25% 65.99%
Gemini 2.5 Flash 70% 70% 64% 57% 65.25% 64.88%
Claude 4 Sonnet 56% 33% 52% 61% 50.50% 52.00%
Claude 4 Opus 60% 38% 87% 41% 56.50% 56.57%
GPT-4o 49% 26% 68% 26% 42.25% 40.89%
GPT-5 76% 78% 75% 60% 72.25% 72.12%

Math Comprehension Results Table 2 summarizes accuracy across four mathematical domains.
Baseline LLMs such as Llama-4-Maverick-17B and DeepSeek-V3 achieve modest macro-averages
in the mid-40s, indicating that direct pattern matching and shallow heuristics are insufficient for
Olympiad-level problem solving.

Reasoning-augmented models (e.g., Gemini 2.5 Pro and Gemini 2.5 Flash) substantially improve
performance, with macro-averages around 65%. However, their accuracy remains uneven across
domains: while Algebra shows steady gains, Number Theory and Discrete Mathematics remain
the hardest categories, reflecting difficulty with abstract reasoning, non-obvious solution paths, and
combinatorial structures.

GPT-5 achieves the strongest and most balanced performance to date, with domain-level accuracies
ranging from 60–78% and a macro-average of 72.25%. Yet even at this scale, Discrete Math-
ematics and Number Theory continue to expose fundamental weaknesses, underscoring the
need for models that move beyond superficial correlations toward deeper structural and symbolic
understanding.

Math Retrieval Results As shown in Table 3, retrieval on MathNet remains highly challenging at the
top-1 level, with even the strongest models (Qwen3-embedding-4B and Gemini-embedding-001)
achieving only ∼5% Recall@1. Performance improves markedly at higher cutoffs, with Recall@10
exceeding 80% in several domains. Among all models, Gemini-embedding-001 provides the most
consistent gains, delivering the highest Recall@5 and Recall@10 across domains and the strongest
aggregate performance (68.88% and 83.79%, respectively). In contrast, legacy embedding models
such as text-embedding-ada-002 and text-embedding-3-small perform substantially worse
across all settings.

These results suggest that current general-purpose embedding models fail to capture the deep structural
and symbolic relationships that define mathematical equivalence. A critical failure mode is that
both LLMs and LMMs often rely on superficial textual overlap (e.g., matching on keywords such as
"triangle" or "polynomial") rather than reasoning over the underlying mathematical concepts. The
weak top-1 retrieval performance highlights that these models lack a robust internal representation of
mathematical knowledge that would support analogical reasoning across problem variants. This gap
underscores the need for embeddings explicitly trained to encode mathematical structure, rather than
depending on incidental surface-level cues. For more results refer to Appendix A.9.

3.1 Discussion

Results on MathNet reveal a clear gap between the problem-solving ability of modern LLMs/LMMs
and their understanding of mathematical structure. While models achieve impressive scores on answer-
generation benchmarks, our retrieval task shows they lack a generalizable grasp of equivalence and
analogy. The limited gains from visual augmentation further suggest that multimodal integration for
symbolic tasks remains underdeveloped.
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Table 3: Experimental results on MathNet, expressed as percentages for Recall@1, Recall@5, and
Recall@10. The highest score in each setting is underlined, and the highest overall scores are bolded.

Algebra Number Theory Geometry Discrete Mathematics All

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

all-mpnet-base-v2 4.54% 73.06% 84.82% 4.67% 82.54% 91.82% 4.37% 74.76% 86.86% 4.25% 75.38% 86.92% 3.78% 57.7% 74.71%
multi-qa-mpnet-base-dot-v1 4.0% 69.4% 82.01% 3.73% 80.76% 89.88% 3.88% 71.73% 84.4% 3.98% 73.4% 85.05% 3.27% 55.08% 71.93%
cohere-embed-v4.0 2.73% 59.85% 71.97% 2.67% 68.85% 80.98% 2.35% 59.87% 73.09% 2.78% 63.4% 75.74% 2.24% 44.81% 60.33%
qwen3-embedding-4B 5.24% 78.74% 88.58% 4.62% 86.43% 92.71% 5.6% 79.05% 89.35% 5.96% 81.5% 89.96% 4.96% 64.95% 81.03%
gemini-embedding-001 5.5% 81.62% 89.31% 4.95% 87.43% 91.99% 5.49% 81.86% 89.73% 5.35% 82.8% 89.96% 4.83% 68.88% 83.79%
text-embedding-ada-002 2.05% 54.94% 66.49% 2.22% 63.35% 73.08% 2.16% 55.07% 67.74% 2.71% 57.51% 68.38% 1.94% 42.02% 55.58%
text-embedding-3-small 2.1% 47.47% 57.98% 1.89% 54.62% 64.46% 2.1% 47.61% 58.54% 2.84% 50.12% 59.75% 1.98% 35.49% 47.67%
text-embedding-3-large 3.19% 68.18% 78.41% 2.73% 75.25% 82.81% 3.2% 68.18% 78.34% 3.35% 69.52% 79.02% 2.74% 54.23% 68.88%

a) openai-text-3-large b) openai-text-ada-2 c) openai-text-3-small d) gemini-embeddings-001

e) multi-qa-mpnet-base-v1 f) all-mpnet-base-v2 g) cohere-embed-v4.0 h) qwen-3-embeddings-4B

Figure 3: Cosine similarity distributions for equivalent (green) and near-miss/hard negatives (orange)
problem pairs across different embedding models. Higher separation between the two distributions
indicates a model’s ability to distinguish structurally identical problems from those with small but
critical alterations.

The strong performance of the formula-aware baseline indicates that structured, non-textual represen-
tations are crucial for retrieval. Progress in true mathematical reasoning may require moving beyond
next-token prediction toward architectures that explicitly integrate symbolic reasoning.

4 Conclusion

We introduce MathNet, a large-scale multilingual, multimodal benchmark (13,026 expert-authored
problems with 39K equivalence pairs) that evaluates both solution generation and math-aware re-
trieval. Experiments show frontier models achieve strong comprehension (e.g., GPT-5 at 72.25%
macro-average) but retrieval is brittle—top-1 recall remains near 5% even for the best embed-
dings—indicating reliance on lexical cues over symbolic structure. These results motivate structure-
and symbol-aware representations and tighter integration of retrieval with reasoning. We release
MathNet to catalyze progress toward models that can organize, recall, and apply mathematical
knowledge, not just produce correct final answers.
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A Dataset

A.1 Competition Sources

Each year, IMO-participating countries publish official problem booklets for national contests and
team selection exams. We collected 643 PDF volumes spanning 2006–2025, totaling more than
22,000 pages across 40 countries. All problems and solutions were authored by national teams,
ensuring high-quality and consistent material.

A.2 Text Extraction

We standardized all contest booklets into structured Markdown using dots-ocr [20], a multilingual
OCR and document parsing framework (Appendix Figure 8). This ensured robustness across digitally
typeset, scanned, and bilingual documents.

A.3 Problem–Solution Extraction

Aligned problem–solution pairs were identified via a three-stage LLM-based pipeline (Figure 2): 1.
Document ingestion and problem extraction. Contest booklets were segmented into pages, then
processed by GPT-4.1 to extract problem statements in LATEX format with provenance metadata. 2.
Solution retrieval. Solutions were located using a sliding window of four pages after the problem
page, with GPT-4.1 extracting matches (prompt shown in Appendix 1). 3. Semantic verification.
Extracted pairs were checked independently by GPT-4.1 and Claude 4 Opus, which judged alignment
and completeness (Appendix 2). Only pairs validated by both were accepted.

This multi-stage approach achieved high precision and recall across diverse contest formats.

Human Validation of Problem–Solution Extraction. To obtain a reliable estimate of extraction
quality, we randomly sampled 100 problem–solution pairs from the dataset and conducted a controlled
human evaluation. We recruited 20 annotators with academic backgrounds in mathematics, computer
science, and engineering, and instructed them to independently assess each pair along two dimensions:
(i) the correctness of alignment, i.e., whether the solution corresponds to the intended problem, and
(ii) the completeness of coverage, i.e., whether the solution is fully captured. To facilitate annotation,
we developed and publicly released a lightweight web-based interface that supports multimodal
display of problems, solutions, and provenance metadata (e.g., source document and page number).

LLM-Based Stress Testing with Distractors. To assess dataset robustness and potential leakage,
we employed a large language model (GPT-4.1) to generate a set of “distractor” problems. For each
problem, we prompted the model to produce five plausible but incorrect statements and then instructed
it to identify the correct problem from a mixture of its own distractors and the true related problems
from our dataset. The model’s low success rate indicates that the annotated problem connections
in MathNet are non-trivial and cannot be inferred through simple surface-level patterns, thereby
reinforcing the quality of our annotations.

Expert Review of Similarity Annotations. As an additional validation step, we asked experts to
review a subset of 100 sampled problems with their associated distractors. At least two annotators
independently assessed each problem–distractor set, and a senior expert resolved any disagreements
through consensus. This procedure confirmed that the similarity annotations capture genuine mathe-
matical structure rather than superficial lexical overlap, providing a complementary layer of assurance
beyond the LLM-based evaluation.

A.4 Data Analysis

Figure 5b illustrates the diversity of our dataset across mathematical domains. Notably, Number
Theory and Combinatorics account for a large share of the most difficult problems, reflecting their
inherent complexity. In addition, the dataset is multilingual, with problems provided in ten different
languages (see Appendix Table 5), which makes it particularly well-suited for evaluating cross-lingual
reasoning.
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A.5 Overview of competitions covered by MathNet

This section lists the national and regional competitions represented in MathNet, along with years
covered and document sources, to clarify the dataset’s institutional breadth.

Country Years Competitions
Argentina 2003–2023 Cono Sur MO; Argentine National Olympiad; National Olympiad – First

Day; National Olympiad – Second Day; National Olympiad – Level 2 First
Day; National Olympiad – Level 2 Second Day; National Olympiad – Level 3
First Day; National Olympiad – Level 3 Second Day; Rioplatense Olympiad
– Level A First Day; Iberoamerican MO; Olimpiada de Mayo; Olympiad So-
lutions – First Day; Olympiad Solutions – Second Day; National Olympiad;
Rioplatense MO

Australia 2010–2024 AMOC Senior Contest; APMO; AIMO; Australian MO; EGMO (TST);
IMO (TST); MCYA

Austria 2010–2024 Austrian MO – Regional; Austrian MO – Junior Regional; Austrian MO –
National (Part 1); Austrian MO – National (Part 2); National Olympiad –
Preliminary; National Olympiad – Final; Beginners’ Competition; EGMO
(TST); IMO (TST)

Balkans 2010–2025 BMO
Baltics 2009–2023 Baltic Way; Baltic Way Shortlist
Belarus 2010–2024 Belarusian MO; IMO (TST)
Brazil 2006–2012 OBM
Bulgaria 2007–2024 Bulgarian MO – Regional; Bulgarian MO – Final; Bulgarian Autumn

Competition; Bulgarian Spring Competition; Bulgarian Winter Competi-
tion (Rousse, Varna, National); IMO (TST); BMO (TST); Other Bulgarian
Competitions; JBMO (TST)

Canada 2010–2017 CMO
China 2007–2025 AMC 10/12; AIME; CMO (China); Chinese MO; China Southeastern MO;

CWMO; CGMO; Hua Luogeng Cup; IMO (TST); Soviet Mathematical
Competition; Russian Mathematical Competition; Putnam (China ed.)

Croatia 2010–2019 Croatian MO; National Olympiad – City; National Olympiad – County;
National Olympiad – Final; MEMO; IMO/MEMO (TST)

Czech Republic 2000–2025 Czech MO – School; Czech MO – District; Czech MO – Regional; Czech
MO – Final; Czech–Polish–Slovak Match; Czech–Slovak–Polish Match;
Czech–Austrian–Polish–Slovak Match; CAPS Match; Olympiad Corner;
IMO/EGMO/MEMO (TST)

Slovakia 2000–2025 Slovak MO – School; Slovak MO – District; Slovak MO – Regional;
Slovak MO – Final; Czech–Slovak Match; Czech–Polish–Slovak Match;
Czech–Slovak–Polish Match; Czech–Austrian–Polish–Slovak Match; CAPS
Match; Olympiad Corner; IMO/EGMO/MEMO (TST)

Poland 2004–2025 Polish MO; Czech–Polish–Slovak Match; Czech–Slovak–Polish Match;
Czech–Austrian–Polish–Slovak Match; CAPS Match; Olympiad Corner;
IMO/EGMO/MEMO (TST)

Estonia 2010–2025 Estonian MO; Kangaroo; IMO (TST); Other Estonian Open Contests;
EGMO (TST)

Greece 2007–2024 Hellenic MO – Archimedes; National Competition – Thales; National Com-
petition – Euclides; BMO; JBMO; Mediterranean Competition; EGMO
(TST); IMO (TST); JBMO (TST)

Hong Kong 2014–2017 Hong Kong MO; Hong Kong Team Selection Test; Preliminary Selection –
IMO; IMO (TST); APMO; CHKMO

India 2006–2023 INMO; RMO; TSTs (IMO/EGMO/RMM); EGMO (TST); RMM (TST);
IMO (TST); USA TST Exchange; ISL/ELMO (training/mock)

Iran 2010–2024 Iranian MO; IMO (TST)
Ireland 2007–2025 Irish MO; IMO (TST)
Japan 2006–2025 JMO; JJMO; IMO/EGMO (TST)
Mongolia 2009–2025 Mongolian MO; Mongolian National MO; IMO (TST); EGMO (TST)
Netherlands 2019–2025 Dutch MO; Junior MO; Kangaroo; Pythagoras Olympiad; BxMO; Bx-

MO/EGMO (TST); IMO (TST)
Continued on next page
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Country Years Competitions
North Macedonia 2008–2023 Macedonian MO; Macedonian Junior MO; National Olympiad – Regional;

National Olympiad – Final; BMO; JBMO; Mediterranean Competition;
EGMO (TST); IMO (TST); BMO (TST)

Romania 2010–2025 Romanian MO – District; Romanian MO – Final; RMM; BMO; JBMO;
EGMO; IMAR Competition; Stars of Mathematics; Danube Competition;
Clock-Tower School Competitions; IMO/BMO/JBMO/EGMO/RMM (TST)

Russia 2009–2025 Russian MO – Regional; Russian MO – Final; Euler Olympiad; All-Russian
Olympiad (district, regional, national); IMO/EGMO (TST)

Saudi Arabia 2010–2025 Saudi MO; APMO (TST); EGMO (TST); IMO (TST); BMO (TST); JBMO
(TST)

Singapore 2010–2025 SMO (Junior, Senior, Open); SIMOC Camp Quizzes; National Olympiad –
Round 2 (all); IMO/EGMO (TST)

Slovenia 2008–2016 Slovenian National MO; International Kangaroo; IMO (TST)
South Africa 2010–2024 SAMO; National Olympiad – Senior; University Training Camps; Talent

Search; Monthly Problem Sets; IMO (TST)
South Korea 2004–2024 KMO; National Olympiad; IMO (TST)
Spain 2012–2023 Spanish MO; National Olympiad – First Phase; National Olympiad – Fi-

nal Phase; Iberoamerican MO; Mediterranean MO; Barcelona Contest;
BarcelonaTech Math Contest; Arhimede Contest; IMO (TST)

Taiwan 2012–2024 Taiwan MO; National Olympiad Training Camps (Independent Study, Mock
Exams, International Practice); IMO (TST)

Thailand 2007–2017 Thailand MO; TMO; IMO (TST)
Turkey 2008–2024 Turkish MO; Junior Turkish MO; National Olympiad; IMO (TST); JBMO

(TST); EGMO (TST); Silk Road Mathematical Competition
UK 2006–2022 BMO (Rounds 1 & 2); BMO; EGMO (TST); IMO (TST); RMM (TST);

CGMO (TST); Mathematics Ashes
USA 2001–2025 AMC 10/12; AIME; USAMO; USAJMO; IMO (TST); EGMO (TST); RMM

(TST)
Ukraine 2005–2023 Ukrainian National MO; Regional Olympiads; Kyiv City Olympiad;

Ukrainian Tournament of Mathematical Battles; Ukrainian Mathematical
Competitions; Online Olympiads (Algebra, Combinatorics, Number The-
ory); Ukrainian Summer School Competitions; EGMO (TST); IMO (TST);
RMM (TST); EMC

Vietnam 2001–2024 VMO; Vietnamese National Olympiad; IMO (TST)

A.6 Dataset Statistics

We report summary statistics including per-language and per-domain distributions, subtopic frequencies,
and problem/solution length profiles, with additional visualizations. For access to full dataset, refer to
http://mathnet.netlify.app/.

10

http://mathnet.netlify.app/


Figure 4: Problems Distribution per Country

(a) Problems Distribution per Language (b) Problems Distribution per Domain

Figure 5: Distribution of problems across languages and domains.

(a) Algebra (b) Geometry

(c) Discrete Mathematics (d) Number Theory

Figure 6: Domain subtopic distribution
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(a) Problem Length Distribution (Words) (b) Solution Length Distribution (Words)

Figure 7: Problems vs Solutions (Length Distribution) (words)

Language English Spanish Arabic Russian Roman Bulgarian Persian German Chinese Ukrainian
Count 11698 242 200 180 60 52 70 23 418 83

Table 5: Problems Distribution per Language

(a) PDF Sample (b) Markdown Problem Sample

(c) Markdown Solution Sample (d) LLM Output Sample

Figure 8: Sample Input Data

A.7 Evaluation Protocol

Math Comprehension. For the problem-solving task, we adopt the evaluation criteria proposed by Omni-
MATH, which compare model-generated solutions against expert-authored ground truth [6]. Following their
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protocol, correctness is determined by exact match with the final boxed answer or by equivalence after symbolic
simplification. In addition, we compute accuracy at the step level, checking whether intermediate reasoning
aligns with expert annotations when available. This allows us to distinguish between models that arrive at the
correct final answer by coincidence versus those that demonstrate consistent reasoning ability. We also report
performance by subject domain (algebra, geometry, combinatorics, number theory), enabling a fine-grained
analysis of model strengths and weaknesses.

Math Retrieval. The primary evaluation metric for our retrieval task is Recall@k, which measures whether
any of the top-k retrieved problems correspond to a "correct" match from our equivalent versions of each
problem. We report Recall@1, Recall@5, and Recall@10. To better understand embedding behavior, we further
analyze cosine similarity distributions between equivalent problem pairs, unrelated pairs, and near misses (hard
negatives), highlighting cases where models struggle to separate fine-grained distinctions.

A.8 Prompts

We include the core prompts used for extraction, evaluation, and metadata classification. These are the exact
versions used in our experiments.

Listing 1: System prompt for solution extraction
sys_prompt = """

You are an expert in extracting mathematical problems and solutions.
I will provide you with:

- One math problem
- Multiple pages

Extract the solution that matches the problem
Important instructions:
- If the problem statement is split into multiple numbered points, extract the
solution in multiple points
- Never leave ‘solution_text‘ empty. If no solution can be found, write ‘"Not
found"‘ as the value.
- If solution contains imgs make sure to extractt image path such as: ![](images
/Argentina2022_p5_data_8b4126bbff.png)
- If solution coontains tables make sure to extract the tables such as: <table><
thead><tr><th>Team</th><th>T1</th><th>T2</th><th>T3</th><th>T4</th><th>T5</th><
th>T6</th><th>T7</th><th>T8</th><th>Total</th></tr></thead><tbody><tr><td>T1</
td><td>-</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</
td><td>14</td></tr><tr><td>T2</td><td>0</td><td>-</td><td>2</td><td>2</td><td
>2</td><td>2</td><td>2</td><td>2</td><td>12</td></tr><tr><td>T3</td><td>0</td><
td>0</td><td>-</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>10</td
></tr><tr><td>T4</td><td>0</td><td>0</td><td>0</td><td>-</td><td>2</td><td>2</
td><td>2</td><td>2</td><td>8</td></tr><tr><td>T5</td><td>0</td><td>0</td><td>0</
td><td>0</td><td>-</td><td>2</td><td>2</td><td>2</td><td>6</td></tr><tr><td>T6</
td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>2</td><td>2</
td><td>4</td></tr><tr><td>T7</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</
td><td>0</td><td>-</td><td>2</td><td>2</td></tr><tr><td>T8</td><td>0</td><td>0</
td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td></tr></
tbody></table>
- Follow the JSON schema below precisely:
‘‘‘json
{

"has_solution": "bool, if solution was found and extracted set to true, else
false"

"solution_page_number": "the page number where the solution is found"
"solution_latex": "extracted solution in latex format"
"solution_parts": [

"part_label": "label of the part"
"part_latex": "extracted part solution in latex format"

]
}
‘‘‘

"""

Listing 2: System prompt for evaluation
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sys_prompt_eval = """
You are an expert in evaluating mathematical problems and solutions.

I will supply you with a problem and its solution(s), including alternative
solutions if available.
Your task is to evaluate based on the following criteria:

1. **Extraction completeness:** All main parts of the solution must have been
correctly extracted. Missing or truncated content should be noted.
2. **Problem-solution match:** Ensure that the solution corresponds correctly to
the provided problem. If they are mismatched or unrelated, it should be noted.

3. **Solution completeness:** Check if the reasoning is fully present in the
extracted solution. Minor implicit steps are acceptable, but missing entire
parts should be flagged.

**Important:**
- Since these problems and solutions are authored by experts, do NOT reject for
correctness. Focus only on extraction issues or mismatches.
- Do NOT reject for minor omissions, terseness, formatting, or style.
- Only reject if there is a **clear, significant extraction issue** or the
solution does not match the problem.
- Always provide a clear reason if rejecting, mentioning which criteria are
affected

Provide your evaluation strictly in JSON format:

‘‘‘json
{

"final_verdict": "accept" or "reject",
"reason": "A concise explanation for your decision, mentioning which criteria

failed if rejected"
}

‘‘‘
Do not add any extra commentary outside the JSON.
"""

Listing 3: System prompt for domain extraction
sys_prompt = f"""You are given a math problem and its solution. Your task is to

analyze it and return structured metadata in JSON format.

# Step 1. Classification
Classify the problem using ONLY the following taxonomy [Domains Subjects Topics

Subtopics]:
{

taxonomy
}

IMPORTANT
* Each level(domain, subject, topic, subtopic) can have multiple entries if the

problem involves more than one.
* Always use the exact names from the taxonomy.
* If you cannot classify to a certain Domain, classify to Other

# Step 2. Short Description
Write a concise description of the problem in the form:
"Problem Title: Short description"

* The title should be short(e.g., "Pythagorean Triple Problem", "Graph Coloring
Puzzle").

* The description should briefly summarize the main mathematical task.

# Step 3. Key Ideas of the Solution
Extract the main strategies, theorems, and insights used in the solution as a bullet

-point list.
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* Focus on mathematical techniques, not surface-level steps.

- Follow the JSON schema below precisely:

# Output Format (JSON)
‘‘‘json

{{
"classification": {{

"domain": ["..."],
"subject": ["..."],
"topic": ["..."],
"subtopic": ["..."]

}},
"description": "Problem Title: Short description",
"key_ideas": [

"First main idea",
"Second main idea",
"Third main idea"

]
}}

‘‘‘
"""

A.9 Additional Results

A.10 Error Analysis

Our analysis of model failures reveals three primary error types: Symbolic Misinterpretation, Logical Gaps, and
Contextual Over-reliance.

Symbolic Misinterpretation: Embedding models frequently misunderstand the meaning of mathematical
notation (e.g., confusing an with an), leading to incorrect transformations or calculations. This is particularly
prevalent in Number Theory and Combinatorics.

Logical Gaps: Models often fail to follow a coherent logical chain, skipping crucial steps or introducing invalid
assumptions. This manifests in both problem-solving and retrieval, where the model cannot connect a problem
to its related counterpart because it misses the key linking insight.

Contextual Over-reliance Embedding models may over-rely on a few keywords, leading them to misclassify a
problem based on a superficial match. For example, a problem about a "congruent triangle" might be retrieved
for a query about "similar triangles" because of the keyword "triangle," despite the profound mathematical
difference.

For retrieval, further illustrate the issue of lexical similarity over math equivalence, Figure 3 shows the
distribution of cosine similarities between equivalent and non-equivalent problems. Surprisingly, non-equivalent
pairs often exhibit higher similarity scores than equivalent ones. This counterintuitive trend highlights that
embeddings frequently capture superficial lexical or symbolic overlap rather than true structural relationships,
leading models to mis-rank distinct problems as closer than genuinely equivalent ones. This explains the weak
Recall@1 performance observed in Table 3.

A.11 LLMs Usage in the Paper

The authors made use of large language models (LLMs) primarily to support the writing process, including
polishing the text for clarity and readability. In addition, LLMs were employed to assist in refining the design of
the project website as well as the interface used by annotators.

A.12 Taxonomy of Topics Commonly used in Math Olympiad

We provide the curated taxonomy used for labeling domains, subjects, topics, and subtopics. These labels ground
our analyses and enable consistent cross-competition comparisons.
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Sub-subtopic Key Concepts

Geometry
Plane Geometry

Triangles Centroid, incenter, circumcenter, orthocenter, ex-centers, Euler line,
nine-point circle; geometric inequalities; trigonometry (metric rela-
tions)

Quadrilaterals Cyclic, inscribed/circumscribed, Complete quadrangle, perpendicu-
lar diagonals

Circles Angels, coaxal, tangents, radical axis, metric relations, Apollonius
circle

Concurrency / Collinearity Theorems of Ceva, Menelaus, Pappus, Desargues

Transformations Translation, rotation, homothety, spiral similarity, inversion, the
method of moving points

Advanced Configurations Simson line, Miquel, Napoleon / Fermat / Brocard points, sym-
medians, polar triangles, harmonic/isogonal/isotomic conjugates,
barycentric coordinates

Geometric Inequalities Classical and advanced

Combinatorial Geometry Helly, Sylvester, convex hulls, Pick theorem, Minkowski theorem,
convex figures

Analytic / Coordinate Methods Complex numbers, Cartesian coordinates, vectors, trigonometric
relations

Miscellaneous Angle/distance chasing, constructions, loci
Solid Geometry

3D Shapes Polyhedra, prisms, pyramids, spheres, cylinders, cones

Volume Cavalieri’s principle, Formulae and problem-solving

Surface Area Formulae and applications

Other 3D problems Mixed problems, reducing the problem into a plane geometry prob-
lem

Differential Geometry
Curvature Gaussian, mean

Manifolds Surfaces, parametric

Geodesics Shortest paths, great circles

Non-Euclidean Geometry
Spherical Geometry Spherical triangles, angles, area
Hyperbolic Geometry Lines, models, inequalities

Algebra
Prealgebra / Basic Algebra

Integers Sets of integers, Divisibility, primes, the Greatest Common Divisor
(GCD), the Least Common Multiplier (LCM)

Fractions Operations, simplification, comparison
Decimals Conversion, operations, rounding
Simple Equations Linear equations, word problems
Other Number properties, prime factorization, divisors
Algebraic Expressions

Polynomials Operations, factorization, Algebraic identities, symmetric functions,
Vieta’s formula, interpolation formulae, complex numbers, roots of
unity, Chebyshev polynomials and other trigonometric polynomials,
irreducibility of polynomials, Descartes rule of signs, rootso of
polynomials, Intermediate Value Theorem (IVT)

Continued on next page
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Sub-subtopic Key Concepts

Sequences / Series Recurrences, Charachteristic equations, monotonocity, boundedness,
periodicity, convergence and divergence, floors/ceilings, sums/prod-
ucts, telescoping sums, Abel summation

Functional Equations Substitution, defining a new function, Cauchy’s equations, Injectivi-
ty/surjectivity, Periodicity, application of Calculus and Mathematical
Analysis, iterations

Inequalities
Functional considerations Linear/Quadratic solving techniques
Classical inequalities Cauchy-Schwarz, QM-AM-GM-HM, Power Mean, Jensen’s Inequal-

ity, smoothing, Muirhead, Chebyshev’s inequality, majorization,
combinatorial optimization
Discrete Mathematics

Graph Theory
Basic concepts Vertices, edges, path, connected graphs, cycles, Hamiltonian cycle

and path, trees
Matchings Marriage Lemma, Tutte’s theorem
Connectivity Menger, max-flow min-cut
Extremal Turán
Euler characteristic V − E + F
Combinatorics

Enumeration Symmetry, basic counting techniques, recursion, bijection, inclusion-
exclusion, double counting

Probability Expected values, probabilistice methods, partitions, generating func-
tions

Binomial coefficients Algebraic properties
Pigeonhole principle Applications
Invariants / Monovariants Problem-solving
Coloring / Extremal Graph problems
Induction Standard and smoothing
Games / Greedy Strategies, combinatorial games
Logic / Algorithms / Other

Logic Propositional/predicate logic, truth tables
Algorithms Sorting, searching, Dynamic Programming (DP), greedy
Other Miscellaneous problems, strategy development problems, inter-

deciplinary problems

Number Theory
Divisibility / Factorization

Primes Properties, sieves, prime numbers tests
GCD Euclidean algorithm; linear combinations; Bezout’s identity
LCM Computation; relation with GCD
Factorization Trial, Fermat, Pollard
Modular Arithmetic

Basic operations (mod n), inverses
(mod n)

Existence (when gcd(a, n) = 1); computation (extended Euclidean
algorithm)

Chinese Remainder Theorem (CRT) Solving systems of congruences; applications in number theory and
cryptography

Fermat / Euler / Wilson Theorems; proofs; problem-solving applications
Polynomials mod p Roots, factorization; applications to number theory problems
Residues / Primitive Roots

Primitive roots Existence modulo primes; modulo pn; computation
Quadratic residues Properties; Legendre symbol; Euler’s criterion
Quadratic reciprocity Law of quadratic reciprocity; applications
Multiplicative order (mod n) Definition; computation; relation with primitive roots and cyclic

groups
Diophantine Equations

Continued on next page
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Sub-subtopic Key Concepts

Factorization Methods Difference of squares, Sophie Germain identity, special factoriza-
tions; Unique Factorization Domains (Gaussian, Eisenstein integers);
Norms in algebraic number fields; Vieta jumping

Modular Arithmetic & Congruences Reductions modulo primes or powers; Quadratic residues, Legendre
symbol; Multiplicative order & primitive roots; Hensel lifting; Local–
global principles (solvability mod p)

Parametrization of Solutions Pythagorean triples; Rational parametrization of conics (general
quadratics); Higher-degree parametrizations (elliptic curves, quar-
tics)

Inequalities & Size Arguments Bounding arguments; Infinite descent; Minimal solutions (no smaller
solution possible)

Special Equations Pell’s equation: continued fractions, fundamental solution, recur-
rence; Fermat-type: x4 + y4 = z2,

Descent & Structural Methods Infinite descent; Descent on elliptic curves; Geometry of numbers
Arithmetic Functions

Euler’s totient’s function Properties, applications
Number / Sum of divisors Computation, properties
Sum of digits Basic properties
Möbius inversion Definition, applications
Algebraic Number Theory

Algebraic numbers Minimal polynomials, field extensions, solving Diophantine equa-
tions
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