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ABSTRACT

Reinforcement finetuning (RFT) is a key technique for aligning Large Language
Models (LLMs) with human preferences and enhancing reasoning, yet its effec-
tiveness is highly sensitive to which tasks are explored during training. Uniform
task sampling is inefficient, wasting computation on tasks that are either trivial
or unsolvable, while existing task selection methods often suffer from high roll-
out costs, poor adaptivity, or incomplete evidence. We introduce BOTS, a unified
framework for Bayesian Online Task Selection in LLM reinforcement finetuning.
Grounded in Bayesian inference, BOTS adaptively maintains posterior estimates
of task difficulty as the model evolves. It jointly incorporates explicit evidence
from direct evaluations of selected tasks and implicit evidence inferred from these
evaluations for unselected tasks, with Thompson sampling ensuring a principled
balance between exploration and exploitation. To make implicit evidence practi-
cal, we instantiate it with an ultra-light interpolation-based plug-in that estimates
difficulties of unevaluated tasks without extra rollouts, adding negligible over-
head. Empirically, across diverse domains and LLM scales, BOTS consistently
improves data efficiency and performance over baselines and ablations, providing
a practical and extensible solution for dynamic task selection in RFT.

1 INTRODUCTION

Reinforcement finetuning (RFT) has become a key technique for aligning Large Language Models
(LLMs) with human preferences and enhancing their reasoning capabilities (Jaech et al., [2024;|Guo
et al.,[2025; |Luo et al., 2025; Hu et al., 2025} |Zeng et al., 2025). However, the effectiveness of RFT
is highly sensitive to task selection (Parashar et al.l 2025} Shen et al.| [2025} Zhu et al., 2025; [Wen
et al} 2025} [Li et al.,|2025a). Naively training on a static, uniformly sampled dataset is inefficient:
the model spends excessive computation on tasks that are either already mastered (too easy) or
beyond reach (too hard) (Yu et al., 2025} Bae et al.,|2025; |Chen et al.,[2025b). This inefficiency not
only inflates training costs but also destabilizes optimization by reducing the effective batch size.
The central challenge, therefore, is to dynamically select tasks of “just right” difficulty to maximize
learning efficiency as the model’s capability evolves.

Existing methods to this challenge face several limitations. Offline task selection (Parashar et al.,
20255 Shen et al., 2025} [Zhu et al., 2025; |Wen et al.l [2025} L1 et al., 2025a), which pre-schedules
tasks from easy to hard, is too rigid and does not adapt to the evolving trajectory of the model. In re-
sponse, a few online selection methods have been proposed, aiming to adaptively choose tasks based
on model’s current capability. Core challenge of these methods lies in the tradeoff between the com-
putational cost of collecting information and the accuracy of the resulting performance estimates.
We argue that existing solutions are not sufficiently efficient: some expend excessive computation
on information gathering, undermining efficiency, while others fail to fully exploit collected infor-
mation, leading to suboptimal selection. On one hand, oversampling-based methods (Yu et al., 2025
Bae et al., [2025) find suitable tasks by rolling out oversized batches, introducing substantial extra
cost. On the other hand, non-oversampling approaches typically rely on a single source of infor-
mation—either leveraging historical evaluations as explicit evidence (Chen et al., 2025b; |Qu et al.,
2025) or exploiting inter-task correlations as implicit evidence (Sun et all 2025). Our empirical
results reveal a clear complementarity: explicit evidence provides stable and accurate task-difficulty
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Figure 1: Overview of the BOTS framework. BOTS operates in a continuous loop of task selec-
tion, model training, and posterior updating. (1) Selection: Thompson sampling from the posterior
beliefs selects a batch of tasks whose estimated success probabilities are near a target difficulty
(e.g., p* = 0.5). (2) Training & Evidence Collection: The LLM is finetuned, yielding direct suc-
cess/failure counts (explicit evidence) for the selected batch. For unselected tasks, predicted counts
(implicit evidence) are produced by a plug-in; in Section [3.3] we introduce an ultra-lightweight
interpolation-based variant with negligible overhead. (3) Posterior Updating: Explicit and implicit
evidence are fused using our generalized Bayesian update rule (Section [3.2).

estimates but suffers from a slow warm-up when historical evaluations are scarce in early training,
whereas implicit evidence quickly guides early-stage selection yet becomes less reliable in later
stages. These findings indicate that relying solely on one type of evidence leaves information un-
derutilized and leads to suboptimal task selection. Therefore, a principled framework to fuse these
complementary evidence sources is essential for robust and efficient online task selection.

In this work, we introduce BOTS, the first unified and extensible framework for Bayesian Online
Task Selection in LLM reinforcement finetuning. BOTS recasts online task selection as a princi-
pled Bayesian inference problem over the model’s evolving capabilities. By doing so, it naturally
addresses the core challenges of non-stationarity and partial observability, featuring with three key
design elements: (1) Bayesian foundation: Grounded in Bayesian inference, the framework nat-
urally adapts to the evolving capability of the model, allowing task difficulty to be continuously
re-estimated. (2) Integration of two evidence sources: Tunable update rules jointly incorporate
explicit evidence from direct evaluations and implicit evidence inferred from related tasks, leverag-
ing their complementary strengths. (3)Thompson sampling: Task selection is guided by posterior
sampling, ensuring a principled balance between exploration and exploitation.

For implicit evidence, we further instantiate the framework with an extremely efficient interpolation-
based plugin that estimates the difficulty of unevaluated tasks without additional rollouts, making the
overhead negligible. We demonstrate empirically, across diverse domains and model scales, that our
method significantly improves data efficiency and model performance over baselines and ablations,
offering a practical, effective, and extensible solution for online task selection in RFT.

2 RELATED WORKS

The impact of task difficulty on RFT of LLMs has become an active research topic. Inspired by
the seminal idea of curriculum learning (Bengio et alJ 2009), researchers have proposed various
strategies for selecting appropriate tasks in LLM RFT. For instance, [Parashar et al.| (2025); [Shen
et al.| (2025) advocate scheduling tasks from easy to hard, enabling LLMs to gradually acquire
reasoning skills. Similar ideas have been extended to multi-modal LLMs (Zhu et al.| 2025 [Wen
et al.| [2025; [Li et al., [2025a), though these methods mainly focus on offline task selection following
an easy-to-hard trajectory.



Under review as a conference paper at ICLR 2026

More recently, online selection strategies have emerged, often targeting tasks of moderate difficulty.
One line of work adopts sampling-based task filtering, where tasks with consistently trivial rewards
(all zeros or ones) are considered uninformative and are down-weighted or filtered (Yu et al.| 2025}
Bae et al.l [2025). While effective, these methods require additional rollouts, incurring non-trivial
overhead. To avoid extra rollouts, several works attempt to predict task passing rates without di-
rect rollouts. |Chen et al.|(2025b) formulate task selection as a non-stationary multi-armed bandit
problem, treating each problem category (e.g., difficulty level or type) as an arm and using abso-
lute advantage as a reward proxy, with posterior estimation based on historical outcomes. |Qu et al.
(2025)) extend this framework to the task level. Although these methods eliminate extra rollouts,
they rely solely on direct evaluations and overlook cross-task relationships. In contrast, |Sun et al.
(2025)) propose evaluating a small set of reference tasks and predicting the passing rates of others
using an attention-inspired kernel over embeddings. However, this approach still requires additional
rollouts for the reference set and discards historical evaluation information.

More comprehensive discussion and comparison on related works are provided in Appendix

3 BAYESIAN ONLINE TASK SELECTION

3.1 PRELIMINARIES: MODELING TASK DIFFICULTY

Atask T = (Q, R) is defined as a tuple consisting of a query (), expressed in natural language,
and a reward function R that maps any natural language response O to a binary reward R(Q, O) €
{0, 1}, which is common in domains like math, coding such that 1 indicates correct and 0 indicates
incorrect. Consider RFT of a parameterized language model My, which maps a query @ to a
response O, on a set of N tasks {7%} &~_,. The binary reward obtained by executing the model on
a task 7 follows a Bernoulli distribution Bernoulli(pg,7), where pg 1 = Eopq(.7:0) R(O, T)
denotes the model’s success probability on 7. With a slight abuse of notation, we denote the reward
distribution for a given model and task as R(:|7;6) := Bernoulli(pg,r). Since we focus on
online task selection over a fixed set of tasks, we simplify the notation by letting p¥ denote p, T

and R} denote R(-|T*;0;), whenever the context is clear. All notations are summarized in Table

3.2 CORE MECHANISM: FUSING EVIDENCE IN A UNIFIED POSTERIOR

Our goal is to estimate the success probability p¥ of the online-adapted model on k-th task 7*. For

efficiency, direct evaluations are only performed after a task is selected. As statistical evidence, at
. . . iid o . .

time step ¢, we obtain online samples 7 "X R¥(-) for each selected task 7 in the training batch

B:, where n corresponds to the number of rollouts per task.

A natural way to model the estimation is via a Beta distribution, Beta(a¥, 8), where the posterior
parameters ¥ and 3 represent the accumulated counts of successes and failures, respectively, for
model 6; on task 7*. The problem then reduces to designing online adaptation rules for af and
F. We propose the following online adaptation rules: Given a batch of direct evaluation results

B = {(T5,1: rﬁjl[i])}‘iitll, we define the adaptation rules as

af = (1=Naf+Xaf+(1—p)sf+psF,  BEL = A=-NBE+NBE+(1—p) fE+p fF. (D

where g, 3y denote the prior parameter set for the Beta distribution, and the coefficient A € [0, 1]
discounts historical information;
sf= > IK =k rf,  ff= Y 0K =k> Q-1 2)
k' EB; i=1 k' EB, i=1

denote the explicit success and failure counts from direct evaluations, by slightly abusing the notation
k € B; to represent task 7" received direct evaluation at time step t. Notice when direct evaluation
results are not available (k ¢ B;), s¥ = fF = 0; and

SF = F 41k ¢ Bk, B)n,  fF=fF+1[k¢ B (1—pk,Bi))n. 3)

Here, p € [0, 1] balances the contributions of explicit and implicit evidence, 5 and ft" coincide
with sf and fF when direct evaluation results are available for task 7, and otherwise represent the
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pseudo success and failure counts. These are derived from an estimator p(k, B;), which uses inter-
task relationships to infer difficulty for tasks not present in the current evaluation batch B;. Our
framework places no restrictions on the specific form of p(k, B;), while in Sec. we introduce a
lightweight interpolation-based instance to produce the pseudo counts. Additionally, to manage the
equivalent total sample size—and hence the uncertainty of the estimate—the pseudo sample size is
ensured to satisfy ¥ + fF = n.
The following proposition indicates that the update in Equation (TJ) preserves the Beta family as the
(generalized) posterior for a Bernoulli parameter under a tempered/prior-mixing update.
Proposition 1. Let p € (0,1) be the Bernoulli success probability at time t. Suppose the current
belief is m¢(p) = Beta(p | au, Bt), and let wo(p) = Beta(p | ao, Bo) be a base prior. Given counts
(8¢, fr) and pseudo counts (8, fi) with s, ft, 8¢, ft > 0, define the generalized-Bayes update
_ 1— 5 7
T (p) o< m(p)! M mo(p)t x [pr(L-p)T ] x [P -p)7]" “)

prior mixing / discounting tempered explicit likelihood tempered implicit evidence

with A € (0,1) and p € [0, 1]. Then 711 is exactly Beta(as41, Bi41) with
appr = (1 = XNay + Ao + (1 — p)sy + p5y, Biy1 = (1= N)By + Mo + (1 — p) fe + pfe-

The proof is placed in Appendix

3.3 ULTRA-LIGHT INTERPOLATION PLUG-IN FOR IMPLICIT EVIDENCE

Given a batch of online evaluation results B; = {(73,; Tff )} IZBH, we aim to estimate the passing

rate p¥ for any task 7 using an estimator p(By, k). In this work, we adopt an ultra-lightweight
interpolation-based estimator to minimize additional computational overhead for online task selec-
tion. Notably, the adaptation rules in Sec. [3.2| place no restrictions on the specific form of p(B;, k).

Assume that for each task 7*, we have empirical success rates p~ and p* from two reference models
of distinct capability (weak vs. strong). Define the average empirical success rates of the current,
weak, and strong models on B; as

,rcf Bt . |Bt‘ Z erv —Icf Bt ‘B| Z pw’ —rcf Bt |B| Z

keB, j=1 keB; keBy

We estimate the relative capability coefficient of the current model as pt(B;) = ( piet (By) —

PEN(By))/ (P (By) — PiEt(By)), which locates the current model between the weak and strong
reference models on the batch B; (we assume pref > p{ff, otherwise one may add a small ¢ to the
denominator). To reduce variance from stochastic rollouts, we maintain a momentum version of the
coefficient ji; = Yjiz—1 + (1 — ) e

Finally, the passing rate of the current model on task 7 is obtained via linear interpolation between
the weak and strong references, followed by clipping to [0, 1]:

BB, k) = clip (7 (Bo) B + (1= fu(By)) s 0, 1)). 5)

Computational Cost. The primary cost of our approach arises from evaluating the reference mod-
els for all tasks, which requires extensive rollouts. Fortunately, benchmarking standard base mod-
els has already become routine in RL dataset construction—for example, (Cheng et al.[ (2025) re-
port Qwen2.5-7B-Instruct (Yang et al.| 2024) and Qwen3-32B (Yang et al., |2025) performance as
meta-tags for filtering. Given these pre-computed references, the additional online overhead of our
interpolation-based estimator is negligible compared to training-time rollouts (see Appendix [E.1|for
empirical results). This efficiency follows from two properties: (i) no extra rollouts are needed
during training, and (ii) both updates and predictions reduce to lightweight vector operations.

3.4 THOMPSON SAMPLING FOR TASK SELECTION

Having established a task difficulty posterior Beta(p¥ | aF, 3F) over the success probability of each
task 77, we now turn to the crucial step of selecting tasks for the next training batch.
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The first question is: at what difficulty level does the current model benefit most from training?
Prior works (Chen et al., [2025b; [Sun et al.,|2025) show that, under binary rewards, tasks with suc-
cess probability around 0.5 are most informative for learning as they lead to gradients with larger
expected magnitude than tasks with success probability close to 0 or 1. We define the utility of a
task as the absolute deviation of its posterior mean from a target success probability p* € (0,1),
with p* = 0.5 as the canonical choice.

Given this target success probability, the problem of online task selection naturally reduces to a
non-stationary bandit problem. The central challenge is the tradeoff between exploitation and ex-
ploration: the model must decide whether to select tasks with high-confidence estimates close to
the target rate in order to maximize immediate utility, or to select tasks with high uncertainty to
gather information that may improve future decisions. A purely exploitative strategy might select
tasks whose posterior mean ¥ is closest to p*, but this risks overlooking tasks whose difficulty
is currently uncertain but potentially optimal. To naturally balance exploration and exploitation,
we employ Thompson Sampling (Thompson, |1933), a strategy renowned for both its empirical ef-
fectiveness and theoretical guarantees. More specifically, at each selection step ¢, we perform the
following: (1) Posterior Sampling: Draw a sample of the passing rate from its current posterior
distribution p, ~ Beta(af, F) for each task T* in the pool. (2) Selection: Select tasks with the
highest estimated utilities {4y, := |pr — p*|} to form the training batch B;;. This procedure ele-
gantly prioritizes tasks that are likely to be near the target difficulty, while the inherent variance in
sampling from the posterior ensures that tasks with higher uncertainty are naturally explored.

Impact of A\, p on Task Selection. Proposition |2f characterizes how the hyperparameters A and p
jointly determine the effective sample size n; = a; + §; of each task’s Beta posterior, thereby
controlling the confidence of the estimated probability of success.

Proposition 2. Let n; := oy + ;. Suppose the updates follow Equation — with A € (0,1),
p € [0,1], we have

liminfn; = ng + £n, limsupn; = ng + %n
t—o0 t— 00

The proof is given in Appendix[D.2] Specifically, A controls the overall scale of the effective sample
size: smaller values accelerate forgetting and increase posterior uncertainty, promoting exploration,
while larger values stabilize the posterior and favor exploitation. Meanwhile, p sets the lower bound
of effective counts for unevaluated tasks: smaller values maintain high uncertainty to encourage
exploration, whereas larger values reduce uncertainty and bias selection toward exploitation. To-
gether, A and p provide complementary knobs for balancing exploration and exploitation in online
task selection. A more detailed discussion is placed in Appendix

4 EXPERIMENTS

We begin with Section [4.1] which introduces datasets, reinforcement finetuning protocols, evalu-
ation metrics, and computational cost. Section [4.2] and Section [4.3] analyze the effects of mixing
evidence (p) and forgetting/adaptivity (\) on task selection respectively. Section then compares
BOTS with competitive baselines across model scales and domains, while Section @] summarizes
additional experiments provided in the Appendix [F

4.1 SETUPS

Dataset. = We conduct experiments on GURU (Cheng et al., [2025), a well-curated cross-domain
RL dataset. Each subset is deduplicated, verified, and filtered. We use its math, code, and logic
subsets (excluding the Zebra Puzzle due to its non-binary reward). Detailed information about the
used datasets is provided in Appendix (for training) and Appendix [B.2] (for evaluation).

RFT Setting. We adopt GRPO (Shao et al., |2024), Qwen2.5-1.5B-Instruct and Qwen2.5-7B.
Key hyperparameters include a learning rate of le-6, 16 rollouts per task, and a temperature of 1.0.
Comprehensive training details and used RL algorithm are provided in Appendix [B.3]and [B.5]

Evaluation.  We report the following metrics to evaluate our framework and its ablations, with
formal definitions given in Appendix
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* Effective Task Ratio (ETR). It evaluates tasks selection. The fraction of sampled tasks whose
empirical success rate, estimated from n = 16 independent rollouts, falls strictly within the (0, 1)
range. A higher ECR indicates a more efficient task selection that successfully filters out tasks that
are either already mastered (p = 1) or currently unsolvable (p = 0).

* Time-to-Baseline (TTB). It measures training acceleration relative to the random baseline to
achieve a specific performance. Let the baseline start from performance Py and reach the best
performance Ppes within the training window. For a target fraction 7 € {50%, 75%, 100%}, we
define the target performance as Pr = Pj + 7 + (Poest — Pinit)- TTB(7) is the ratio of steps required
by a method to reach P, compared to the baseline. For example, if the baseline starts at 0.1 and
reaches 0.3 by step 100, then the 50% target is 0.2. If the baseline first reaches 0.2 at step 40 while
another method reaches it at step 30, then TTB(50%) = 30/40 = 0.75. By definition, the baseline
has TTB = 1; smaller values indicate greater acceleration.

* Best-so-far (BSF). It measure the performance gain relative to the random baseline under a fixed
budget. Within specific ratio (25%, 50%, 100%) of total training steps, BSF is the ratio between
a method’s best-so-far performance and the baseline’s best-so-far performance. For example, at
step 50 (total steps 100), if the baseline’s best is 0.4 and a method’s best is 0.6, then BSF(50%) =
0.6/0.4 = 1.5. The baseline always has BSF = 1; larger values indicate greater gains.

Computational Overhead. We note that BOTS introduces negligible additional computation, with
overhead measured at < 0.2% of total training time (see analysis in Sectionand empirical results
in Appendix[F.I). Thus, in the main results, we report TTB and BSF, in terms of training steps rather
than wall-clock time, as their difference is practically insignificant.

4.2 FUSING TWO SOURCES OF EVIDENCE: ANALYZING THE IMPACT OF p

Recall as defined in Equation [T] p controls the relative weights of explicit and implicit evidence. A
smaller p places greater emphasis on explicit evidence, whereas a larger p increases the contribu-
tion of implicit evidence. Moreover, according to Proposition 2] and the analysis in Section [3:4] p
determines the limit inferior of the equivalent counts in the Beta posterior. Intuitively, reducing p
increases the overall randomness of posterior sampling, while enlarging p stabilizes the estimates
by anchoring them more strongly to implicit evidence.

We investigate the role of p in task selection by varying p € {0.0,0.05,0.1,0.2,0.5,1.0}, while
keeping other hyperparameters fixed at their default values (A = 0.1, posterior sampling enabled).

Effective Task Ratio (ETR) >0 Ratio Lo <1 Ratio o Math Aggregated Performance
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Figure 2: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks (measured over 16
rollouts) with passing rates: strictly between 0 and 1, strictly greater than 0, and strictly less than 1,
along with aggregated performance (MATHS500 and AIME24), plotted against training steps.

Analysis and Takeaways. Our central finding is that implicit evidence is crucial for rapid cold-
starts, while explicit evidence is vital for long-term accuracy. A principled fusion of both is key to
effective task selection. Relying solely on implicit evidence (p = 1) leads to error accumulation,
while ignoring it (p = 0) suffers from severe data sparsity in early training, especially on large-scale
datasets. This conclusion is supported by the following observations from Figure 2]and Table T}

(1) Implicit evidence provides an essential early boost. In the initial training phase, all settings
with p > 0 demonstrate a sharp increase in the Effective Task Ratio (ETR) over the random baseline,
primarily by filtering out unsolvable tasks (p = 0). In contrast, the p = 0 setting, which relies solely
on sparse explicit feedback, behaves almost identically to random sampling. This highlights the
critical role of implicit evidence in overcoming the cold-start problem.
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Benchmark MATHS500 AIME24 Math Aggregated Performance

Metric TTB (}) BSF (1) TTB (}) BSF (1) TTB (}) BSF (1)
Target Fraction 50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A=01,p=00 1.10 0.73 088 1.00 0.96 1.03 0.57 0.92 - 1.00 1.75 092 1.13 073 099 1.02 098 1.01
A=0.1,p=0.05 1.02 0.56 0.60 1.08 1.06 1.05 0.50 0.51 0.68 1.00 2.50 1.17 1.07 0.58 0.60 1.10 1.05 1.03
A=01,p=0.1 089 049 0.57 113 1.05 1.05 051 1.00 1.00 125 1.75 1.00 089 056 0.64 1.12 1.07 1.05
A=01,p=02 099 068 0.68 1.10 1.10 1.06 0.96 1.06 - 125 150 092 099 074 0.80 1.13 1.08 1.08
A=01,p=05 093 064 0.67 1.10 110 1.03 063 1.11 112 0.75 225 1.00 093 0066 1.00 1.10 111 1.01
A=01,p=10 092 0.61 095 104 1.08 1.02 042 071 - 125 225 092 090 0.61 086 105 1.06 1.01

Table 1: TTB and BSF evaluated on MATH500, AIME24, and aggregated performance with
Qwen2.5-1.5B-Instruct. For TTB, notation “-” indicates that the target performance is never
achieved within the evaluation window. The best and second best results are marked accordingly.

(2) Over-reliance on implicit evidence degrades long-term performance. As training progresses,
settings with a large p (e.g., 0.5, 1.0) show a declining ETR, as the implicit evidence cannot perfectly
track the learning model’s fine-grained progress. It often fails to recognize when tasks are fully
mastered (p = 1), leading to their wasteful selection. This inaccuracy ultimately harms late-stage
performance, as seen in the aggregated TTB and BSF metrics where large p values underperform.

(3) A small positive p achieves the best of both worlds. A p € {0.05,0.1,0.2} strikes an opti-
mal balance. It leverages implicit evidence for initial acceleration while allowing more accurate,
accumulating explicit evidence to dominate in the long run. This fusion leads to robust performance
gains throughout entire training process, achieving best overall TTB and BSF scores.

4.3 FORGETTING AND ADAPTIVITY: ANALYZING THE IMPACT OF \

Recall as defined in Equation |1} A\ controls the discounting of historical information in the Beta
posterior. A smaller A places more emphasis on recent evaluations, improving adaptability but
increasing the variance of the estimates. Conversely, a larger ) gives greater weight to accumulated
history, yielding more stable but less responsive estimates. Furthermore, Proposition 2] shows that A
determines the scale of the equivalent counts in the Beta posterior. Intuitively, reducing ) accelerates
the decay of equivalent counts, increasing the randomness of posterior sampling, whereas enlarging
A slows the decay and stabilizes the estimates.

We investigate the role of X in task selection by varying A € {0.0,0.05,0.1,0.2,0.5,1.0}, while
keeping other hyperparameters fixed at their default values (p = 0.1, posterior sampling enabled).

Effective Task Ratio (ETR) >0 Ratio <1 Ratio Math Aggregated Performance
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Figure 3: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks (measured over 16
rollouts) with passing rates: strictly between 0 and 1 (L1), strictly greater than 0 (L2), and strictly
less than 1 (L3), along with MATH500 Accuracy (avg@1), plotted against training steps.

Analysis and Takeaways. The hyperparameter A\ governs the framework’s adaptivity to the non-
stationary learning process. Our key takeaway is that task selection must be adaptive, and moderate
forgetting is essential for long-term performance. An overly long memory (A — 0) prevents the
system from recognizing when a task has been mastered, while an overly short memory (A —
1) leads to unstable estimates. This conclusion is supported by the following observations from
Figure 3| and Table 2}

(1) Small )X struggles with mastered tasks: Settings with small A (e.g., 0.0, 0.05) exhibit a declin-
ing ETR in the mid-to-late training phase. This is because their long memory makes them slow to
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Benchmark MATHS500 AIME24 Math Aggregated Performance

Metric TTB (}) BSF (1) TTB (}) BSF (1) TTB (}) BSF (1)
Target Fraction 50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A=00,p=0.1 088 057 0.62 1.09 111 1.03 077 - - 125 150 0.75 0.87 058 0.71 1.11 1.08 1.04
A=0.05p=01 092 045 075 112 1.07 1.02 064 1.11 116 125 1.75 1.08 094 050 0.76 115 1.07 1.05
A=01,p=01 0.89 049 057 113 105 1.05 051 1.00 1.00 125 1.75 1.00 0.89 0.56 0.64 1.12 1.07 1.05
A=02,p=01 092 056 0.59 1.08 1.08 1.06 0.63 - - 0.75 2.00 0.75 095 058 0.66 1.07 111 1.06
A=05,p=0.1 .11 053 077 111 1.07 1.03 051 089 - 125 1.75 083 1.14 074 0.86 1.12 1.06 1.03
A=10,p=0.1 1.15 0.68 0.80 1.04 1.04 1.03 0.60 0.63 - 1.00 2.50 0.83 1.14 068 1.00 1.04 1.09 1.02

Table 2: TTB and BSF evaluated on MATHS500, AIME24, and aggregated performance with
Qwen2.5-1.5B-Instruct. For TTB, notation “-” indicates that the target performance is never
achieved within the evaluation window. The best and second best results are marked accordingly.

update the difficulty of tasks that the model has recently mastered (from p < 1 to p = 1), causing
them to be wastefully selected. This ultimately limits late-stage performance gains.

(2) Large ) lacks stability: Conversely, large A values (e.g., 0.5, 1.0) correspond to rapid forgetting.
This makes the posterior estimates highly volatile and overly dependent on the most recent (and
potentially noisy) observations. As a result, they fail to build stable beliefs about task difficulties,
leading to only marginal improvements over the random baseline in the early training stages.

(3) Moderate A\ balances stability and adaptivity: A moderate A € {0.05,0.1,0.2} strikes a
balance. It provides enough memory to form stable difficulty estimates while being adaptive enough
to track the model’s evolving capabilities. This leads to strong and consistent performance gains
across the entire training process, achieving the best TTB and BSF results.

4.4 PERFORMANCE COMPARISON ACROSS MODELS AND DOMAINS

Domain Math Code Logic

Metric TTB ({) BSF (1) TTB (}) BSF (1) TTB (1) BSF (1)
Target Fraction ~ 50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Offline 096 051 078 1.16 1.12 1.01 0.68 1.03 - 1.09 1.00 0.99 1.23 136 - 0.67 0.78 0.89
BOTS-MoPPS 1.78 132 - 090 0.90 0.99 0.78 096 1.09 1.09 1.02 1.02 087 1.04 - 1.13 0.96 0.96
BOTS-DOTS 083 075 081 1.11 1.09 1.08 0.67 0.65 0.79 1.17 1.09 1.02 066 132 - 128 092 093

BOTS 0.89 0.56 0.64 1.12 1.07 1.05 0.58 0.90 0.77 1.17 1.08 1.03 085 094 105 1.19 1.01 1.00

Table 3: BOTS-Qwen2.5-1.5B-Instruct Across Domains. The recommended setting outperforms
both out-of-framework and within-framework baselines, achieving 8 first-place and 9 second-place
finishes out of 18 reported metrics. Full results are in Appendix

Domain Math Code Logic

Metric TTB (}) BSF (1) TTB (}) BSF (1) TTB (}) BSF (1)
Target Fraction 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Offline 091 073 0.76 099 1.00 1.05 097 1.24 099 0.99 0.99 1.06 123 095 096 095 1.04

BOTS-MoPPS 107 1.15 070 094 1.04 104 084 0.69 084 104 1.02 100 075 092 0.69 1.07 1.00 1.05
BOTS-DOTS ~ 0.83 080 0.61 098 102 103 086 096 076 102 1.04 1.02 079 091 091 102 095 1.03

BOTS 0.86 0.77 0.63 0.99 1.04 1.04 082 0.79 1.06 1.04 101 1.00 0.79 0.78 0.50 1.03 1.01 1.00

Table 4: BOTS-Qwen2.5-7B Across Domains. The recommended setting outperforms both out-
of-framework and within-framework baselines, achieving 6 first-place and 8 second-place finishes
out of 18 reported metrics. Full results are in Appendix [E.5]

We conduct extended experiments across model sizes (1.5B and 7B) and task domains (math, code,
logic). We compare BOTS under the default setting (A = 0.1, p = 0.1, posterior sampling enabled)
against four baselines. Two are out-of-framework baselines: (i) Random, where tasks are uniformly
sampled, and (ii) Offline, where tasks are ranked from easy to hard based on success probabilities of
Qwen2.5-7B-Instruct and Qwen3-8B (for tie-breaking). Two are within-framework baselines: (iii)



Under review as a conference paper at ICLR 2026

BOTS-MoPPS, with A = 0.0, p = 0.0 and posterior sampling enabled, which reduces our frame-
work to MoPPS (Qu et al., [2025) and thus enables direct evaluation of a purely explicit-evidence
strategy; and (iv) BOTS-DOTS, with A = 1.0, p = 1.0 and posterior sampling disabled, serving as
a proxy inspired by DOTS (Sun et al.,|2025)), which evaluates the long-term effectiveness of relying
almost entirely on implicit evidence without corrective feedback. Implementation details and further
discussion of these baselines are provided in Appendix

Analysis and Takeaways. The default BOTS setting consistently outperforms both out-of-
framework and within-framework baselines, validating the principle of fusing explicit and im-
plicit evidence. Moreover, BOTS-DOTS emerges as the strongest baseline, confirming that our
interpolation-based implicit evidence provides useful guidance for task selection. These conclu-
sions are supported by the following observations from Table|3|and Table

(1) BOTS achieves the best overall performance. For the 1.5B model, BOTS obtains 8 first-place
and 9 second-place finishes out of 18 reported metrics, with a notable 36% acceleration (TTB(100%)
= 0.64) in the math domain. For the 7B model, BOTS secures 6 first-place and 8 second-place
finishes, including a remarkable 50% acceleration (TTB(100%) = 0.50) in the logic domain.

(2) BOTS-DOTS ranks second. For the 1.5B model, BOTS-DOTS achieves 6 first-place and 4
second-place finishes. For the 7B model, it achieves 5 first-place and 1 second-place finishes, out-
performing the remaining baselines.

In summary, these results demonstrate that BOTS not only delivers consistent gains across different
domains and model scales, but also achieves substantial acceleration in training efficiency. The su-
periority of BOTS over both BOTS-MoPPS and BOTS-DOTS highlights the necessity of combining
explicit and implicit evidence, while the strength of BOTS-DOTS underscores the practical value of
our interpolation-based implicit evidence. Together, these findings establish BOTS as a principled,
effective, and scalable solution for online task selection in LLM RFT.

4.5 OVERVIEW OF ADDITIONAL EXPERIMENTS

We provide extended experiments in Appendix [F for a deeper understanding of BOTS: (1) A wall-
clock breakdown (Appendix [FI)) shows task selection adds less than 0.2% overhead. (2) Offline
evaluation of the interpolator (Appendix confirms it effectively tracks task difficulty. (3) An
ablation on Thompson sampling (Appendix shows posterior sampling yields more stable selec-
tion. (4) A fine-grained analysis of selected task dynamics (Appendix [F4) illustrates how BOTS
shifts computation away from trivial (p = 1) and impossible (p = 0) tasks toward the informative
mid-difficulty region.

5 CONCLUSION AND DISCUSSION

We introduced BOTS, a unified Bayesian framework for online task selection in LLM reinforce-
ment finetuning. BOTS formulates task difficulty estimation as Bayesian belief updating, fusing
two complementary evidence sources: stable but sparse explicit evidence from direct rollouts and
dense but less precise implicit evidence from inter-task relationships. Instantiated with a lightweight
interpolator and Thompson sampling, BOTS achieves adaptive and efficient online data selection
with negligible overhead. Experiments show consistent gains in data efficiency and model perfor-
mance across domains and model scales, surpassing methods that rely on a single evidence source.
We envision BOTS as a practical foundation for dynamic, model-aware data selection, advancing
efficient and effective LLM training.

This work opens several promising directions. First, we focused mainly on binary-reward tasks;
extending and validating BOTS in non-binary reward settings is an important next step. Second,
BOTS currently uses fixed update rules, though our results show that different values of A and p
work best at different training stages. Developing adaptive update strategies that adjust to training
dynamics would further improve robustness. Third, while our lightweight interpolator efficiently
provides implicit evidence, designing stronger plug-in alternatives and systematically studying the
trade-off between predictive accuracy and computational cost remain open challenges. A more
detailed discussion of these directions is provided in Appendix [E.4]
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A  NOTATION SUMMARY

For ease of reading and reference, we present the symbols used in this paper in Table[3]

Symbol Description
General & Problem Setup
Te, T The k-th task, or a generic task.
Q,0 A query (input) and an outcome (output) of a task.
R(") A binary reward function, mapping an outcome to {0, 1}.
My The language model parameterized by 6.
Do, T Success probability of model My on task 7.
t Index for the training step or iteration.
pr Shorthand for pg, 7, success probability on task k at step ¢.
Rf Shorthand for the reward distribution (Bernoulli) of task k at step ¢.
N Total number of tasks in the pool.
n Number of rollouts per task in a batch.
B The batch of tasks selected for training at step ¢.
Bayesian Estimation Framework
ok, gk Parameters of the Beta posterior for task k at step ¢.
af, Bk Parameters of the base prior Beta distribution for task k.
nk Equivalent sample size for task k at step t, nf = o + BF.
ng Equivalent sample size of the prior for task k, n§ = af + 5.
A Forgetting factor in [0, 1] for historical information.
p Balance coefficient in [0, 1] for explicit vs. implicit evidence.
rk The i-th binary reward obtained for task k.
s fF Explicit success and failure counts for task £ at step ¢.
sk Pseudo success and failure counts from implicit evidence.
Interpolation-based Implicit Evidence
pr,ph Pre-computed success rates of a weak and a strong reference model on task k.
ﬁ‘ff, ﬁ{ff, pgef Avg. success rates of current, weak, and strong models on a reference batch.
ot Relative capability coefficient of the current model at step ¢.
[ Momentum-updated relative capability coefficient.
Momentum coefficient for updating fi;.
p(k, By) Estimated success probability for task £ using implicit evidence.
Task Selection (Thompson Sampling)
p* The target success rate for optimal learning (e.g., 0.5).
P Success rate sampled from the posterior Beta(al, 8F)
Qg Utility of a task, computed as |pr, — p*|.
Evaluation Metrics
T Target fraction (e.g., 0.5, 0.75) for defining a performance milestone.
Pit, Poest Initial and best performance of the baseline method.
P, Target performance, P + 7 - (Poest — Pinit)-
™ Training step (hitting time) for method M to first reach performance P, .
153 Budget ratio (e.g., 0.25, 0.5) for evaluating Best-so-far (BSF).
Generalizations & Alternatives (Appendix)
K(-y-) Kernel function between two tasks.
T Temperature parameter for the kernel function.
n Natural parameter of an exponential family.
T(r), A(n) Sufficient statistic and log-partition function of an exponential family.
X,V Hyperparameters of the conjugate prior for an exponential family.

Table 5: Symbol Notation
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B IMPLEMENTATIONAL DETAILS

B.1 TRAINING DATA

The training data for our experiments is sourced from GURU (Cheng et al., [2025)), a well-curated,
cross-domain RL dataset covering mathematics, code, logic, science, simulation, and tabular tasks.
Each subset has been rigorously deduplicated, verified, and filtered. Our training utilizes the math,
code, and logic subsets, with the Zebra Puzzle excluded from the logic portion due to its non-binary
reward structure.

Mathematics (54.4k) The Mathematics subset comprises data from Skywork OR1 (He et al.,
2025a), DAPO (Yu et al., [2025)), and DeepScaler (Luo et al.,2025). For all math problems, models
are instructed to provide the final answer within a \boxed{} environment.

Code (18.1k) The Code subset includes programming challenges from LeetCode (Xia et al.
2025), TACO-verified (L1, 2024), PrimelIntellect (Mattern et al.,[2025)), and LiveCodeBench (Jain
et al., 2024). For Primelntellect and LiveCodeBench, it incorporates pre-filtered versions provided
by DeepCode

Logic (5.0k) The Logic subset is composed of several benchmarks designed to test structured rea-
soning. It includes Ordering Puzzles (relational ordering), Graph Puzzles (implicit graph traver-
sal), the public training splits of ARC-AGI (Chollet et al.| 2024) and ARC-AGI-2 (Chollet et al.,
2025)) (abstract grid transformations), and a 3.4k-sample from BARC (Li et al., 2024b) (synthetic
ARC-style tasks). For these tasks, predictions are extracted from <answer> tags for reward calcu-
lation via exact match.

B.2 EVALUATION BENCHMARKS

Followed by GURU (Cheng et al., [2025)), the evaluation suite consists of a set of established bench-
marks to rigorously assess the model’s performance in a zero-shot setting across the same domains.

Math We evaluate mathematical reasoning on AIME24 (MAA||2024) and MATHS00 (Hendrycks
et al.,[2021)), which cover a wide range of competition-level math problems.

Code Programming capabilities are assessed using HumanEval (Chen et al.||2021)), MBPP (Austin
et al.;|2021), and a subset of LiveCodeBench (Jain et al.,2024). These benchmarks span from basic
function generation to complex algorithmic challenges.

Logic Logical and abstract reasoning are measured using Ordering Puzzles for general reasoning,
and ARC-AGI (Chollet et al., |2024) for grid-based abstract reasoning.

B.3 TRAININING DETAILS

The RFT setup follows standard practices (Cheng et al., [2025; Qu et al.l [2025; |Sun et al.| [2025),
employing GRPO (Shao et al 2024) as the RL algorithm (detailed in Appendix [B.5). All experi-
ments are conducted on ver1 framework (Sheng et al.,2025) with 8 NVIDIA A100 (80GB) GPUs.
We utilize PyTorch’s FSDP for distributed training, with vLLM (Kwon et al.l |2023) employed to
accelerate the response generation during the rollout phase. The actor model is optimized using a
learning rate of 1 x 1076 and weight decay of 0.1. We apply a constant learning rate warmup for
the first 10 steps and use gradient clipping with a maximum norm of 1.0. For the GRPO algorithm,
we set the clipping ratio € to 0.2 and generate 16 rollouts with a temperature of 1.0. The maximum
prompt and response lengths are set to 4,096 and 8,192 tokens, respectively.

The training configurations are tailored for two LLMs: Qwen2.5-1.5B-Instruct and Qwen2.5-
7B (Yang et al., [2024), across three reasoning domains: Math, Code, and Logic. The primary
differences across settings lie in batch sizes and memory optimization strategies to accommodate
different model sizes. Specifically, the 7B model experiments utilize a larger training batch size
(512 vs. 256) and GRPO mini-batch size (64 vs. 32). To fit the larger model on the same hardware,

'https://www.together.ai/blog/deepcoder
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we enable FSDP’s CPU offloading for all 7B model experiments. Key hyperparameters for all six
experimental settings are summarized in Table [6]

Hyperparameter 1.5B-Math 7B-Math 1.5B-Code 7B-Code 1.5B-Logic 7B-Logic
Base Model Qwen2.5-1.5B-Inst. Qwen2.5-7B  Qwen2.5-1.5B-Inst. Qwen2.5-7B Qwen2.5-1.5B-Inst. Qwen2.5-7B
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Learning Rate 1x1076 1x10°6 1x 1076 1x10°¢ 1x10°¢ 1x10°¢
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Global Steps 100 100 70 70 100 100
Batch Size (Prompts) 256 512 256 512 256 512
GRPO Mini-batch Size 32 64 32 64 32 64
Rollouts per Prompt (n) 16 16 16 16 16 16
GRPO Clip Ratio (¢) 0.2 0.2 0.2 0.2 0.2 0.2
Rollout Temperature 1.0 1.0 1.0 1.0 1.0 1.0
Max Prompt Length 4,096 4,096 4,096 4,096 4,096 4,096
Max Response Length 8,192 8,192 8,192 8,192 8,192 8,192
FSDP CPU Offload Disabled Enabled Disabled Enabled Disabled Enabled

Table 6: Key hyperparameters for RFT across different models and domains. “Inst.” is an abbrevia-
tion for Instruct.

B.4 FORMAL DEFINITIONS OF METRICS

We provide formal definitions of the two key metrics used in our experiments: Time-to-Baseline
(TTB) and Best-so-far (BSF).

Time-to-Baseline (TTB). We define Time-to-Baseline (TTB) as a metric to measure the acceler-
ation of a method relative to the random baseline. Let the random baseline start from performance
Pic and reach its best performance Peg Within a fixed training window of K steps. For a target frac-
tion 7 € {50%, 75%, 100%}, the target performance is defined as the corresponding interpolation
between the initial and best performance:

Pr = Puct+71- (Pbesl - ]Dinit)-

Denote by 7,, the (possibly interpolated) training step at which method M first achieves perfor-
mance P,. Then the TTB of method M is

TIBy(r) = — 4

Thaseline

By definition, TTBpaseline(7) = 1. Smaller values of TTB indicate that a method reaches the target
improvement faster, and thus achieves greater acceleration relative to the baseline.

Example. Suppose the baseline starts at performance Py = 0.1 and reaches P = 0.3 within 100
training steps. The total improvement is therefore 0.2. For 7 = 50%, the target performance is

Psoy = 0.14 0.5 % (0.3 —0.1) = 0.2.

If the baseline first reaches 0.2 at step 40, then Tpaseline = 40. If another method M reaches 0.2
earlier, at step 30, then 73y = 30, and thus

30
TTB]\4(50%) = —— = 075
40
This indicates that method M achieves the same relative improvement (50% of the baseline’s maxi-
mum gain) using only 75% of the training steps required by the baseline, reflecting a 25% accelera-
tion.

Best-so-far (BSF). We define Best-so-far (BSF) to measure the relative performance gain of a
method against the random baseline under the same training budget. Let the total training window
be T steps. At a budget ratio 5 € (0, 1], corresponding to step t = [5T|, denote by best /(%)
the best performance achieved by method M up to step ¢, and by best,na(t) the best performance
achieved by the random baseline up to the same step. Then the BSF of method M is defined as

bestM(t)
BSFg(M) ;= ———.
SFs(M) bestanda(t)
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By definition, BSFg(rand) = 1. Larger values indicate that the method has achieved stronger
absolute performance under the same budget, i.e., it delivers better best-so-far outcomes than the
baseline, not just relative improvement.

Example. Suppose the total training window is 7" = 100 steps, and we consider 5 = 0.5 (t = 50). If
the random baseline achieves best ana(50) = 0.4, while another method M achieves best ;(50) =
0.6, then

0.6
S04
This means that by step 50, method M has achieved a best-so-far performance 1.5 times that of the
random baseline.

BSFs09, (M) L.5.

B.5 PoLicY OPTIMIZATION ALGORITHM: GRPO

The policy is optimized using Group Relative Policy Optimization (GRPO) (Shao et al.,2024), a
policy gradient method that operates without a learned value function. In GRPO, the advantage for
a given response is computed by normalizing its reward against the statistics of a group of candidate
responses sampled for the same prompt.

Specifically, for each prompt z, a set of G responses Y = {y1, ..., yc} is sampled from the policy
T, After obtaining the reward R(y;) for each response, the group-relative advantage A(yy) is
defined as:

R _
Aly) = (yx) = py ©)
gy
where py and oy represent the mean and standard deviation of the rewards {R(y1), ..., R(yg)}

for the group.

This advantage is then incorporated into a clipped surrogate objective function to update the policy
parameters 6:

Lareo(0) = By, [min (ro(y) A(y), clip(ro(y), 1 — e, 1 + ) A(y))] )

o (y|x)
T 0g1q (Y1)
clip function constrains this ratio within the interval [1 — €, 1 + €], limiting the magnitude of policy
updates during optimization.

Here, 79(y) =

denotes the probability ratio between the current and old policies. The

B.6 BASELINE DETAILS
We detail the configurations of the baselines and ablations used for comparison.

* Random: Tasks are sampled uniformly at random from the entire training pool. This represents a
no-curriculum scenario and serves as the fundamental baseline for measuring performance gains.

* Offline Baseline: Tasks are pre-sorted once from easy to hard based on the success rates of
external models (Qwen2.5-7B-Instruct, with Qwen3-8B for tie-breaking). This baseline represents
a static curriculum and is used to benchmark our adaptive method against a fixed task sequence.

* Setting from MoPPS (Qu et al., 2025): This ablation uses A = 0.0, p = 0.0 with posterior
sampling, relying solely on explicit evidence for task selection. Under this configuration, our
framework reduces exactly to the setting studied in |Qu et al.| (2025)), enabling a direct evaluation
of a purely explicit-evidence-based strategy. Note that|Qu et al.|(2025) did not study the code or
logic domains, nor did they provide principles for determining A (1 — X in BOTS). We therefore
reuse their hyperparameter choice for math (A = 1, i.e., A = 0 in BOTS) when evaluating other
domains. This comparison is fair since no hyperparameter tuning is performed for either MoPPS
or BOTS.

* Proxy for DOTS (Sun et al.,2025): This ablation uses A = 1.0, p = 1.0 with posterior sampling
disabled, so task selection is driven entirely by implicit evidence from our estimator. It serves as
a proxy for the approach in |Sun et al.| (2025), though our construction of pseudo-counts differs,
see Appendix [E.2]for more details. This baseline allows us to evaluate the long-term efficacy of a
strategy that relies almost exclusively on implicit evidence without direct corrective feedback. We
note that|Sun et al.|(2025) additionally explored reusing historical trajectories, which lies beyond
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the scope of this paper. To ensure clarity, we isolate such tricks from DOTS and focus solely on
the online task selection component.

C MORE RELATED WORKS

Reinforcement Finetuning for LLMs Reinforcement Finetuning (RFT) has become a pivotal
technique for aligning LLMs with human values and enhancing their capabilities in complex rea-
soning tasks (OpenAll 2023} |Guo et al.l [2025; Zeng et al.l [2025; [He et al) 2025a)). Initial RLHF
methods using PPO (Schulman et al., 2017) have been complemented by preference optimization
techniques like DPO (Rafailov et al., 2023) and its variants such as KTO (Ethayarajh et al., |[2024),
ORPO (Hong et al., [2024) and SimPO (Meng et al., [2024). More recently, attention has shifted to
rejection-sampling-based finetuning, popularized by frameworks like GPRO (Shao et al.| 2024])) for
its effectiveness in verifiable reasoning. This has spurred variants like DAPO (Yu et al., [2025) and
GSPO (Zheng et al.| [2025), with further work focusing on algorithmic refinements (Cui et al., 2025
Wang et al.| |2025a)) and reward shaping (Chen et al.| 2025aj |Pan et al.| [2025)). Despite these algo-
rithmic advances, the data curriculum, that how tasks are selected and presented, remains a critical
bottleneck for RFT efficiency.

The Role of Data Curriculum The importance of data difficulty in RFT is increasingly recog-
nized, leading to the creation of highly challenging benchmarks (Albalak et al., |2025; He et al.,
2025b; (Gao et al.l |2025). Beyond dataset creation, data selection and curriculum design has also
become a central topic of investigation. For Supervised Finetuning (SFT), a variety of data selec-
tion and curriculum strategies have been widely studied based on quality (Liu et al.| 2024} |Li et al.,
20244), diversity (Ling et al., 2025}, [Lu et al., [2024)), or pre-assessed difficulty (Xu et al., 2025} |Ye
et al.| [2025). However, such static methods are ill-suited for the dynamic nature of RFT. This has
motivated a focus on dynamic curricula that adapt to the model’s evolving capabilities, typically by
leveraging the notion of task difficulty (Cheng et al., 2025} [Pikus et al., 2025; |Li et al., [2025b).

Task Selection Strategies for RFT Existing task selection strategies for RFT vary in their ap-
proach to leveraging task difficulty. An early line of work, directly inspired by curriculum learning,
employs offline curricula that schedule tasks along a fixed easy-to-hard trajectory (Parashar et al.,
2025} |Shen et al.| [2025; Zhu et al.| [2025; Wen et al.| [2025; [Li et al.l 2025a)). While simple and intu-
itive, these methods are non-adaptive and cannot respond to the model’s real-time learning progress.
To address this, online selection strategies have emerged. A straightforward approach is sampling-
based task filtering, which uses extra rollouts to evaluate and discard tasks that are too easy or too
hard, thereby incurring significant computational overhead (Yu et al., [2025; Bae et al.| [2025). To
avoid this cost, recent works attempt to predict task success rates. Some frame task selection as a
non-stationary multi-armed bandit (MAB) problem, but often treat tasks as independent arms, thus
overlooking cross-task relationships (Chen et al.l [2025b; |Qu et al., |2025). Others use a small ref-
erence set to predict the difficulty of other tasks via similarity kernels, but this still requires extra
rollouts and discards valuable historical information (Sun et al.,|2025; Wang et al.,|2025b).

Positioning Our Work. The current landscape reveals a clear need for a task selection method that
is simultaneously adaptive, computationally efficient, and information-complete. Our framework,
BOTS, is designed to fill this gap. It introduces a unified Bayesian framework that is fully online and
adaptive. Critically, BOTS is the first to jointly incorporate explicit evidence from direct evaluations
and implicit evidence inferred from related tasks, without requiring any additional model rollouts.
BOTS provides a principled, low-overhead, and effective solution for dynamic task selection in RFT.

D PROOFS

D.1 PROOF FOR PROPOSITION[]]

Proposition 1. Let p € (0, 1) be the Bernoulli success probability at time t. Suppose the current
beliefis m¢(p) = Beta(p | ay, Bt), and let mo(p) = Beta(p | aw, Bo) be a base prior. Given counts
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(st, ft) and pseudo counts (¢, ft) with sg, f1, 8¢, ft > 0, define the generalized-Bayes update

T (p) o m(0) A mo(p)) x [pr(1-p)] " x prA-p)]” . )

prior mixing / discounting tempered explicit likelihood tempered implicit evidence

with A € (0,1) and p € [0,1]. Then 741 is exactly Beta(oi11, fri1) with
arr1 = (1= Ny + Ao + (1 = p)si + pde, Bigr = (L= N+ Mo + (1 = p)fi + pfe.

Proof. Write the Beta densities (up to normalization) as m;(p) o< p®*~1(1 — p)#~! and 7y(p) o
p~1(1 — p)Po—1 Raising these to powers and multiplying by the (tempered) likelihood terms in
equation () yields

T (p) oc pU=Mee=DFMao—D)+A=p)sitpse ( _p)(1_)‘)(Bt_1)+)\(ﬂ0_1)+(1_p)ft"l‘pft.
Collecting exponents shows that 7,11 is Beta with parameters exactly as stated (add +1 back to
exponents), completing the proof. O

D.2 PROOF FOR PROPOSITION 2]

Proposition 2. Let n; := oy + B;. Suppose the updates follow Equation — with A € (0,1),
p € [0,1], we have

liminfn; = ng + £n, limsupn, = ng+ in.

t—o0 t—00

Proof. We drop the task index for clarity. From Equation (T)) and Equation (3),
nes1 = (L=MNng+ g+ (1= p)(se + fo) + p(5e + ) = (1= Ny + Ang + (1 — p)n I[E] + pn,
where &; is the event that the task receives a direct evaluation at time ¢ (so s; + f; = n iff & holds;

otherwise s; + f; = 0). Unrolling the linear recurrence for ¢t > 0,

ne = (1—N\)'ng + z_:(l = N)*Ang+pn+ (1 —p)nl[€—1-4))
u=0
no + %(1 —1=-XN)+1-pn ui;)(l — N I[E—1—u),

where we used Zz;lo(l —A)“A=1-(1—-M\)" Because [[£] € {0,1},

0 < X_:(l — /\)“ ]I[(‘:t—l—u} < z_:(l _ )\)u _ *—/\)t
u=0 o

Multiplying by (1 — p)n and adding the common term no + &*(1 — (1 — \)*) gives the uniform
bounds n n
n0+p7(1—(1—A)t) <m < mo+ (1= (1-N)).

Since (1 — A)* — 0 exponentially, the lim inf / lim sup statements follow immediately.

Moreover, these bounds are tight: if I[£;] = 0 (never directly evaluated), then n; = ngy + % (1 —

(1 = XA)") and limy_,0o ¢ = ng + &5 if I[€] = 1 (always directly evaluated), then n, = ng +
%(1 —(1- )\)t) and limg o0 1y = 1o + ¥. -

E EXTENDED DISCUSSION

E.1 IMPACT OF ), p ON TASK SELECTION

Proposition |2| characterizes how the hyperparameters A and p jointly determine the effective sample
size of each task’s Beta posterior. Intuitively, the effective sample size n; = a; + (; controls the
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confidence of the estimated probability of success, and hence governs the tradeoff between explo-
ration and exploitation in task selection. When a task is repeatedly selected and directly evaluated,
its posterior accumulates evidence and n; approaches the upper bound ng + %n Conversely, when
a task is rarely selected and only updated by implicit evidence, n; remains close to the lower bound
no + £n.

The role of ) is to regulate the overall scale of n;. A smaller A accelerates the discounting of his-
torical information, leading to smaller effective sample sizes, higher posterior uncertainty, and thus
more exploratory behavior in Thompson Sampling. In contrast, a larger \ stabilizes the posterior by
retaining more historical counts, biasing the strategy toward exploitation of tasks already known to
be near the target probability of success.

The parameter p specifically controls the lower bound of n;. A smaller p increases the uncertainty of
tasks without direct evaluations, making it more likely for such tasks to be sampled for exploration
even when their estimated probability of success is not close to the target. A larger p, by assigning
more pseudo-counts, suppresses this uncertainty and reduces the chance of revisiting unevaluated
tasks, favoring exploitation.

Together, A and p provide fine-grained control over the exploration—exploitation balance: A sets
the overall confidence level of the posterior across all tasks, while p tunes the relative confidence
between evaluated and unevaluated tasks. This interaction ensures that the framework adaptively se-
lects tasks of appropriate difficulty as the model evolves, maintaining both robustness and efficiency
in online task selection.

E.2 ATTENTION-BASED ADAPTIVE DIFFICULTY ESTIMATE

Given a batch of online evaluation results B; = { (73, 7”18;5} )}Litl‘, we need to estimate 5 and f}*

for each task 7". Besides the interplation-based estimate discussed in another straightforward
idea is to construct a kernel-based estimator:

| Bt | Bt
~ IC 7;77— 7 ry IC 7:77— i
I AR I - ey ®)
im1 2251 K(T5, Tw) i=1 2251 K(T5,Tr)

For example, Sun et al.| (2025) proposed to use an attention-like kernel structure:

(<Embd(T),Embd(T’)>) .

K(T,T') =exp 9)

T

However, the limitations of such approaches are two-folds: (1) Due to its convex structure, the kernel
estimator does not support extrapolation. Specifically, given a batch of tasks with passing rates
bounded within [puin, Pmax], the estimated passing rate for any task is also restricted to this range.
(2) Its effectiveness depends heavily on the quality of the task embeddings, which often require
additional training, may be high-dimensional, and thus introduce non-negligible storage overhead.

E.3 INTERPOLATION-BASED IMPLICIT EVIDENCE

Extrapolation Capability. Unlike kernel-based estimators (Sun et al., [2025) (see Appendix
for a brief introduction), which are confined to the convex hull of observed tasks, our interpolation-
based estimator naturally supports extrapolation. For example, if the reference pair consists of a
strong and a stronger model, the capability coefficient p;(55;) defined in Sectionmay fall outside
[0,1], yielding extrapolated predictions. The clipping step in Equation (5) ensures these estimates
remain within the feasible range [0, 1].

Choice of Reference Models. The effectiveness of the implicit evidence mechanism depends
critically on the choice of weak and strong reference models, which should ideally bracket the
expected capability trajectory of the model under training. If the training model is substantially
stronger than the strong reference or weaker than the weak reference, our method must rely on
extrapolation, whose accuracy may degrade. In practice, we find that standard publicly available
checkpoints—Qwen2.5-7B-Instruct (Yang et al.| [2024)) and Qwen3-32B (Yang et al., 2025)—pro-
vide a robust and practical basis, even when training significantly smaller models such as Qwen2.5-
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1.5B-Instruct (Yang et al., [2024). A systematic ablation on the choice of reference models remains
an important direction for future work.

Discussion on the Potential Limitations. The simplicity of our interpolation-based approach,
while a key strength, also entails two potential limitations. (i) Expressive power: The linear inter-
polation assumes a linear relationship between a model’s global capability and its per-task success
rate. While our empirical results suggest this is a powerful approximation (see Appendix for
a validation), the true learning dynamics of LLMs may be more complex. (ii) Distributional shift
in capability estimation: The capability coefficient i, is estimated on the selected batch 5;, which
is not a uniform sample from the task pool. This introduces a bias, as the model is likely to per-
form better on this adaptively chosen batch than on the entire dataset. Consequently, ;; might be
an overestimate of the model’s true global capability. However, we argue this bias is not fatal: the
primary role of p; is to track the progression of the model’s capability, and even a biased estimate
can provide a valuable monotonic signal for this purpose, see Section for empirical validation.

E.4 DISCUSSION ON FUTURE WORKS
E.4.1 GENERALIZATION TO OTHER REWARD DISTRIBUTIONS

While our main exposition focuses on binary rewards with a Beta-Bernoulli model, the core princi-
ples of BOTS extend naturally to any reward distribution within the exponential family that admits
a conjugate prior. This generality makes BOTS a versatile blueprint for online task selection algo-
rithms.

The General Framework. Let the reward r for a task follow a distribution from a one-parameter
exponential family: f(r | n) = h(r) exp(nT(r) — A(n)), where 7 is the natural parameter and T'(r)
is the sufficient statistic. The conjugate prior for 7 takes the form p(n | x,v) o exp(xn — vA(7)),
where (x, v) are hyperparameters. Here, y can be seen as a pseudo-sum of sufficient statistics from
prior observations, and v as a pseudo-count of those observations.

Our generalized Bayesian update rule from Eq. equation (@) can be directly mapped to this setting.
The update for the posterior hyperparameters (¢, v+) becomes:

Xe+1 = (1 = X)xe + Axo + (1 — p) Texpricic + pTimplicits (10
Vir1 = (1 = N vg + Avg 4 (1 = p)Nexplicit + PMimplicits (11

where (X0, ) are the base prior’s parameters. For neypiicic direct observations {r;}, the explicit
evidence is Toxplicic = Z?;‘EM T'(r;). For implicit evidence, we assume a pseudo-observation of size
Nimplicit With an estimated total sufficient statistic Timplicit- This structure precisely mirrors our update
for the Beta parameters, preserving conjugacy across iterations.

Revisiting the Bernoulli Case. For a Bernoulli reward r € {0, 1} with success probability p, the
natural parameter is the logit 7 = log(p/(1 — p)), and the sufficient statistic is 7'(r) = 7. The
conjugate Beta(a, ) prior corresponds to hyperparameters x = « — land v = a+ 3 — 2. Withn
rollouts, Texpiicic = S¢ (SUCCESS COUNLS), Nexplicit = 1> Limplicic = S¢» and Nimplicik = 7. Plugging these
into Equation and transforming back to («, 3) parameters precisely recovers our update rule
in Equation([I] This confirms that our proposed update is a specific instance of this general principle.

Example: Gaussian Rewards. Consider a continuous reward r, like a score from a powerful
critic model, modeled as R ~ N (p1, o) with known variance 2. The conjugate prior for the mean
w is Gaussian, 1 ~ N (ug,03). In the exponential family form, » = p/0? and T'(r) = r. The
prior hyperparameters are xo = po/0 and vy = o2 /o2. The BOTS update would apply directly
to (x¢, V), where Texplicit 18 the sum of observed rewards and Tippiicic is an estimated sum from the
interpolator. The posterior for i remains Gaussian, allowing for Thompson sampling by drawing a
sample of the mean /i and selecting tasks whose i is closest to some target score p*.

Example: Categorical Rewards. For tasks with K discrete outcomes (e.g., multi-level ratings),
the reward is a one-hot vector, and the distribution is categorical. The conjugate prior is the Dirichlet
distribution, a multivariate generalization of the Beta. BOTS would maintain a vector of K Dirichlet
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parameters (a1, ..., ax) for each task. The update rules would apply component-wise to each ¢
based on explicit and implicit counts for that outcome.

This generality significantly broadens the applicability of our framework beyond binary suc-
cess/failure tasks. It provides a principled and extensible blueprint for difficulty-aware online task
selection across a wide spectrum of RFT problems involving diverse reward structures.

E.4.2 SELF-ADAPTIVE UPDATE RULES

In the main paper, we set the belief update coefficients A and p as fixed hyperparameters. How-
ever, our empirical study (Section and Section shows that different settings benefit different
training stages: smaller \ accelerates adaptation in early training but may cause instability later,
while moderate p effectively leverages implicit evidence early on but can reduce accuracy in later
stages. A natural extension is to design self-adaptive update rules that automatically adjust A and p
according to training dynamics—for example, by monitoring posterior uncertainty, validation per-
formance, or the variance of estimated success probabilities. Such adaptive schemes would allow
BOTS to dynamically balance exploration and exploitation, potentially improving robustness across
diverse tasks and model scales.

E.4.3 ALTERNATIVE PLUG-IN FOR IMPLICIT EVIDENCE

Our interpolation-based estimator provides an extremely lightweight way to generate implicit evi-
dence without additional rollouts, but it is not the only possible choice. More expressive alternatives
could be explored, such as kernel-based predictors (Sun et al. 2025), task-embedding regressors,
or small auxiliary models trained jointly with the main model. These alternatives may improve
predictive accuracy, especially when the reference models poorly bracket the training model’s ca-
pability. However, they also introduce a trade-off: richer implicit evidence often requires higher
computational and storage costs. Systematically characterizing this trade-off—between accuracy
and efficiency in implicit evidence—remains an open research question and a promising direction
for future work.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPUTATIONAL OVERHEAD

We examine the computational overhead introduced by task selection. The breakdown of wall-clock
time across training phases is shown in Figure ]

Qwen2.5-1.5B-Instruct Qwen2.5-7B
| |
mmm task selection (0.2%) B task selection (0.1%)
mmm reward (2.3%) mmm reward (0.9%)
log prob (13.3%) log prob (21.8%)
model update (22.5%) generation (34.4%)
generation (61.7%) model update (42.8%)

Figure 4: Wall-clock time breakdown across training phases for Qwen2.5-1.5B-Instruct (Left)
and Qwen2.5-7B (Right) on GURU-Math, trained on 8 A100 GPUs. Runtime is averaged over the
first 100 training steps. The cost of task selection—including posterior sampling, index sorting, and
distribution parameter updates—is negligible compared to overall training.

As illustrated, the dominant cost arises from generation and model updates, which together account
for more than 75% of runtime. By contrast, the overhead of task selection—including posterior
sampling, index sorting, and distribution parameter updates—is negligible (0.2% or less). Impor-
tantly, unlike generation and model updates, this cost does not increase with model size. Overall,
our Bayesian framework and the chosen practical instantiation remain extremely lightweight, adding
almost no extra burden to training.
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F.2 INTERPOLATION-BASED IMPLICIT EVIDENCE: EMPIRICAL RESULTS

To empirically validate our interpolation-based implicit evidence estimator, we assess its predictive
quality against the evolving empirical success probabilities of the training model. We examine the
trajectory under vanilla training, i.e., uniformly sampling tasks for training. At each step, we com-
pare the predictions from our interpolation-based estimator with the ground-truth online task success
probabilities. Two metrics are used: (i) Pearson Correlation, measuring the linear relationship be-
tween estimated and empirical difficulties, and (ii) ROC AUC, evaluating the ability to distinguish
effective tasks (success strictly between 0 and 1) from ineffective tasks (success equal to O or 1).
Evaluations are conducted throughout training for models of different scales.

Qwen2.5-1.5B-Instruct Qwen2.5-7B
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Figure 5: Performance of the implicit evidence estimator during training of Qwen2.5-1.5B-Instruct
(Left) and Qwen2.5-7B (Right), measured by Pearson Correlation and ROC AUC.

As shown in Figure [5] the estimator exhibits distinct behaviors across model scales. For Qwen2.5-
1.5B-Instruct (Left), both Pearson Correlation and ROC AUC remain stable throughout training; the
consistently positive correlation and ROC AUC above 0.5 demonstrate that interpolation-based im-
plicit evidence effectively captures task difficulty. Notably, this model is weaker than both reference
models (Qwen2.5-7B-Instruct and Qwen3-32B), confirming that our estimator possesses extrapola-
tion capability. For the larger Qwen2.5-7B (Right), both Pearson Correlation and ROC AUC decline
in later stages: Pearson Correlation remains positive, but ROC AUC approaches 0.5, indicating that
implicit evidence becomes less informative for difficulty prediction as the model matures. This
highlights the necessity of incorporating direct evaluations as explicit evidence to maintain accurate
estimation.

F.3 SAMPLING FROM POSTERIOR

We now investigate the impact of posterior sampling. As discussed in Section [3.4] posterior sam-
pling naturally balances exploration and exploitation in bandit-style problems. Without sampling,
tasks with the closest estimated success rates are greedily selected for training, which risks over-
exploitation and insufficient exploration.

To examine this effect, we compare our default setting (A = 0.1, p = 0.1) with posterior sampling
enabled versus disabled. The valid ratio metrics and benchmark performance metrics are reported
in Figure[6and Table [F:3]

Observations. When posterior sampling is disabled, the valid ratio exhibits a faster and higher
boost in the early phase due to the removal of randomness, but fluctuations appear as training pro-
gresses. In contrast, enabling posterior sampling yields a smoother valid ratio trajectory over time.
Notably, these differences in valid ratio do not translate into significant differences in benchmark
performance: both settings outperform the random baseline and achieve very similar performance
levels. Given the improved stability of the valid ratio, we recommend enabling posterior sampling,
though this conclusion is less pronounced compared to the effects of A and p. We leave a larger-scale
study for future work to obtain more reliable evidence.
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Figure 6: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks (measured over 16
rollouts) with passing rates: strictly between 0 and 1, strictly greater than 0, and strictly less than 1,
along with aggregated performance (MATHS500 and AIME24), plotted against training steps.

Benchmark MATHS500 AIME24 Math Aggregated Performance

Metric TTB (1) BSF (1) TTB (}) BSF (1) TTB (1) BSF (1)
Method (}), % (=) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A =0.1,p = 0.1, sample=True 0.89 049 057 113 1.05 1.05 051 1.00 1.00 125 175 1.00 0.89 056 0.64 1.12 1.07 1.05

A =0.1,p = 0.1, sample=False 073 054 054 1.10 1.09 1.03 077 092 125 125 150 1.00 0.79 055 0.81 112 110 1.07

Table 7: Qwen2.5-1.5B-Instruct on Math. TTB (lower better) and BSF (higher better) evaluated
on MATHS500, AIME24, and aggregated performance. For TTB, notation ”-” indicates the the target
performance is never achieved within the evaluation window. The best and second best results are
marked accordingly.

F.4 DYNAMICS OF SELECTED TASKS

In addition to reporting the Effective Task Ratio (ETR), which reflects the proportion of selected
tasks with success probabilities strictly between 0 and 1, we conduct a finer-grained analysis to
capture more detailed dynamics. Specifically, we visualize the distribution of success probabilities
for selected tasks along the training trajectory, for both Qwen2.5-1.5B-Instruct and Qwen2.5-7B
models. This analysis complements ETR by revealing how the quality of selected tasks evolves
beyond the binary effective/ineffective distinction.

We use a heatmap where the x-axis represents training steps, the y-axis represents the empirical
success rate (discretized from 0/16 to 16/16), and the color intensity indicates the proportion of
tasks sampled at that success rate. This allows us to compare the distributional dynamics of BOTS
against the random baseline.

The resulting heatmaps in Figure [/| reveal starkly different behaviors. The random baseline (Top)
exhibits a largely static distribution, with a persistent, high-density band at the 0/16 success rate,
indicating continuous wasted computation on unsolvable tasks. In contrast, BOTS (Bottom) demon-
strates a highly dynamic curriculum. The initial concentration of tasks at the 0/16 success rate
diminishes rapidly. Concurrently, the sampling density shifts upward, concentrating in the interme-
diate difficulty range.

This visualization directly illustrates how BOTS actively filters out overly easy or hard tasks and
focuses computational resources on the most informative ones, which explains the superior Effective
Task Ratio and overall performance gains observed previously.

The analysis on the 7B model, shown in Figure [8] reinforces our findings. Consistent with the
1.5B results, BOTS (Bottom) rapidly diminishes sampling of unsolvable tasks (0/16 success rate)
and progressively shifts its focus to the intermediate difficulty range. However, an interesting phe-
nomenon emerges in the later training stages due to the 7B model’s stronger capability. For the
random baseline (Top), a high-density band appears at the 16/16 success rate, indicating that sig-
nificant computation is wasted on tasks the model has already mastered. In stark contrast, BOTS
effectively avoids this region, maintaining a broad distribution across the intermediate success rates.

This demonstrates BOTS’s advanced adaptivity: it not only filters out tasks that are too hard but also
dynamically avoids those that become too easy, thereby maximizing learning efficiency throughout
the entire training process.
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Figure 7: Heatmap visualizing the distribution of sampled task success rates over training steps for
Random sampling (Top) and BOTS (Bottom) on Qwen2.5-1.5B-Instruct.
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Figure 8: Heatmap visualizing the distribution of sampled task success rates over training steps for
Random sampling (Top) and BOTS (Bottom) on Qwen2.5-7B.
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F.5 COMPREHENSIVE RESULTS ON MATH

Results on Math-1.5B The results for Qwen2.5-1.5B-Instruct on the GURU-Math dataset are
presented in Figure 9] Figure [I0} and Table[8] The effectiveness of task selection is first evaluated
through the Effective Task Ratio (ETR). BOTS demonstrates a rapid increase in ETR, peaking above
0.8 and sustaining a high level throughout training. In contrast, the random and BOTS-MoPPS
baselines show minimal improvement, with ETR remaining below 0.4. While BOTS-DOTS initially
performs well, it exhibits a declining ETR in later stages.

This superior task selection efficiency translates into significant gains in downstream performance.
The aggregated performance plot shows that BOTS achieves a steeper learning curve and consis-
tently outperforms the baselines. The quantitative results in Table [8] corroborate these findings.
Specifically, for the aggregated performance, BOTS achieves a final TTB of 0.64, indicating a 36%
reduction in training steps to reach the baseline’s best performance. It also attains a final BSF of
1.05, representing a 5% improvement in peak performance under the same training budget.

Valid Ratio >0 Ratio <1 Ratio
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Figure 9: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks with different passing
rates.
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Figure 10: Qwen2.5-1.5B-Instruct on Math. Performance on downstream code benchmarks
(MATHS500, AIME24) and their aggregation.

Benchmark MATHS00 AIME24 Math Aggregated Performance
Metric TTB (1) BSF (1) TTB (1) BSF (1) TTB (|) BSF (1)

Method (1), % (=)  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 096 049 072 115 111 1.02 054 - - 1.00 2.00 0.75 096 051 078 116 112 1.01
BOTS-MoPPS 1.34 134 - 0.91 090 0.98 078 - - 125 125 0.67 1.78 132 - 0.90 0.90 0.99
BOTS-DOTS 078 051 072 1.12 110 1.04 071 1.12 112 075 150 1.08 0.83 075 0.81 1.11 109 1.08
BOTS 0.89 049 0.57 1.13 105 1.05 0.51 1.00 1.00 125 1.75 1.00 0.89 056 0.64 1.12 1.07 1.05

Table 8: Qwen2.5-1.5B-Instruct on Math. TTB (lower better) and BSF (higher better) evaluated
on MATHS500, AIME24, and aggregated performance. For TTB, notation ”-” indicates the the target
performance is never achieved within the evaluation window. The best and second best results are
marked accordingly.
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Results on Math-7B  We present the results for the Qwen2.5-7B model on the GURU-Math
dataset in Figure [T1] Figure [I2] and Table 0] Consistent with the 1.5B experiments, our recom-
mended BOTS setting demonstrates robust task selection efficiency. Its ETR rises rapidly to over
0.9 and is maintained at a high level, significantly outperforming the random, offline, and explicit-
only baselines. This efficiency translates to tangible performance gains, with Table [9) indicating a
final aggregated TTB of 0.63, confirming significant training acceleration.

A notable difference in the 7B setting is the highly competitive performance of BOT-DOTS. Un-
like in the 1.5B experiments where its ETR degraded over time, this strategy maintains a high ETR
throughout the training process, comparable to that of BOTS. Consequently, its downstream perfor-
mance is nearly identical to our full BOTS framework, as evidenced by the overlapping performance
curves and similar metrics in the corresponding figures and table. This suggests that for a highly
capable base model in the math domain, the guidance from implicit evidence alone can be excep-
tionally effective.
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Figure 11: Qwen2.5-7B on Math. Ratio of sampled training tasks with different passing rates over
training steps.
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Figure 12: Qwen2.5-7B on Math. Performance on downstream math benchmarks (MATHS00,
AIME24) and their aggregation.

Benchmark MATH500 AIME24 Math
Metric TTB () BSF (1) TTB () BSF (1) TTB (}) BSF (1)
Method (1), % (=) 50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100 100 100 1.00 1.00 1.00 1.00 1.00
Offline 096 070 079 1.02 101 101 086 090 074 088 1.00 105 091 073 076 099 100 1.05
BOTS-MoPPS 110 110 135 096 1.00 100 114 088 0.64 085 119 110 107 115 070 094 104 1.04
BOTS-DOTS 0.89 072 107 101 1.00 1.02 096 076 - 089 107 099  0.83 080 0.61 098 102 1.03

BOTS 091 074 093 1.0l 1.02 1.02 079 0.63 094 097 L1l 1.01 086 0.77 0.63 0.99 1.04 1.04

Table 9: Qwen2.5-7B on Math. TTB (lower better) and BSF (higher better) evaluated on down-
stream math benchmarks.

29



Under review as a conference paper at ICLR 2026

F.6 COMPREHENSIVE RESULTS ON CODE

Results on Code-1.5B To assess the generalizability of our framework, we replicate the compar-
ative experiments on the GURU-Code dataset. The results, presented in Figure[T3] [I4]and Table [T0]
largely affirm the conclusions drawn from the Math domain. Our BOTS again achieves a consis-
tently high ETR, significantly outperforming the random and offline baselines. This demonstrates
its robust capability to construct an efficient curriculum across diverse domains. Correspondingly,
BOTS delivers strong downstream performance, particularly in the TTB metric, indicating effective
training acceleration.

However, the results on Code also reveal distinct characteristics. Most notably, BOTS-DOTS ex-
hibits exceptionally competitive performance. As detailed in Table|10} it matches or even surpasses
our recommended BOTS setting on several benchmarks, especially in the BSF metric. This suggests
that the implicit evidence from our interpolator is particularly potent for the Code domain. These
findings highlight that while the optimal balance of evidence sources may be domain-dependent,
BOTS provides a robust and unified solution that remains a top-performing method across both
settings.
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Figure 13: Qwen2.5-1.5B-Instruct on Code. Ratio of sampled training tasks with different passing
rates.
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Figure 14: Qwen2.5-1.5B-Instruct on Code. Performance on downstream code benchmarks (Hu-
manEval, MBPP, LiveCodeBench) and their aggregation.

Benchmark HumanEval MBPP LiveCodeBench Aggregated
Metric TTB () BSF (1) TTB () BSF (1) TTB (1) BSF (1) TTB (1) BSF (1)
Method (1), % (=)~ 50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 100 100 1.00 1.00 1.00 100 100 100 1.00 100 1.00 100 100 100 100 100 100 100  1.00 1.00 100 100 100 1.00
Offline 069 083 1.09 112 101 100 069 103 - 105 099 099 112 1.08 - 091 088 089 068 103 - 109 1.00 099
BOTS-MoPPS 081 077 126 LI11 102 101 081 081 0.67 103 102 105 062 062 - 105 088 094 078 096 109 109 1.02 102
BOTS-DOTS 071 048 054 118 115 101 068 0.63 089 LI1 1.03 103 034 102 085 LI4 094 122 067 065 079 117 109 1.02
BOTS 056 0.63 - 124 112 099 068 066 0.67 110 1.06 105 076 LI18 - 100 076 094 058 090 077 117 108 1.03

Table 10: Qwen2.5-1.5B-Instruct on Code. TTB and BSF evaluated on HumanEval, MBPP, Live-
CodeBench, and aggregated performance.
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Results on Code-7B  We extended our analysis to the Qwen2.5-7B model to test scalability. The
results, presented in Figure [15] [I6] and Table [IT] primarily demonstrate the consistent robustness
of BOTS in optimizing the task selection. As shown in the Valid Ratio plot, our recommended
setting achieves the highest proportion of valid tasks, particularly during the early and middle train-
ing stages. This consistent efficiency in task selection across different model scales confirms the
robustness of our evidence-fusion approach.

On downstream benchmarks, the performance differences between methods are less pronounced,
with all strategies converging to a similarly high level of performance. This outcome is expected, as
the strong intrinsic capabilities of the 7B base model can diminish the performance differentiation
among curriculum strategies on standard benchmarks. Nevertheless, the clear advantage of BOTS
in task selection efficiency underscores its value in optimizing computational resources, even when
final performance margins are narrow.
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Figure 15: Qwen2.5-7B on Code. Ratio of sampled training tasks with different passing rates.
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Figure 16: Qwen2.5-7B on Code. Performance on downstream code benchmarks and aggregation.

Benchmark HumanEval MBPP LiveCodeBench Aggregated
Metric TTB () BSF (1) TTB () BSF (1) TTB (1) BSF (1) TTB (1) BSF (1)
Method (1), % (=)~ 50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 100 1.00 1.00 1.00 100 100 100 100 100 100 1.00 1.00 100 100 100 100 100 100 100 1.00 100 100 100 1.00
Offline 0.83 129 092 101 096 100 113 129 - 099 097 098 104 096 096 090 098 106 097 124 - 099 099 0.99
BOTS-MoPPS 091 054 046 1.08 105 102 083 121 - 103 096 099 097 109 - 096 098 096 084 0.69 084 104 102 1.00
BOTS-DOTS 097 080 073 103 103 103 073 0.68 091 104 100 102 095 132 - 096 094 094 086 096 076 102 1.04 102
BOTS 096 055 077 109 1.03 101  0.69 087 - 103 096 100 118 147 - 087 087 098 082 079 106 104 1.01 100

Table 11: Qwen2.5-7B on Code. TTB and BSF evaluated on downstream code benchmarks.
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F.7 COMPREHENSIVE RESULTS ON LOGIC

Results on Logic-1.5B We evaluate the framework’s performance on the GURU-Logic dataset,
where our recommended BOTS setting demonstrates competitive performance comparable to its
results in the Math and Code domains. The curriculum dynamics in Logic, however, exhibit a
unique profile. As shown in Figure |17} the Effective Task Ratio (ETR) for most strategies follows a
distinct rise-and-fall pattern.

This task selection behavior is reflected in the downstream performance, detailed in Figure [I8] and
Table[T2] The explicit-only strategy again yields highly competitive results. Against this backdrop,
our recommended BOTS setting remains robust, securing strong TTB and BSF scores, particu-
larly in the aggregated performance metrics. These findings underscore that while domain-specific
characteristics may favor different evidence sources, BOTS provides a consistently effective and
general-purpose solution across all tested environments.
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Figure 17: Qwen2.5-1.5B-Instruct on Logic. Ratio of sampled training tasks with different passing
rates over training steps.
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Figure 18: Qwen2.5-1.5B-Instruct on Logic. Performance on downstream logic benchmarks (Or-
dering Puzzle, ARCAGTI) and their aggregation.

Benchmark Ordering Puzzle ARCAGI Aggregated

Metric TTB (}) BSF (1) TTB (}) BSF (1) TTB (|) BSF (1)
Method (1), % (=)  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00
Offline 1.24 1.55 - 0.65 0.78 0.88 1.64 1.16 094 0.67 111 111 1.23 1.36 - 0.67 0.78 0.89
BOTS-MoPPS 0.87 1.02 - 1.12 098 0.98 123 1.04 078 1.00 1.00 1.00 0.87 1.04 - 1.13 096 0.96
BOTS-DOTS 0.65 1.31 - 1.27 093 094 1.00 0.87 - 1.17 0.78 0.89 0.66 1.32 - 1.28 092 093
BOTS 0.85 093 1.03 1.15 1.02 1.02 1.16 0.83 - 1.33 0.89 0.89 0.85 094 1.05 1.19 1.01 1.00

Table 12: Qwen2.5-1.5B-Instruct on Logic. TTB and BSF evaluated on downstream logic bench-
marks.
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Results on Logic-7B  We extend the evaluation to the Qwen2.5-7B model on the GURU-Logic
dataset. Consistent with findings in other settings, BOTS demonstrates robust task selection effi-
ciency. As shown in Figure [I9 its ETR curve (red line) shows a rapid initial rise, achieving an
effective curriculum faster than other methods. On the downstream benchmarks (Figure @, the
performance of all methods converges, which is an expected outcome when finetuning a powerful
base model on these tasks.

This setting, however, reveals two interesting phenomena. First, the curriculum dynamics appear
highly sensitive to hyperparameter choices. The ETR trajectories for BOTS and BOTS-MoPPS
differ markedly, suggesting a complex interplay between evidence sources in this high-capability,
specific-domain context. Second, the offline baseline exhibits a distinct, periodic oscillation in its
ETR. A plausible hypothesis for this is that the powerful 7B model rapidly masters clusters of easy
tasks within the static curriculum, causing ETR to spike, and then encounters clusters of currently
insurmountable tasks, causing ETR to plummet. This cycle repeats as the model iterates over the
fixed dataset, resulting in the observed sharp fluctuations.
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Figure 19: Qwen2.5-7B on Logic. Ratio of sampled training tasks with different passing rates over
training steps.
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Figure 20: Qwen2.5-7B on Logic. Performance on downstream logic benchmarks and their aggre-
gation.

Benchmark Ordering Puzzle ARCAGI Aggregated

Metric TTB (1) BSF (1) TTB () BSF (1) TTB (}) BSF (1)
Method (), % (=)  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%  50% 75% 100% 25% 50% 100%
Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 1.07 121 1.69 098 097 1.05 1.13 1.81 - 0.71 1.00 091 1.06 123 095 096 095 1.04
BOTS-MoPPS 075 089 0.67 1.12 1.00 1.05 0.84 147 - 071 112 0.86 075 092 0.69 1.07 1.00 1.05
BOTS-DOTS 0.80 098 1.61 1.02 095 103 0.80 0.99 - 1.00 1.00 0.86 0.79 091 091 1.02 095 1.03
BOTS 0.80 0.77 0.89 1.04 1.00 1.00 072 117 - 0.88 1.12 091 079 0.78 0.50 1.03 1.01 1.00

Table 13: Qwen2.5-7B on Logic. TTB and BSF evaluated on downstream logic benchmarks.
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G USAGE OF LARGE LANGUAGE MODELS

We employed Large Language Models solely for the purpose of polishing the writing in this
manuscript. Their function was limited to tasks such as correcting grammatical errors, rephras-
ing sentences to enhance clarity and flow, and ensuring the consistent use of terminology. The
LLMs had no role in the ideation of the research, the development of the BOTS framework, the
experimental design, or the analysis of results.
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