
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOTS: A UNIFIED FRAMEWORK FOR BAYESIAN ON-
LINE TASK SELECTION IN LLM REINFORCEMENT
FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement finetuning (RFT) is a key technique for aligning Large Language
Models (LLMs) with human preferences and enhancing reasoning, yet its effec-
tiveness is highly sensitive to which tasks are explored during training. Uniform
task sampling is inefficient, wasting computation on tasks that are either trivial
or unsolvable, while existing task selection methods often suffer from high roll-
out costs, poor adaptivity, or incomplete evidence. We introduce BOTS, a unified
framework for Bayesian Online Task Selection in LLM reinforcement finetuning.
Grounded in Bayesian inference, BOTS adaptively maintains posterior estimates
of task difficulty as the model evolves. It jointly incorporates explicit evidence
from direct evaluations of selected tasks and implicit evidence inferred from these
evaluations for unselected tasks, with Thompson sampling ensuring a principled
balance between exploration and exploitation. To make implicit evidence practi-
cal, we instantiate it with an ultra-light interpolation-based plug-in that estimates
difficulties of unevaluated tasks without extra rollouts, adding negligible over-
head. Empirically, across diverse domains and LLM scales, BOTS consistently
improves data efficiency and performance over baselines and ablations, providing
a practical and extensible solution for dynamic task selection in RFT.

1 INTRODUCTION

Reinforcement finetuning (RFT) has become a key technique for aligning Large Language Models
(LLMs) with human preferences and enhancing their reasoning capabilities (Jaech et al., 2024; Guo
et al., 2025; Luo et al., 2025; Hu et al., 2025; Zeng et al., 2025). However, the effectiveness of RFT
is highly sensitive to task selection (Parashar et al., 2025; Shen et al., 2025; Zhu et al., 2025; Wen
et al., 2025; Li et al., 2025a). Naively training on a static, uniformly sampled dataset is inefficient:
the model spends excessive computation on tasks that are either already mastered (too easy) or
beyond reach (too hard) (Yu et al., 2025; Bae et al., 2025; Chen et al., 2025b). This inefficiency not
only inflates training costs but also destabilizes optimization by reducing the effective batch size.
The central challenge, therefore, is to dynamically select tasks of “just right” difficulty to maximize
learning efficiency as the model’s capability evolves.

Existing methods to this challenge face several limitations. Offline task selection (Parashar et al.,
2025; Shen et al., 2025; Zhu et al., 2025; Wen et al., 2025; Li et al., 2025a), which pre-schedules
tasks from easy to hard, is too rigid and does not adapt to the evolving trajectory of the model. In re-
sponse, a few online selection methods have been proposed, aiming to adaptively choose tasks based
on model’s current capability. Core challenge of these methods lies in the tradeoff between the com-
putational cost of collecting information and the accuracy of the resulting performance estimates.
We argue that existing solutions are not sufficiently efficient: some expend excessive computation
on information gathering, undermining efficiency, while others fail to fully exploit collected infor-
mation, leading to suboptimal selection. On one hand, oversampling-based methods (Yu et al., 2025;
Bae et al., 2025) find suitable tasks by rolling out oversized batches, introducing substantial extra
cost. On the other hand, non-oversampling approaches typically rely on a single source of infor-
mation—either leveraging historical evaluations as explicit evidence (Chen et al., 2025b; Qu et al.,
2025) or exploiting inter-task correlations as implicit evidence (Sun et al., 2025). Our empirical
results reveal a clear complementarity: explicit evidence provides stable and accurate task-difficulty

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Sampling

Reinforcement 
Finetuning

Posterior Update Rules (Sec 3.2)

𝛼𝑡+1
𝑘 = 1 − 𝜆 𝛼𝑡

𝑘 + 𝜆𝛼0 + 𝑠𝑡
𝑘

𝛽𝑡+1
𝑘  = 1 − 𝜆 𝛽𝑡

𝑘 + 𝜆𝛽0 + 𝑓𝑡
𝑘

Explicit Evidence for Selected Tasks

𝛼𝑡+1
𝑘 = 1 − 𝜆 𝛼𝑡

𝑘 + 𝜆𝛼0 + 𝜌 ǁ𝑠𝑡
𝑘

𝛽𝑡+1
𝑘  = 1 − 𝜆 𝛽𝑡

𝑘 + 𝜆𝛽0 + 𝜌 ሚ𝑓𝑡
𝑘

Implicit Evidence for Unselected Tasks

Implicit Evidence

Explicit Evidence

…

𝐵𝑒𝑡𝑎(𝛼𝑡+1
1 , 𝛽𝑡+1

1 )

𝐵𝑒𝑡𝑎(𝛼𝑡+1
2 , 𝛽𝑡+1

2 )

𝐵𝑒𝑡𝑎(𝛼𝑡+1
3 , 𝛽𝑡+1

3 )

𝐵𝑒𝑡𝑎(𝛼𝑡+1
𝑁 , 𝛽𝑡+1

𝑁 )

…

… …

Prior

𝐵𝑒𝑡𝑎(𝛼𝑡
1, 𝛽𝑡

1)

𝐵𝑒𝑡𝑎(𝛼𝑡
2, 𝛽𝑡

2)

𝐵𝑒𝑡𝑎(𝛼𝑡
3, 𝛽𝑡

3)

𝐵𝑒𝑡𝑎(𝛼𝑡
𝑁, 𝛽𝑡

𝑁)

ො𝑝1 = 0.47

ො𝑝2 = 0.78

ො𝑝3 = 0.51

ො𝑝4 = 0.23

…

Estimation
Close to
p*=0.5?

…

Random Selection

BOTS Selection

Interpolation-based Implicit Evidence (Sec 3.3)

Current Model Strong ModelWeak Model

Current ModelWeak Model Strong Model

Training Steps

Performance
Compute Cost
Per Step

w/ BOTS Vanilla

≤ 0.2%

offline offline

Figure 1: Overview of the BOTS framework. BOTS operates in a continuous loop of task selec-
tion, model training, and posterior updating. (1) Selection: Thompson sampling from the posterior
beliefs selects a batch of tasks whose estimated success probabilities are near a target difficulty
(e.g., p∗ = 0.5). (2) Training & Evidence Collection: The LLM is finetuned, yielding direct suc-
cess/failure counts (explicit evidence) for the selected batch. For unselected tasks, predicted counts
(implicit evidence) are produced by a plug-in; in Section 3.3, we introduce an ultra-lightweight
interpolation-based variant with negligible overhead. (3) Posterior Updating: Explicit and implicit
evidence are fused using our generalized Bayesian update rule (Section 3.2).

estimates but suffers from a slow warm-up when historical evaluations are scarce in early training,
whereas implicit evidence quickly guides early-stage selection yet becomes less reliable in later
stages. These findings indicate that relying solely on one type of evidence leaves information un-
derutilized and leads to suboptimal task selection. Therefore, a principled framework to fuse these
complementary evidence sources is essential for robust and efficient online task selection.

In this work, we introduce BOTS, the first unified and extensible framework for Bayesian Online
Task Selection in LLM reinforcement finetuning. BOTS recasts online task selection as a princi-
pled Bayesian inference problem over the model’s evolving capabilities. By doing so, it naturally
addresses the core challenges of non-stationarity and partial observability, featuring with three key
design elements: (1) Bayesian foundation: Grounded in Bayesian inference, the framework nat-
urally adapts to the evolving capability of the model, allowing task difficulty to be continuously
re-estimated. (2) Integration of two evidence sources: Tunable update rules jointly incorporate
explicit evidence from direct evaluations and implicit evidence inferred from related tasks, leverag-
ing their complementary strengths. (3)Thompson sampling: Task selection is guided by posterior
sampling, ensuring a principled balance between exploration and exploitation.

For implicit evidence, we further instantiate the framework with an extremely efficient interpolation-
based plugin that estimates the difficulty of unevaluated tasks without additional rollouts, making the
overhead negligible. We demonstrate empirically, across diverse domains and model scales, that our
method significantly improves data efficiency and model performance over baselines and ablations,
offering a practical, effective, and extensible solution for online task selection in RFT.

2 RELATED WORKS

The impact of task difficulty on RFT of LLMs has become an active research topic. Inspired by
the seminal idea of curriculum learning (Bengio et al., 2009), researchers have proposed various
strategies for selecting appropriate tasks in LLM RFT. For instance, Parashar et al. (2025); Shen
et al. (2025) advocate scheduling tasks from easy to hard, enabling LLMs to gradually acquire
reasoning skills. Similar ideas have been extended to multi-modal LLMs (Zhu et al., 2025; Wen
et al., 2025; Li et al., 2025a), though these methods mainly focus on offline task selection following
an easy-to-hard trajectory.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

More recently, online selection strategies have emerged, often targeting tasks of moderate difficulty.
One line of work adopts sampling-based task filtering, where tasks with consistently trivial rewards
(all zeros or ones) are considered uninformative and are down-weighted or filtered (Yu et al., 2025;
Bae et al., 2025). While effective, these methods require additional rollouts, incurring non-trivial
overhead. To avoid extra rollouts, several works attempt to predict task passing rates without di-
rect rollouts. Chen et al. (2025b) formulate task selection as a non-stationary multi-armed bandit
problem, treating each problem category (e.g., difficulty level or type) as an arm and using abso-
lute advantage as a reward proxy, with posterior estimation based on historical outcomes. Qu et al.
(2025) extend this framework to the task level. Although these methods eliminate extra rollouts,
they rely solely on direct evaluations and overlook cross-task relationships. In contrast, Sun et al.
(2025) propose evaluating a small set of reference tasks and predicting the passing rates of others
using an attention-inspired kernel over embeddings. However, this approach still requires additional
rollouts for the reference set and discards historical evaluation information.

More comprehensive discussion and comparison on related works are provided in Appendix C.

3 BAYESIAN ONLINE TASK SELECTION

3.1 PRELIMINARIES: MODELING TASK DIFFICULTY

A task T = (Q,R) is defined as a tuple consisting of a query Q, expressed in natural language,
and a reward function R that maps any natural language response O to a binary reward R(Q,O) ∈
{0, 1}, which is common in domains like math, coding such that 1 indicates correct and 0 indicates
incorrect. Consider RFT of a parameterized language model Mθ, which maps a query Q to a
response O, on a set of N tasks {T k}Nk=1. The binary reward obtained by executing the model on
a task T follows a Bernoulli distribution Bernoulli(pθ,T ), where pθ,T = Eo∼M(·|T ;θ) R(O, T )
denotes the model’s success probability on T . With a slight abuse of notation, we denote the reward
distribution for a given model and task as R(·|T ; θ) := Bernoulli(pθ,T ). Since we focus on
online task selection over a fixed set of tasks, we simplify the notation by letting pkt denote pθt,T k

and Rk
t denote R(·|T k; θt), whenever the context is clear. All notations are summarized in Table 5.

3.2 CORE MECHANISM: FUSING EVIDENCE IN A UNIFIED POSTERIOR

Our goal is to estimate the success probability pkt of the online-adapted model on k-th task T k. For
efficiency, direct evaluations are only performed after a task is selected. As statistical evidence, at
time step t, we obtain online samples rk1:n

i.i.d.∼ Rk
t (·) for each selected task T k in the training batch

Bt, where n corresponds to the number of rollouts per task.

A natural way to model the estimation is via a Beta distribution, Beta(αk
t , β

k
t ), where the posterior

parameters αk
t and βk

t represent the accumulated counts of successes and failures, respectively, for
model θt on task T k. The problem then reduces to designing online adaptation rules for αk

t and
βk
t . We propose the following online adaptation rules: Given a batch of direct evaluation results

Bt = {(TBt[i], r
Bt[i]
1:n )}|Bt|

i=1 , we define the adaptation rules as

αk
t+1 = (1−λ)αk

t +λαk
0+(1−ρ) skt +ρ s̃kt , βk

t+1 = (1−λ)βk
t +λβk

0 +(1−ρ) fk
t +ρ f̃k

t , (1)

where α0, β0 denote the prior parameter set for the Beta distribution, and the coefficient λ ∈ [0, 1]
discounts historical information;

skt =
∑
k′∈Bt

I[k′ = k]

n∑
i=1

rk
′

i , fk
t =

∑
k′∈Bt

I[k′ = k]

n∑
i=1

(1− rk
′

i ) (2)

denote the explicit success and failure counts from direct evaluations, by slightly abusing the notation
k ∈ Bt to represent task T k received direct evaluation at time step t. Notice when direct evaluation
results are not available (k /∈ Bt), skt = fk

t = 0; and

s̃kt = skt + I[k /∈ Bt] p̃(k,Bt)n, f̃k
t = fk

t + I[k /∈ Bt] (1− p̃(k,Bt))n. (3)

Here, ρ ∈ [0, 1] balances the contributions of explicit and implicit evidence, s̃kt and f̃k
t coincide

with skt and fk
t when direct evaluation results are available for task Tk, and otherwise represent the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

pseudo success and failure counts. These are derived from an estimator p̃(k,Bt), which uses inter-
task relationships to infer difficulty for tasks not present in the current evaluation batch Bt. Our
framework places no restrictions on the specific form of p̃(k,Bt), while in Sec. 3.3, we introduce a
lightweight interpolation-based instance to produce the pseudo counts. Additionally, to manage the
equivalent total sample size—and hence the uncertainty of the estimate—the pseudo sample size is
ensured to satisfy s̃kt + f̃k

t = n.

The following proposition indicates that the update in Equation (1) preserves the Beta family as the
(generalized) posterior for a Bernoulli parameter under a tempered/prior-mixing update.
Proposition 1. Let p ∈ (0, 1) be the Bernoulli success probability at time t. Suppose the current
belief is πt(p) = Beta(p | αt, βt), and let π0(p) = Beta(p | α0, β0) be a base prior. Given counts
(st, ft) and pseudo counts (s̃t, f̃t) with st, ft, s̃t, f̃t ≥ 0, define the generalized-Bayes update

πt+1(p) ∝ πt(p)
1−λ π0(p)

λ︸ ︷︷ ︸
prior mixing / discounting

×
[
pst(1− p)ft

] 1−ρ︸ ︷︷ ︸
tempered explicit likelihood

×
[
ps̃t(1− p)f̃t

] ρ︸ ︷︷ ︸
tempered implicit evidence

, (4)

with λ ∈ (0, 1) and ρ ∈ [0, 1]. Then πt+1 is exactly Beta(αt+1, βt+1) with

αt+1 = (1− λ)αt + λα0 + (1− ρ)st + ρs̃t, βt+1 = (1− λ)βt + λβ0 + (1− ρ)ft + ρf̃t.

The proof is placed in Appendix D.1.

3.3 ULTRA-LIGHT INTERPOLATION PLUG-IN FOR IMPLICIT EVIDENCE

Given a batch of online evaluation results Bt = {(TBt[i], r
Bt[i]
1:n )}|Bt|

i=1 , we aim to estimate the passing
rate pkt for any task Tk using an estimator p̃(Bt, k). In this work, we adopt an ultra-lightweight
interpolation-based estimator to minimize additional computational overhead for online task selec-
tion. Notably, the adaptation rules in Sec. 3.2 place no restrictions on the specific form of p̃(Bt, k).

Assume that for each task T k, we have empirical success rates p̄kw and p̄ks from two reference models
of distinct capability (weak vs. strong). Define the average empirical success rates of the current,
weak, and strong models on Bt as

p̄reft (Bt) :=
1

|Bt|
∑
k∈Bt

1

n

n∑
j=1

rkj , p̄refw (Bt) :=
1

|Bt|
∑
k∈Bt

p̄kw, p̄refs (Bt) :=
1

|Bt|
∑
k∈Bt

p̄ks .

We estimate the relative capability coefficient of the current model as µt(Bt) =
(
p̄reft (Bt) −

p̄refw (Bt)
)
/
(
p̄refs (Bt) − p̄refw (Bt)

)
, which locates the current model between the weak and strong

reference models on the batch Bt (we assume p̄refs > p̄refw ; otherwise one may add a small ε to the
denominator). To reduce variance from stochastic rollouts, we maintain a momentum version of the
coefficient µ̃t = γµ̃t−1 + (1− γ)µt.

Finally, the passing rate of the current model on task T k is obtained via linear interpolation between
the weak and strong references, followed by clipping to [0, 1]:

p̃(Bt, k) = clip
(
µ̃t(Bt) p̄

k
s +

(
1− µ̃t(Bt)

)
p̄kw, 0, 1

)
. (5)

Computational Cost. The primary cost of our approach arises from evaluating the reference mod-
els for all tasks, which requires extensive rollouts. Fortunately, benchmarking standard base mod-
els has already become routine in RL dataset construction—for example, Cheng et al. (2025) re-
port Qwen2.5-7B-Instruct (Yang et al., 2024) and Qwen3-32B (Yang et al., 2025) performance as
meta-tags for filtering. Given these pre-computed references, the additional online overhead of our
interpolation-based estimator is negligible compared to training-time rollouts (see Appendix F.1 for
empirical results). This efficiency follows from two properties: (i) no extra rollouts are needed
during training, and (ii) both updates and predictions reduce to lightweight vector operations.

3.4 THOMPSON SAMPLING FOR TASK SELECTION

Having established a task difficulty posterior Beta(pkt | αk
t , β

k
t ) over the success probability of each

task T k, we now turn to the crucial step of selecting tasks for the next training batch.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The first question is: at what difficulty level does the current model benefit most from training?
Prior works (Chen et al., 2025b; Sun et al., 2025) show that, under binary rewards, tasks with suc-
cess probability around 0.5 are most informative for learning as they lead to gradients with larger
expected magnitude than tasks with success probability close to 0 or 1. We define the utility of a
task as the absolute deviation of its posterior mean from a target success probability p∗ ∈ (0, 1),
with p∗ = 0.5 as the canonical choice.

Given this target success probability, the problem of online task selection naturally reduces to a
non-stationary bandit problem. The central challenge is the tradeoff between exploitation and ex-
ploration: the model must decide whether to select tasks with high-confidence estimates close to
the target rate in order to maximize immediate utility, or to select tasks with high uncertainty to
gather information that may improve future decisions. A purely exploitative strategy might select
tasks whose posterior mean p̃kt is closest to p∗, but this risks overlooking tasks whose difficulty
is currently uncertain but potentially optimal. To naturally balance exploration and exploitation,
we employ Thompson Sampling (Thompson, 1933), a strategy renowned for both its empirical ef-
fectiveness and theoretical guarantees. More specifically, at each selection step t, we perform the
following: (1) Posterior Sampling: Draw a sample of the passing rate from its current posterior
distribution p̂k ∼ Beta(αk

t , β
k
t ) for each task T k in the pool. (2) Selection: Select tasks with the

highest estimated utilities {ûk := |p̂k − p∗|} to form the training batch Bt+1. This procedure ele-
gantly prioritizes tasks that are likely to be near the target difficulty, while the inherent variance in
sampling from the posterior ensures that tasks with higher uncertainty are naturally explored.

Impact of λ, ρ on Task Selection. Proposition 2 characterizes how the hyperparameters λ and ρ
jointly determine the effective sample size nt = αt + βt of each task’s Beta posterior, thereby
controlling the confidence of the estimated probability of success.

Proposition 2. Let nt := αt + βt. Suppose the updates follow Equation (1)–(3) with λ ∈ (0, 1),
ρ ∈ [0, 1], we have

lim inf
t→∞

nt = n0 +
ρ
λn, lim sup

t→∞
nt = n0 +

1
λn.

The proof is given in Appendix D.2. Specifically, λ controls the overall scale of the effective sample
size: smaller values accelerate forgetting and increase posterior uncertainty, promoting exploration,
while larger values stabilize the posterior and favor exploitation. Meanwhile, ρ sets the lower bound
of effective counts for unevaluated tasks: smaller values maintain high uncertainty to encourage
exploration, whereas larger values reduce uncertainty and bias selection toward exploitation. To-
gether, λ and ρ provide complementary knobs for balancing exploration and exploitation in online
task selection. A more detailed discussion is placed in Appendix E.1.

4 EXPERIMENTS

We begin with Section 4.1, which introduces datasets, reinforcement finetuning protocols, evalu-
ation metrics, and computational cost. Section 4.2 and Section 4.3 analyze the effects of mixing
evidence (ρ) and forgetting/adaptivity (λ) on task selection respectively. Section 4.4 then compares
BOTS with competitive baselines across model scales and domains, while Section 4.5 summarizes
additional experiments provided in the Appendix F.

4.1 SETUPS

Dataset. We conduct experiments on GURU (Cheng et al., 2025), a well-curated cross-domain
RL dataset. Each subset is deduplicated, verified, and filtered. We use its math, code, and logic
subsets (excluding the Zebra Puzzle due to its non-binary reward). Detailed information about the
used datasets is provided in Appendix B.1 (for training) and Appendix B.2 (for evaluation).

RFT Setting. We adopt GRPO (Shao et al., 2024), Qwen2.5-1.5B-Instruct and Qwen2.5-7B.
Key hyperparameters include a learning rate of 1e-6, 16 rollouts per task, and a temperature of 1.0.
Comprehensive training details and used RL algorithm are provided in Appendix B.3 and B.5.

Evaluation. We report the following metrics to evaluate our framework and its ablations, with
formal definitions given in Appendix B.4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Effective Task Ratio (ETR). It evaluates tasks selection. The fraction of sampled tasks whose
empirical success rate, estimated from n = 16 independent rollouts, falls strictly within the (0, 1)
range. A higher ECR indicates a more efficient task selection that successfully filters out tasks that
are either already mastered (p = 1) or currently unsolvable (p = 0).

• Time-to-Baseline (TTB). It measures training acceleration relative to the random baseline to
achieve a specific performance. Let the baseline start from performance Pinit and reach the best
performance Pbest within the training window. For a target fraction τ ∈ {50%, 75%, 100%}, we
define the target performance as Pτ = Pinit + τ · (Pbest −Pinit). TTB(τ ) is the ratio of steps required
by a method to reach Pτ compared to the baseline. For example, if the baseline starts at 0.1 and
reaches 0.3 by step 100, then the 50% target is 0.2. If the baseline first reaches 0.2 at step 40 while
another method reaches it at step 30, then TTB(50%) = 30/40 = 0.75. By definition, the baseline
has TTB = 1; smaller values indicate greater acceleration.

• Best-so-far (BSF). It measure the performance gain relative to the random baseline under a fixed
budget. Within specific ratio (25%, 50%, 100%) of total training steps, BSF is the ratio between
a method’s best-so-far performance and the baseline’s best-so-far performance. For example, at
step 50 (total steps 100), if the baseline’s best is 0.4 and a method’s best is 0.6, then BSF(50%) =
0.6/0.4 = 1.5. The baseline always has BSF = 1; larger values indicate greater gains.

Computational Overhead. We note that BOTS introduces negligible additional computation, with
overhead measured at ≤ 0.2% of total training time (see analysis in Section 3.3 and empirical results
in Appendix F.1). Thus, in the main results, we report TTB and BSF, in terms of training steps rather
than wall-clock time, as their difference is practically insignificant.

4.2 FUSING TWO SOURCES OF EVIDENCE: ANALYZING THE IMPACT OF ρ

Recall as defined in Equation 1, ρ controls the relative weights of explicit and implicit evidence. A
smaller ρ places greater emphasis on explicit evidence, whereas a larger ρ increases the contribu-
tion of implicit evidence. Moreover, according to Proposition 2 and the analysis in Section 3.4, ρ
determines the limit inferior of the equivalent counts in the Beta posterior. Intuitively, reducing ρ
increases the overall randomness of posterior sampling, while enlarging ρ stabilizes the estimates
by anchoring them more strongly to implicit evidence.

We investigate the role of ρ in task selection by varying ρ ∈ {0.0, 0.05, 0.1, 0.2, 0.5, 1.0}, while
keeping other hyperparameters fixed at their default values (λ = 0.1, posterior sampling enabled).

Figure 2: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks (measured over 16
rollouts) with passing rates: strictly between 0 and 1, strictly greater than 0, and strictly less than 1,
along with aggregated performance (MATH500 and AIME24), plotted against training steps.

Analysis and Takeaways. Our central finding is that implicit evidence is crucial for rapid cold-
starts, while explicit evidence is vital for long-term accuracy. A principled fusion of both is key to
effective task selection. Relying solely on implicit evidence (ρ = 1) leads to error accumulation,
while ignoring it (ρ = 0) suffers from severe data sparsity in early training, especially on large-scale
datasets. This conclusion is supported by the following observations from Figure 2 and Table 1:

(1) Implicit evidence provides an essential early boost. In the initial training phase, all settings
with ρ > 0 demonstrate a sharp increase in the Effective Task Ratio (ETR) over the random baseline,
primarily by filtering out unsolvable tasks (p = 0). In contrast, the ρ = 0 setting, which relies solely
on sparse explicit feedback, behaves almost identically to random sampling. This highlights the
critical role of implicit evidence in overcoming the cold-start problem.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Benchmark MATH500 AIME24 Math Aggregated Performance

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Target Fraction 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
λ = 0.1, ρ = 0.0 1.10 0.73 0.88 1.00 0.96 1.03 0.57 0.92 - 1.00 1.75 0.92 1.13 0.73 0.99 1.02 0.98 1.01
λ = 0.1, ρ = 0.05 1.02 0.56 0.60 1.08 1.06 1.05 0.50 0.51 0.68 1.00 2.50 1.17 1.07 0.58 0.60 1.10 1.05 1.03
λ = 0.1, ρ = 0.1 0.89 0.49 0.57 1.13 1.05 1.05 0.51 1.00 1.00 1.25 1.75 1.00 0.89 0.56 0.64 1.12 1.07 1.05
λ = 0.1, ρ = 0.2 0.99 0.68 0.68 1.10 1.10 1.06 0.96 1.06 - 1.25 1.50 0.92 0.99 0.74 0.80 1.13 1.08 1.08
λ = 0.1, ρ = 0.5 0.93 0.64 0.67 1.10 1.10 1.03 0.63 1.11 1.12 0.75 2.25 1.00 0.93 0.66 1.00 1.10 1.11 1.01
λ = 0.1, ρ = 1.0 0.92 0.61 0.95 1.04 1.08 1.02 0.42 0.71 - 1.25 2.25 0.92 0.90 0.61 0.86 1.05 1.06 1.01

Table 1: TTB and BSF evaluated on MATH500, AIME24, and aggregated performance with
Qwen2.5-1.5B-Instruct. For TTB, notation “-” indicates that the target performance is never
achieved within the evaluation window. The best and second best results are marked accordingly.

(2) Over-reliance on implicit evidence degrades long-term performance. As training progresses,
settings with a large ρ (e.g., 0.5, 1.0) show a declining ETR, as the implicit evidence cannot perfectly
track the learning model’s fine-grained progress. It often fails to recognize when tasks are fully
mastered (p = 1), leading to their wasteful selection. This inaccuracy ultimately harms late-stage
performance, as seen in the aggregated TTB and BSF metrics where large ρ values underperform.

(3) A small positive ρ achieves the best of both worlds. A ρ ∈ {0.05, 0.1, 0.2} strikes an opti-
mal balance. It leverages implicit evidence for initial acceleration while allowing more accurate,
accumulating explicit evidence to dominate in the long run. This fusion leads to robust performance
gains throughout entire training process, achieving best overall TTB and BSF scores.

4.3 FORGETTING AND ADAPTIVITY: ANALYZING THE IMPACT OF λ

Recall as defined in Equation 1, λ controls the discounting of historical information in the Beta
posterior. A smaller λ places more emphasis on recent evaluations, improving adaptability but
increasing the variance of the estimates. Conversely, a larger λ gives greater weight to accumulated
history, yielding more stable but less responsive estimates. Furthermore, Proposition 2 shows that λ
determines the scale of the equivalent counts in the Beta posterior. Intuitively, reducing λ accelerates
the decay of equivalent counts, increasing the randomness of posterior sampling, whereas enlarging
λ slows the decay and stabilizes the estimates.

We investigate the role of λ in task selection by varying λ ∈ {0.0, 0.05, 0.1, 0.2, 0.5, 1.0}, while
keeping other hyperparameters fixed at their default values (ρ = 0.1, posterior sampling enabled).

Figure 3: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks (measured over 16
rollouts) with passing rates: strictly between 0 and 1 (L1), strictly greater than 0 (L2), and strictly
less than 1 (L3), along with MATH500 Accuracy (avg@1), plotted against training steps.

Analysis and Takeaways. The hyperparameter λ governs the framework’s adaptivity to the non-
stationary learning process. Our key takeaway is that task selection must be adaptive, and moderate
forgetting is essential for long-term performance. An overly long memory (λ → 0) prevents the
system from recognizing when a task has been mastered, while an overly short memory (λ →
1) leads to unstable estimates. This conclusion is supported by the following observations from
Figure 3 and Table 2:

(1) Small λ struggles with mastered tasks: Settings with small λ (e.g., 0.0, 0.05) exhibit a declin-
ing ETR in the mid-to-late training phase. This is because their long memory makes them slow to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Benchmark MATH500 AIME24 Math Aggregated Performance

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Target Fraction 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
λ = 0.0, ρ = 0.1 0.88 0.57 0.62 1.09 1.11 1.03 0.77 - - 1.25 1.50 0.75 0.87 0.58 0.71 1.11 1.08 1.04
λ = 0.05, ρ = 0.1 0.92 0.45 0.75 1.12 1.07 1.02 0.64 1.11 1.16 1.25 1.75 1.08 0.94 0.50 0.76 1.15 1.07 1.05
λ = 0.1, ρ = 0.1 0.89 0.49 0.57 1.13 1.05 1.05 0.51 1.00 1.00 1.25 1.75 1.00 0.89 0.56 0.64 1.12 1.07 1.05
λ = 0.2, ρ = 0.1 0.92 0.56 0.59 1.08 1.08 1.06 0.63 - - 0.75 2.00 0.75 0.95 0.58 0.66 1.07 1.11 1.06
λ = 0.5, ρ = 0.1 1.11 0.53 0.77 1.11 1.07 1.03 0.51 0.89 - 1.25 1.75 0.83 1.14 0.74 0.86 1.12 1.06 1.03
λ = 1.0, ρ = 0.1 1.15 0.68 0.80 1.04 1.04 1.03 0.60 0.63 - 1.00 2.50 0.83 1.14 0.68 1.00 1.04 1.09 1.02

Table 2: TTB and BSF evaluated on MATH500, AIME24, and aggregated performance with
Qwen2.5-1.5B-Instruct. For TTB, notation “-” indicates that the target performance is never
achieved within the evaluation window. The best and second best results are marked accordingly.

update the difficulty of tasks that the model has recently mastered (from p < 1 to p = 1), causing
them to be wastefully selected. This ultimately limits late-stage performance gains.

(2) Large λ lacks stability: Conversely, large λ values (e.g., 0.5, 1.0) correspond to rapid forgetting.
This makes the posterior estimates highly volatile and overly dependent on the most recent (and
potentially noisy) observations. As a result, they fail to build stable beliefs about task difficulties,
leading to only marginal improvements over the random baseline in the early training stages.

(3) Moderate λ balances stability and adaptivity: A moderate λ ∈ {0.05, 0.1, 0.2} strikes a
balance. It provides enough memory to form stable difficulty estimates while being adaptive enough
to track the model’s evolving capabilities. This leads to strong and consistent performance gains
across the entire training process, achieving the best TTB and BSF results.

4.4 PERFORMANCE COMPARISON ACROSS MODELS AND DOMAINS

Domain Math Code Logic

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Target Fraction 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 0.96 0.51 0.78 1.16 1.12 1.01 0.68 1.03 - 1.09 1.00 0.99 1.23 1.36 - 0.67 0.78 0.89

BOTS-MoPPS 1.78 1.32 - 0.90 0.90 0.99 0.78 0.96 1.09 1.09 1.02 1.02 0.87 1.04 - 1.13 0.96 0.96
BOTS-DOTS 0.83 0.75 0.81 1.11 1.09 1.08 0.67 0.65 0.79 1.17 1.09 1.02 0.66 1.32 - 1.28 0.92 0.93

BOTS 0.89 0.56 0.64 1.12 1.07 1.05 0.58 0.90 0.77 1.17 1.08 1.03 0.85 0.94 1.05 1.19 1.01 1.00

Table 3: BOTS-Qwen2.5-1.5B-Instruct Across Domains. The recommended setting outperforms
both out-of-framework and within-framework baselines, achieving 8 first-place and 9 second-place
finishes out of 18 reported metrics. Full results are in Appendix F.5∼F.7.

Domain Math Code Logic

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Target Fraction 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 0.91 0.73 0.76 0.99 1.00 1.05 0.97 1.24 - 0.99 0.99 0.99 1.06 1.23 0.95 0.96 0.95 1.04

BOTS-MoPPS 1.07 1.15 0.70 0.94 1.04 1.04 0.84 0.69 0.84 1.04 1.02 1.00 0.75 0.92 0.69 1.07 1.00 1.05
BOTS-DOTS 0.83 0.80 0.61 0.98 1.02 1.03 0.86 0.96 0.76 1.02 1.04 1.02 0.79 0.91 0.91 1.02 0.95 1.03

BOTS 0.86 0.77 0.63 0.99 1.04 1.04 0.82 0.79 1.06 1.04 1.01 1.00 0.79 0.78 0.50 1.03 1.01 1.00

Table 4: BOTS-Qwen2.5-7B Across Domains. The recommended setting outperforms both out-
of-framework and within-framework baselines, achieving 6 first-place and 8 second-place finishes
out of 18 reported metrics. Full results are in Appendix F.5∼F.7.

We conduct extended experiments across model sizes (1.5B and 7B) and task domains (math, code,
logic). We compare BOTS under the default setting (λ = 0.1, ρ = 0.1, posterior sampling enabled)
against four baselines. Two are out-of-framework baselines: (i) Random, where tasks are uniformly
sampled, and (ii) Offline, where tasks are ranked from easy to hard based on success probabilities of
Qwen2.5-7B-Instruct and Qwen3-8B (for tie-breaking). Two are within-framework baselines: (iii)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

BOTS-MoPPS, with λ = 0.0, ρ = 0.0 and posterior sampling enabled, which reduces our frame-
work to MoPPS (Qu et al., 2025) and thus enables direct evaluation of a purely explicit-evidence
strategy; and (iv) BOTS-DOTS, with λ = 1.0, ρ = 1.0 and posterior sampling disabled, serving as
a proxy inspired by DOTS (Sun et al., 2025), which evaluates the long-term effectiveness of relying
almost entirely on implicit evidence without corrective feedback. Implementation details and further
discussion of these baselines are provided in Appendix B.6.

Analysis and Takeaways. The default BOTS setting consistently outperforms both out-of-
framework and within-framework baselines, validating the principle of fusing explicit and im-
plicit evidence. Moreover, BOTS-DOTS emerges as the strongest baseline, confirming that our
interpolation-based implicit evidence provides useful guidance for task selection. These conclu-
sions are supported by the following observations from Table 3 and Table 4:

(1) BOTS achieves the best overall performance. For the 1.5B model, BOTS obtains 8 first-place
and 9 second-place finishes out of 18 reported metrics, with a notable 36% acceleration (TTB(100%)
= 0.64) in the math domain. For the 7B model, BOTS secures 6 first-place and 8 second-place
finishes, including a remarkable 50% acceleration (TTB(100%) = 0.50) in the logic domain.

(2) BOTS-DOTS ranks second. For the 1.5B model, BOTS-DOTS achieves 6 first-place and 4
second-place finishes. For the 7B model, it achieves 5 first-place and 1 second-place finishes, out-
performing the remaining baselines.

In summary, these results demonstrate that BOTS not only delivers consistent gains across different
domains and model scales, but also achieves substantial acceleration in training efficiency. The su-
periority of BOTS over both BOTS-MoPPS and BOTS-DOTS highlights the necessity of combining
explicit and implicit evidence, while the strength of BOTS-DOTS underscores the practical value of
our interpolation-based implicit evidence. Together, these findings establish BOTS as a principled,
effective, and scalable solution for online task selection in LLM RFT.

4.5 OVERVIEW OF ADDITIONAL EXPERIMENTS

We provide extended experiments in Appendix F for a deeper understanding of BOTS: (1) A wall-
clock breakdown (Appendix F.1) shows task selection adds less than 0.2% overhead. (2) Offline
evaluation of the interpolator (Appendix F.2) confirms it effectively tracks task difficulty. (3) An
ablation on Thompson sampling (Appendix F.3) shows posterior sampling yields more stable selec-
tion. (4) A fine-grained analysis of selected task dynamics (Appendix F.4) illustrates how BOTS
shifts computation away from trivial (p = 1) and impossible (p = 0) tasks toward the informative
mid-difficulty region.

5 CONCLUSION AND DISCUSSION

We introduced BOTS, a unified Bayesian framework for online task selection in LLM reinforce-
ment finetuning. BOTS formulates task difficulty estimation as Bayesian belief updating, fusing
two complementary evidence sources: stable but sparse explicit evidence from direct rollouts and
dense but less precise implicit evidence from inter-task relationships. Instantiated with a lightweight
interpolator and Thompson sampling, BOTS achieves adaptive and efficient online data selection
with negligible overhead. Experiments show consistent gains in data efficiency and model perfor-
mance across domains and model scales, surpassing methods that rely on a single evidence source.
We envision BOTS as a practical foundation for dynamic, model-aware data selection, advancing
efficient and effective LLM training.

This work opens several promising directions. First, we focused mainly on binary-reward tasks;
extending and validating BOTS in non-binary reward settings is an important next step. Second,
BOTS currently uses fixed update rules, though our results show that different values of λ and ρ
work best at different training stages. Developing adaptive update strategies that adjust to training
dynamics would further improve robustness. Third, while our lightweight interpolator efficiently
provides implicit evidence, designing stronger plug-in alternatives and systematically studying the
trade-off between predictive accuracy and computational cost remain open challenges. A more
detailed discussion of these directions is provided in Appendix E.4.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement All authors have read and adhered to the ICLR 2026 Code of Ethics. Our re-
search focuses on the algorithmic efficiency of reinforcement finetuning for Large Language Models
and does not involve human subjects, animal experiments, or the processing of personally identifi-
able information. The datasets used in our experiments are publicly available and established bench-
marks within the research community; all software, datasets, and frameworks utilized are governed
by the permissive Apache-2.0 open-source license. Our method aims to make AI research more
sustainable and accessible, and we do not foresee any direct negative societal impacts or ethical
concerns arising from our proposed methodology. The authors declare no conflict of interest.

Reproducibility Statement We are committed to ensuring the full reproducibility of our research.
To facilitate this, we will release our source code, which includes the implementation of the BOTS
framework and the scripts required to replicate all experiments presented in this paper. The appendix
contains a comprehensive description of our experimental setup, detailing all model configurations,
dataset processing steps, and hyperparameter settings.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-scale,
high-quality math dataset for reinforcement learning in language models. CoRR, abs/2502.17387,
2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. arXiv preprint
arXiv:2504.03380, 2025.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. SEED-GRPO: semantic entropy en-
hanced GRPO for uncertainty-aware policy optimization. CoRR, abs/2505.12346, 2025a.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning. arXiv preprint
arXiv:2505.14970, 2025b.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning
from a cross-domain perspective. arXiv preprint arXiv:2506.14965, 2025.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024.

Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-agi-2:
A new challenge for frontier ai reasoning systems. arXiv preprint arXiv:2505.11831, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
language models. CoRR, abs/2505.22617, 2025.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: model
alignment as prospect theoretic optimization. CoRR, abs/2402.01306, 2024.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. In The Thirteenth International Conference on Learning Representations,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025a.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Jiwoo Hong, Noah Lee, and James Thorne. ORPO: monolithic preference optimization without
reference model. In EMNLP, pp. 11170–11189. Association for Computational Linguistics, 2024.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Kaixin Li. Verified taco problems. https://huggingface.co/datasets/likaixin/
TACO-verified, 2024.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. In ACL (1), pp.
14255–14273. Association for Computational Linguistics, 2024a.

Shicheng Li, Lei Li, Kun Ouyang, Shuhuai Ren, Yuanxin Liu, Yuanxing Zhang, Fuzheng Zhang,
Lingpeng Kong, Qi Liu, and Xu Sun. Temple: Temporal preference learning of video llms via
difficulty scheduling and pre-sft alignment. arXiv preprint arXiv:2503.16929, 2025a.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for
abstract reasoning. arXiv preprint arXiv:2411.02272, 2024b.

Yu Li, Zhuoshi Pan, Honglin Lin, Mengyuan Sun, Conghui He, and Lijun Wu. Can one domain
help others? a data-centric study on multi-domain reasoning via reinforcement learning. arXiv
preprint arXiv:2507.17512, 2025b.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. Diversity as a reward: Fine-
tuning llms on a mixture of domain-undetermined data. CoRR, abs/2502.04380, 2025.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
ment? A comprehensive study of automatic data selection in instruction tuning. In ICLR. Open-
Review.net, 2024.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. #instag: Instruction tagging for analyzing supervised fine-tuning of large language
models. In ICLR. OpenReview.net, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

MAA. American invitational mathematics examination – aime. In
American Invitational Mathematics Examination – AIME 2024, Febru-
ary 2024, 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime. Accessed: 2025-
09-09.

12

https://arxiv.org/abs/2103.03874
https://huggingface.co/datasets/likaixin/TACO-verified
https://huggingface.co/datasets/likaixin/TACO-verified
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Justus Mattern, Sami Jaghouar, Manveer Basra, Jannik Straube, Matthew Di Ferrante, Felix
Gabriel, Jack Min Ong, Vincent Weisser, and Johannes Hagemann. Synthetic-1: Two mil-
lion collaboratively generated reasoning traces from deepseek-r1, 2025. URL https://www.
primeintellect.ai/blog/synthetic-1-release.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. In NeurIPS, 2024.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang
Xie, Yilun Huang, Yilei Zhang, Dawei Gao, Yaliang Li, Bolin Ding, and Jingren Zhou. Trinity-
rft: A general-purpose and unified framework for reinforcement fine-tuning of large language
models. CoRR, abs/2505.17826, 2025.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
Yu Zhang, James Caverlee, Dileep Kalathil, et al. Curriculum reinforcement learning from easy
to hard tasks improves llm reasoning. arXiv preprint arXiv:2506.06632, 2025.

Benjamin Pikus, Pratyush Ranjan Tiwari, and Burton Ye. Hard examples are all you need: Maxi-
mizing GRPO post-training under annotation budgets. CoRR, abs/2508.14094, 2025.

Yun Qu, Qi Wang, Yixiu Mao, Vincent Tao Hu, Björn Ommer, and Xiangyang Ji. Can prompt
difficulty be online predicted for accelerating rl finetuning of reasoning models? arXiv preprint
arXiv:2507.04632, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In NeurIPS, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024.

Wei Shen, Jiangbo Pei, Yi Peng, Xuchen Song, Yang Liu, Jian Peng, Haofeng Sun, Yunzhuo
Hao, Peiyu Wang, Jianhao Zhang, et al. Skywork-r1v3 technical report. arXiv preprint
arXiv:2507.06167, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Yifan Sun, Jingyan Shen, Yibin Wang, Tianyu Chen, Zhendong Wang, Mingyuan Zhou, and Huan
Zhang. Improving data efficiency for llm reinforcement fine-tuning through difficulty-targeted
online data selection and rollout replay. arXiv preprint arXiv:2506.05316, 2025.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for LLM reasoning. CoRR, abs/2506.01939, 2025a.

Zhenting Wang, Guofeng Cui, Yu-Jhe Li, Kun Wan, and Wentian Zhao. Dump: Auto-
mated distribution-level curriculum learning for rl-based llm post-training. arXiv preprint
arXiv:2504.09710, 2025b.

Cheng Wen, Tingwei Guo, Shuaijiang Zhao, Wei Zou, and Xiangang Li SARI. Structured audio
reasoning via curriculum-guided reinforcement learning. arXiv preprint arXiv:2504.15900, 2025.

13

https://www.primeintellect.ai/blog/synthetic-1-release
https://www.primeintellect.ai/blog/synthetic-1-release


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms.
arXiv preprint arXiv:2504.14655, 2025.

Zhe Xu, Daoyuan Chen, Zhenqing Ling, Yaliang Li, and Ying Shen. Mindgym: What matters in
question synthesis for thinking-centric fine-tuning? CoRR, abs/2503.09499, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. URL https://api.
semanticscholar.org/CorpusID:274859421.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: less is more
for reasoning. CoRR, abs/2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization. CoRR, abs/2507.18071, 2025.

Chenglin Zhu, Tao Zhang, Chong Li, Mingan Lin, Zenan Zhou, and Jian Xie. Eduflow: Advanc-
ing mllms’ problem-solving proficiency through multi-stage, multi-perspective critique. arXiv
preprint arXiv:2507.09374, 2025.

14

https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

Table of Contents

A Notation Summary 16

B Implementational Details 17

B.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Evaluation Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.3 Trainining Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.4 Formal Definitions of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.5 Policy Optimization Algorithm: GRPO . . . . . . . . . . . . . . . . . . . . . . . 19

B.6 Baseline Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C More Related Works 20

D Proofs 20

D.1 Proof for Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.2 Proof for Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E Extended Discussion 21

E.1 Impact of λ, ρ on Task Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.2 Attention-Based Adaptive Difficulty Estimate . . . . . . . . . . . . . . . . . . . . 22

E.3 Interpolation-Based Implicit Evidence . . . . . . . . . . . . . . . . . . . . . . . . 22

E.4 Discussion on Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E.4.1 Generalization to Other Reward Distributions . . . . . . . . . . . . . . . . 23

E.4.2 Self-Adaptive Update Rules . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.4.3 Alternative Plug-In for Implicit Evidence . . . . . . . . . . . . . . . . . . 24

F Additional Experimental Results 24

F.1 Computational Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

F.2 Interpolation-Based Implicit Evidence: Empirical Results . . . . . . . . . . . . . . 25

F.3 Sampling from Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

F.4 Dynamics of Selected Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F.5 Comprehensive Results on Math . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

F.6 Comprehensive Results on Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F.7 Comprehensive Results on Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

G Usage of Large Language Models 34

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A NOTATION SUMMARY

For ease of reading and reference, we present the symbols used in this paper in Table 5.

Symbol Description
General & Problem Setup
Tk, T The k-th task, or a generic task.
Q,O A query (input) and an outcome (output) of a task.
R(·) A binary reward function, mapping an outcome to {0, 1}.
Mθ The language model parameterized by θ.
pθ,T Success probability of model Mθ on task T .
t Index for the training step or iteration.
pkt Shorthand for pθt,Tk

, success probability on task k at step t.
Rk

t Shorthand for the reward distribution (Bernoulli) of task k at step t.
N Total number of tasks in the pool.
n Number of rollouts per task in a batch.
Bt The batch of tasks selected for training at step t.

Bayesian Estimation Framework
αk
t , β

k
t Parameters of the Beta posterior for task k at step t.

αk
0 , β

k
0 Parameters of the base prior Beta distribution for task k.

nk
t Equivalent sample size for task k at step t, nk

t = αk
t + βk

t .
nk
0 Equivalent sample size of the prior for task k, nk

0 = αk
0 + βk

0 .
λ Forgetting factor in [0, 1] for historical information.
ρ Balance coefficient in [0, 1] for explicit vs. implicit evidence.
rki The i-th binary reward obtained for task k.
skt , f

k
t Explicit success and failure counts for task k at step t.

s̃kt , f̃
k
t Pseudo success and failure counts from implicit evidence.

Interpolation-based Implicit Evidence
p̄kw, p̄

k
s Pre-computed success rates of a weak and a strong reference model on task k.

p̄reft , p̄refw , p̄refs Avg. success rates of current, weak, and strong models on a reference batch.
µt Relative capability coefficient of the current model at step t.
µ̃t Momentum-updated relative capability coefficient.
γ Momentum coefficient for updating µ̃t.
p̃(k,Bt) Estimated success probability for task k using implicit evidence.

Task Selection (Thompson Sampling)
p∗ The target success rate for optimal learning (e.g., 0.5).
p̂k Success rate sampled from the posterior Beta(αk

t , β
k
t )

ûk Utility of a task, computed as |p̂k − p∗|.
Evaluation Metrics
τ Target fraction (e.g., 0.5, 0.75) for defining a performance milestone.
Pinit, Pbest Initial and best performance of the baseline method.
Pτ Target performance, Pinit + τ · (Pbest − Pinit).
τM Training step (hitting time) for method M to first reach performance Pτ .
β Budget ratio (e.g., 0.25, 0.5) for evaluating Best-so-far (BSF).

Generalizations & Alternatives (Appendix)
K(·, ·) Kernel function between two tasks.
τ Temperature parameter for the kernel function.
η Natural parameter of an exponential family.
T (r), A(η) Sufficient statistic and log-partition function of an exponential family.
χ, ν Hyperparameters of the conjugate prior for an exponential family.

Table 5: Symbol Notation

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B IMPLEMENTATIONAL DETAILS

B.1 TRAINING DATA

The training data for our experiments is sourced from GURU (Cheng et al., 2025), a well-curated,
cross-domain RL dataset covering mathematics, code, logic, science, simulation, and tabular tasks.
Each subset has been rigorously deduplicated, verified, and filtered. Our training utilizes the math,
code, and logic subsets, with the Zebra Puzzle excluded from the logic portion due to its non-binary
reward structure.

Mathematics (54.4k) The Mathematics subset comprises data from Skywork OR1 (He et al.,
2025a), DAPO (Yu et al., 2025), and DeepScaler (Luo et al., 2025). For all math problems, models
are instructed to provide the final answer within a \boxed{} environment.

Code (18.1k) The Code subset includes programming challenges from LeetCode (Xia et al.,
2025), TACO-verified (Li, 2024), PrimeIntellect (Mattern et al., 2025), and LiveCodeBench (Jain
et al., 2024). For PrimeIntellect and LiveCodeBench, it incorporates pre-filtered versions provided
by DeepCoder1.

Logic (5.0k) The Logic subset is composed of several benchmarks designed to test structured rea-
soning. It includes Ordering Puzzles (relational ordering), Graph Puzzles (implicit graph traver-
sal), the public training splits of ARC-AGI (Chollet et al., 2024) and ARC-AGI-2 (Chollet et al.,
2025) (abstract grid transformations), and a 3.4k-sample from BARC (Li et al., 2024b) (synthetic
ARC-style tasks). For these tasks, predictions are extracted from <answer> tags for reward calcu-
lation via exact match.

B.2 EVALUATION BENCHMARKS

Followed by GURU (Cheng et al., 2025), the evaluation suite consists of a set of established bench-
marks to rigorously assess the model’s performance in a zero-shot setting across the same domains.

Math We evaluate mathematical reasoning on AIME24 (MAA, 2024) and MATH500 (Hendrycks
et al., 2021), which cover a wide range of competition-level math problems.

Code Programming capabilities are assessed using HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021), and a subset of LiveCodeBench (Jain et al., 2024). These benchmarks span from basic
function generation to complex algorithmic challenges.

Logic Logical and abstract reasoning are measured using Ordering Puzzles for general reasoning,
and ARC-AGI (Chollet et al., 2024) for grid-based abstract reasoning.

B.3 TRAININING DETAILS

The RFT setup follows standard practices (Cheng et al., 2025; Qu et al., 2025; Sun et al., 2025),
employing GRPO (Shao et al., 2024) as the RL algorithm (detailed in Appendix B.5). All experi-
ments are conducted on verl framework (Sheng et al., 2025) with 8 NVIDIA A100 (80GB) GPUs.
We utilize PyTorch’s FSDP for distributed training, with vLLM (Kwon et al., 2023) employed to
accelerate the response generation during the rollout phase. The actor model is optimized using a
learning rate of 1 × 10−6 and weight decay of 0.1. We apply a constant learning rate warmup for
the first 10 steps and use gradient clipping with a maximum norm of 1.0. For the GRPO algorithm,
we set the clipping ratio ϵ to 0.2 and generate 16 rollouts with a temperature of 1.0. The maximum
prompt and response lengths are set to 4,096 and 8,192 tokens, respectively.

The training configurations are tailored for two LLMs: Qwen2.5-1.5B-Instruct and Qwen2.5-
7B (Yang et al., 2024), across three reasoning domains: Math, Code, and Logic. The primary
differences across settings lie in batch sizes and memory optimization strategies to accommodate
different model sizes. Specifically, the 7B model experiments utilize a larger training batch size
(512 vs. 256) and GRPO mini-batch size (64 vs. 32). To fit the larger model on the same hardware,

1https://www.together.ai/blog/deepcoder

17

https://www.together.ai/blog/deepcoder


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

we enable FSDP’s CPU offloading for all 7B model experiments. Key hyperparameters for all six
experimental settings are summarized in Table 6.

Hyperparameter 1.5B-Math 7B-Math 1.5B-Code 7B-Code 1.5B-Logic 7B-Logic
Base Model Qwen2.5-1.5B-Inst. Qwen2.5-7B Qwen2.5-1.5B-Inst. Qwen2.5-7B Qwen2.5-1.5B-Inst. Qwen2.5-7B
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Learning Rate 1× 10−6 1× 10−6 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1
Global Steps 100 100 70 70 100 100
Batch Size (Prompts) 256 512 256 512 256 512
GRPO Mini-batch Size 32 64 32 64 32 64
Rollouts per Prompt (n) 16 16 16 16 16 16
GRPO Clip Ratio (ϵ) 0.2 0.2 0.2 0.2 0.2 0.2
Rollout Temperature 1.0 1.0 1.0 1.0 1.0 1.0
Max Prompt Length 4,096 4,096 4,096 4,096 4,096 4,096
Max Response Length 8,192 8,192 8,192 8,192 8,192 8,192
FSDP CPU Offload Disabled Enabled Disabled Enabled Disabled Enabled

Table 6: Key hyperparameters for RFT across different models and domains. “Inst.” is an abbrevia-
tion for Instruct.

B.4 FORMAL DEFINITIONS OF METRICS

We provide formal definitions of the two key metrics used in our experiments: Time-to-Baseline
(TTB) and Best-so-far (BSF).

Time-to-Baseline (TTB). We define Time-to-Baseline (TTB) as a metric to measure the acceler-
ation of a method relative to the random baseline. Let the random baseline start from performance
Pinit and reach its best performance Pbest within a fixed training window of K steps. For a target frac-
tion τ ∈ {50%, 75%, 100%}, the target performance is defined as the corresponding interpolation
between the initial and best performance:

Pτ = Pinit + τ ·
(
Pbest − Pinit

)
.

Denote by τM the (possibly interpolated) training step at which method M first achieves perfor-
mance Pτ . Then the TTB of method M is

TTBM (τ) =
τM

τbaseline
.

By definition, TTBbaseline(τ) = 1. Smaller values of TTB indicate that a method reaches the target
improvement faster, and thus achieves greater acceleration relative to the baseline.

Example. Suppose the baseline starts at performance Pinit = 0.1 and reaches Pbest = 0.3 within 100
training steps. The total improvement is therefore 0.2. For τ = 50%, the target performance is

P50% = 0.1 + 0.5× (0.3− 0.1) = 0.2.

If the baseline first reaches 0.2 at step 40, then τbaseline = 40. If another method M reaches 0.2
earlier, at step 30, then τM = 30, and thus

TTBM (50%) =
30

40
= 0.75.

This indicates that method M achieves the same relative improvement (50% of the baseline’s maxi-
mum gain) using only 75% of the training steps required by the baseline, reflecting a 25% accelera-
tion.

Best-so-far (BSF). We define Best-so-far (BSF) to measure the relative performance gain of a
method against the random baseline under the same training budget. Let the total training window
be T steps. At a budget ratio β ∈ (0, 1], corresponding to step t = ⌊βT ⌋, denote by bestM (t)
the best performance achieved by method M up to step t, and by bestrand(t) the best performance
achieved by the random baseline up to the same step. Then the BSF of method M is defined as

BSFβ(M) :=
bestM (t)

bestrand(t)
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By definition, BSFβ(rand) = 1. Larger values indicate that the method has achieved stronger
absolute performance under the same budget, i.e., it delivers better best-so-far outcomes than the
baseline, not just relative improvement.

Example. Suppose the total training window is T = 100 steps, and we consider β = 0.5 (t = 50). If
the random baseline achieves bestrand(50) = 0.4, while another method M achieves bestM (50) =
0.6, then

BSF50%(M) =
0.6

0.4
= 1.5.

This means that by step 50, method M has achieved a best-so-far performance 1.5 times that of the
random baseline.

B.5 POLICY OPTIMIZATION ALGORITHM: GRPO

The policy is optimized using Group Relative Policy Optimization (GRPO) (Shao et al., 2024), a
policy gradient method that operates without a learned value function. In GRPO, the advantage for
a given response is computed by normalizing its reward against the statistics of a group of candidate
responses sampled for the same prompt.

Specifically, for each prompt x, a set of G responses Y = {y1, . . . , yG} is sampled from the policy
πθold . After obtaining the reward R(yk) for each response, the group-relative advantage A(yk) is
defined as:

A(yk) =
R(yk)− µY

σY
(6)

where µY and σY represent the mean and standard deviation of the rewards {R(y1), . . . , R(yG)}
for the group.

This advantage is then incorporated into a clipped surrogate objective function to update the policy
parameters θ:

LGRPO(θ) = Ey∼πθold
[min (rθ(y)A(y), clip(rθ(y), 1− ϵ, 1 + ϵ)A(y))] (7)

Here, rθ(y) = πθ(y|x)
πθold (y|x)

denotes the probability ratio between the current and old policies. The
clip function constrains this ratio within the interval [1− ϵ, 1 + ϵ], limiting the magnitude of policy
updates during optimization.

B.6 BASELINE DETAILS

We detail the configurations of the baselines and ablations used for comparison.

• Random: Tasks are sampled uniformly at random from the entire training pool. This represents a
no-curriculum scenario and serves as the fundamental baseline for measuring performance gains.

• Offline Baseline: Tasks are pre-sorted once from easy to hard based on the success rates of
external models (Qwen2.5-7B-Instruct, with Qwen3-8B for tie-breaking). This baseline represents
a static curriculum and is used to benchmark our adaptive method against a fixed task sequence.

• Setting from MoPPS (Qu et al., 2025): This ablation uses λ = 0.0, ρ = 0.0 with posterior
sampling, relying solely on explicit evidence for task selection. Under this configuration, our
framework reduces exactly to the setting studied in Qu et al. (2025), enabling a direct evaluation
of a purely explicit-evidence-based strategy. Note that Qu et al. (2025) did not study the code or
logic domains, nor did they provide principles for determining λ (1 − λ in BOTS). We therefore
reuse their hyperparameter choice for math (λ = 1, i.e., λ = 0 in BOTS) when evaluating other
domains. This comparison is fair since no hyperparameter tuning is performed for either MoPPS
or BOTS.

• Proxy for DOTS (Sun et al., 2025): This ablation uses λ = 1.0, ρ = 1.0 with posterior sampling
disabled, so task selection is driven entirely by implicit evidence from our estimator. It serves as
a proxy for the approach in Sun et al. (2025), though our construction of pseudo-counts differs,
see Appendix E.2 for more details. This baseline allows us to evaluate the long-term efficacy of a
strategy that relies almost exclusively on implicit evidence without direct corrective feedback. We
note that Sun et al. (2025) additionally explored reusing historical trajectories, which lies beyond

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the scope of this paper. To ensure clarity, we isolate such tricks from DOTS and focus solely on
the online task selection component.

C MORE RELATED WORKS

Reinforcement Finetuning for LLMs Reinforcement Finetuning (RFT) has become a pivotal
technique for aligning LLMs with human values and enhancing their capabilities in complex rea-
soning tasks (OpenAI, 2023; Guo et al., 2025; Zeng et al., 2025; He et al., 2025a). Initial RLHF
methods using PPO (Schulman et al., 2017) have been complemented by preference optimization
techniques like DPO (Rafailov et al., 2023) and its variants such as KTO (Ethayarajh et al., 2024),
ORPO (Hong et al., 2024) and SimPO (Meng et al., 2024). More recently, attention has shifted to
rejection-sampling-based finetuning, popularized by frameworks like GPRO (Shao et al., 2024) for
its effectiveness in verifiable reasoning. This has spurred variants like DAPO (Yu et al., 2025) and
GSPO (Zheng et al., 2025), with further work focusing on algorithmic refinements (Cui et al., 2025;
Wang et al., 2025a) and reward shaping (Chen et al., 2025a; Pan et al., 2025). Despite these algo-
rithmic advances, the data curriculum, that how tasks are selected and presented, remains a critical
bottleneck for RFT efficiency.

The Role of Data Curriculum The importance of data difficulty in RFT is increasingly recog-
nized, leading to the creation of highly challenging benchmarks (Albalak et al., 2025; He et al.,
2025b; Gao et al., 2025). Beyond dataset creation, data selection and curriculum design has also
become a central topic of investigation. For Supervised Finetuning (SFT), a variety of data selec-
tion and curriculum strategies have been widely studied based on quality (Liu et al., 2024; Li et al.,
2024a), diversity (Ling et al., 2025; Lu et al., 2024), or pre-assessed difficulty (Xu et al., 2025; Ye
et al., 2025). However, such static methods are ill-suited for the dynamic nature of RFT. This has
motivated a focus on dynamic curricula that adapt to the model’s evolving capabilities, typically by
leveraging the notion of task difficulty (Cheng et al., 2025; Pikus et al., 2025; Li et al., 2025b).

Task Selection Strategies for RFT Existing task selection strategies for RFT vary in their ap-
proach to leveraging task difficulty. An early line of work, directly inspired by curriculum learning,
employs offline curricula that schedule tasks along a fixed easy-to-hard trajectory (Parashar et al.,
2025; Shen et al., 2025; Zhu et al., 2025; Wen et al., 2025; Li et al., 2025a). While simple and intu-
itive, these methods are non-adaptive and cannot respond to the model’s real-time learning progress.
To address this, online selection strategies have emerged. A straightforward approach is sampling-
based task filtering, which uses extra rollouts to evaluate and discard tasks that are too easy or too
hard, thereby incurring significant computational overhead (Yu et al., 2025; Bae et al., 2025). To
avoid this cost, recent works attempt to predict task success rates. Some frame task selection as a
non-stationary multi-armed bandit (MAB) problem, but often treat tasks as independent arms, thus
overlooking cross-task relationships (Chen et al., 2025b; Qu et al., 2025). Others use a small ref-
erence set to predict the difficulty of other tasks via similarity kernels, but this still requires extra
rollouts and discards valuable historical information (Sun et al., 2025; Wang et al., 2025b).

Positioning Our Work. The current landscape reveals a clear need for a task selection method that
is simultaneously adaptive, computationally efficient, and information-complete. Our framework,
BOTS, is designed to fill this gap. It introduces a unified Bayesian framework that is fully online and
adaptive. Critically, BOTS is the first to jointly incorporate explicit evidence from direct evaluations
and implicit evidence inferred from related tasks, without requiring any additional model rollouts.
BOTS provides a principled, low-overhead, and effective solution for dynamic task selection in RFT.

D PROOFS

D.1 PROOF FOR PROPOSITION 1

Proposition 1. Let p ∈ (0, 1) be the Bernoulli success probability at time t. Suppose the current
belief is πt(p) = Beta(p | αt, βt), and let π0(p) = Beta(p | α0, β0) be a base prior. Given counts

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(st, ft) and pseudo counts (s̃t, f̃t) with st, ft, s̃t, f̃t ≥ 0, define the generalized-Bayes update

πt+1(p) ∝ πt(p)
1−λ π0(p)

λ︸ ︷︷ ︸
prior mixing / discounting

×
[
pst(1− p)ft

] 1−ρ︸ ︷︷ ︸
tempered explicit likelihood

×
[
ps̃t(1− p)f̃t

] ρ︸ ︷︷ ︸
tempered implicit evidence

, (4)

with λ ∈ (0, 1) and ρ ∈ [0, 1]. Then πt+1 is exactly Beta(αt+1, βt+1) with

αt+1 = (1− λ)αt + λα0 + (1− ρ)st + ρs̃t, βt+1 = (1− λ)βt + λβ0 + (1− ρ)ft + ρf̃t.

Proof. Write the Beta densities (up to normalization) as πt(p) ∝ pαt−1(1 − p)βt−1 and π0(p) ∝
pα0−1(1 − p)β0−1. Raising these to powers and multiplying by the (tempered) likelihood terms in
equation (4) yields

πt+1(p) ∝ p(1−λ)(αt−1)+λ(α0−1)+(1−ρ)st+ρs̃t (1− p)(1−λ)(βt−1)+λ(β0−1)+(1−ρ)ft+ρf̃t .

Collecting exponents shows that πt+1 is Beta with parameters exactly as stated (add +1 back to
exponents), completing the proof.

D.2 PROOF FOR PROPOSITION 2

Proposition 2. Let nt := αt + βt. Suppose the updates follow Equation (1)–(3) with λ ∈ (0, 1),
ρ ∈ [0, 1], we have

lim inf
t→∞

nt = n0 +
ρ
λn, lim sup

t→∞
nt = n0 +

1
λn.

Proof. We drop the task index for clarity. From Equation (1) and Equation (3),

nt+1 = (1−λ)nt +λn0 +(1− ρ)(st + ft)+ ρ(s̃t + f̃t) = (1−λ)nt +λn0 +(1− ρ)n I[Et] + ρn,

where Et is the event that the task receives a direct evaluation at time t (so st + ft = n iff Et holds;
otherwise st + ft = 0). Unrolling the linear recurrence for t ≥ 0,

nt = (1− λ)tn0 +

t−1∑
u=0

(1− λ)u(λn0 + ρn+ (1− ρ)n I[Et−1−u])

= n0 +
ρn

λ

(
1− (1− λ)t

)
+ (1− ρ)n

t−1∑
u=0

(1− λ)u I[Et−1−u],

where we used
∑t−1

u=0(1− λ)uλ = 1− (1− λ)t. Because I[E·] ∈ {0, 1},

0 ≤
t−1∑
u=0

(1− λ)u I[Et−1−u] ≤
t−1∑
u=0

(1− λ)u =
1− (1− λ)t

λ
.

Multiplying by (1 − ρ)n and adding the common term n0 + ρn
λ (1 − (1 − λ)t) gives the uniform

bounds
n0 +

ρn

λ

(
1− (1− λ)t

)
≤ nt ≤ n0 +

n

λ

(
1− (1− λ)t

)
.

Since (1− λ)t → 0 exponentially, the lim inf / lim sup statements follow immediately.

Moreover, these bounds are tight: if I[Et] ≡ 0 (never directly evaluated), then nt = n0 +
ρn
λ

(
1 −

(1 − λ)t
)

and limt→∞ nt = n0 + ρn
λ ; if I[Et] ≡ 1 (always directly evaluated), then nt = n0 +

n
λ

(
1− (1− λ)t

)
and limt→∞ nt = n0 +

n
λ .

E EXTENDED DISCUSSION

E.1 IMPACT OF λ, ρ ON TASK SELECTION

Proposition 2 characterizes how the hyperparameters λ and ρ jointly determine the effective sample
size of each task’s Beta posterior. Intuitively, the effective sample size nt = αt + βt controls the

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

confidence of the estimated probability of success, and hence governs the tradeoff between explo-
ration and exploitation in task selection. When a task is repeatedly selected and directly evaluated,
its posterior accumulates evidence and nt approaches the upper bound n0 +

1
λn. Conversely, when

a task is rarely selected and only updated by implicit evidence, nt remains close to the lower bound
n0 +

ρ
λn.

The role of λ is to regulate the overall scale of nt. A smaller λ accelerates the discounting of his-
torical information, leading to smaller effective sample sizes, higher posterior uncertainty, and thus
more exploratory behavior in Thompson Sampling. In contrast, a larger λ stabilizes the posterior by
retaining more historical counts, biasing the strategy toward exploitation of tasks already known to
be near the target probability of success.

The parameter ρ specifically controls the lower bound of nt. A smaller ρ increases the uncertainty of
tasks without direct evaluations, making it more likely for such tasks to be sampled for exploration
even when their estimated probability of success is not close to the target. A larger ρ, by assigning
more pseudo-counts, suppresses this uncertainty and reduces the chance of revisiting unevaluated
tasks, favoring exploitation.

Together, λ and ρ provide fine-grained control over the exploration–exploitation balance: λ sets
the overall confidence level of the posterior across all tasks, while ρ tunes the relative confidence
between evaluated and unevaluated tasks. This interaction ensures that the framework adaptively se-
lects tasks of appropriate difficulty as the model evolves, maintaining both robustness and efficiency
in online task selection.

E.2 ATTENTION-BASED ADAPTIVE DIFFICULTY ESTIMATE

Given a batch of online evaluation results Bt = {(TBt[i], r
Bt[i]
1:m )}|Bt|

i=1 , we need to estimate s̃kt and f̃k
t

for each task T k. Besides the interplation-based estimate discussed in 3.3, another straightforward
idea is to construct a kernel-based estimator:

s̃kt =

|Bt|∑
i=1

K(Ti, Tk)∑|Bt|
j=1 K(Tj , Tk)

sit, f̃k
t =

|Bt|∑
i=1

K(Ti, Tk)∑|Bt|
j=1 K(Tj , Tk)

f i
t . (8)

For example, Sun et al. (2025) proposed to use an attention-like kernel structure:

K(T , T ′) = exp

(
⟨Embd(T ),Embd(T ′)⟩

τ

)
. (9)

However, the limitations of such approaches are two-folds: (1) Due to its convex structure, the kernel
estimator does not support extrapolation. Specifically, given a batch of tasks with passing rates
bounded within [pmin, pmax], the estimated passing rate for any task is also restricted to this range.
(2) Its effectiveness depends heavily on the quality of the task embeddings, which often require
additional training, may be high-dimensional, and thus introduce non-negligible storage overhead.

E.3 INTERPOLATION-BASED IMPLICIT EVIDENCE

Extrapolation Capability. Unlike kernel-based estimators (Sun et al., 2025) (see Appendix E.2
for a brief introduction), which are confined to the convex hull of observed tasks, our interpolation-
based estimator naturally supports extrapolation. For example, if the reference pair consists of a
strong and a stronger model, the capability coefficient µt(Bt) defined in Section 3.3 may fall outside
[0, 1], yielding extrapolated predictions. The clipping step in Equation (5) ensures these estimates
remain within the feasible range [0, 1].

Choice of Reference Models. The effectiveness of the implicit evidence mechanism depends
critically on the choice of weak and strong reference models, which should ideally bracket the
expected capability trajectory of the model under training. If the training model is substantially
stronger than the strong reference or weaker than the weak reference, our method must rely on
extrapolation, whose accuracy may degrade. In practice, we find that standard publicly available
checkpoints—Qwen2.5-7B-Instruct (Yang et al., 2024) and Qwen3-32B (Yang et al., 2025)—pro-
vide a robust and practical basis, even when training significantly smaller models such as Qwen2.5-

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1.5B-Instruct (Yang et al., 2024). A systematic ablation on the choice of reference models remains
an important direction for future work.

Discussion on the Potential Limitations. The simplicity of our interpolation-based approach,
while a key strength, also entails two potential limitations. (i) Expressive power: The linear inter-
polation assumes a linear relationship between a model’s global capability and its per-task success
rate. While our empirical results suggest this is a powerful approximation (see Appendix F.2 for
a validation), the true learning dynamics of LLMs may be more complex. (ii) Distributional shift
in capability estimation: The capability coefficient µt is estimated on the selected batch Bt, which
is not a uniform sample from the task pool. This introduces a bias, as the model is likely to per-
form better on this adaptively chosen batch than on the entire dataset. Consequently, µt might be
an overestimate of the model’s true global capability. However, we argue this bias is not fatal: the
primary role of µt is to track the progression of the model’s capability, and even a biased estimate
can provide a valuable monotonic signal for this purpose, see Section 4.4 for empirical validation.

E.4 DISCUSSION ON FUTURE WORKS

E.4.1 GENERALIZATION TO OTHER REWARD DISTRIBUTIONS

While our main exposition focuses on binary rewards with a Beta-Bernoulli model, the core princi-
ples of BOTS extend naturally to any reward distribution within the exponential family that admits
a conjugate prior. This generality makes BOTS a versatile blueprint for online task selection algo-
rithms.

The General Framework. Let the reward r for a task follow a distribution from a one-parameter
exponential family: f(r | η) = h(r) exp(ηT (r)−A(η)), where η is the natural parameter and T (r)
is the sufficient statistic. The conjugate prior for η takes the form p(η | χ, ν) ∝ exp(χη − νA(η)),
where (χ, ν) are hyperparameters. Here, χ can be seen as a pseudo-sum of sufficient statistics from
prior observations, and ν as a pseudo-count of those observations.

Our generalized Bayesian update rule from Eq. equation (4) can be directly mapped to this setting.
The update for the posterior hyperparameters (χt, νt) becomes:

χt+1 = (1− λ)χt + λχ0 + (1− ρ)Texplicit + ρTimplicit, (10)
νt+1 = (1− λ)νt + λν0 + (1− ρ)nexplicit + ρnimplicit, (11)

where (χ0, ν0) are the base prior’s parameters. For nexplicit direct observations {ri}, the explicit
evidence is Texplicit =

∑nexplicit
i=1 T (ri). For implicit evidence, we assume a pseudo-observation of size

nimplicit with an estimated total sufficient statistic Timplicit. This structure precisely mirrors our update
for the Beta parameters, preserving conjugacy across iterations.

Revisiting the Bernoulli Case. For a Bernoulli reward r ∈ {0, 1} with success probability p, the
natural parameter is the logit η = log(p/(1 − p)), and the sufficient statistic is T (r) = r. The
conjugate Beta(α, β) prior corresponds to hyperparameters χ = α− 1 and ν = α+ β − 2. With n
rollouts, Texplicit = st (success counts), nexplicit = n, Timplicit = s̃t, and nimplicit = n. Plugging these
into Equation 10- 11 and transforming back to (α, β) parameters precisely recovers our update rule
in Equation 1. This confirms that our proposed update is a specific instance of this general principle.

Example: Gaussian Rewards. Consider a continuous reward r, like a score from a powerful
critic model, modeled as R ∼ N (µ, σ2) with known variance σ2. The conjugate prior for the mean
µ is Gaussian, µ ∼ N (µ0, σ

2
0). In the exponential family form, η = µ/σ2 and T (r) = r. The

prior hyperparameters are χ0 = µ0/σ
2
0 and ν0 = σ2/σ2

0 . The BOTS update would apply directly
to (χt, νt), where Texplicit is the sum of observed rewards and Timplicit is an estimated sum from the
interpolator. The posterior for µ remains Gaussian, allowing for Thompson sampling by drawing a
sample of the mean µ̂ and selecting tasks whose µ̂ is closest to some target score µ∗.

Example: Categorical Rewards. For tasks with K discrete outcomes (e.g., multi-level ratings),
the reward is a one-hot vector, and the distribution is categorical. The conjugate prior is the Dirichlet
distribution, a multivariate generalization of the Beta. BOTS would maintain a vector of K Dirichlet

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

parameters (α1, . . . , αK) for each task. The update rules would apply component-wise to each αj

based on explicit and implicit counts for that outcome.

This generality significantly broadens the applicability of our framework beyond binary suc-
cess/failure tasks. It provides a principled and extensible blueprint for difficulty-aware online task
selection across a wide spectrum of RFT problems involving diverse reward structures.

E.4.2 SELF-ADAPTIVE UPDATE RULES

In the main paper, we set the belief update coefficients λ and ρ as fixed hyperparameters. How-
ever, our empirical study (Section 4.3 and Section 4.2) shows that different settings benefit different
training stages: smaller λ accelerates adaptation in early training but may cause instability later,
while moderate ρ effectively leverages implicit evidence early on but can reduce accuracy in later
stages. A natural extension is to design self-adaptive update rules that automatically adjust λ and ρ
according to training dynamics—for example, by monitoring posterior uncertainty, validation per-
formance, or the variance of estimated success probabilities. Such adaptive schemes would allow
BOTS to dynamically balance exploration and exploitation, potentially improving robustness across
diverse tasks and model scales.

E.4.3 ALTERNATIVE PLUG-IN FOR IMPLICIT EVIDENCE

Our interpolation-based estimator provides an extremely lightweight way to generate implicit evi-
dence without additional rollouts, but it is not the only possible choice. More expressive alternatives
could be explored, such as kernel-based predictors (Sun et al., 2025), task-embedding regressors,
or small auxiliary models trained jointly with the main model. These alternatives may improve
predictive accuracy, especially when the reference models poorly bracket the training model’s ca-
pability. However, they also introduce a trade-off: richer implicit evidence often requires higher
computational and storage costs. Systematically characterizing this trade-off—between accuracy
and efficiency in implicit evidence—remains an open research question and a promising direction
for future work.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPUTATIONAL OVERHEAD

We examine the computational overhead introduced by task selection. The breakdown of wall-clock
time across training phases is shown in Figure 4.

Figure 4: Wall-clock time breakdown across training phases for Qwen2.5-1.5B-Instruct (Left)
and Qwen2.5-7B (Right) on GURU-Math, trained on 8 A100 GPUs. Runtime is averaged over the
first 100 training steps. The cost of task selection—including posterior sampling, index sorting, and
distribution parameter updates—is negligible compared to overall training.

As illustrated, the dominant cost arises from generation and model updates, which together account
for more than 75% of runtime. By contrast, the overhead of task selection—including posterior
sampling, index sorting, and distribution parameter updates—is negligible (0.2% or less). Impor-
tantly, unlike generation and model updates, this cost does not increase with model size. Overall,
our Bayesian framework and the chosen practical instantiation remain extremely lightweight, adding
almost no extra burden to training.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2 INTERPOLATION-BASED IMPLICIT EVIDENCE: EMPIRICAL RESULTS

To empirically validate our interpolation-based implicit evidence estimator, we assess its predictive
quality against the evolving empirical success probabilities of the training model. We examine the
trajectory under vanilla training, i.e., uniformly sampling tasks for training. At each step, we com-
pare the predictions from our interpolation-based estimator with the ground-truth online task success
probabilities. Two metrics are used: (i) Pearson Correlation, measuring the linear relationship be-
tween estimated and empirical difficulties, and (ii) ROC AUC, evaluating the ability to distinguish
effective tasks (success strictly between 0 and 1) from ineffective tasks (success equal to 0 or 1).
Evaluations are conducted throughout training for models of different scales.

Figure 5: Performance of the implicit evidence estimator during training of Qwen2.5-1.5B-Instruct
(Left) and Qwen2.5-7B (Right), measured by Pearson Correlation and ROC AUC.

As shown in Figure 5, the estimator exhibits distinct behaviors across model scales. For Qwen2.5-
1.5B-Instruct (Left), both Pearson Correlation and ROC AUC remain stable throughout training; the
consistently positive correlation and ROC AUC above 0.5 demonstrate that interpolation-based im-
plicit evidence effectively captures task difficulty. Notably, this model is weaker than both reference
models (Qwen2.5-7B-Instruct and Qwen3-32B), confirming that our estimator possesses extrapola-
tion capability. For the larger Qwen2.5-7B (Right), both Pearson Correlation and ROC AUC decline
in later stages: Pearson Correlation remains positive, but ROC AUC approaches 0.5, indicating that
implicit evidence becomes less informative for difficulty prediction as the model matures. This
highlights the necessity of incorporating direct evaluations as explicit evidence to maintain accurate
estimation.

F.3 SAMPLING FROM POSTERIOR

We now investigate the impact of posterior sampling. As discussed in Section 3.4, posterior sam-
pling naturally balances exploration and exploitation in bandit-style problems. Without sampling,
tasks with the closest estimated success rates are greedily selected for training, which risks over-
exploitation and insufficient exploration.

To examine this effect, we compare our default setting (λ = 0.1, ρ = 0.1) with posterior sampling
enabled versus disabled. The valid ratio metrics and benchmark performance metrics are reported
in Figure 6 and Table F.3.

Observations. When posterior sampling is disabled, the valid ratio exhibits a faster and higher
boost in the early phase due to the removal of randomness, but fluctuations appear as training pro-
gresses. In contrast, enabling posterior sampling yields a smoother valid ratio trajectory over time.
Notably, these differences in valid ratio do not translate into significant differences in benchmark
performance: both settings outperform the random baseline and achieve very similar performance
levels. Given the improved stability of the valid ratio, we recommend enabling posterior sampling,
though this conclusion is less pronounced compared to the effects of λ and ρ. We leave a larger-scale
study for future work to obtain more reliable evidence.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 6: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks (measured over 16
rollouts) with passing rates: strictly between 0 and 1, strictly greater than 0, and strictly less than 1,
along with aggregated performance (MATH500 and AIME24), plotted against training steps.

Benchmark MATH500 AIME24 Math Aggregated Performance

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
λ = 0.1, ρ = 0.1, sample=True 0.89 0.49 0.57 1.13 1.05 1.05 0.51 1.00 1.00 1.25 1.75 1.00 0.89 0.56 0.64 1.12 1.07 1.05
λ = 0.1, ρ = 0.1, sample=False 0.73 0.54 0.54 1.10 1.09 1.03 0.77 0.92 1.25 1.25 1.50 1.00 0.79 0.55 0.81 1.12 1.10 1.07

Table 7: Qwen2.5-1.5B-Instruct on Math. TTB (lower better) and BSF (higher better) evaluated
on MATH500, AIME24, and aggregated performance. For TTB, notation ”-” indicates the the target
performance is never achieved within the evaluation window. The best and second best results are
marked accordingly.

F.4 DYNAMICS OF SELECTED TASKS

In addition to reporting the Effective Task Ratio (ETR), which reflects the proportion of selected
tasks with success probabilities strictly between 0 and 1, we conduct a finer-grained analysis to
capture more detailed dynamics. Specifically, we visualize the distribution of success probabilities
for selected tasks along the training trajectory, for both Qwen2.5-1.5B-Instruct and Qwen2.5-7B
models. This analysis complements ETR by revealing how the quality of selected tasks evolves
beyond the binary effective/ineffective distinction.

We use a heatmap where the x-axis represents training steps, the y-axis represents the empirical
success rate (discretized from 0/16 to 16/16), and the color intensity indicates the proportion of
tasks sampled at that success rate. This allows us to compare the distributional dynamics of BOTS
against the random baseline.

The resulting heatmaps in Figure 7 reveal starkly different behaviors. The random baseline (Top)
exhibits a largely static distribution, with a persistent, high-density band at the 0/16 success rate,
indicating continuous wasted computation on unsolvable tasks. In contrast, BOTS (Bottom) demon-
strates a highly dynamic curriculum. The initial concentration of tasks at the 0/16 success rate
diminishes rapidly. Concurrently, the sampling density shifts upward, concentrating in the interme-
diate difficulty range.

This visualization directly illustrates how BOTS actively filters out overly easy or hard tasks and
focuses computational resources on the most informative ones, which explains the superior Effective
Task Ratio and overall performance gains observed previously.

The analysis on the 7B model, shown in Figure 8, reinforces our findings. Consistent with the
1.5B results, BOTS (Bottom) rapidly diminishes sampling of unsolvable tasks (0/16 success rate)
and progressively shifts its focus to the intermediate difficulty range. However, an interesting phe-
nomenon emerges in the later training stages due to the 7B model’s stronger capability. For the
random baseline (Top), a high-density band appears at the 16/16 success rate, indicating that sig-
nificant computation is wasted on tasks the model has already mastered. In stark contrast, BOTS
effectively avoids this region, maintaining a broad distribution across the intermediate success rates.

This demonstrates BOTS’s advanced adaptivity: it not only filters out tasks that are too hard but also
dynamically avoids those that become too easy, thereby maximizing learning efficiency throughout
the entire training process.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 7: Heatmap visualizing the distribution of sampled task success rates over training steps for
Random sampling (Top) and BOTS (Bottom) on Qwen2.5-1.5B-Instruct.

Figure 8: Heatmap visualizing the distribution of sampled task success rates over training steps for
Random sampling (Top) and BOTS (Bottom) on Qwen2.5-7B.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F.5 COMPREHENSIVE RESULTS ON MATH

Results on Math-1.5B The results for Qwen2.5-1.5B-Instruct on the GURU-Math dataset are
presented in Figure 9, Figure 10, and Table 8. The effectiveness of task selection is first evaluated
through the Effective Task Ratio (ETR). BOTS demonstrates a rapid increase in ETR, peaking above
0.8 and sustaining a high level throughout training. In contrast, the random and BOTS-MoPPS
baselines show minimal improvement, with ETR remaining below 0.4. While BOTS-DOTS initially
performs well, it exhibits a declining ETR in later stages.

This superior task selection efficiency translates into significant gains in downstream performance.
The aggregated performance plot shows that BOTS achieves a steeper learning curve and consis-
tently outperforms the baselines. The quantitative results in Table 8 corroborate these findings.
Specifically, for the aggregated performance, BOTS achieves a final TTB of 0.64, indicating a 36%
reduction in training steps to reach the baseline’s best performance. It also attains a final BSF of
1.05, representing a 5% improvement in peak performance under the same training budget.

Figure 9: Qwen2.5-1.5B-Instruct on Math. Ratio of sampled training tasks with different passing
rates.

Figure 10: Qwen2.5-1.5B-Instruct on Math. Performance on downstream code benchmarks
(MATH500, AIME24) and their aggregation.

Benchmark MATH500 AIME24 Math Aggregated Performance

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 0.96 0.49 0.72 1.15 1.11 1.02 0.54 - - 1.00 2.00 0.75 0.96 0.51 0.78 1.16 1.12 1.01

BOTS-MoPPS 1.34 1.34 - 0.91 0.90 0.98 0.78 - - 1.25 1.25 0.67 1.78 1.32 - 0.90 0.90 0.99
BOTS-DOTS 0.78 0.51 0.72 1.12 1.10 1.04 0.71 1.12 1.12 0.75 1.50 1.08 0.83 0.75 0.81 1.11 1.09 1.08

BOTS 0.89 0.49 0.57 1.13 1.05 1.05 0.51 1.00 1.00 1.25 1.75 1.00 0.89 0.56 0.64 1.12 1.07 1.05

Table 8: Qwen2.5-1.5B-Instruct on Math. TTB (lower better) and BSF (higher better) evaluated
on MATH500, AIME24, and aggregated performance. For TTB, notation ”-” indicates the the target
performance is never achieved within the evaluation window. The best and second best results are
marked accordingly.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Results on Math-7B We present the results for the Qwen2.5-7B model on the GURU-Math
dataset in Figure 11, Figure 12, and Table 9. Consistent with the 1.5B experiments, our recom-
mended BOTS setting demonstrates robust task selection efficiency. Its ETR rises rapidly to over
0.9 and is maintained at a high level, significantly outperforming the random, offline, and explicit-
only baselines. This efficiency translates to tangible performance gains, with Table 9 indicating a
final aggregated TTB of 0.63, confirming significant training acceleration.

A notable difference in the 7B setting is the highly competitive performance of BOT-DOTS. Un-
like in the 1.5B experiments where its ETR degraded over time, this strategy maintains a high ETR
throughout the training process, comparable to that of BOTS. Consequently, its downstream perfor-
mance is nearly identical to our full BOTS framework, as evidenced by the overlapping performance
curves and similar metrics in the corresponding figures and table. This suggests that for a highly
capable base model in the math domain, the guidance from implicit evidence alone can be excep-
tionally effective.

Figure 11: Qwen2.5-7B on Math. Ratio of sampled training tasks with different passing rates over
training steps.

Figure 12: Qwen2.5-7B on Math. Performance on downstream math benchmarks (MATH500,
AIME24) and their aggregation.

Benchmark MATH500 AIME24 Math

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 0.96 0.70 0.79 1.02 1.01 1.01 0.86 0.90 0.74 0.88 1.00 1.05 0.91 0.73 0.76 0.99 1.00 1.05

BOTS-MoPPS 1.10 1.10 1.35 0.96 1.00 1.00 1.14 0.88 0.64 0.85 1.19 1.10 1.07 1.15 0.70 0.94 1.04 1.04
BOTS-DOTS 0.89 0.72 1.07 1.01 1.00 1.02 0.96 0.76 - 0.89 1.07 0.99 0.83 0.80 0.61 0.98 1.02 1.03

BOTS 0.91 0.74 0.93 1.01 1.02 1.02 0.79 0.63 0.94 0.97 1.11 1.01 0.86 0.77 0.63 0.99 1.04 1.04

Table 9: Qwen2.5-7B on Math. TTB (lower better) and BSF (higher better) evaluated on down-
stream math benchmarks.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F.6 COMPREHENSIVE RESULTS ON CODE

Results on Code-1.5B To assess the generalizability of our framework, we replicate the compar-
ative experiments on the GURU-Code dataset. The results, presented in Figure 13, 14 and Table 10,
largely affirm the conclusions drawn from the Math domain. Our BOTS again achieves a consis-
tently high ETR, significantly outperforming the random and offline baselines. This demonstrates
its robust capability to construct an efficient curriculum across diverse domains. Correspondingly,
BOTS delivers strong downstream performance, particularly in the TTB metric, indicating effective
training acceleration.

However, the results on Code also reveal distinct characteristics. Most notably, BOTS-DOTS ex-
hibits exceptionally competitive performance. As detailed in Table 10, it matches or even surpasses
our recommended BOTS setting on several benchmarks, especially in the BSF metric. This suggests
that the implicit evidence from our interpolator is particularly potent for the Code domain. These
findings highlight that while the optimal balance of evidence sources may be domain-dependent,
BOTS provides a robust and unified solution that remains a top-performing method across both
settings.

Figure 13: Qwen2.5-1.5B-Instruct on Code. Ratio of sampled training tasks with different passing
rates.

Figure 14: Qwen2.5-1.5B-Instruct on Code. Performance on downstream code benchmarks (Hu-
manEval, MBPP, LiveCodeBench) and their aggregation.

Benchmark HumanEval MBPP LiveCodeBench Aggregated

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 0.69 0.83 1.09 1.12 1.01 1.00 0.69 1.03 - 1.05 0.99 0.99 1.12 1.08 - 0.91 0.88 0.89 0.68 1.03 - 1.09 1.00 0.99

BOTS-MoPPS 0.81 0.77 1.26 1.11 1.02 1.01 0.81 0.81 0.67 1.03 1.02 1.05 0.62 0.62 - 1.05 0.88 0.94 0.78 0.96 1.09 1.09 1.02 1.02
BOTS-DOTS 0.71 0.48 0.54 1.18 1.15 1.01 0.68 0.63 0.89 1.11 1.03 1.03 0.34 1.02 0.85 1.14 0.94 1.22 0.67 0.65 0.79 1.17 1.09 1.02

BOTS 0.56 0.63 - 1.24 1.12 0.99 0.68 0.66 0.67 1.10 1.06 1.05 0.76 1.18 - 1.00 0.76 0.94 0.58 0.90 0.77 1.17 1.08 1.03

Table 10: Qwen2.5-1.5B-Instruct on Code. TTB and BSF evaluated on HumanEval, MBPP, Live-
CodeBench, and aggregated performance.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Results on Code-7B We extended our analysis to the Qwen2.5-7B model to test scalability. The
results, presented in Figure 15, 16 and Table 11, primarily demonstrate the consistent robustness
of BOTS in optimizing the task selection. As shown in the Valid Ratio plot, our recommended
setting achieves the highest proportion of valid tasks, particularly during the early and middle train-
ing stages. This consistent efficiency in task selection across different model scales confirms the
robustness of our evidence-fusion approach.

On downstream benchmarks, the performance differences between methods are less pronounced,
with all strategies converging to a similarly high level of performance. This outcome is expected, as
the strong intrinsic capabilities of the 7B base model can diminish the performance differentiation
among curriculum strategies on standard benchmarks. Nevertheless, the clear advantage of BOTS
in task selection efficiency underscores its value in optimizing computational resources, even when
final performance margins are narrow.

Figure 15: Qwen2.5-7B on Code. Ratio of sampled training tasks with different passing rates.

Figure 16: Qwen2.5-7B on Code. Performance on downstream code benchmarks and aggregation.

Benchmark HumanEval MBPP LiveCodeBench Aggregated

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 0.83 1.29 0.92 1.01 0.96 1.00 1.13 1.29 - 0.99 0.97 0.98 1.04 0.96 0.96 0.90 0.98 1.06 0.97 1.24 - 0.99 0.99 0.99

BOTS-MoPPS 0.91 0.54 0.46 1.08 1.05 1.02 0.83 1.21 - 1.03 0.96 0.99 0.97 1.09 - 0.96 0.98 0.96 0.84 0.69 0.84 1.04 1.02 1.00
BOTS-DOTS 0.97 0.80 0.73 1.03 1.03 1.03 0.73 0.68 0.91 1.04 1.00 1.02 0.95 1.32 - 0.96 0.94 0.94 0.86 0.96 0.76 1.02 1.04 1.02

BOTS 0.96 0.55 0.77 1.09 1.03 1.01 0.69 0.87 - 1.03 0.96 1.00 1.18 1.47 - 0.87 0.87 0.98 0.82 0.79 1.06 1.04 1.01 1.00

Table 11: Qwen2.5-7B on Code. TTB and BSF evaluated on downstream code benchmarks.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.7 COMPREHENSIVE RESULTS ON LOGIC

Results on Logic-1.5B We evaluate the framework’s performance on the GURU-Logic dataset,
where our recommended BOTS setting demonstrates competitive performance comparable to its
results in the Math and Code domains. The curriculum dynamics in Logic, however, exhibit a
unique profile. As shown in Figure 17, the Effective Task Ratio (ETR) for most strategies follows a
distinct rise-and-fall pattern.

This task selection behavior is reflected in the downstream performance, detailed in Figure 18 and
Table 12. The explicit-only strategy again yields highly competitive results. Against this backdrop,
our recommended BOTS setting remains robust, securing strong TTB and BSF scores, particu-
larly in the aggregated performance metrics. These findings underscore that while domain-specific
characteristics may favor different evidence sources, BOTS provides a consistently effective and
general-purpose solution across all tested environments.

Figure 17: Qwen2.5-1.5B-Instruct on Logic. Ratio of sampled training tasks with different passing
rates over training steps.

Figure 18: Qwen2.5-1.5B-Instruct on Logic. Performance on downstream logic benchmarks (Or-
dering Puzzle, ARCAGI) and their aggregation.

Benchmark Ordering Puzzle ARCAGI Aggregated

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 1.24 1.55 - 0.65 0.78 0.88 1.64 1.16 0.94 0.67 1.11 1.11 1.23 1.36 - 0.67 0.78 0.89

BOTS-MoPPS 0.87 1.02 - 1.12 0.98 0.98 1.23 1.04 0.78 1.00 1.00 1.00 0.87 1.04 - 1.13 0.96 0.96
BOTS-DOTS 0.65 1.31 - 1.27 0.93 0.94 1.00 0.87 - 1.17 0.78 0.89 0.66 1.32 - 1.28 0.92 0.93

BOTS 0.85 0.93 1.03 1.15 1.02 1.02 1.16 0.83 - 1.33 0.89 0.89 0.85 0.94 1.05 1.19 1.01 1.00

Table 12: Qwen2.5-1.5B-Instruct on Logic. TTB and BSF evaluated on downstream logic bench-
marks.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Results on Logic-7B We extend the evaluation to the Qwen2.5-7B model on the GURU-Logic
dataset. Consistent with findings in other settings, BOTS demonstrates robust task selection effi-
ciency. As shown in Figure 19, its ETR curve (red line) shows a rapid initial rise, achieving an
effective curriculum faster than other methods. On the downstream benchmarks (Figure 20), the
performance of all methods converges, which is an expected outcome when finetuning a powerful
base model on these tasks.

This setting, however, reveals two interesting phenomena. First, the curriculum dynamics appear
highly sensitive to hyperparameter choices. The ETR trajectories for BOTS and BOTS-MoPPS
differ markedly, suggesting a complex interplay between evidence sources in this high-capability,
specific-domain context. Second, the offline baseline exhibits a distinct, periodic oscillation in its
ETR. A plausible hypothesis for this is that the powerful 7B model rapidly masters clusters of easy
tasks within the static curriculum, causing ETR to spike, and then encounters clusters of currently
insurmountable tasks, causing ETR to plummet. This cycle repeats as the model iterates over the
fixed dataset, resulting in the observed sharp fluctuations.

Figure 19: Qwen2.5-7B on Logic. Ratio of sampled training tasks with different passing rates over
training steps.

Figure 20: Qwen2.5-7B on Logic. Performance on downstream logic benchmarks and their aggre-
gation.

Benchmark Ordering Puzzle ARCAGI Aggregated

Metric TTB (↓) BSF (↑) TTB (↓) BSF (↑) TTB (↓) BSF (↑)
Method (↓), % (→) 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100% 50% 75% 100% 25% 50% 100%

Random 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Offline 1.07 1.21 1.69 0.98 0.97 1.05 1.13 1.81 - 0.71 1.00 0.91 1.06 1.23 0.95 0.96 0.95 1.04

BOTS-MoPPS 0.75 0.89 0.67 1.12 1.00 1.05 0.84 1.47 - 0.71 1.12 0.86 0.75 0.92 0.69 1.07 1.00 1.05
BOTS-DOTS 0.80 0.98 1.61 1.02 0.95 1.03 0.80 0.99 - 1.00 1.00 0.86 0.79 0.91 0.91 1.02 0.95 1.03

BOTS 0.80 0.77 0.89 1.04 1.00 1.00 0.72 1.17 - 0.88 1.12 0.91 0.79 0.78 0.50 1.03 1.01 1.00

Table 13: Qwen2.5-7B on Logic. TTB and BSF evaluated on downstream logic benchmarks.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G USAGE OF LARGE LANGUAGE MODELS

We employed Large Language Models solely for the purpose of polishing the writing in this
manuscript. Their function was limited to tasks such as correcting grammatical errors, rephras-
ing sentences to enhance clarity and flow, and ensuring the consistent use of terminology. The
LLMs had no role in the ideation of the research, the development of the BOTS framework, the
experimental design, or the analysis of results.

34


	Introduction
	Related Works
	Bayesian Online Task Selection
	Preliminaries: Modeling Task Difficulty 
	Core Mechanism: Fusing Evidence in a Unified Posterior
	Ultra-Light Interpolation Plug-in for Implicit Evidence
	Thompson Sampling for Task Selection

	Experiments
	Setups
	Fusing Two sources of Evidence: Analyzing the Impact of 
	Forgetting and Adaptivity: Analyzing the Impact of 
	Performance Comparison Across Models and Domains
	Overview of Additional Experiments

	Conclusion and Discussion
	Notation Summary
	Implementational Details
	Training Data
	Evaluation Benchmarks
	Trainining Details
	Formal Definitions of Metrics
	Policy Optimization Algorithm: GRPO
	Baseline Details

	More Related Works
	Proofs
	Proof for Proposition 1
	Proof for Proposition 2

	Extended Discussion
	Impact of ,  on Task Selection
	Attention-Based Adaptive Difficulty Estimate
	Interpolation-Based Implicit Evidence
	Discussion on Future Works
	Generalization to Other Reward Distributions
	Self-Adaptive Update Rules
	Alternative Plug-In for Implicit Evidence


	Additional Experimental Results
	Computational Overhead
	Interpolation-Based Implicit Evidence: Empirical Results
	Sampling from Posterior
	Dynamics of Selected Tasks
	Comprehensive Results on Math
	Comprehensive Results on Code
	Comprehensive Results on Logic

	Usage of Large Language Models

