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ABSTRACT

Current reinforcement learning generally uses discounted return as its learning ob-
jective. However, real-world tasks may often demand a high success rate, which
can be quite different from optimizing rewards. In this paper, we explicitly formu-
late the success rate as an undiscounted form of return with {0, 1}-binary reward
function. Unfortunately, applying traditional Bellman updates to value function
learning can be problematic for learning undiscounted return, and thus not suit-
able for optimizing success rate. From our theoretical analysis, we discover that
values across different states tend to converge to the same value, resulting in the
agent wandering around those states without making any actual progress. This fur-
ther leads to reduced learning efficiency and inability to complete a task in time.
To combat the aforementioned issue, we propose a new method, which introduces
Loop Penalty (LP) into value function learning, to penalize disoriented cycling
behaviors in agent’s decision-making. We demonstrate the effectiveness of our
proposed LP on three environments, including grid-world cliff-walking, Doom
first-person navigation and robot arm control, and compare our method with Q-
learning, Monte-Carlo and Proximal Policy Optimization (PPO). Empirically, LP
improves the convergence of training and achieves a higher success rate.

1 INTRODUCTION

Reinforcement learning usually adopts expected discounted return as objective, and has been applied
in many tasks to find the best solution, e.g. finding the shortest path and achieving the highest score
(Sutton & Barto, 2018; Mnih et al., 2015; Shao et al., 2018). However, many real-world tasks,
such as robot control or autonomous driving, may demand more in success rate (i.e. the probability
for the agent to fulfill task requirements) since failures in these tasks may cause severe damage
or consequences. Previous works commonly treat optimizing rewards equivalent to maximizing
success rate (Zhu et al., 2018; Peng et al., 2018; Kalashnikov et al., 2018), but their results can be
error-prone when applied to real-world applications.

We believe that success rate is different from expected discounted return. The reasons are as follows:
1) expected discounted return commonly provides dense reward signals for transitions in an episode,
while success or not is a sparse binary signal only obtained at the end of an episode; 2) expected
discounted return commonly weights results in the immediate future more than potential rewards
in the distant future, whereas success or not does not have such a weighting and is only concerned
about the overall or the final result. Policies with high expected discounted returns are often more
demanding in short-term performance than those with high success rates and optimizing success
rates often leads to multiple solutions. As a result, policies with high success rates tend to be more
reliable and risk-averse while policies with high expected discounted returns tend to be risk-seeking.

See the cliff-walking example in Fig. 1 where the objective is to walk from the origin state marked
with a triangle to the destination state marked with a circle. The “Slip” area in light grey winds with
a certain probability pfall = 0.1, making the agent uncontrollably move down; the dark gray area at
the bottom row denotes “Cliff”. In Fig. 1, the blue trajectory shown on the left is shorter but riskier
than the green one shown on the right. In commonly-used hyperparameter settings, such as γ = 0.9,
the agent tends to follow the blue trajectory rather than the green one, although the green trajectory
has a higher success rate.
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Figure 1: Cliff-walking example
Figure 2: Illustration of value fucntion
discounted (left) and undiscounted (right)

We acknowledge that for this simple example, optimizing expected discounted return with a careful
design of γ that meets (1 − pfall)

4 < γ9−5 can produce a policy with the highest success rate.
However, this result relies on task-specific knowledge about the environment, generally not available
in more complex tasks. These findings lead us to the following question: can we express success
rate in a general form so that it can be directly optimized? In this paper, we discover a universal way
of representing success rate is to 1) use a {0, 1}-binary reward indicates whether or not a trajectory
is successful, and 2) set γ = 1 so that the binary signal back-propagates without any discount.

Unfortunately, this expression belongs to undiscounted problems and the convergence of value it-
eration often cannot be guaranteed (Xu et al., 2018). Nevertheless, we can still explicitly solve the
Bellman equation in a matrix form for the special undiscounted return (success rate). We derive
that if the transition dynamics of the environment permit existence of an irreducible ergodic set of
states, γ = 1 will lead to an undesirable situation: state or state-action values tend to converge to the
same value, which we refer to as uniformity. As shown in Fig. 2 for the contour of state values in
our cliff-walking example, uniformity is reflected as a plateau in the right figure, which is caused by
non-discounting and does not exist in discounting cases (left figure). Uniformity makes the selection
of actions purposeless within the plateau, resulting in disoriented and time-consuming behaviors in
the agent’s decision-making, and unsatisfactory success rates.

Based on the above analysis, we introduce Loop-Penalty (LP) into value function learning to penal-
ize disoriented and cycling behaviors in trajectories. We derive that this penalty can be realized by
multiplying a special mask function to the original value function. Note that our strategy is general
and is applicable to many RL algorithms. We provide concrete loss functions for three popular algo-
rithms in this paper: Monte Carlo, Deep Q-learning and Proximal Policy Optimization (Schulman
et al., 2017). We verify the effectiveness in three representative environments: grid-world cliff-
walking, vision-based robot grasping, and first-person navigation in 3D Vizdoom (Kempka et al.,
2016), showing that LP can alleviate the uniformity problem and achieve better performance. Fi-
nally, we summarize the major contributions of our paper in the following:

• We formally introduce the objective of “success rate” in reinforcement learning. Our for-
mulation of success rate is general and is applicable for many different RL tasks.

• We theoretically analyze the difficulty in optimizing success rate and show that the unifor-
mity among state values and the resulting loops in trajectories are the key challenges.

• We propose LP which can be combined with any general RL algorithm. We demonstrate
empirically that LP can alleviate the problem of “uniformity” among state values and sig-
nificantly improve success rates in both discrete and continuous control tasks.

2 RELATED WORK

To the best of our knowledge, currently there is no research that adopts success rate directly as the
learning objective. The reason is that success rate is usually not the main criterion in tasks investi-
gated by RL, e.g. video games and simulated robot control. Although some studies used success rate
to evaluate the performance of the policies (Andrychowicz et al., 2017; Tobin et al., 2018; Ghosh
et al., 2018; Kalashnikov et al., 2018), they used task-specific reward design and discounted return
during training, instead of directly optimizing success rate.

The notion of “success” may be reflected in constraints considered in the domain of safe RL (Garcı́a
& Fernández, 2015). Geibel & Wysotzki (2005) considered constraints on the agent’s behavior and
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discouraged the agent from moving to error states. Geibel (2006) studied constraints on the expected
return to ensure acceptable performance. A. & Ghavamzadeh (2013) proposed constraints on the
variance of some measurements to pursue an invariable performance. Previous studies have also
considered safety in the exploration process (Garcı́a & Fernández-Rebollo, 2012; Mannucci et al.,
2018). Although these studies deemed success rate as an additional constraint in learning, they either
simply assumed that the constraint can be certainly satisfied or penalized constraint violations.

The deficiency of expected discounted return as a training objective has been recognized by many
studies. Instead of just optimizing expected return, Heger (1994); Tamar et al. (2013) adopted the
minimax criterion that optimizes the worst possible values of the return. By doing so, occasional
small returns would not be ignored at test time. Gilbert & Weng (2016); Chow et al. (2017) extended
this idea to arbitrary quantiles of the return. However, all these studies are not optimizing success
rate directly since they are based on a quantitative measurement of performance and are unneces-
sarily sensitive to the worst cases. In contrast, success rate is based on a binary signal which only
distinguishes between success and failure.

Our work involves optimization of an undiscounted return. The instability in training towards an
undiscounted return has been mentioned by Schwartz (1993); Xu et al. (2018). However, most stud-
ies on undiscounted return focused on continuous settings and considered the average reward as
objectives (Schwartz, 1993; Ortner & Ryabko, 2012; Zahavy et al., 2020). There seems to be a gen-
eral view that the instability in training towards undiscounted return only exists in continuous cases
but not in episodic cases (Pitis, 2019). Contrary to this view, we propose that training instability also
exists in episodic cases. For optimizing success rate, we provide a theoretical analysis and show the
existence of training instability and propose a practical method that alleviates this problem.

3 SUCCESS RATE IN REINFORCEMENT LEARNING

In this section we provide a formal definition of success rate, explain its relationship with expected
discounted sum of rewards, and analyze the problems in optimizing success rate.

3.1 SUCCESS RATE

In RL, given a policy π, success rate specifically refers to the ratio of the successful trajec-
tories to all trajectories. As in a general setting of RL, a trajectory is expressed as τ =
{(s0, a0, r0), . . . , (sT , aT , rT ), sT+1} rolled out by following policy π, where st ∈ S is state,
at ∈ A denotes action, rt represents immediate reward and T is the length of the trajectory. Be-
cause the notion of success should only depend on the visited states in a trajectory, we concisely
express “success” by defining a set of desired states Sg ⊂ S that denote task completion, e.g. the
destination state in our cliff-walking example. At a high level, the goal of the agent is to reach any
state in Sg within a given planning horizon T , and the environment terminates either upon arriving
at a desired state or reaching a maximum allocated timestep T . Without loss of generality, we say
that “a trajectory τ is successful” if and only if τ−1 ∈ Sg , where τ−1 is the last state in τ . Formally,
we use an indicator function I(s ∈ Sg) to denote success, where I(·) takes value of 1 when the
input statement is true and 0 otherwise. Since this expression is task-independent, our analysis can
be widely applicable. Accordingly, we formally define the success rate as follows:

Definition 1. The success rate of a given policy π is defined as

βπ(s0) =
∑
τ

pπ(τ |s0)I(τ−1 ∈ Sg) (1)

where pπ(τ |s0) =
∏T
t=0 π(at|st)p(st+1|st, at) is the probability of observing trajectory τ .

In order to find a policy that optimizes success rate, we derive a recursive form of policy evaluation
similar to the Bellman equation (Sutton & Barto, 2018), as shown in Theorem 1.

Theorem 1. The success rate is a state-value function represented as an expected sum of undis-
counted return, with the reward function R(s) defined to take the value of 1 if s ∈ Sg , 0 otherwise.

Proof sketch: We segment the trajectories and generate sub-trajectories, τ ∈ Γ, τ0:k ∈ Γ̂ , where
k ∈ (0, T ]. Note that Γ = Γ̂ , because 1) ∀τ ∈ Γ , we have τ0:T ∈ Γ̂ = τ, Γ ⊆ Γ̂ , 2) τ0:k
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is a trajectory, Γ̂ ⊆ Γ . Then the success rate βπ(st) can be rewritten as the product sum of the
probability of reaching st+k and the indicator I(τst+k

∈ Sg) for all st+k:

βπ(st) =

T−t∑
k=1

∑
st+k

pπ(st+k|st)I(st+k ∈ Sg) (2)

where pπ(st+k|st) the probability of reaching st+k from st. Complete proof is in appendix. �

Therefore, we can optimize success rate through setting the above {0, 1}-binary reward function and
adopting an undiscounted form of return. The problem is that this formulation falls into optimizing
the undiscounted form of return and may have problems in training stability (Xu et al., 2018).

3.2 UNIFORMITY IN SUCCESS RATE OPTIMIZATION

In the following part, we will show that γ = 1 can cause uniformity among state values, resulting in
possible loops in trajectories, which hurts training stability.

A. The concept of uniformity

First, we define the concept of uniformity. Given a policy π, we say that uniformity arises when the
state-value estimates of a set of strongly connected states become the same. Here we say two states
are strongly connected if one state is reachable from the other and vice versa, e.g. the first two rows in
the grid-world example (Fig. 1). Since state value represents the expected sum of available rewards
(Sutton & Barto, 2018), uniformity means that moving in this connected area/region will potentially
lead to the same amount of return. This phenomenon can hardly occur with discounted return
since the discounting poses a preference for time-efficiency in collecting rewards and penalizes
purposeless wandering. However, uniformity may happen when the objective is success rate since
efficient trajectories and inefficient ones become indistinguishable.

B. Proof of the existence of uniformity

In this section, we theoretically prove that γ = 1 in the expression of success rate can cause unifor-
mity. Because uniformity is a phenomenon about concrete state values, common techniques used to
analyze the overall performance such as regret bound and contraction mapping do not apply here.
Hence, we directly solve the Bellman equation to get state values. As for the reward function, we
are fortunate that in our case the reward function only takes {0, 1}-binary values, which makes our
analysis tractable. As for the optimization process, we analyze state values at convergence by first
assuming a policy with uniformity, and then show that this policy will be kept during optimization.

For succinctness in description, we assume S to be finite to write the Bellman equation into a matrix
form: V = P πR + γP πV , where V,R ∈ R|S|, P π ∈ R|S|×|S| and |S| is the cardinality of the
state space. Without loss of generality, we denote the desired states at the bottom of each vector, so
R = [0, . . . , 0, 1, . . . , 1]T. Then we formulate the concept of “area” as a set of states Se ( S that
are irreducible ergodic in the Markov process conditioned on a policy π. By assuming the existence
of π and Se, and denoting states in Se as the first |Se| elements in the vectors, the π-conditioned
transition probability matrix can be divided into

P π =

[
P π
ee O

P π
oe P π

oo

]
, (3)

where P π
ee is the transition probability matrix for s ∈ Se. Accordingly, we have the following

Bellman equation for s ∈ Se:
Ve = P π

eeRe + γP π
eeVe = γP π

eeVe . (4)

Analyzing uniformity requires solving Eq.4. For γ < 1, the solution is unique Ve = [0, . . . , 0]T

because P π
ee is a stochastic matrix and (I − γP π

ee) must be non-singular, and the value 0 drives the
agent to leave Se in future policy update. However, when γ = 1, there are infinite solutions, as
established in the following theorem.

Theorem 2. For γ = 1, if Se exists, the solution space of Eq.4 is {Ve = m · [1, . . . , 1]T|m ∈ R}.
Proof : Because states in Se are ergodic, for any start-distribution uT1 and uT2 among Se, we have

uT1 lim
i→∞

(P π
ee)

i = uT2 lim
i→∞

(P π
ee)

i . (5)
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(a) State-action values

           

Cliff

(b) The policy and loops

Figure 3: Numeric example of uniformity and loop

r

0

Trajectory without a loop

Trajectory with a loop

={0,1}r r

r

Loop Penalty

Figure 4: Sketch of Loop Penalty

Thus, limi→∞(P π
ee)

i should be in the form that every row is the same, as illustrated below:

lim
i→∞

(P π
ee)

i =


x1 x2 · · · x|Se|
x1 x2 · · · x|Se|
...

...
...

...
x1 x2 · · · x|Se|


Note that all the elements are non-zero because Se is irreducible. Thus, for equation Ve =
(limi→∞(P π

ee)
i)Ve, the solutions are m · [1, . . . , 1]T,m ∈ R. Because P π

ee is a stochastic
matrix, these solutions also satisfy Eq.4. Now, because solutions for Eq.4 also satisfy Ve =
(limi→∞(P π

ee)
i)Ve, the solution spaces of the two equations become the same. Therefore, the solu-

tion space of Eq.4 is {Ve = m · [1, . . . , 1]T|m ∈ R}, which completes the proof. �

This theorem demonstrates that when evaluating policy in terms of success rate, the converged values
for states in Se are the same and may take arbitrary values. This proves the existence of uniformity
among state values.

Now we reason that there can be a policy π that produces Se and that this policy can be kept by
the agent during policy optimization. (1) As for Se, it is common in RL environment that there is
a set of two or more states that are reachable from each other without randomness. If the policy is
initialized (or disturbed by random sampling during learning) to only stay in this set of states, then
it gives the set of states Se. Note that the desired states are not in Se because they are absorbing
and cannot reach other states. This ensures that Re = [0, . . . , 0]T, by which Eq.4 is valid. (2) As
for the agent keeping π during policy optimization, we check if the state values satisfy the Bellman
optimal equation. We have derived that any m may be the value of state in Se. If the value m is
larger than the value of states reachable from Se (probably due to initialization of value function),
then the update target of values of states in Se remains m. This means that m satisfies the Bellman
optimal equation at states in Se, and that the policy at Se is kept during policy update. So far, we
have proved that the objective of success rate can cause uniformity in state values.

C. Problems caused by uniformity

In RL, the agent selects actions based on the evaluation of future returns. When uniformity happens,
the evaluation of different actions become the same, so the agent can only make random selections.
This leads to disoriented, time-consuming but meaningless behaviors and an unsatisfactory success
rate. In practice, because of disturbances due to random exploration, there may be slight differences
between state values. Although this makes action-selection certain, it may result in undesirable
policies, which causes instability in training. Fig. 3 shows a numeric example. We adopt Q-learning
and illustrate the trained Q-values and the preferred actions respectively in (a) and (b). The Q-values
are almost the same in upper grids, and there are several potential loops in the agent’s trajectory. If
the agent enters a loop, it will keep repeating the loop and fail in reaching the target.

4 METHOD: LOOP PENALTY

So far we have shown the problems in optimizing success rate. As for the solution, our insight is
to suppress the generation of “loops” to penalize disoriented cycling behaviors in agents decision-
making. In this section, we derive the cost function for minimizing the probability of loops, which
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Algorithm 1 Loop-Penalty Q-Learning

Initialize: action-value function Q, episode buffer D;
for episode= 1,M do

Initialise episode buffer D;
for t = 1, T do

With probability ε select a random action at, otherwise select at = maxaQ(st, a);
Execute action at in emulator, get and store transition (st, at, rt, st+1) in D;

end for
for each transition {st, at, rt, st+1} in D do

Initialise the marker factor of loop φ(st)← 1;
for each {i, j|0 < i < t, t < j < T} do

Calculate φt ← φt ∩ I(si 6= sj);
end for

Set yt =
{
rt for terminal st+1

(rt +maxaQ(st+1, a))φt for non-terminal st+1
;

Perform a gradient descent step on ‖yt −Q(st, at)‖2;
end for

end for

introduces Loop Penalty (LP) into value function learning. Then we introduce a practical algorithm
that can implement this framework for reinforcement learning problems.

4.1 LOOP PENALTY

Our idea is that the agent not only needs to maximize the success rate, but also minimize the proba-
bility of “loops”. This is formalized as follows:

π∗ = argmax
π

pπ(τ
no−loop
−1 ∈ Sg), (6)

where τno−loop is the trajectory without loops where the agent visits some states more than once,
in which the agent never revisits a previous state. We now derive the recursive state-value function
βloop−penaltyπ (st) with our loop-penalty for the optimization of Eq.6.

Theorem 3. The state-value function policy for Eq.6 is

βloop−penaltyπ (st) = Eτ∼π
[
I(st+1 ∈ Sg)φ(st) + βloop−penaltyπ (st+1)

]
, (7)

where φ(st) := I(si 6= sj ,∀ 0 ≤ i < t, t < j ≤ T ) is an indicator that judges whether there is a
loop through st in the trajectory τ .

Proof sketch: The key idea is to convert Eq.6 to sum of the probability products of pπ(τ) and
I(s ∈ Sg)I(τno−loop), where I(τno−loop) judges if there is not a loop in τ . In addition, we mark
the probability of reaching a state s as ρπ(s) = Pπ(s0 = s) + Pπ(s1 = s, s0 6= s) · · · and have:

pπ(τ
no−loop
−1 ∈ Sg) =

∑
si

ρπ(si)

T∑
t=i+1

I(st ∈ Sg)I(sj 6= si,∀ i+ 1 < j < T ). (8)

We postpone the complete proof to the appendix. �

So far we have derived that reducing the probability of loops can be achieved in sampling with
multiplying φ(st) according to the signal of success or not in each collected trajectory, which is a
method of online policy evaluation for state values.

4.2 ALGORITHM

In this subsection, we design three implementation methods by substituting the state-value function
with LP into the loss functions of three commonly used RL algorithms, Monte Carlo (MC), Q-
Learning (QL), and Proximal Policy Optimization (PPO) (Schulman et al., 2017). As discussed
above, LP takes the form of multiplying the original state-value function with φ(st) as shown in
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Fig. 4. Note that the indicator φ(st) can be implemented with many famous methods for measuring
state similarity, such as GAN or VAE (Yu et al., 2019; Chen et al., 2016; Pathak et al., 2017). To
that end, we derive three new adjusted loss functions, MC with Loop-Penalty (MC-LP), QL with
Loop-Penalty (QL-LP), PPO with Loop-Penalty (PPO-LP) as follows:

LMC−LP (πQ, ε, st) ∝ Eτ∼πQ,ε

[
‖
∑T
k=t+1γ

krkφ(st)−Q(sk, ak)‖2
]
γ=1

, (9)

LQL−LP (πQ, st) ∝ Eτ∼πQ

[
‖(rt+1 + γmaxat+1

Q(st+1, at+1))φ(st)−Q(st, at)‖2
]
γ=1

, (10)

LPPO−LP (π, st) ∝ −Eτ∼π,old
[
min

[
A(st, a)φ(st)

πk(a|st)
πk,old(a|st)

, clip{ πk(a|st)
πk,old(a|st)

}
]]

, (11)

where ε is the exploration rate of MC, A(st, a) the advantage function and clip{·} the clipping
function. Note that these algorithms all adopt online evaluation methods for value functions, because
the probability of loops is related with the current policy. We choose QL-LP as representative to
show our algorithm (Alg.1). The agent stores the state transitions collected in an episode into an
online buffer D and use it to learn at the end of the episode. The loss function of LP-QL takes the
product of rt +maxaQ(st+1, a) and φ(st) as the target Q-value yt in our algorithm.

5 EMPIRICAL RESULTS

In this section we aim to analyze the following three questions: 1) Does LP alleviate the unifor-
mity of state values for success-rate optimization? 2) Does LP achieve better performance in terms
of success rate, furthermore close to the highest possible success rate? 3) What is the difference
between the policy with a high success rate and that with a high expected return?

5.1 TASK DESIGN

We design three environments to exhibit the problem and examine the effectiveness of our algorithm.
1) We use the aforementioned cliff-walking grid-world to show how our algorithm works in detail. 2)
We construct a 3D first-person navigation task based on ViZDoom (Kempka et al., 2016) to examine
whether LP is suitable for complex tasks. 3) We construct a robot (kinova jaco2) grasping task with
CoppeliaSim (originally named V-REP) to examine the practicality.

In these three tasks, we constructed dangerous areas respectively, in which the agent fails with a
certain probability: 1) windy area in the grid-world that makes the agent uncontrollably move down
with a certain probability pfall = 0.1 and fall down the cliff, 2) an area in the ViZDoom environment
with a monster shooting at the agent, where the probability of failure depends on behaviors of the
monster and the agent’s random initial health, 3) a noisy area in the robot grasping task in which
the arm is disturbed with a 0.2 probability and may collide with the obstacle. These environments
are illustrated in Fig. 5(a, b, c). The ViZDoom and robot grasping tasks only provide visual inputs
for decision-making. To show our method is compatible with different RL algorithms, here we use
three RL algorithms in three experiments: 1) QL and QL-LP in Grid-world, 2) MC and MC-LP in
ViZdoom, 3) PPO and PPO-LP in Robot grasping. Other details are included in the appendix.

5.2 RESULTS ON CONVERGENCE AND SUCCESS RATE

First, we focus on the first question, i.e. whether our method alleviates the convergence problem of
success-rate optimization. To reflect convergence, we plot curves about the change of success rate
during training in Fig. 6, which is obtained by testing the policy ten times at the end of each training
episode to calculate the success rates. It shows that there high variance when using MC (γ = 1.0)
and QL (γ = 1.0) to optimize success rate, while our methods (marked by LP) can converge stably
to a high success rate. These results indicate that: 1) the difficulty of convergence exists when
optimizing success rate, 2) LP can stably optimize success rate.

Then, we try to answer the second question, i.e. whether our method achieves better performance
than optimizing the expected discounted return. Furthermore, we check whether the success rate of
our method can be close to 1. We test the model 1000 times at the end of training and calculated
the success rate, as shown in Table.1. In our experiments, PPO-LP with γ = 1.0 has an obviously
higher success rate than PPO optimized by expected discounted return with γ = 0.7 and that with
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Figure 5: Illustration of environments, value functions and policies
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Figure 6: Learning curve of cliff-walking (left), ViZDoom (right)

Table 1:
Success rate in robot grasping

Algorithms Success Rate

PPO (γ = 0.7) 0.761
PPO (γ = 1.0) 0.109
PPO-LP (γ = 1.0) 0.987

γ = 1.0, furthermore closer to 1. Results of success rate after training show that: 1) Optimizing
with expected discounted return can not achieve the highest success rate in our experiments, and 2)
the success rate of our method can be close to the highest.

5.3 VISUALIZATION OF STATE VALUES AND POLICIES

Lastly, we focus on our third question, i.e. what are the characteristics of policies trained with our
method? We visualize the state values and the policy of our method in the grid-world task. As shown
in Fig. 5 (d), there is no uniformity in state values and the trajectory bypasses the dangerous area.
Then we visualize the policies of ours and policies got by optimizing expected discounted returns
in ViZDoom and robot grasping, as shown in Fig. 5 (e,f). They show that the policies trained by
maximizing success rate with LP tend to be reliable and risk-averse. On the contrary, the policies
trained by maximizing expected discounted return tend to be risk-seeking.

6 DISCUSSION

This paper formally introduces the objective of success rate, analyzes the uniformity problem in
directly optimizing success rate in RL, and proposes LP to alleviate it. As a potential impact, we
think the discovery of the relationship between success rate and expected undiscounted return may
imply that expected undiscounted return has some useful properties. As for future work, we hope
to investigate different methods for measuring state similarity to improve the efficiency of LP. In
addition, we think it is also beneficial to develop methods that alleviate the sparse-reward problem
in optimizing success rate.
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A APPENDIX

A.1 PROOF OF THEOREM 1

In this section, we complete the proof of theorem 1.

Theorem 1. The success rate is a state-value function represented as an expected sum of undis-
counted return, with the reward function R(s) defined to take value of 1 if s ∈ Sg , 0 otherwise.

Proof : We segment the trajectories and generate sub-trajectories, τ ∈ Γ, τ0:k ∈ Γ̂ , where k ∈
(0, T ]. Note that Γ = Γ̂ , because 1) ∀τ ∈ Γ , we have τ0:T ∈ Γ̂ = τ, Γ ⊆ Γ̂ , 2) τ0:k is a trajectory,
Γ̂ ⊆ Γ . Then the success rate βπ(st) can be rewritten as the product sum of the probability of
reaching st+k and the indicator I(τst+k

∈ Sg) for all st+k:

βπ(st) =

T−t∑
k=1

∑
st+k

pπ(st+k|st)I(st+k ∈ Sg) (12)
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where pπ(st+k|st) the probability of reaching st+k from st. Then we substitute the formula of
probability of reaching state pπ(st+k|st) =

∏t+k
t̂=t

π(at̂|st̂)p(st̂+1|st̂, at̂) into βπ(st):

βπ(st) =

T−t∑
k=1

∑
st+k

t+k∏
t̂=t

π(at̂|st̂)p(st̂+1|st̂, at̂)I(st+k ∈ Sg)

=
∑
at

π(at|st)
∑
st+1

p(st+1|st, at)
{
I(st+1 ∈ Sg)

+
∑
at+1

π(at+1|st+1)
∑
st+2

p(st+2|st+1, at+1)
[∑

τ

I(τ−1 ∈ Sg)p(τ |st+1)
]}

=
∑
at

π(at|st)
∑
st+1

p(st+1|st, at) [I(st+1 ∈ Sg) + βπ(st+1)]

(13)

If we compare success rate of states βπ(st) with the state-value function Vπ(st) =∑
at
π(at|st)

∑
st+1

p(st+1|st, at) [rt+1 + Vπ(st+1)], we will find that the success rate is a kind
of undisouncted return with {0,1}-binary reward of I(st ∈ Sg), which completes the proof.

A.2 PROOF OF THEOREM 3

In this section, we complete the proof of theorem 3.

Theorem 3. The state-value function policy for Eq.6 is

βloop−penaltyπ (st) = Eτ∼π
[
I(st+1 ∈ Sg)φ(st) + βloop−penaltyπ (st+1)

]
, (14)

where φ(st) := I(si 6= sj ,∀ 0 ≤ i < t, t < j ≤ T ) is an indicator that judges whether there is a
loop through st in the trajectory τ .

Proof : The key idea is to convert Eq.6 to sum of the probability products of pπ(τ) and I(s ∈
Sg)I(τ

no−loop), where I(τno−loop) judges if there is not a loop in τ . In addition, we mark the
probability of reaching a state s as ρπ(s) = Pπ(s0 = s) + Pπ(s1 = s, s0 6= s) · · · and have:

pπ(τ
no−loop
−1 ∈ Sg) =

∑
si

ρπ(si)
T∑

t=i+1

I(st ∈ Sg)I(sj 6= si,∀ i+ 1 < j < T )

=
∑
si

ρπ(si)
[ ∑
ai+1

π(ai+1|si+1)
∑
si+1

p(si+2|si+1, ai+1)
[
I(si+2 ∈ Sg)I(sj 6= si,∀ i < j < T )+

∑
ai+2

π(ai+2|si+2)
∑
si+2

p(si+3|si+2, ai+2)
[ T∑
t=i+3

I(st ∈ Sg)I(sj 6= si,∀ i+ 1 < j < T )
]]]

=
∑
si

ρπ(si)Eτ∼π
[
I(si+1 ∈ Sg)I(sj 6= si,∀ i+ 1 < j < T )

Eτ∼π
[ T∑
t=i+2

I(st ∈ Sg)I(sj 6= si,∀ i+ 2 < j < T )
]]

= Eτ∼π
[
I(st ∈ Sg)I(sj 6= si,∀ 0 < i < t, t < j ≤ T )+

Eτ∼π
[ T∑
k=t+1

I(sk ∈ Sg)I(sj 6= si,∀ 0 < i < k, k < j ≤ T )
]]

(15)
Then let φ(st) = I(sj 6= si,∀ 0 < i < t, t < j ≤ T ), and we have

pπ(τ
no−loop
−1 ∈ Sg) = Eτ∼π

[
I(st+1 ∈ Sg)φ(st) + Eτ∼π

[ T∑
t+2

I(st+2 ∈ Sg)φ(st+1)
]]

(16)

Considering βloop−penaltyπ (st) = Eτ∼π
[ T∑
t
I(st+1 ∈ Sg)φ(st)

]
, the βloop−penaltyπ (st) can also be

written as a recursive form:

βloop−penaltyπ (st) = Eτ∼π
[
I(st+1 ∈ Sg)φ(st) + βloop−penaltyπ (st+1)

]
(17)

which completes the proof.

11



Under review as a conference paper at ICLR 2021

Table 2: Learning rate

Algorithms Learning Rate

QL 0.1
MC 0.01
PPO 0.0001

Table 3: Exploration rate

Algorithms Exploration Rate

QL 0.3
MC random choice from [0,0.5]
PPO 0.0002 (coefficient)

Figure 7: Schematics of the networks of 1) PPO the left 2) MC the right

A.3 EXPERIMENT DETAILS

We set the same hyper-parameters for models of our algorithms and the baselines. The learning rates
and exploration rates are set as the Table 2 and Table 3, in which the exploration rate is expressed
with the coefficient of policy entropy. The parameter for gradient clipping in PPO εclip is set to
0.1. We implement φ(st) with environmental information (position information in ViZDoom and
pose information of arm in robot grasping) as signals in the training, but not use the information in
the testing. The models we used in Grid-World tasks are tabulars which has the same shapes as the
environments’ and those in ViZDoom tasks and Robot tasks are neural-networks. The models of
networks are shown in Fig. 7. And the inputs are shown in Fig. 8.

A.4 NUMERICAL RESULTS ON STATE-ACTION VALUES

We show the state-action values of MC-LP (γ = 1.0), QL (γ = 0.6) and QL (γ = 1.0) after training
as Fig. 9. State-action values of QL (γ = 1.0) show the phenomenon of uniformity. State-action
values of QL (γ = 0.6) has no uniformity but tend to be risk-seeking. State-action values of MC-LP
(γ = 1.0) has no uniformity and perform conservative, with high success-rate.
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(a) Observations in robot grasping (b) An observation in ViZDoom

Figure 8: Exhibition of the inputs of networks
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(a) State-action values of QL (γ = 0.6)
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(c) State-action values of MC-LP (γ = 1.0)

Figure 9: Illustration of state-action values
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