
FedGRec: Federated Graph Recommender System
with Lazy Update of Latent Embeddings

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recommender systems are widely used in industry to improve user experience.1

Despite great success, they have recently been criticized for collecting private user2

data. Federated Learning (FL) is a new paradigm for learning on distributed data3

without direct data sharing. Therefore, Federated Recommender (FedRec) systems4

are proposed to mitigate privacy concerns to non-distributed recommender systems.5

However, FedRec systems have a performance gap to its non-distributed counterpart.6

The main reason is that local clients have an incomplete user-item interaction graph,7

thus FedRec systems cannot utilize indirect user-item interactions well. In this8

paper, we propose the Federated Graph Recommender System (FedGRec) to9

mitigate this gap. Our FedGRec system can effectively exploit the indirect user-10

item interactions. More precisely, in our system, users and the server explicitly store11

latent embeddings for users and items, where the latent embeddings summarize12

different orders of indirect user-item interactions and are used as a proxy of missing13

interaction graph during local training. We perform extensive empirical evaluations14

to verify the efficacy of using latent embeddings as a proxy of missing interaction15

graph; the experimental results show superior performance of our system compared16

to various baselines.17

1 Introduction18

Recommender systems play an essential role in reducing information overload in the current era of19

information explosion. A recommender system predicts a small set of candidates in which a user20

may be interested from a large number of items. Collaborative Filtering (CF) [11] is one of the most21

successful approaches to making recommendations. CF is based on the idea that users with a similar22

interaction history tend to share interests in items. Naturally, CF is highly dependent on collecting23

user behavior data. Gathering such information undermines the privacy of the user. To alleviate24

this challenge, researchers exploited the idea of Federated Learning (FL) and developed Federated25

Recommender Systems (FedRec). In a FedRec system, users keep its data locally and only share26

the model with the server. FedRec systems mitigate privacy concerns, but still have a performance27

gap with non-distributed recommender systems [1, 13]. In a FedRec system, a user performs local28

training with its own interaction data and cannot access the data of other users. With this incomplete29

interaction graph, the learned model generally cannot capture indirect user-item interactions well.30

In contrast, non-distributed recommender systems [18, 22] have access to the whole interaction31

graph and can capture such indirect interaction with various techniques such as graph embedding.32

Therefore, it is essential to develop a technique to mitigate the bias caused by the incomplete local33

interaction graph so that FedRec systems can better capture indirect interaction. In this paper, we34

take one step forward and propose the Federated Graph Recommender System (FedGRec), which35

can take advantage of indirect interaction efficiently.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Recently proposed federated recommender systems either abandon taking advantage of indirect37

interactions [1, 6, 45], or rely on complicated cryptography techniques [48] to access data from38

other users. In particular, [48] proposed FedGNN, which adapted graph neural network (GNN)-39

based recommender systems to the FL setting. In FedGNN, a user can request embeddings of its40

neighbors using encryption techniques. However, this is achieved at high cost. First, it assumes the41

existence of a trusted third party; second, this request needs a large amount of computing power for42

expensive Homomorphic Encryption [33] operations. Furthermore, even at this high cost, FedGNN43

only exploits first-order user-item interactions, i.e. the direct neighbors of a user, while in non-44

distributed GNN-based models, second-order interactions (users that interact with same items) and45

even higher-order indirect interactions are exploited. To alleviate the limitations of FedGNN and fully46

exploit indirect user-item interactions, we propose our FedGRec system, and the key feature of our47

system is to explicitly store latent embeddings of users and items. The concept of latent embedding48

of a user/item stems from the non-distributed GNN-based recommender system. Non-distributed49

GNN-based recommender systems [13, 46] usually have an embedding layer and multiple embedding50

propagation layers. The embedding layer encodes users and items to obtain a vector representation51

of them. Embedding propagation layers refine user/item embeddings sequentially. Each embedding52

propagation layer linearly combines neighbor embeddings of the last layer. Finally, embedding and53

output of embedding propagation layers are combined (such as average) as the final representation54

of a user/item. In fact, the output of the embedding propagation layers encodes different orders of55

user-item interactions. For ease of discussion, we denote them as latent embeddings. Our system is56

built on using latent embeddings as a proxy of the miss interaction graph during local training.57

In our FedGRec system, users store their embeddings, and the server stores embeddings for all items58

as normal federated recommender systems. In addition, users also keep their latent embeddings, and59

the server has latent item embeddings. The training process includes two parts: the optimization60

of user/item embeddings and the optimization of latent user/item embeddings. First, assume that61

latent embeddings encode indirect user-item interactions; then users update user/item embeddings by62

treating latent embeddings as constants for multiple training steps locally. Next, the latent user/item63

embeddings are updated only in the server synchronization step based on the current user/item64

embeddings. Note that latent user/item embeddings are fixed during users’ local training, which65

differs from that in the non-distributed setting. In the non-distributed setting, embedding propagation66

performed in real time, i.e. the latent embeddings encode up-to-date indirect user-item interaction67

information. In contrast, we use fixed latent user/item embeddings during local training due to68

communication constraints. This makes the information encoded in these latent embeddings stale.69

However, we empirically show that the stale latent embeddings are still useful in capturing indirect70

interaction. We verify their efficacy through extensive empirical studies. Finally, our system preserves71

the privacy of users. During the whole training process, only the item embeddings are transferred72

between users and the server, in addition, we take advantage of the secure aggregation technique [5].73

Secure aggregation is a privacy-preserving technique that allows the server to get the sum of user74

updates without knowing individual details. Finally, we summarize the contributions of our paper as75

follows:76

1. We propose a novel Federated Graph Recommender System (FedGRec) that effectively uses77

the indirect user-item interactions;78

2. We design and store latent embeddings to encode the indirect user-item interaction. Latent79

embeddings are a proxy for absent neighbors during local training. We also propose a lazy80

way to update these latent embeddings;81

3. Our new system is evaluated via extensive experimental studies, and results show the superior82

performance of our system compared to various baselines.83

Organization: The remainder of this paper is organized as follows: In Section 2, we formally84

introduce our new Federated Graph Recommender System (FedGRec); In Section 3, we perform85

experiments to verify the effectiveness of our system; In Section 4, we conclude and summarize the86

paper. The discussion of some related works can be found in Appendix A.87

2 FedGRec : A Novel Federated Graph Recommender System88

In this section, we introduce our Federated Graph Recomender System (FedGRec). We consider the89

horizontal federated recommender systems [53]: there is a server and M users U = {u1, u2, ..., uM}.90

2

Figure 1: The framework of our FedGRec system. The server stores the item embeddings and latent
item embeddings, while each user keeps its own user embedding and latent user embeddings. Each
training epoch is composed of four main steps: (1) the sever randomly sample a subset of users, and
each sampled user queries a subset of n items and their (latent) item embeddings from the server; (2)
the user updates its latent user embedding based on the new (latent) item embeddings; (3) the user
optimizes item and user embeddings with BPR loss; (4) the user uploads updates back to the server,
and the server aggregates updates from all users.

Users interact with a common set of N items T = {t1, t2, ..., tN}. More specifically, the user u91

interacts with a subset of |Nu| items Nu = {tu,1, tu,2, ..., tu,|Nu|}, and we have T =
⋃

u∈U Nu. (To92

protect user privacy, user interaction data do not leave the local device.) In non-distributed graph93

recommender systems, there is the input embedding layer and multiple embedding propagation94

layers. Embedding propagation layers are used to refine embeddings with high-order user-item95

interaction information. Resemble the design in the non-distributed setting, we let each user (item)96

be represented by a learnable embedding vector e0u ∈ Rd (e0t ∈ Rd). Furthermore, the user (item)97

also keeps latent embeddings: eku ∈ Rd (ekt ∈ Rd) (k ≥ 1). Latent embeddings are similar to the98

embedding propagation layers in the non-distributed setting and encode the indirect (high-order)99

user-item interaction information. In non-distributed recommender systems, latent embeddings can100

be computed in real-time based on the whole user-item graph. However, in FL, the interaction graph101

is incomplete for each client; instead we perform a lazy update to the latent embeddings.102

More precisely, the FedGRec system training procedure is divided into two parts as shown in Figure 1103

around the use of latent embeddings: local training with fixed latent embeddings and lazy update of104

(latent) user/item embeddings. In Figure 1, Step 3 corresponds to the local training, and Steps 2 and 4105

correspond to the latent embedding update part. More specifically, at each epoch, a subset of clients106

is selected to perform training, and these clients query (a subset of) item embedding and item latent107

embeddings from the server (Step 1). Then, all selected users update their user latent embeddings108

following the message general passing procedure in the graph neural network (Step 2). Next, the user109

(item) embeddings are optimized under some objective, e.g. the BPR loss [37], where the user (item)110

latent embeddings are used as the proxy of the embedding propagation layers of the non-distributed111

setting (Step 3). Note that user (item) latent embeddings are fixed during Step 3 as we cannot get a112

real-time update from other clients for both privacy and communication issues. Although the latent113

embeddings are stale, they include useful indirect connection information from other clients, and we114

provide empirical evidence of its efficacy. Finally, in Step 4, clients upload the new item embeddings115

and item latent embeddings to the server, and we protect user privacy with the secure-aggregation116

technique (more details in Appendix B). On the server side, the server aggregates updates from all117

sampled clients and updates the item embeddings.118

3

Algorithm 1 Federated Graph Recommender System (FedGRec)
1: Input: Learning Rate α and β; Number of global epochs T ; Number of Latent Embeddings K;

Number of local iterations τ ; Number of sampled Users per epoch S; Noise scale σ;
2: Warm-up Phase:
3: Server queries item connection information |Nt| with Eq. (9);
4: Server initializes e0t (for t ∈ T) with Gaussian Noise N (0, σ);
5: Every client u for u ∈ U initializes its user embedding e0u with Gaussian Noise N (0, σ);
6: for k in 1 to K do
7: Each client requests ek−1

t for t ∈ T and computes eku based on Eq. (6);
8: Each client uploads Ẽk−1

u to the server and the server computes Ek
T with Eq. (8);

9: end for
10: Training Phase:
11: for l = 0 to T − 1 do
12: The server samples a random subset of clients Ũ and |Ũ | = S;
13: for u in Ũ in parallel do
14: Query the (latent) item embedding et of a randomly selected item set T̃u;
15: Update user latent embedding with et based on Eq. (6), denote the updated latent user

embedding as ẽku, k ∈ [1, . . . ,K];
16: Set (e0u)

0 = e0u and (e0t)
0 = e0t ;

17: for i in 1 to τ do
18: (e0u)

i+1 = (e0u)
i − β∇e0u

LBPR,u((e
0
u)

i, (e0t)
i;B)

19: (e0t)
i+1 = (e0t)

i − β∇e0t
LBPR,u((e

0
u)

i, (e0t)
i;B)

20: end for
21: Set ẽ0u = (e0u)

τ and ẽ0t = (e0t)
τ ;

22: Upload ẽ0t − e0t and ẽku − eku, k ∈ [0, . . . ,K − 1] to the server with the SecAgg subroutine,
the server updates the latent item embeddings with Eq. (10) and (11).

23: end for
24: end for

Note that our FedGRec system is agnostic to specific message-passing mechanisms. In Appendix C,119

we introduce an instantiation of our FedGRec based on the LightGCN [46] system, which has been120

shown to be successful in training graph-based implicit recommendation in the non-distributed setting.121

In Algorithm 1, we provide a pseudocode of our FedGRec system. Lines 3-9 are the warm-up122

phase, which calculates the item connection information |Nt| and initializes the user and item (latent)123

embeddings; then lines 11-24 are the training phase (Figure 1). During local training (lines 18-19),124

we use the SGD update rule and the BPR loss [37] as an example. For privacy protection and125

communication costs, see Appendix C.3 for more details.126

3 Experiments127

In this section, we empirically validate the efficacy of our FedGRec system through extensive128

experiments. We simulate the Federated Learning environment based on the Distributed Library of129

Pytorch [34], and experiments are conducted on 4 servers with 4 NVIDIA P40 GPUs each.130

3.1 Experimental Settings131

Datasets. We choose three widely used benchmark datasets in non-distributed recommendation:132

Gowalla [25], Yelp2018 [46] and Amazon-Book [12]. The statistics of these datasets are shown in133

Table 2 of the Appendix D. We use Recall@20 and NDCG@20 as the metric (a detailed description134

of the two metrics is provided in Appendix D). We follow the train/test split provided by [13].135

Baselines. We compare our FedGRec system with the baselines of the non-distributed and federated136

recommender system baselines. For non-distributed recommender systems, we compare with the137

following state-of-the-art recommender systems: Mult-VAE [26], NGCF [46] and LightGCN [13].138

Mult-VAE is a collaborative filtering method based on variational autoencoder (VAE) that gets139

competitive results over many datasets. NGCF and LightGCN are two graph-based recommender140

systems and are closely related to our FedGRec system. Next, for the federated baselines, we141

4

Table 1: Performance Comparison of FedGRec and Baselines (Recall and NDCG)

Non-distributed RecSys

Dataset Gowalla Yelp2018 Amazon-Book
Method Recall NDCG Recall NDCG Recall NDCG

Mult-VAE 0.1641 0.1335 0.0584 0.0450 0.0407 0.0315
NGCF-1 0.1556 0.1315 0.0543 0.0442 0.0313 0.0241
NGCF-2 0.1547 0.1307 0.0566 0.0465 0.0330 0.0254
NGCF-3 0.1570 0.1327 0.0566 0.0461 0.0344 0.0263

LightGCN-1 0.1755 0.1492 0.0631 0.0515 0.0384 0.0298
LightGCN-2 0.1777 0.1524 0.0622 0.0504 0.0411 0.0315
LightGCN-3 0.1823 0.1555 0.0639 0.0525 0.0410 0.0318

Federated RecSys

FCF 0.0703 0.0588 0.0282 0.0235 0.0112 0.0088
FedMF 0.0727 0.0583 0.0250 0.0207 0.0100 0.0079

FedeRank 0.1440 0.1164 0.0503 0.0405 0.0287 0.2204
FedNCF 0.0754 0.0575 0.0271 0.0218 0.0093 0.0075
FedGNN 0.1556 0.1211 0.0543 0.0396 0.0229 0.0208

FedGNN + BPR 0.1676 0.1362 0.0601 0.0498 0.0339 0.0269
FedGRec-1 0.1712 0.1376 0.0598 0.0491 0.0342 0.0268
FedGRec-2 0.1695 0.1412 0.0607 0.0497 0.0361 0.0285
FedGRec-3 0.1654 0.1362 0.0615 0.0503 0.0333 0.0262

compare with the recently proposed methods: FCF [32], FedMF [6], FedNCF [35], FedGNN [48]142

and FedeRank [2]. FCF, FedMF, and FedeRank are matrix factorization-based methods where143

FCF/FedMF uses the MSE loss, while FedeRank uses the BPR loss. FedNCF adapts the NCF [15] to144

the FL setting, FedGNN is a recently proposed graph-based recommender system.145

Parameter settings. In all our experiments, the embedding size d is fixed at 64 for all methods and the146

user/item embeddings are initialized with the normal distribution (as in the Pytorch implementation147

of [13]). By default, we run the T = 105 epochs. During each training epoch, we randomly select148

400 users by default. For each user, it queries all its positive items and a random subset of negative149

items of size 2048. In local training, we use Adam optimizer with a learning rate of 0.001. For150

other hyperparameters, we perform a grid search for each method and report the best results. For151

Mult-VAE, NGCF, and LightGCN, we use the hyperparameter settings in [13]. For baselines of the152

federated recommender systems: In FCF and FedMF, we choose the confidence parameter α = 1,153

L2 regularization parameter λ = 10−3, local iterations τ = 1; in FedNCF, we implement the Fed-154

NeuMF variant. We use a three-layer MLP with hidden units [32, 16, 8], L2 regularization parameter155

λ = 10−4. In FedGNN and FedeRank, we follow the parameter setting in the original paper. For our156

FedGRec method, we choose L2 regularization parameter λ = 10−4 and local iterations τ = 10. For157

the latent embedding combination coefficient αk, we choose 1/(K + 1).158

Finally, for graph-based methods (NGCF and LightGCN), we vary the number of embedding159

propagation layers and use method-k to represent k layers. The FedGNN method only supports160

one-layer graph neural network, so we omit the post-fix for it. For our method, we vary the number161

of latent embeddings and use FedGRec-k to represent using k latent embedding vectors.162

3.2 Performance Evaluations163

The full experimental results are shown in Table 1. Compared to non-distributed recommender164

systems, our FedGRec outperforms Mult-VAE and NGCF and is comparable to the LightGCN165

method. This shows that it is reasonable to use latent embeddings as an alternative to the exact166

neighbor-user/item embeddings.167

Next, we compare our FedGRec with the baselines of the federated recommender system. First, for the168

three matrix factorization-based baselines: FCF, FedMF, and FedeRank, our FedGRec outperforms169

them by a great margin. In particular, the FedeRank method can be viewed as a special case of our170

FedGRec system where indirect interaction is not used, and the superior performance of our system171

validates the efficacy of using high-order indirect interaction in federated recommender systems.172

Furthermore, we plot the NDCG/Recall curve for FedeRank and our FedGRec in Figure 2. We173

observe that FedeRank converges fast in the early training stage (around the first 5000 epochs), but174

5

Figure 2: NDCG@20 and Recall@20 over different number of latent embeddings. Results correspond
to the yelp2018 dataset, the Amazon-Book dataset and the Gowalla dataset from top to bottom.

it then overfits to the zeroth order user-item connection and converges to a sub-optimal point. This175

phenomenon further demonstrates the efficacy of using latent embeddings in our FedGRec system.176

Next, for FedNCF, it only gets performance comparable to FCF/FedMF. The main reason for this177

underperformance is the heterogeneity of user-interaction distributions. Due to the heterogeneity, the178

neural networks severely overfit to the local distribution.179

Finally, for experiments related to FedGNN, we report results for FedGNN as in the original paper,180

and also a variant where the MSE loss objective is replaced with the BPR loss objective. We denote181

this variant by FedGNN+BPR. We can see a performance boost of FedGNN+BPR compared to182

the original FedGNN. In fact, FedGNN + BPR gets an equivalent performance as our FedGRec-1183

variant, which is reasonable since FedGNN exploits the first-order user-item interaction. However, our184

FedGRec is still advantageous over it. First, the best results are obtained in FedGRec-2 / FedGRec-3185

in most cases, e.g. FedGRec-3 has the best performance in the Yelp2018 dataset. In contrast, the186

FedGNN method can only exploit the first-order interaction. Second, note that FedGNN uses a187

user-item graph expansion operation to get neighbors of a user anonymously, while the expansion188

operation requires time-consuming cryptography techniques to protect user privacy. However, our189

FedGRec does not need this operation, and we only use latent embedding information in training. So190

our FedGRec is much more efficient. For some ablation study and hyper-parameter analysis, please191

see Appendix D.1.192

4 Conclusion193

In this paper, we propose a novel federated graph recommender system (FedGRec). Our system effec-194

tively exploits indirect user-item interaction to improve recommendation performance. We explicitly195

store the latent user and item embeddings that encode the indirect user-item interaction information.196

We propose using a lazy update to these latent embeddings and using the secure aggregation technique197

to protect user privacy. Experiments conducted over common recommendation benchmarks show198

that our system achieves competitive performance with non-distributed Graph Neural Network based199

recommender systems and superior performance over other federated recommender systems.200

6

References201

[1] M. Ammad-Ud-Din, E. Ivannikova, S. A. Khan, W. Oyomno, Q. Fu, K. E. Tan, and A. Flanagan.202

Federated collaborative filtering for privacy-preserving personalized recommendation system.203

arXiv preprint arXiv:1901.09888, 2019.204

[2] V. W. Anelli, Y. Deldjoo, T. D. Noia, A. Ferrara, and F. Narducci. Federank: User controlled205

feedback with federated recommender systems. In European Conference on Information206

Retrieval, pages 32–47. Springer, 2021.207

[3] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure single-server208

aggregation with (poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC209

Conference on Computer and Communications Security, pages 1253–1269, 2020.210

[4] R. v. d. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. arXiv211

preprint arXiv:1706.02263, 2017.212

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,213

A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning. In214

proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,215

pages 1175–1191, 2017.216

[6] D. Chai, L. Wang, K. Chen, and Q. Yang. Secure federated matrix factorization. IEEE Intelligent217

Systems, 2020.218

[7] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang. Revisiting graph based collaborative219

filtering: A linear residual graph convolutional network approach. In Proceedings of the AAAI220

conference on artificial intelligence, volume 34, pages 27–34, 2020.221

[8] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for social222

recommendation. In The World Wide Web Conference, pages 417–426, 2019.223

[9] C. Gao, C. Huang, D. Lin, D. Jin, and Y. Li. Dplcf: Differentially private local collaborative224

filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and225

Development in Information Retrieval, pages 961–970, 2020.226

[10] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients–how easy is it to227

break privacy in federated learning? arXiv preprint arXiv:2003.14053, 2020.228

[11] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an229

information tapestry. Communications of the ACM, 35(12):61–70, 1992.230

[12] R. He and J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with231

one-class collaborative filtering. In proceedings of the 25th international conference on world232

wide web, pages 507–517, 2016.233

[13] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn: Simplifying and powering234

graph convolution network for recommendation. In Proceedings of the 43rd International ACM235

SIGIR conference on research and development in Information Retrieval, pages 639–648, 2020.236

[14] X. He, X. Du, X. Wang, F. Tian, J. Tang, and T.-S. Chua. Outer product-based neural collabora-237

tive filtering. arXiv preprint arXiv:1808.03912, 2018.238

[15] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In239

Proceedings of the 26th international conference on world wide web, pages 173–182, 2017.240

[16] C.-K. Hsieh, L. Yang, Y. Cui, T.-Y. Lin, S. Belongie, and D. Estrin. Collaborative metric learning.241

In Proceedings of the 26th international conference on world wide web, pages 193–201, 2017.242

[17] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora. Communication-efficient243

distributed sgd with sketching. arXiv preprint arXiv:1903.04488, 2019.244

[18] S. Kabbur, X. Ning, and G. Karypis. Fism: factored item similarity models for top-n rec-245

ommender systems. In Proceedings of the 19th ACM SIGKDD international conference on246

Knowledge discovery and data mining, pages 659–667, 2013.247

7

[19] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Scaf-248

fold: Stochastic controlled averaging for on-device federated learning. arXiv preprint249

arXiv:1910.06378, 2019.250

[20] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other251

gradient compression schemes. In International Conference on Machine Learning, pages252

3252–3261. PMLR, 2019.253

[21] F. K. Khan, A. Flanagan, K. E. Tan, Z. Alamgir, and M. Ammad-Ud-Din. A payload optimization254

method for federated recommender systems. In Fifteenth ACM Conference on Recommender255

Systems, pages 432–442, 2021.256

[22] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.257

In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery258

and data mining, pages 426–434, 2008.259

[23] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through260

personalization. In International Conference on Machine Learning, pages 6357–6368. PMLR,261

2021.262

[24] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid263

data. arXiv preprint arXiv:1907.02189, 2019.264

[25] D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user exposure in recommendation.265

In Proceedings of the 25th international conference on World Wide Web, pages 951–961, 2016.266

[26] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders for col-267

laborative filtering. In Proceedings of the 2018 world wide web conference, pages 689–698,268

2018.269

[27] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient compression: Reducing the270

communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.271

[28] C. Ma, P. Kang, and X. Liu. Hierarchical gating networks for sequential recommendation. In272

Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery &273

data mining, pages 825–833, 2019.274

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient275

learning of deep networks from decentralized data. In Artificial Intelligence and Statistics,276

pages 1273–1282. PMLR, 2017.277

[30] L. Minto, M. Haller, B. Livshits, and H. Haddadi. Stronger privacy for federated collaborative278

filtering with implicit feedback. In Fifteenth ACM Conference on Recommender Systems, pages279

342–350, 2021.280

[31] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. In International Conference281

on Machine Learning, pages 4615–4625. PMLR, 2019.282

[32] K. Muhammad, Q. Wang, D. O’Reilly-Morgan, E. Tragos, B. Smyth, N. Hurley, J. Geraci,283

and A. Lawlor. Fedfast: Going beyond average for faster training of federated recommender284

systems. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge285

Discovery & Data Mining, pages 1234–1242, 2020.286

[33] K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi. Towards deep neural network training on287

encrypted data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern288

Recognition Workshops, pages 0–0, 2019.289

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,290

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning291

library. arXiv preprint arXiv:1912.01703, 2019.292

[35] V. Perifanis and P. S. Efraimidis. Federated neural collaborative filtering. arXiv preprint293

arXiv:2106.04405, 2021.294

8

[36] S. Rendle. Factorization machines. In 2010 IEEE International conference on data mining,295

pages 995–1000. IEEE, 2010.296

[37] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized297

ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.298

[38] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora.299

Fetchsgd: Communication-efficient federated learning with sketching. In International Confer-300

ence on Machine Learning, pages 8253–8265. PMLR, 2020.301

[39] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith. On the convergence of302

federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 3, 2018.303

[40] S. U. Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,304

2018.305

[41] P. Sun, L. Wu, and M. Wang. Attentive recurrent social recommendation. In The 41st Interna-306

tional ACM SIGIR Conference on Research & Development in Information Retrieval, pages307

185–194, 2018.308

[42] P. Sun, L. Wu, K. Zhang, Y. Fu, R. Hong, and M. Wang. Dual learning for explainable309

recommendation: Towards unifying user preference prediction and review generation. In310

Proceedings of The Web Conference 2020, pages 837–847, 2020.311

[43] S. Wagh, D. Gupta, and N. Chandran. Securenn: 3-party secure computation for neural network312

training. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.313

[44] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and Z. Wang. Knowledge-aware314

graph neural networks with label smoothness regularization for recommender systems. In315

Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery &316

data mining, pages 968–977, 2019.317

[45] Q. Wang, H. Yin, T. Chen, J. Yu, A. Zhou, and X. Zhang. Fast-adapting and privacy-preserving318

federated recommender system. arXiv preprint arXiv:2104.00919, 2021.319

[46] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua. Neural graph collaborative filtering. In320

Proceedings of the 42nd international ACM SIGIR conference on Research and development in321

Information Retrieval, pages 165–174, 2019.322

[47] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to323

reduce communication in distributed deep learning. arXiv preprint arXiv:1705.07878, 2017.324

[48] C. Wu, F. Wu, Y. Cao, Y. Huang, and X. Xie. Fedgnn: Federated graph neural network for325

privacy-preserving recommendation. arXiv preprint arXiv:2102.04925, 2021.326

[49] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang. A survey on neural recommendation:327

From collaborative filtering to content and context enriched recommendation. arXiv preprint328

arXiv:2104.13030, 2021.329

[50] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, and G. Chen. Dual graph attention networks330

for deep latent representation of multifaceted social effects in recommender systems. In The331

World Wide Web Conference, pages 2091–2102, 2019.332

[51] S. Wu, F. Sun, W. Zhang, and B. Cui. Graph neural networks in recommender systems: a survey.333

arXiv preprint arXiv:2011.02260, 2020.334

[52] C.-S. Yang, J. So, C. He, S. Li, Q. Yu, and S. Avestimehr. Lightsecagg: Rethinking secure335

aggregation in federated learning. arXiv preprint arXiv:2109.14236, 2021.336

[53] L. Yang, B. Tan, V. W. Zheng, K. Chen, and Q. Yang. Federated recommendation systems. In337

Federated Learning, pages 225–239. Springer, 2020.338

[54] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated learning with non-iid data.339

arXiv preprint arXiv:1806.00582, 2018.340

9

Checklist341

The checklist follows the references. Please read the checklist guidelines carefully for information on342

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or343

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing344

the appropriate section of your paper or providing a brief inline description. For example:345

• Did you include the license to the code and datasets? [N/A]346

• Did you include the license to the code and datasets? [N/A]347

• Did you include the license to the code and datasets? [N/A]348

Please do not modify the questions and only use the provided macros for your answers. Note that the349

Checklist section does not count towards the page limit. In your paper, please delete this instructions350

block and only keep the Checklist section heading above along with the questions/answers below.351

1. For all authors...352

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s353

contributions and scope? [Yes]354

(b) Did you describe the limitations of your work? [Yes]355

(c) Did you discuss any potential negative societal impacts of your work? [N/A]356

(d) Have you read the ethics review guidelines and ensured that your paper conforms to357

them? [Yes]358

2. If you are including theoretical results...359

(a) Did you state the full set of assumptions of all theoretical results? [Yes]360

(b) Did you include complete proofs of all theoretical results? [Yes]361

3. If you ran experiments...362

(a) Did you include the code, data, and instructions needed to reproduce the main experi-363

mental results (either in the supplemental material or as a URL)? [N/A] We will release364

the code if accepted365

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they366

were chosen)? [Yes]367

(c) Did you report error bars (e.g., with respect to the random seed after running experi-368

ments multiple times)? [Yes]369

(d) Did you include the total amount of compute and the type of resources used (e.g., type370

of GPUs, internal cluster, or cloud provider)? [Yes]371

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...372

(a) If your work uses existing assets, did you cite the creators? [Yes]373

(b) Did you mention the license of the assets? [No]374

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]375

376

(d) Did you discuss whether and how consent was obtained from people whose data you’re377

using/curating? [N/A]378

(e) Did you discuss whether the data you are using/curating contains personally identifiable379

information or offensive content? [N/A]380

5. If you used crowdsourcing or conducted research with human subjects...381

(a) Did you include the full text of instructions given to participants and screenshots, if382

applicable? [N/A]383

(b) Did you describe any potential participant risks, with links to Institutional Review384

Board (IRB) approvals, if applicable? [N/A]385

(c) Did you include the estimated hourly wage paid to participants and the total amount386

spent on participant compensation? [N/A]387

10

A Related Work388

The study of Recommender Systems dates back to the 1990s [11]. Most recommender systems aim389

to develop representations for users and items. A classic approach is based on matrix factorization:390

we associate the embedding vectors with the one hot user(item) ID [37, 18, 22], and then take inner391

products between the embeddings of the user and the item to match the ratings. Later, researchers392

pooled interacted item embeddings to augment user representation, such as FISM [18], SVD++ [22].393

Furthermore, the graph neural network is also used to generate representations [4, 46, 13, 7]. Unlike394

learning representations, another line of work focuses on modeling interactions. There are two395

limitations of the inner product approach [15]. First, it does not satisfy the triangle inequality, so the396

propagation of similarity is not good; second, the linear nature of the inner product constrains its397

ability to model complicated interactions. Therefore, the researchers propose to use other metrics398

such as L2 distance [16], and deep neural networks [14]. Although most of the recommender systems399

only use user-item interaction data, some additional data can boost model performance if available.400

These models can be divided into two categories: Content-based models [36, 42, 8, 50, 44] and401

context-based models [41, 28]. Content-based models use additional user features (items). In contrast,402

context-based models use auxiliary information from the interaction. [49] and [51] provide a detailed403

review of the recommender systems.404

Federated learning [29] is a promising distributed data mining paradigm in which a server coordinates405

a set of clients to learn a model. A widely used algorithm for FL is the FedAvg [29] algorithm,406

where clients receive the up-to-date model from the server at the start of each epoch and then train407

the model locally for several iterations and upload the new model back to the server. There are408

three main challenges in FL: data heterogeneity, high communication cost, and user privacy. Some409

variants of FedAvg are proposed to address heterogeneity [19, 24, 39, 54, 31, 23]. To reduce the cost410

of communication, various compression techniques are applied, such as quantization [47, 27] and411

sparsification [40, 20, 38, 17]. Regarding user privacy, although the server cannot see the data directly,412

it is possible to recover the data based on model updates with a model inversion attack [10]. Therefore,413

some cryptography techniques are applied, such as homomorphic encryption [33], differential414

privacy [29] and multiparty secure computation [43] etc.. A simple but effective technique to defend415

a malicious server is the secure aggregation [5, 3, 52] technique. With this technique, the server416

aggregates updates from clients without knowing the input of each client.417

More recently, Recommender systems have been considered in the federated learning setting (Fe-418

dRec) [1, 6, 30, 52, 35, 45, 21, 32, 9, 2]. In particular, [1] applied the matrix factorization approach419

to FL. It used the Alternating Least Squares (ALS) algorithm. At each epoch, each client computes420

the optimal user embedding, then calculates the item embedding gradients, and uploads them to421

the server. Finally, the server aggregates the gradients from all clients to update the embeddings of422

the items. The above approach directly transfers the gradients of the item embeddings, which has423

the risk of leaking private ratings; Some privacy preservation techniques [45, 30, 52] are exploited424

to mitigate this risk [6]. In addition to classic matrix factorization-based approaches, deep neural425

collaborative filtering techniques are also adapted to the FL setting [35]. In [35], the authors proposed426

a two-stage training framework. In the first stage, item embeddings are learned with self-supervised427

learning. Then, in the second stage, a federated neural recommender system is learned with the help428

of differential privacy. Graph-based recommender systems have gained state-of-the-art performance429

in the non-distributed setting. However, it is not trivial to adapt them to the FL setting. In FL, each430

client only has a subgraph. Recent work [48] proposed to obtain the embeddings of neighboring431

users using the homomorphic encryption technique. Our paper also considers graph-based FedRec.432

However, we do not require the time-consuming homomorphic encryption technique, but we use the433

fact that only aggregated representations are needed in the training. The survey paper [53] provides a434

good overview of the problem of federated recommender systems.435

B Preliminaries436

Graph Recommender Systems. By exploiting indirect user-item interactions, graph-based recom-437

mender systems have gained state-of-the-art recommendation performance in the non-distributed438

setting. LightGCN [46] is a recently proposed graph recommendation system. It simplifies the classi-439

cal graph neural network by removing the transformation matrix and the nonlinear activation function.440

The system includes two types of layer: the input embedding layer and the embedding propagation441

11

layer. More precisely, there is one embedding layer which initializes (item) user embeddings, and sev-442

eral embedding propagation layers which refine embeddings with high-order user-item connectivity443

relations. Suppose that there are K embedding propagation layers; then the kth (k ∈ [0 . . . ,K − 1])444

embedding propagation layer performs the following rule:445

ek+1
u =

∑
t∈Nu

ekt√
|Nt|

√
|Nu|

; ek+1
t =

∑
u∈Nt

eku√
|Nt|

√
|Nu|

(1)

Nu is the set of connected items of the user u and Nt is the set of connected users of the item t.446

The final representation (embedding) of a user/item is a weighted average of the output of these447

embedding layers, i.e.:448

eu =

K∑
k=0

αke
k
u; et =

K∑
k=0

αke
k
t (2)

where αk are weights. Then we calculate the inner product between the user and the item repre-449

sentation as a measure of their affinity: ŷut = ⟨eu, et⟩. During training, we optimize the user/item450

embedding so that ŷut is close to the true affinity. Various loss objectives could be used, such as the451

mean square error (MSE) loss and the Bayesian personalized ranking (BPR) loss [37]:452

LMSE =
∑
u

∑
t∈Nu

(1− ŷut)
2 (3)

and453

LBPR =
∑
u

∑
i∈Nu

∑
j /∈Nu

S+(ŷuj − ŷui) (4)

where S+(x) = log(1 + ex) is the Softplus function. In the MSE loss (3), we select user/item454

pairs (u, t) with interaction and denote their affinity score as one, then we minimize the L2 error of455

the predicted affinity ŷut. Next, in the BPR loss (4), we learn embeddings such that the interacted456

user-item pairs remain close while the uninteracted pairs are far apart.457

Secure Aggregation. Secure Aggregation [5] is a privacy-preserving aggregation technique widely458

used in FL. The technique can securely compute the sum of vectors without revealing the value of459

each vector. In Secure Aggregation, we add a mask to each vector: The mask hides the original460

information, but can be canceled when all vectors are added together. More formally, suppose that461

we have a set of users u ∈ U and that each user has a vector xu. To calculate
∑

u∈U xu, we first462

generate a random seed ru,v for each pair of users (u, v). Then the user u reveals:463

x̃u = xu +
∑

v∈U,v<u

PRG(ru,v)−
∑

v∈U,v>u

PRG(ru,v)

Note we assume a total order of users for convenience. PRG is short for Pseudo Random Generator.464

It is straightforward to see that
∑

u∈U x̃u =
∑

u∈U xu. As a result, the server recovers sum of vectors465

without knowing the value of xu. In practice, we should consider the possibility of user drop-out,466

we then need additional random masks under this case. Various mechanisms are proposed [5, 3, 52],467

and we will not consider user dropout in our experiments for simplicity. The overall communication468

complexity of secure aggregation is at the same order of sending data in the clear. Note that the469

Secure Aggregation is relatively independent to our system design, so we will use it as a oracle470

subroutine in the remainder of the text and use SecAgg(·) to denote it.471

C More Details of the FedGRec472

This section introduces an instantiation of our FedGRec system based on the popular LighGCN [46]473

network. Appendix B introduce some background of LightGCN. In Appendix C.1, we show the local474

training procedures, i.e. Step 3 in Figure 1, next in Appendix C.2, we show the lazy update of latent475

embeddings, i.e. Steps 2 and 4 in Figure 1. Finally, Appendix C.3 analyze the privacy protection and476

communication cost of our system.477

12

C.1 Local Training with Fixed Latent Embeddings478

In this subsection, we introduce local training procedures with fixed latent embeddings. As shown479

in Figure 1, the server has the (latent) item embeddings et = {ekt , k ∈ [0, . . . ,K]} for t ∈ T and480

each user has its own (latent) embedding eu = {eku, k ∈ [0, . . . ,K]} for u ∈ U . Note that K denotes481

the number of latent embeddings per user (item), and K latent embeddings can encode user-item482

interactions up to order K. This is analogous to adopting a K-layer graph neural network in a483

non-distributed recommender system.484

During each training epoch, the server randomly samples a batch Ũ ⊂ U of S users. As shown in Step485

1 of Figure 1, each sampled user u ∈ Ũ randomly samples a subset T̃u ⊂ T of items and requests486

their (latent) embeddings {et}, t ∈ T̃u from the server. Note that T̃u ̸= Nu, and the user samples487

both positive and negative items. This prevents the server from knowing the user’s interaction history488

and damaging user privacy. After receiving (latent) item embeddings, the user optimizes the user and489

item embeddings with its local data. More precisely, the user u optimizes the BPR loss:490

LBPR,u(e
0
u, e

0
t ;B) =

∑
(j,i)∈B

S+ (ŷui − ŷuj) (5)

In practice, we add L2 regularization to the above objective to avoid overfitting; we omit it here for491

simplicity. Furthermore, B is a mini-batch of positive and negative sample pairs (j, i). ŷui and ŷuj492

are estimated probabilities in which the user interacts with the items tj and ti. Note that only e0u and493

e0t , for t ∈ T̃u, are learnable and latent embeddings are viewed as constants. To make it clearer, we494

can also rewrite the loss LBPR,u as a function of the user embedding e0u and the item embedding e0t ,495

t ∈ T̃u as follows:496

LBPR,u =
∑

(j,i)∈B

S+

(
α2
0

(
e0u
)T (

e0ti − e0tj

)
+Ae0u +B

(
e0ti − e0tj

)
+ C

)
It is straightforward to derive the above formulation from Eq. (5), and we omit it because of space497

limitations. A =
∑K

k=1 αk(e
k
ti − ektj), B =

∑K
k=1 αke

k
u, and C = A× B. The user can optimize498

Eq. (5) with any optimizer such as the Adam optimizer. In practice, we optimize the objective Eq. (5)499

multiple steps before the user sends the updates back to the server. This is a common practice in FL500

to reduce communication costs and is also the main reason why real-time latent embeddings are not501

available.502

C.2 Lazy Update of (Latent) User/Item Embeddings503

In the previous subsection, we assume access to the latent embeddings and ignore the update procedure504

of the latent embeddings. In this subsection, we discuss how we update latent embeddings so that505

they can encode indirect user-item interactions. The update of latent embeddings consists of two506

phases: the warm-up phase and the training phase. The warm-up phase is used to perform the507

initialization. The server initializes item embeddings et = {ekt , k ∈ [0, . . . ,K]} for t ∈ T , and each508

user u initializes its embedding eu = {eku, k ∈ [0, . . . ,K]} for u ∈ U . Note that {e0u} and {e0t} are509

initialized directly e.g. with Gaussian noise, while the latent embeddings {eku} and {ekt } for k ≥ 1510

are placeholders (initialized with 0). The exact values of the latent embeddings are jointly evaluated511

by the server and the users. More precisely, we perform K successive rounds to evaluate latent512

embeddings. In the round k (k ∈ [1, . . . ,K]), we evaluate the kth latent embedding based on the513

(k − 1)th latent embedding. For the user u, it requests (k − 1)th latent item embeddings (requests514

item embedding if k = 0) from the server and evaluates eku as follows:515

eku =
∑
t∈Nu

1√
|Nt|

√
|Nu|

ek−1
t (6)

Although Eq. (6) only needs t ∈ Nu, the user requests the whole set of item embeddings to avoid516

revealing to the server its interaction history. For the server, it evaluates ekt for t ∈ T . We use the517

matrix form here for clarity. First, each user u generates an update matrix Ẽk−1
u as follows:518

Ẽk−1
u = Y T

u ×D

(
1√

|Nt|
√

|Nu|

)
×
(
ek−1
u

)T
(7)

13

Recall that Yu is the row of the adjacency matrix Y that corresponds to the user u. D ∈ RN×N is a519

diagonal matrix with the tth diagonal element as 1√
|Nt|

√
|Nu|

. In summary, user u proposes updates520

for all connected items. Then the server aggregates Ẽk−1
u from all users with the secure aggregation521

subroutine:522

Ek
T = SecAgg

(
Ẽk−1

u , u ∈ U
)

(8)

Note that |Nt| and |Nu| are normalizing factors that prevent the explosion of the embedding scale.523

Each user can calculate |Nu| directly with its own information. For |Nt|, we obtain it in a way that524

preserves privacy with the subroutine SecAgg:525

|Nt| = SecAgg (Yu, u ∈ U)t (9)

After K rounds of running Eq. (6) and Eq. (8), we finish the warm-up phase and it is straightforward526

to verify that the latent embeddings {eku, u ∈ U} and {ekt , t ∈ T } satisfy the Eq. (1).527

In the training phase, user and item embeddings are updated during each epoch, as we discussed in528

Section C.1, latent embeddings should also be updated accordingly. During every training epoch,529

the user u receives the (latent) item embeddings {et}, t ∈ T̃u from the server. The user first needs530

to update its latent user embeddings eku, k ∈ [1, . . . ,K] with the new (latent) item embeddings531

(step 2 in Figure 1). The update equation is the same as Eq. (6), furthermore, we can update all532

K orders of latent embeddings within one round. We denote updated latent user embeddings as533

ẽku, k ∈ [1, . . . ,K]. The user then optimizes both the user and the item embeddings following the534

steps of Section C.1 (step 3 in Figure 1). We denote updated user and item embeddings as ẽ0u and535

ẽ0t , respectively. The last step is to send updates of (latent) item embeddings to the server (step 4 in536

Figure 1). For item embeddings, the user sends ẽ0t − e0t and the server aggregates with the SecAgg537

subroutine and then update the item embeddings e0t as:538

e0t = e0t + α× SecAgg(ẽ0t − e0t , u ∈ Ũ) (10)

while for latent item embeddings, the server updates the latent item embeddings Ek
T , k ∈ [1, . . . ,K]539

as follows:540

Ek+1
T = Ek+1

T + α× SecAgg

(
Y T
u ×D

(1√
|Nt|

√
|Nu|

)
×
(
ẽku − eku

)T
, u ∈ Ũ

)
(11)

where α is the learning rate. In summary, latent user embeddings are updated when a user receives541

the new (latent) item embeddings. For latent item embeddings, a user proposes embedding updates542

to all its connected items if it is selected in a training epoch. We term this as a lazy update of latent543

embeddings. This is reflected in two ways: First, the latent embeddings are fixed when the user544

optimizes the objective Eq. (5) locally; Secondly, only active users update the latent embeddings545

during each training epoch.546

Table 2: Statistics of the datasets

Dataset #Users #Items #Interactions Density

Gowalla 29,858 40,981 1,027,370 0.00084

Yelp2018 31,831 40,841 1,666,869 0.00128

Amazon-Book 52,643 91,599 2,984,108 0.00062

C.3 Analysis of Privacy Protection and Communication Cost547

User privacy protection is an important consideration in the design of the FL system. In our system,548

we protect the privacy of the user basically with the secure aggregation technique. During the whole549

training phase, the server only knows the aggregated information e.g., the server knows |Nt| (the550

number of connected users per item), but it does not know the connection information of individual551

users. In addition, users request positive and negative items during training. This is required by the552

BPR loss, but it also hides user-connection information from the server.553

Regarding communication cost, our FedGRec system requires the same order of communication as554

the simple Matrix Factorization approach [1]. For simplicity of discussion, suppose that all items555

14

Figure 3: NDCG@20 and Recall@20 when we vary sampled users S per training epoch (top row)
and the number of local iterations τ (bottom row). Results are run over the Gowalla Dataset and we
use two latent embeddings in training.

and users participate in the training every epoch and we ignore the extra communication cost caused556

by secure aggregation (communication complexity with secure aggregation is at the same order of557

sending data in the clear). First, the communication cost of a matrix factorization method [6, 32]558

is O(TNMd) where T is the total number of training epochs, (M) N is the number of (users)559

items and d is the embedding dimension. For our system, in the initialization phase, we need to560

transfer the information on the order of O(2KNMd), where K is the number of latent embeddings.561

Then in the training phase, we need to transfer on the order of O(2TKNMd). Therefore, the total562

communication cost is O(KTNMd). Since K is usually a small value (less than 5), our system563

achieves the same order of communication complexity as the matrix factorization method.564

D More Details of Experimental Settings565

The statistics of these datasets are shown in Table 2. We use metrics Recall and NDCG to566

evaluate our FedGRec system. Suppose that for each user u, and the set of its unconnected items567

is Ttest,u (items not in the training set), a recommender system outputs predictions ŷut, t ∈ Ttest,u.568

We first sort the predictions of the model in decreasing order and pick the top N items (we use569

20 in the experiments). We denote the set of candidate items by T20 and the item of rank n by570

tn. Additionally, suppose that the ground truth labels are yut ∈ {0, 1}, t ∈ Ttest,u, and denote571

Ntest,u = |{yut = 1, t ∈ Ttest,u}| as the number of ground truth items of the user u. We compute572

the Recall metric as follows:573

Recall(N) =
|{yut = 1, t ∈ T20}|

Ntest,u
(12)

| · | denotes the number of items in a set. NDCG is short for Normalized Discounted Cumulative574

Gain. It is denoted as the ratio between Discounted Cumulative Gain (DCG) and ideal Discounted575

Cumulative Gain (iDCG), which are denoted as576

DCG(N) =

N∑
n=1

1{yutn=1}

log2{n+ 1}

15

and577

iDCG(N) =

Ntest,u∑
n=1

1

log2{n+ 1}

where 1 is the indicator function. DCG takes the rank of the predictions and places more weight on578

highly ranked items. While iDCG is the ideal DCG where all ground truth items Ntest,u are ranked579

before the other items.580

D.1 Ablation and Hyper-Parameter Analysis581

In this subsection, we perform the ablation and hyperparameter analysis. First, we study the effect of582

different embedding aggregation functions. In our system, the final representation is the weighted583

average of all embeddings (as defined in Eq. (2)). We consider two more intuitive choices for584

embedding aggregation. In the first method, we only use the last latent embedding, and the final585

representation is the average between the embedding and the highest order of latent embedding.586

We denote this variant as FedGRec-last. The second choice is to concatenate all embeddings/latent587

embeddings instead of summing them together. We denote this baseline as FedGRec-concat. We588

test the three embedding methods on the Gowalla dataset and the results are summarized in Table 3589

and Table 4. As shown in the table, FedGRec-last performs worse than FedGRec, especially in the590

case of three latent embeddings. This shows that higher-order latent embeddings contain less useful591

information compared to the lower ones. Regarding FedGRec-concat, we observe that it overfits592

the training data when we set local iterations τ = 10, so the results in Tables 3 and 4 choose τ = 1.593

Note that the latent embeddings during local training are fixed. As a result, latent embeddings work594

as a constant bias term in the loss objective, and this makes the model overfit to the current latent595

embeddings easier.596

Table 3: NDCG@20 Comparison of Different Aggregation Methods on the Gowalla Dataset

#Latent Embeddings 1 2 3

FedGRec 0.1376 0.1412 0.1362
FedGRec-last 0.1376 0.1332 0.1246

FedGRec-concat 0.1266 0.1267 0.1254

Table 4: Recall@20 Comparison of Different Aggregation Methods over the Gowalla Dataset

#Latent Embeddings 1 2 3

FedGRec 0.1712 0.1695 0.1654
FedGRec-last 0.1712 0.1605 0.1493

FedGRec-concat 0.1502 0.1515 0.1494

Next, we investigate the effects of two hyperparameters: the number of users sampled per training597

epoch S and the number of local iterations τ . The results are shown in Figure 3. First, as shown in the598

top row of the figure, S = 400 gets the best performance, sampling more users per epoch accelerates599

the early training stage, but it then slows down and converges to a sub-optimal point due to overfitting.600

Next, as shown in the bottom row of the figure, the algorithm converges much faster when we set τ601

as 10 or 20 compared to when set as 1 or 2. This shows that our FedGRec benefits from performing602

multiple local iterations. In other words, it is not necessary to update latent embeddings at each step,603

and staled latent embeddings still help training.604

16

	Introduction
	FedGRec : A Novel Federated Graph Recommender System
	Experiments
	Experimental Settings
	Performance Evaluations

	Conclusion
	Related Work
	Preliminaries
	More Details of the FedGRec
	Local Training with Fixed Latent Embeddings
	Lazy Update of (Latent) User/Item Embeddings
	Analysis of Privacy Protection and Communication Cost

	More Details of Experimental Settings
	Ablation and Hyper-Parameter Analysis

