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ABSTRACT

Generative models for protein design, particularly diffusion and flow matching ap-
proaches, are powerful but computationally expensive, with slow sampling times
that hinder high-throughput applications. We introduce AutoFold, an ultra-fast
autoregressive model that generates proteins via a sparse graph representation of
their structure. Instead of generating continuous coordinates directly, AutoFold
learns a contact graph of the backbone structure. A Vector Quantized Variational
Autoencoder is trained to discretize contacting inter-residue geometric features,
creating a graph representation with single edge labels invariant to SE(3) transfor-
mations. This representation can be decoded to reconstruct a backbone structure
with high fidelity. We then train an autoregressive model to generate these graphs,
further incorporating amino acid sequence into node attributes. Our trained model
can be seamlessly used for both unconditional generation and motif scaffolding.
Our results demonstrate that AutoFold achieves performance comparable to state-
of-the-art methods while accelerating sampling by over an order of magnitude.
By shifting generation from continuous coordinates to discrete graphs, AutoFold
opens the door to high-throughput, large-scale protein design applications.

1 INTRODUCTION

The de novo design of proteins holds transformational promise to solve long-standing challenges
in biomedicine and material science (Huang et al., 2016; Kuhlman & Bradley, 2019; Korendovych
& DeGrado, 2020). A central problem in this field is modeling the joint distribution of a protein’s
amino acid sequence and its three-dimensional (3D) structure. While recent approaches have made
significant progress by generating sequence and structure separately (Watson et al., 2023; Ingraham
et al., 2023; Dauparas et al., 2022), co-generating them is crucial for precisely controlling the ar-
rangement and interaction of structural elements. This joint modeling problem is inherently difficult,
as it requires navigating a mixed discrete-continuous space of sequences and structures.

To this end, recent methods, particularly diffusion (Campbell et al., 2024; Chu et al., 2024) and
flow matching models (Geffner et al., 2025a), have advanced the field by learning to jointly refine a
random cloud of atoms and a random or fully masked sequence, represented as either a continuous
or a discrete variable, into a valid protein. Despite their power, these state-of-the-art models share a
critical limitation: computational cost. Their iterative refinement process, which requires hundreds
or thousands of denoising steps, leads to slow sampling times. Additionally, these models often
rely on computationally expensive equivariant modules (Jumper et al., 2021), further slowing down
their sampling process (Watson et al., 2023). This computational bottleneck severely hinders their
application in high-throughput settings. The resulting trade-off between design quality and scale of
generation might significantly constrain the pace and scope of protein design discovery.

In this work, we introduce AutoFold, an ultra-fast, autoregressive generative model that circumvents
these limitations by reformulating the design problem. Instead of operating directly on continuous
3D coordinates, AutoFold learns to generate a sparse, discrete graph representation of protein struc-
ture from which both sequence and 3D coordinates can be efficiently recovered. Our approach con-
sists of two stages. First, we train a Vector Quantized Variational Autoencoder (VQ-VAE) to learn
a finite “vocabulary” of codes that describe the geometric relationship between contacting residue
pairs. This model transforms a continuous protein backbone into a sparse attributed graph where
nodes represent residues and edges are labeled with a discrete code capturing the SE(3)-invariant
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geometry of the contact. This graph can be decoded back to a full 3D backbone structure with
high fidelity (0.8Å RMSD). In the second stage, we train a powerful autoregressive model on this
graph representation, additionally treating the sequence as node attributes, to generate novel protein
graphs. Decoding the generated graph yields both its sequence and structure.

By shifting from iterative refinement in a continuous space to autoregressive generation in a discrete
space, AutoFold dramatically accelerates the design process. We demonstrate its effectiveness on
two fundamental design tasks: unconditional sequence-structure co-generation and motif scaffold-
ing, where a functional motif is extended with a surrounding protein structure. Our results show that
AutoFold not only achieves sampling speed over an order of magnitude faster than state-of-the-art
diffusion models but also produces high-quality designs with performance comparable to diffusion
or flow matching models. By breaking the speed barrier, AutoFold opens the door to large-scale
computational protein design, accelerating the discovery of novel proteins with desired functions.

Our primary contributions can be summarized as follows:

• A novel protein graph representation with high fidelity: We introduce a sparse, SE(3)-
invariant graph representation for protein backbones learned via a VQ-VAE, which simplifies
the geometry of protein structures into a discrete and computationally tractable format.

• Ultra-fast autoregressive generation: We develop an autoregressive model, termed Auto-
Fold, that generates these protein graphs, enabling fast sampling.

• Competitive performance: We demonstrate that AutoFold achieves performance comparable
to state-of-the-art diffusion and flow matching models for both unconditional generation and
motif scaffolding tasks.

• Open-source implementation and datasets: We will release our models, code, and the novel
datasets of protein graphs to facilitate future research in the community.

2 RELATED WORK

Our work is situated at the intersection of two rapidly evolving fields: protein structure genera-
tion and graph generative modeling. In this section, we review key developments in both areas to
contextualize our contribution.

Protein Structure Generation. While generative models for protein design have achieved re-
markable success, progress has been dominated by computationally intensive diffusion and flow
matching methods. Seminal works like Chroma (Ingraham et al., 2023), RFDiffusion (Watson et al.,
2023) established the power of these approaches, inspiring a cascade of models, such as FrameD-
iff (Yim et al., 2023), FoldFlow (Bose et al., 2024), and others (Trippe et al., 2023; Wu et al., 2024),
for protein backbone generation. A significant leap in performance came from scaling up training
data using the AlphaFold database (AFDB), as demonstrated by models like FoldFlow2 (Huguet
et al., 2024), Genie (Lin & Alquraishi, 2023), Genie2 (Lin et al., 2024), and Proteı́na (Geffner et al.,
2025b). The field has since then progressed towards the co-design of sequence and structure and
even fully atomistic generation (Campbell et al., 2024; Chu et al., 2024; Ren et al., 2024; Lisanza
et al., 2023; Fu et al., 2024; Yim et al., 2025; Geffner et al., 2025a), with language models like ESM3
also emerging as a powerful alternative (Hayes et al., 2025). Despite this rapid progress, reliance
on computationally expensive paradigms has persisted, except for a recent work (Jendrusch & Kor-
bel, 2025) focusing on efficient generation but still based on iterative refinement. Our work departs
from this trend, introducing, to our knowledge, the first autoregressive model for de novo protein se-
quence and structure co-generation. By shifting the generative task from continuous 3D coordinates
to a discrete, sparse graph representation, we directly address the computational bottlenecks that
have limited prior methods.

Graph Generative Models. Early deep learning approaches for graph generation were predom-
inantly autoregressive, sequentially constructing graphs by adding nodes and edges, as pioneered
by GraphRNN (You et al., 2018) and GRAN (Liao et al., 2019). While foundational, these meth-
ods were often surpassed in performance by recent diffusion models like DiGress (Vignac et al.,
2023), which operate via a global noising-denoising process on the graphs. Our work builds upon
AutoGraph (Chen et al., 2025a), a modern autoregressive framework that addresses the architectural
limitations of its predecessors. AutoGraph bridges the scalability of sequence modeling with the
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complexity of graph generation by “flattening” graphs into sequences via random walks, enabling a
decoder-only transformer to learn the distribution. We adapt this highly efficient framework to the
specific domain of protein contact graphs, leveraging its efficiency for rapid structure generation.

3 BACKGROUND

In this section, we first provide an overview of rigid-body transformations, or “frames”, which are
fundamental for representing the geometry of protein structures. We then revisit the principles of
autoregressive generative models for graphs, which form the basis of our generation process.

3.1 FRAMES IN PROTEIN STRUCTURES

To describe the precise 3D arrangement of a protein structure, we represent the local coordinate
system of each residue as a frame. A frame is a mathematical object that encapsulates both the
position (translation) and orientation (rotation) of a rigid body in 3D space. We use a formulation
similar to that of Ingraham et al. (2019); Hayes et al. (2025), defining the frame Ti ∈ SE(3) for
residue i as a 4× 4 transformation matrix:

Ti =

[
Ri ti
01×3 1

]
∈ SE(3),

where Ri ∈ SO(3) is a rotation matrix and ti is a transition vector.

The translation vector, ti, simply specifies the global position of the residue’s α-carbon (Cα) atom.
The rotation matrix, Ri, defines the residue’s orientation. It is constructed from an orthonormal basis
derived from the backbone atoms (N,Cα, C), which effectively aligns the residue’s local coordinate
system with a global reference. This allows for the representation of all local atomic positions in a
standardized way, independent of the protein’s overall orientation.

Using these frames, we can transform a point plocal from the local coordinate system of residue i to
the global coordinate system, and vice versa:

• Local to global transformation: pglobal = Riplocal + ti
• Global to local transformation: plocal = R⊤

i (pglobal − ti)

This formalism is essential for creating geometric representations that are invariant to global rota-
tions and translations, a critical property for learning meaningful structural patterns.

3.2 AUTOREGRESSIVE GRAPH GENERATIVE MODELS

Autoregressive models are a class of generative models that produce complex data structures, such
as graphs, by sequentially generating their components. They factorize the joint probability distri-
bution over the entire structure into a product of conditional probabilities. The AutoGraph frame-
work (Chen et al., 2025a) adapts this principle for scalable graph generation by first “flattening”
a graph into a sequence representation. This transformation allows the complex problem of graph
generation to be reframed as a sequential language modeling task, making it amenable to powerful
and highly scalable architectures like the Transformer (Vaswani et al., 2017).

Its core principle is to define a stochastic ordering of nodes and edges through some random walk
sampling with restarts and neighborhood information, creating a sequence s = (s1, s2, . . . , sn)
where each token si represents either a node index, a node or edge label, or a special token. The
model then learns the probability of the graph G = (V,E) as a product of conditional probabilities
over this sequence:

p(G) =

n∏
i=1

p(si | s<i).

In this formulation, the generation process unfolds one step at a time, predicting the next token
(which models the act of visiting a neighbor, restarting at a new node, or indicating whether the
current node is a neighbor of a previously visited node) based on the previously generated sequence.
By leveraging a decoder-only transformer to model these sequential dependencies, this approach can
capture the long-range relationships inherent in graph structures, making it well-suited for modeling
the complex topology of protein contact graphs.
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Figure 1: AutoFold is a two-stage generative model for protein design. Stage I (left): It leverages
VQ-VAE to learn a sparse contact graph with single-edge labels for each protein structure that can
be decoded to reconstruct the 3D backbone coordinates with high fidelity; Stage II (right): It uses
the AutoGraph framework (Chen et al., 2025a) to generate these discrete graphs autoregressively by
“flattening” them into sequential representations via random walk sampling.

4 THE AUTOFOLD MODEL

Our generative model for protein design is a two-stage process that first learns a discrete graph
representation of a protein’s structure using a VQ-VAE, and then generates these graphs using an
autoregressive model. The entire pipeline of our model is illustrated in Figure 1.

4.1 PROTEIN CONTACT GRAPH LEARNING WITH VQ-VAE

We represent a protein structure as a sparse contact graph G = (V,E), where nodes v ∈ V corre-
spond to residues, and an edge e ∈ E exists between any pair of residues whose Cα atoms are within
a distance threshold of 8.0 Å, a standard choice for the contact in the literature (Rao et al., 2021;
Lin et al., 2023). Each edge is then encoded into a discrete structural token, creating a graph with
single-labeled edges that can be decoded to reconstruct the 3D backbone coordinates. While previ-
ous work has demonstrated that protein structures can be compressed into token sequences (Hayes
et al., 2025), our method is the first to show they can be effectively compressed into contact graphs
that preserve local geometry and reconstruct the original structure with high fidelity. This local
preservation is critical for downstream tasks such as motif scaffolding. This compression is learned
using a VQ-VAE, which consists of an encoder, a discrete codebook, and a decoder.

4.1.1 ENCODER

The VQ-VAE encoder operates independently on each pair of contacting residues (i, j) ∈ E to
produce a continuous embedding vector zij ∈ Rd that is invariant to SE(3) transformations on the
backbone coordinates. This embedding is derived from the residues’ local frames and their relative
sequence positions using geometrically invariant operators. Relative sequence positions between
contacting residues are first clamped to a maximum of ±32, meaning long-range contacts share the
same positional embeddings. These positions are then embedded into vectors, defining the initial
edge states xij ∈ Rd. This position encoding is commonly adopted in prior work (Jumper et al.,
2021). Note that the encoder input is purely structural: no amino acid sequence information is used
at this stage. These initial states are then processed through a series of geometric encoder blocks.

Inspired by Hayes et al. (2025), each geometric layer extracts invariant features that describe the rel-
ative orientation and position of the two residues by learning anchor points within their local frames.
Specifically, for an edge xij and its corresponding endpoint frames Ti and Tj , each geometric layer
computes its output through four steps (pseudocode is provided in Appendix C.1):
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1. Anchor Projections: Two sets of anchor points, (ri, rj) and (di, dj), are linearly projected from
the input xij , where the projections’ parameters are learnable. All have a shape of Rh×3, where
h is the number of anchor heads, a hyperparameter analogous to attention heads.

2. Global Frame Conversion: The anchor points, initially in their local residue frames, are trans-
formed into the global rotational and distance frames: ri = Ri(ri), rj = Rj(rj) ∈ Rh×3 and
di = Ti(di), dj = Tj(dj) ∈ Rh×3.

3. Distance and Direction between Anchors: The rotational similarity R for each head is cal-
culated as the dot product Rij,h = 1/

√
3ri,h · rj,h. The distance for each head is the L2 norm

Dij,h = ∥di,h − dj,h∥2. Similarly to Ingraham et al. (2019), each distance Dij,h is then lifted
using a radial basis function (16 RBF kernels isotropically spaced from 0 to 12 Å) and projected
back to its original dimension.

4. Output Projection: The final output GeomLayer(xij ,T) is a linear projection of the concate-
nated vector [Rij ;Dij ] ∈ R2h into Rd.

A geometric encoder block, similar to the transformer block in ESM3 (Hayes et al., 2025), uses
Pre-LayerNorm and a SwiGLU activation:

x = x+GeomLayer(x,T) ∈ R|E|×d, x = x+ SwiGLUMLP(x) ∈ R|E|×d.

Symmetrization of Edges. Without symmetrization, the above geometric encoder blocks would
create a bidirected graph with different edge features for each direction of the edge. To make the
generative task easier, we find that symmetrizing the graph before the last linear projection layer is
quite useful: zij = zij + zji. And later in the decoder, we could desymmetrize the graph through
a linear transformation of the lower-triangular edges: zij = zij if i < j and zij = Linear(zij) if
i > j. We show in Appendix G.1 that this approach does not affect the reconstruction quality.

4.1.2 CODEBOOK LEARNING VIA VECTOR QUANTIZATION

The continuous embedding zij ∈ Rd from the encoder (after some downprojection) is mapped to
the nearest vector in a learned, finite codebook C = {ck}Kk=1 ∈ RK×d, where K is the number of
discrete token types. This quantization step yields a discrete token index kij for each edge:

kij := argmin
k

∥zij − ck∥2.

The set of indices {kij}(i,j)∈E for all contacting pairs constitutes the final discrete graph represen-
tation. A commitment loss with a coefficient of 0.25 is employed. To ensure stable training and
effective codebook utilization, we update the codebook using an exponential moving average of the
encoder outputs and re-initialize unused codes (Van Den Oord et al., 2017; Razavi et al., 2019; Roy
et al., 2018; Hayes et al., 2025).

4.1.3 DECODER

The decoder reconstructs the 3D backbone coordinates from the discrete graph representation. It
takes the quantized codebook vectors {ckij

}(i,j)∈E as input and processes them through a stack of
message passing blocks followed by a stack of transformer blocks, an architecture inspired by Graph
Transformers (Wu et al., 2021; Chen et al., 2022). The resulting residue representations are passed
to a projection head that predicts the final 3D coordinates for the N , Cα, and C atoms.

The entire VQ-VAE is trained end-to-end by minimizing a composite loss function LVQ following
ESM3 (Hayes et al., 2025). In addition to the VQ commitment loss in Section 4.1.2, this includes
the other five losses. The primary losses are geometric distance and geometric direction, which
supervise the reconstruction of high-quality backbone structures. Binned distance and direction
classification losses serve as auxiliary objectives to bootstrap training. Finally, an inverse folding
token prediction loss is used to encourage the learned representations to be informative for sequence-
based tasks. Further details on the loss functions are provided in Appendix C.3. Note that all-atom
position decoding is also possible by using a two-stage training process by Hayes et al. (2025).

4.2 AUTOREGRESSIVE GRAPH GENERATION

Once the structure is transformed into a graph with single-labeled edges, the second stage of our
model learns to generate these graphs autoregressively. This stage further incorporates the amino
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acid sequence into the graph as node labels. By simultaneously generating both edge and node
labels, our model enables co-design of both the structure and sequence.

Following the AutoGraph framework (Chen et al., 2025a), we generate graphs by first “flattening”
them into a sequential representation and then modeling this sequence autoregressively. We generate
a stochastic ordering of nodes and their labeled edges through a random path with restarts and neigh-
borhood information along the path. This process creates a token sequence s = (s1, . . . , sn), where
each token si can represent a node index, a node or edge label, or some special token. The node in-
dex token captures the graph topology, while the node and edge labels represent the amino acids and
the geometry of the contacting residues. A key advantage of AutoGraph over other autoregressive
models is its ability to perform substructure-conditioned generation, making it feasible for motif
scaffolding without any specific tuning. Additionally, as a protein has a canonical ordering given
by its sequence, we use this ordering as the node indexing in this sequence. We employ a decoder-
only transformer architecture, namely the Llama model (Touvron et al., 2023a;b), to model these
sequences autoregressively, allowing it to learn the complex dependencies inherent within proteins.

4.3 INFERENCE AND MOTIF SCAFFOLDING

During inference, we generate novel protein structures by sampling from the trained transformer
model. The process begins with a starting token (SOS), and the model autoregressively predicts the
next token in the sequence until an end-of-sequence token (EOS) is generated. We employ standard
sampling strategies, such as top-p (nucleus) sampling with annealed temperature, to control the
diversity and quality of the generated sequences. In particular, since our model has different token
types, we use different temperatures when sampling different types of tokens. More details can
be found in Appendix D.4. Additionally, we perform constrained decoding (Scholak et al., 2021)
to ensure that the generated sequence is syntactically valid, allowing it to be convertible into a
meaningful protein graph. Once a complete sequence is sampled, it is deterministically converted
back into a contact graph and subsequently into 3D backbone coordinates using the trained decoder
described in Section 4.1.3.

This approach supports two primary generation modalities: (1) Unconditional co-generation of se-
quence and structure: The process is initiated with an empty context, allowing the model to generate
a complete graph from scratch, representing a novel protein structure and sequence. (2) Motif scaf-
folding: To build a structure around a predefined motif, the fixed motif is first converted into its cor-
responding graph representation through the trained VQ-VAE encoder. Note that, as our VQ-VAE
encoder is locally preserved, its graph representation will be the same as its subgraph representation
when it is within any protein structures. This subgraph is then “flattened” into a seed sequence using
the same random walk procedure as in training. This seed sequence is provided as a prompt to the
autoregressive model, which then generates the remainder of the sequence, effectively building the
scaffold structure around the fixed motif.

5 EXPERIMENTS

We evaluate AutoFold on unconditional co-generation of sequence and structure, and motif scaf-
folding tasks. Since our model has a two-stage process, we first assess the reconstruction quality of
the discrete graph representation learned by the VQ-VAE.

Experimental Setup. Following prior work (Lin et al., 2024; Geffner et al., 2025b;a), we train all
our models on the dataset of Foldseek AFDB clusters (Van Kempen et al., 2024; Barrio-Hernandez
et al., 2023), containing 588,318 protein structures predicted by AlphaFold2 (Jumper et al., 2021).
These proteins are sufficiently diverse, as represented by cluster representatives from the structure-
based Foldseek. Like prior work, we only keep protein lengths below 256 residues in our experi-
ments, though our model can be easily trained on longer proteins. We split the data into train and
validation sets with a ratio of 90% and 10%.

To evaluate the reconstruction quality of the VQ-VAE models, we also use the CATH test
dataset (Orengo et al., 1997; Ingraham et al., 2019) in addition to the AFDB validation set, which
contains 1120 experimental structures. This dataset enables testing the generalizability of our VQ-
VAE model, which is trained entirely on structures predicted by AlphaFold2.
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Figure 2: Backbone reconstruction RMSD for VQ-VAE models. The RMSDs are computed on two
different datasets: a held-out AFDB validation set and the CATH test set of experimental structures.
Left: reconstruction errors vs. the codebook size in VQ-VAE. Right: reconstruction errors vs. the
distance threshold used to construct the graphs. 95% confidence intervals are shown by shading.

5.1 AUTOFOLD LEARNS HIGH-FIDELITY GRAPH REPRESENTATION OF STRUCTURE

We first validate the reconstruction quality of our VQ-VAE model. The goal of VQ-VAE is to
compress the continuous protein backbones into a sparse, discrete graph representation with minimal
loss of information. We measure the fidelity using the backbone atom root mean square deviation
(RMSD) between the original and the reconstructed structures. Our evaluation focuses on two key
hyperparameters: the codebook size, which determines the richness of the geometric vocabulary,
and the contact distance threshold, which controls the graph’s sparsity.

First, to assess the expressive power of our discrete vocabulary, we fix the contact threshold at 8.0
Å and vary the codebook size. As shown on the right of Figure 2, reconstruction RMSD improves
monotonically as the codebook size increases. A modest codebook of 16 codes yields a reason-
able RMSD of under 1.5 Å, while a large codebook of 1024 achieves high-fidelity, sub-angstrom
reconstructions with a mean RMSD of 0.7 Å on AFDB.

Next, we investigate the impact of graph sparsity by fixing the codebook size to 256 and varying
the distance threshold. As expected, creating denser graphs with a larger threshold further reduces
reconstruction error. However, this also increases the complexity for the subsequent autoregressive
generation task. We therefore select a codebook size of 256 and a distance threshold of 8.0 Å
as a good balance between reconstruction quality and generative tractability. This configuration
confirms that our VQ-VAE can effectively capture complex backbone geometry in a discrete and
sparse format, creating a robust graph representation for the generative model.

5.2 UNCONDITIONAL SEQUENCE AND STRUCTURE CO-GENERATION

Since AutoFold is the only autoregressive model in the field, we benchmark it against state-of-
the-art diffusion and flow matching models for joint sequence and structure generation. The
baseline methods include P(all-atom) (Qu et al., 2024), APM (Chen et al., 2025b), PLAID (Lu
et al., 2024), ProteinGen (Lisanza et al., 2024), Protpardelle (Chu et al., 2024), and La-
Proteina (Geffner et al., 2025a). For each baseline method, we generate 100 proteins for each length
in {100, 200, 300, 400, 500} following Geffner et al. (2025a). We train three AutoFold models with
different sizes, namely AutoFold-t (27M), AutoFold-s (116M), and AutoFold-m (407M), following
the typical model size settings of Llama (Touvron et al., 2023b). More details about their hyper-
parameters are provided in Appendix D.4. Since autoregressive models are length unconstrained,
we randomly generate 500 proteins for AutoFold models without explicit length controls. We as-
sess performance using a comprehensive set of established metrics, including co-designability, di-
versity, novelty (against PDB and AFDB), and standard designability. Co-designability evaluates
how well co-generated sequences fold into generated structures, while designability uses Protein-
MPNN (Dauparas et al., 2022) to produce sequences for generated structures. Additionally, we
include two new metrics: (1) unique co-designability, which represents the number of clusters given
by Foldseek (Van Kempen et al., 2024) for the co-designable protein structures; (2) sequence FID,
which measures the Fréchet distance between the AFDB and generated sequences, embedded with
ESM2 (Lin et al., 2023). More details about evaluation can be found in Appendix D.3.
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Table 1: Comparison of methods across co-designability, normalized diversity, novelty, designabil-
ity, and secondary structure proportions.

Method
Co-designability (%) ↑ Diversity (normalized) ↑ Novelty ↓ Designability (%) ↑ Sec. Struct. (%)

Unique all Str Seq Seq+Str PDB AFDB PMPNN-8 α β

P(all-atom) 26.8 37.9 0.707 0.781 0.871 0.72 0.81 57.9 56 17
APM 6.4 32.2 0.199 0.398 0.366 0.84 0.89 61.8 73 8
PLAID 5.0 19.2 0.260 0.312 0.396 0.89 0.92 37.6 44 14
ProteinGen. 2.4 17.8 0.135 0.315 0.270 0.83 0.89 54.2 78 5
Protpardelle 2.0 35.2 0.057 0.210 0.119 0.79 0.82 56.2 65 14
La-Proteina 41.2 72.2 0.571 0.598 0.834 0.75 0.82 93.8 72 5

AutoFold-t 36.2 50.4 0.718 0.984 0.952 0.16 0.19 58.0 89 2
AutoFold-s 42.4 68.8 0.616 0.910 0.945 0.10 0.12 69.4 91 2
AutoFold-m 46.4 72.0 0.644 0.950 0.986 0.14 0.17 69.6 90 1

Performance on Design Quality. Our results in Table 1 demonstrate that AutoFold-m achieves
better unique co-designability and much better diversity and novelty compared to the baselines.
Additionally, AutoFold achieves better sequence quality compared to La-Proteina, with a sequence
FID of 10.18, 10.09, and 9.07 for t, s, and m models, respectively, versus 10.31 for La-Proteina.
However, a notable limitation of AutoFold’s generations is a strong preference for alpha-helical
structures, with helical content reaching approximately 90%. We hypothesize this is a limitation
stemming from our discrete graph representation, where the geometric features of alpha helices may
be easily captured by highly frequent, single tokens in the learned VQ-VAE codebook. In contrast,
more complex secondary structures like beta sheets might be harder to represent discretely. We
provide a few visual examples of the generated structures in Figure 4. Future work could address
this by exploring different graph construction parameters, such as larger contact distance thresholds,
to create a more balanced geometric vocabulary.

Generation Speed. A primary advantage of AutoFold is its generation speed. To provide a direct
comparison with length-conditioned models, we timed the generation process using constrained
decoding, where generation is halted once a target length is reached. As shown in Figure 3, both
AutoFold-s and AutoFold-m are substantially faster than the state-of-the-art baselines. Most notably,
AutoFold accelerates generation by more than two orders of magnitude compared to RFDiffusion, a
widely used and representative diffusion model.
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Figure 3: The runtimes for different models for maximum
batch size obtained on a single NVIDIA H100 80GB GPU.

Figure 4: Examples of generated
structures. Blue: generated, gray:
ESMFold predicted.

5.3 MOTIF SCAFFOLDING

A key advantage of our autoregressive model is its intrinsic ability to perform motif scaffolding
without re-training or fine-tuning. Because our model generates protein graphs sequentially, we can
provide a functional motif as a fixed “prompt” and simply let the model autoregressively complete
the surrounding scaffold. This zero-shot capability is a direct benefit of our modeling strategy.

Experimental Setup. To assess this capability, we evaluate AutoFold on the motif scaffolding
benchmark from Geffner et al. (2025a). Following their protocol, a design is considered successful

8
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Table 2: Motif scaffolding benchmark: number of successful designs for AutoFold and baselines
Motif # Segments Protpardelle La-Proteina AutoFold-m AutoFold-long

All Unique All Unique All Unique All Unique

1YCR 1 1 1 123 38 68 44 89 52
3IXT 1 0 0 34 6 11 6 8 4
4ZYP 1 0 0 11 2 23 8 9 5
5TPN 1 0 0 55 1 1 1 3 2
5WN9 1 0 0 0 0 2 1 0 0
5TRV short 1 0 0 5 1 4 3 3 2
5TRV med 1 0 0 65 3 0 0 1 1
5TRV long 1 0 0 91 9 0 0 0 0
6E6R short 1 0 0 35 8 23 16 7 4
6E6R med 1 0 0 73 22 8 4 1 1
6E6R long 1 0 0 71 43 1 1 4 1
7MRX 60 1 0 0 7 3 20 5 1 1
7MRX 85 1 0 0 16 4 8 1 2 1
7MRX 128 1 0 0 22 17 2 1 1 1

1PRW 2 0 0 175 20 162 16 176 11
2KL8 2 80 1 165 1 200 1 196 1
4JHW 2 0 0 2 1 1 1 17 4
5IUS 2 0 0 16 2 52 9 67 15
6VW1 2 0 0 21 1 95 6 126 12

1BCF 4 70 1 189 7 157 9 190 12

Total 151 3 1176 189 838 133 901 130
Total (w/o fixed length) 151 3 791 79 772 102 881 118

if it is co-designable and the generated scaffold aligns to the native motif with a backbone RMSD
< 1 Å. A current limitation of our method lies in scaffolding sparse active sites. If the distances
between key functional residues in a motif exceed our 8.0 Å contact distance cutoff, their geometric
relationship cannot be encoded into the graph representation. This prevents the model from correctly
scaffolding the motif. For this reason, we excluded active site motifs from our evaluation, resulting in
20 tasks. We believe this limitation could be addressed by increasing the contact distance threshold
to capture longer-range interactions, a direction we leave for future research. To demonstrate the
benefit of a larger distance threshold, we include AutoFold-long, a variant that uses a 9.0 Å cutoff
with only a negligible increase in sampling time. More results are provided in Appendix F.2, G.2.

Results. As summarized in Table 2, AutoFold-m shows highly competitive performance, solving 18
out of 20 motif scaffolding tasks. It performs on par with or better than the state-of-the-art model,
La-Proteina, on 13 tasks in terms of producing unique valid designs. As a length-unconstrained
model, AutoFold is not designed for tasks with rigid length constraints, and thus it fails on the two
fixed-length challenges in the benchmark (5TRV long and 5TRV med). However, since precise
length control is often unnecessary for practical design applications, this is not a significant draw-
back. In fact, when evaluated on flexible-length tasks (all benchmarks excluding 5TRV, 6E6R, and
7MRX), AutoFold-m outperforms La-Proteina by generating a greater number of unique successful
designs (102 vs 79). Finally, the AutoFold-long variant further improves upon these results, yielding
even more unique successful designs (118 vs 102), particularly for two-segment motifs.

6 CONCLUSION

We have introduced AutoFold, an ultra-fast autoregressive model that solves the critical speed
bottleneck in de novo protein design. By reformulating the problem from continuous coordinate
refinement to discrete graph generation, AutoFold achieves a fundamental shift in methodology.
Our model demonstrates performance competitive with state-of-the-art models in generating high-
quality, diverse proteins and enables zero-shot motif scaffolding without any task-specific fine-
tuning, all while being over an order of magnitude faster than leading diffusion and flow matching
approaches. As a by-product, our work also produces a rich set of protein graphs that can be readily
used to boost the development of graph generative models.

9
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ETHICS STATEMENT

The research conducted in this paper is purely computational and relies on protein structure data
from the publicly available Protein Data Bank and AlphaFold database, which is intended for sci-
entific use. Our work aims to accelerate scientific discovery for beneficial applications, such as
the design of novel therapeutics, enzymes, and materials. We acknowledge that, like any powerful
generative technology, protein design models could theoretically be misused for harmful purposes.
However, our research is intended solely for positive advancements in science and medicine. By
developing more efficient computational tools, we hope to reduce the energy footprint associated
with large-scale protein design campaigns.

REPRODUCIBILITY STATEMENT

All code for AutoFold models, along with the final trained model weights, will be made pub-
licly available on GitHub upon publication. The datasets of protein graphs generated and used
in this study will also be released. The pseudocode and architecture details are provided in Ap-
pendix A. The underlying protein structure data is sourced from the cluster representatives of the
FoldSeek (Van Kempen et al., 2024) clustered version of the AlphaFold database, and all processing
details are provided in Appendix D.1 to ensure that our dataset construction can be fully reproduced.
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A LIMITATIONS

While AutoFold demonstrates a powerful new paradigm for ultra-fast protein co-design, several
limitations present clear avenues for future improvement.

Architectural and Representational Choices Our architectural design is centered on a sparse
contact graph with a fixed small Cα distance threshold. While this choice balances reconstruction
fidelity with generative tractability, it introduces several limitations. This choice restricts the model’s
ability to capture long-range interactions, which is critical for scaffolding sparse active sites. It also
contributes to an observed structural bias towards α-helices, as their local contact patterns are more
easily represented by our VQ-VAE. Future work should explore alternative graph representations,
such as using larger distance thresholds, k-nearest neighbors, or different graph generative models
to capture a wider range of structural motifs and long-range dependencies.

Dataset Considerations Our training dataset, originally used in Lin et al. (2024), was not curated
with advanced filters for secondary structure balance, unlike methods such as La-Proteina (Geffner
et al., 2025a). Implementing such data curation strategies could directly mitigate the α-helical bias
and improve the diversity of generated secondary structures.

Beyond Unconditional and Motif Scaffolding While we have demonstrated success in uncon-
ditional generation and motif scaffolding, AutoFold’s framework could be extended to a broader
range of design challenges. Future applications could include designing large protein complexes
and protein binders, and incorporate explicit structural constraints to achieve target folds or func-
tional properties.

B USE OF LARGE LANGUAGE MODELS

This work used large language models in the following ways:

Preparation of plots LLMs were partly used to generate the code for the plots presented in this
work. The correctness of all code and data was checked manually. The data shown in the
figures was generated by manually written code.

Code development LLMs were used to assist in developing evaluation pipelines using the Cursor
IDE. All code modified by LLMs was manually checked.

Polishing of manuscript LLMs were occasionally used to refine or rephrase individual sentences.

C ARCHITECTURE AND TRAINING DETAILS

We provide additional details of our model architectures, loss functions, and optimization details.

C.1 VQ-VAE ENCODER

We provide the full pseudocode for the geometric layer in Algorithm 2, which uses the RBF func-
tion presented in Algorithm 1. The output of the encoder is then down-projected onto a smaller
dimensional space before performing the vector quantization.

Algorithm 1 RBF(D)

Input: Distances D ∈ Rh, nbin ∈ N+, Dmin, Dmax ∈ R
Output: Drbf ∈ Rh×nbin

1: Dµ = linspace(Dmin, Dmax, nbin) ▷ Rnbin

2: σ = Dmax−Dmin/nbin

3: Drbf,i = exp(−∥Di −Dµ∥2/σ2) ▷ Rh×nbin
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Algorithm 2 GeomLayer(x,T)

Input: Contact graph G = (V,E), input edge features x ∈ R|E|×d, frames T ∈ SE(3)|V |

Output: Output edge features x ∈ R|E|×d

1: Anchor projections:
ri, rj , di, dj = Linear(xij) for any (i, j) ∈ E ▷ (Rh×3)×|E|×4

2: (Ri, ti) = Ti for any i ∈ V ▷ (SO(3)|V |,R|V |×3)
3: Global rotational frame:

ri = Ri(ri), rj = Rj(rj) for any (i, j) ∈ E ▷ (Rh×3)×|E|×2

4: Global distance frame:
di = Ti(ri), dj = Tj(rj) for any (i, j) ∈ E ▷ (Rh×3)×|E|×2

5: Direction between anchors:
Rij,h = 1/

√
3ri,h · rj,h for any (i, j) ∈ E ▷ R|E|×h

6: Distance between anchors:
Dij,h = Linear(RBF(∥di,h − dj,h∥2)) for any (i, j) ∈ E ▷ R|E|×h

7: Output projection:
xij = Linear([Rij ;Dij ]) for any (i, j) ∈ E ▷ R|E|×d

C.2 VQ-VAE DECODER

The decoder consists of a stack of message passing blocks followed by a stack of bidirectional
transformer blocks inspired by recent graph transformer architectures (Wu et al., 2021; Chen et al.,
2022). The node features are initialized with zeroes, and are then fed into the decoder jointly with
the dequantized edge features.

Message Passing Blocks. The message passing blocks use an attention mechanism to update the
node and edge representations after each block. Specifically, for input node and edge features h ∈
R|V |×d and xij ∈ R|E|×d, each message passing block first computes MessagePassing(h, x,G) by
performing the following attention-based message passing:

hQ, hK , hV = Linear(h) ∈ R|V |×dhidden

xQK = Linear(x) ∈ R|E| and xV = Linear(x) ∈ R|E|×dhidden

αij =
expwij∑
k∈N (i)wik

with wij =
hQ,i · hK,j + xQK,ij√

dhidden
for any (i, j) ∈ E

hi =
∑

j∈N (i)

αij(hV,j + xV,j) ∈ Rdhidden

h = Linear(h) ∈ R|V |×d.

Similar to the original self-attention mechanism (Vaswani et al., 2017), we also use the multi-head
attention. Additionally, it has an edge updater EdgeUpdater(x, h,G):

x′
ij = Linear(hi) + Linear(hj) + Linear(xij)

xij = xij + SwiGLUMLP(x′
ij) for any (i, j) ∈ E.

An entire message passing block performs the following operations:

h = h+MessagePassing(h, x,G),

h = h+ SwiGLUMLP(h),

x = EdgeUpdater(x, h,G).

Transformer Blocks. After the message passing blocks, a stack of bidirectional transformer
blocks with RoPE (Su et al., 2024) is employed. Each block uses the same architecture as in the
ESM3 (Hayes et al., 2025) model, taking the node representations h ∈ R|V |×d as input:

h = h+MultiHeadAttention(h),

h = h+ SwiGLUMLP(h).
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Prediction Head. The final output of the decoder follows ESM3’s gram schmidt procedure
(Algorithm 8 in Hayes et al. (2025)) to produce the reconstructed backbone structure coordinates.

C.3 VQ-VAE LOSS FUNCTION

The entire VQ-VAE is trained end-to-end by minimizing a composite loss function following
ESM3 (Hayes et al., 2025):

LVQ = Ldist + Ldir + Lbinned dist + Lbinned dir + Linverse folding + 0.25Lcommit, (1)

where Ldist and Ldir are geometric distance and direction losses, which are primary losses for su-
pervising the reconstruction of backbone structures. Additionally, binned distance and direction
classification losses (Lbinned dist and Lbinned dir) are used to bootstrap structure prediction. To produce
the pairwise logits, we follow Algorithm 9 in ESM3 (Hayes et al., 2025). Moreover, an inverse fold-
ing token prediction loss (Linverse folding) is used to encourage the learned representations to contain
information pertinent to sequence-related tasks. Finally, a VQ commitment loss (Lcommit) is used to
encourage the learning of the codebook. We provide below the details of each loss function.

Backbone Distance Loss Ldist. Ldist first computes the pairwise L2 distance matrix for the pre-
dicted and true coordinates of the three backbone atoms (N,Cα, C). Let Dpred, D ∈ R3|V |×3|V | be
the corresponding distance matrices. We compute

Ldist = mean(min((Dpred −D)2, 25))

Backbone Direction Loss Ldir. It first computes six vectors for both predicted and ground truth
coordinates for each residue: (a) N → Cα; (b) Cα → C; (c) C → Nnext; (d) −(N → Cα)× (Cα →
C); (e) (Cprev → N) × (N → Cα); (f) (Cα → C) × (C → Nnext). Then, it computes the
pairwise dot product between these vectors for both predicted and ground truth coordinates, denoted
as Dpred, D ∈ R6|V |×6|V |. Finally, we compute

Ldir = mean(min((Dpred −D)2, 20))

Binned Distance Classification Loss Lbinned dist. This loss bins the true distances between
residues (specifically, their Cβ) to get ground truth targets and computes a cross-entropy loss be-
tween these targets and pairwise logits. Specifically, we first calculate the location of Cβ based on
(N,Cα, C) for the ground truth coordinates. Then, we compute the pairwise distance between Cβ

and bin them into one of 64 bins, with lower bounds [0, 2.31252, (2.3125+0.3075)2, . . . , 21.68752],
forming labels y ∈ {0, . . . , 63}|V |×|V |. Finally, we compute the pairwise logits using the last layer
representations and Algorithm 9 in ESM3 and compute the cross-entropy loss using the labels y and
the logits.

Binned Direction Classification Loss Lbinned dir. Similar to the above loss, this loss captures a
coarser similarity between ground truth and predicted orientations to stabilize early training. Specif-
ically, we compute the pairwise dot product between three vectors Cα → C, Cα → N , and
(Cα → C) × (Cα → N) normalized to unit length. Then, we bin these dot products into 16
evenly spaced bins in [−1, 1], forming classification labels y ∈ {0, . . . , 15}|V |×|V |. Finally, we
compute the pairwise logits as above and compute the cross-entropy loss using the labels y and the
logits.

Inverse Folding Loss Linverse folding. We pass the final layer representations of the decoder through
a regression head to produce logits. Then, we use ground truth amino acids as labels y, compute
cross-entropy for the classification task of predicting amino acids from the final layer representa-
tions.

VQ Commitment Loss Lcommit. This is the commonly used loss for the VQ learning. Following
the notation in Section 4.1.2, we compute

Lcommit =
1

|E|
∑
ij

∥zij − ckij
∥22
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C.4 AUTOREGRESSIVE GRAPH GENERATION

We employ the AutoGraph framework (Chen et al., 2025a) to generate the protein contact graphs
autoregressively. For each graph G = (V,E), AutoGraph samples from this graph a random path
sequence with restarts and neighborhood information w = (w1, . . . , wn), termed Segmented Eule-
rian Neighborhood Trail (SENT), where wk = (vk, Ak) with a node vk ∈ V and Ak ⊆ V is the
set of all previously visited nodes that are neighbor of vk. This path (with restarts) visits each node
and edge exactly once, making it a concise and lossless sequential representation of the graph. More
importantly, each prefix of this sequence generates an induced subgraph of G, making it possible
for substructure-conditioned generation. To model this sequence using a language model, we first
convert it into a machine-readable sequence of tokens using the technique from Section 2.4 of Auto-
Graph (Chen et al., 2025a) with special tokens. These tokens include symbols such as ‘/’ to indicate
a breakage between segments, and ‘<’ and ‘>’ to mark the start and end of a neighborhood set. The
resulting tokenization induces a non-Markovian random walk in the graph, incorporating additional
virtual nodes labeled with the above special tokens. Language modeling of SENTs aims to learn the
state transition probabilities of the random walks. Standard cross-entropy loss was used for training
with teacher-forcing.

C.5 OPTIMIZATION DETAILS

All our models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with a standard
linear warm-up strategy. The cosine learning rate decay scheduler is used for all models. The
optimization hyperparameters are provided in Section D.4.

D EXPERIMENTAL DETAILS

D.1 DATASETS

We use one dataset to train all our models, including both VQ-VAE and autoregressive models. This
dataset is based on the cluster representatives of the Foldseek (Van Kempen et al., 2024) clustered
version of the AFDB. In addition to this dataset, we use the CATH test set (Ingraham et al., 2019) to
assess the reconstruction quality of our VQ-VAE.

Foldseek Clustered AFDB. This is the dataset used by Lin et al. (2024) and Geffner et al. (2025b).
It is a filtered and clustered rendition of the AlphaFold database. The clustering employs both
sequence and structure information (Van Kempen et al., 2024). The resulting dataset is composed of
cluster representatives, meaning that one structure is selected from each cluster. This initially yields
approximately three million unique samples. They are further filtered following several criteria:
a minimum average pLDDT score of 80, protein lengths of less than 256 residues. While recent
works (Geffner et al., 2025a) show that using additional secondary structure filters could increase
the percentage of β-sheet content, we keep the original dataset for simplicity and fairness. Studying
the effect of different datasets is left for further research.

CATH Dataset. The CATH dataset consists of experimental structures used by Ingraham et al.
(2019). It contains 1140 structures and is used to assess the generalizability of our VQ-VAE models.

D.2 COMPUTING DETAILS

We implemented our sequence models using the model hub of Hugging Face. Users can easily
use their preferred language models to train our autoregressive models instead of using our default
Llama model architecture. Experiments were conducted on a shared computing cluster with various
CPU and GPU configurations, including 16 NVIDIA H100 (80GB) GPUs. Each of our VQ-VAE
models was trained on a single GPU for less than 2 days, and each of our autoregressive models was
trained on 4 GPUs for either 2 or 5 days, depending on the model size. Note that, compared to state-
of-the-art diffusion or flow matching models, such as La-Proteina, usually requiring 64 NVIDIA
A100 (80GB) GPUs, the training of AutoFold requires substantially fewer GPUs.
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D.3 EVALUATION METRICS

We evaluate our models using metrics that have become standard in the field. We closely follow the
metric definitions given in Geffner et al. (2025b) and Geffner et al. (2025a).

Designability and Co-Designability Designability scores are calculated by stripping the gen-
erated structure of its sequence and generating 8 sequences using ProteinMPNN Dauparas et al.
(2022). These sequences are then refolded with ESMFold Lin et al. (2023). A sample is considered
designable if at least one of the refolded structures has an α-carbon RMSD below 2Å relative to the
generated structure. Designability evaluates whether a sequence folding into the designed structure
can be found.
Co-designability, on the other hand, evaluates the self-consistency between the generated sequence
and structure. The generated sequence is directly refolded with ESMFold and the backbone RMSD
between the structures is computed. If it is below the cutoff of 2Å, the sample is deemed co-
designable. Both metrics are reported as fractions of all generated samples produced by a model
passing that filter.

Novelty Novelty describes how different or new a generated structure is compared to a reference
set. We use the PDB set as provided by Foldseek (Van Kempen et al., 2024) and a filtered version
of Foldseek’s AlphaFold database, as described in Geffner et al. (2025a). TM-scores against the
reference set are computed using Foldseek, and the maximum of these TM-scores is reported. A
higher TM-score indicates that a similar structure already exists in the reference set. If no similar
structures are identified by Foldseek, the TM-score is assigned a value of 0. We then report the
average of these maximal scores for all generated proteins passing the co-designability filter.

Diversity The diversity assesses the dissimilarity between generated samples of a model. We
assess this by computing Foldseek clusters from our generated samples. We consider structural,
sequence, and joint (structure and sequence) diversity, using the respective Foldseek clustering. The
reported diversity metric is defined as the number of Foldseek clusters formed from co-designable
generated proteins, divided by the total number of co-designable proteins generated by a model. The
commands used are reproduced below:

Structure diversity:

$ f o l d s e e k easy − c l u s t e r <p a t h s a m p l e s> <p a t h r e s u l t s > <pa th tmp>
−−cov −mode 0
−− a l i g n m e n t − t y p e 1
−−min−seq − i d 0
−− tmscore − t h r e s h o l d 0 . 5

Joint diversity:

$ f o l d s e e k easy − c l u s t e r <p a t h s a m p l e s> <p a t h r e s u l t s > <pa th tmp>
−−cov −mode 0
−− a l i g n m e n t − t y p e 2
−−min−seq − i d 0 . 1
−− tmscore − t h r e s h o l d 0 . 5

Sequence diversity:

$ mmseqs easy − l i n c l u s t < f a s t a i n p u t f i l e p a t h >
p d b c l u s t e r <pa th tmp>
−−min−seq − i d 0 . 1
−−c 0 . 7
−−cov −mode 1

Unique Co-Designability We introduce a new composite metric we call unique co-designability.
Unique co-designability is the multiplication of structural diversity with the co-designability score.
We believe it to be a very relevant metric since it illustrates how many different co-designable
proteins a model can produce, whereas co-designability could be very high for a model producing
only close to identical proteins.
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Table 3: Training hyperparameters for VQ-VAE

Hyperparameter name Value

Architecture
# Parameters 218M
Hidden dimension 1024
# Geometric encoder blocks 2
# Anchor heads 128
# RBF kernels 16
Contact distance threshold 8.0
Codebook dimension 128
Codebook size 256
Codebook EMA decay 0.99
Codebook commitment coefficient 0.25
# Decoder MPNN blocks 4
# Decoder transformer blocks 4
# Heads in transformer blocks 16

Optimization
Batch size × accumulate gradient batches 16× 4

Learning rate 0.0004
Weight decay 0.01
Betas (0.9, 0.95)
Warm up ratio 0.05
Gradient clipping value 1.0
Training iterations 100,000

Sequence FID We also introduce a new metric to measure the distribution discrepancy between
the training, here AFDB, and the generated sequences. We first compute sequence embeddings
using the esm2 t33 650M UR50D model provided by ESM2 (Lin et al., 2023). Then, we com-
pute the Fréchet distance between the embeddings of the generated and training sequences from
AFDB. Lower sequence FID indicates that the generated sequences are more similar to the training
sequences.

D.4 HYPERPARAMETERS

Here, we provide a full set of hyperparameters used to train the VQ-VAE and the autoregressive
models.

VQ-VAE. Our choices of the hyperparameters for VQ-VAE are largely based on those of ESM-
3 (Hayes et al., 2025). Table 3 provides full details about the hyperparameters used to train the
VQ-VAE models.

AutoFold. Following standard choices of training Llama models (Touvron et al., 2023a;b), we
train AutoFold with different parameter sizes ranging from 27M to 407M. Our choice of the hyper-
parameters strictly follows the standard choices for training large language models without specific
tuning. Table 4 summarizes the full details of the training hyperparameters for AutoFold models.
For inference, we adopt the top-p sampling with annealed temperature. As we have different types of
tokens in our sequence representation of the graph, we use different temperatures when generating
different types. All these values are provided in Table 5.
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Table 4: Training hyperparameters for AutoFold models

Hyperparameter name AutoFold-t AutoFold-s AutoFold-m

Architecture
# Parameters 27M 116M 407M
Hidden dimension 512 768 1024
# Transformer blocks 6 12 24

Optimization
Batch size × accumulate gradient batches 128× 2 64× 4 32× 8

Truncation length 5120
Learning rate 0.0006 0.0006 0.0003
Weight decay 0.1
Betas (0.9, 0.95)
Warm up ratio 0.01
Gradient clipping value 1.0
Training iterations 100,000

Table 5: Inference hyperparameters for AutoFold

Hyperparameter name Value

Unconditional generation
Top-p sampling 0.7
Graph token temperature 0.2
Sequence token temperature 1.0
Structure token temperature 0.4

Motif Scaffolding
Top-p sampling 0.7
Graph token temperature {0.5, 0.1}
Sequence token temperature {0.5, 0.1}
Structure token temperature {0.5, 0.1}
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Table 6: Motif scaffolding data with minimum and maximum lengths, and contig strings.
Motif Name (PDB ID) Min Length Max Length Contig String All Atom

1PRW 60 105 5-20/A1-20/10-25/B1-20/5-20
1BCF 96 152 8-15/A92-99/16-30/A123-130/16-30/A47-54/16-30/A18-25/8-15
5TPN 39 98 10-40/A163-181/10-40
5IUS 57 142 0-30/A119-140/15-40/A63-82/0-30
3IXT 50 75 10-40/P254-277/10-40
4JHW 59 104 10-25/F196-212/15-30/F63-69/10-25
5WN9 40 100 10-40/A170-189/10-40
4ZYP 35 95 10-40/A422-436/10-40
6VW1 62 83 20-30/A24-42/4-10/A64-82/0-5
2KL8 79 79 A1-7/20/A28-79
7MRX 60 60 60 0-38/B25-46/0-38
7MRX 85 85 85 0-63/B25-46/0-63
7MRX 128 128 128 0-122/B25-46/0-122
5TRV short 56 56 0-35/A45-65/0-35
5TRV med 86 86 0-65/A45-65/0-65
5TRV long 116 116 0-95/A45-65/0-95
6E6R short 48 48 0-35/A23-35/0-35
6E6R med 78 78 0-65/A23-35/0-65
6E6R long 108 108 0-95/A23-35/0-95

D.5 MOTIF SCAFFOLDING

Given a certain selection of residues’ information about backbone position and their amino acids,
the task of motif scaffolding is to generate a new protein that includes this motif as part of it. As
an important distinction from previous models, our AutoFold models trained for unconditional gen-
eration can be seamlessly used for motif scaffolding, without any fine-tuning. We provide details
below about the benchmark datasets as well as the evaluation.

Benchmark Datasets. We use the same benchmark datasets as used by previous work (Watson
et al., 2023; Geffner et al., 2025a), excluding sparse active site motifs. Table 6 includes all bench-
mark data used in our experiments.

Evaluation. Following La-Proteina (Geffner et al., 2025a) and the fact that our model only gen-
erates the backbone structure, we assess the validity of the generated samples through the following
criteria:

• The motif backbone coordinates should have an RMSD < 1 Å between the generated and
input structures.

• The generated protein should be co-designable, i.e., it should have a backbone scRMSD
< 2 Å.

For all methods, we generate 200 samples per task. We then evaluate these samples via the criteria
above, which results in the number of successes per task. Finally, the number of unique successes
is obtained by clustering the successes with Foldseek (Van Kempen et al., 2024) and reporting the
number of clusters. We use the following command to cluster:

$ f o l d s e e k easy − c l u s t e r <p a t h s a m p l e s> <pa th tmp >/ r e s <pa th tmp>
−− a l i g n m e n t − t y p e 1 −−cov −mode 0 −−min−seq − i d 0
−− tmscore − t h r e s h o l d 0 . 5 −− s i n g l e − s t e p − c l u s t e r i n g

E ADDITIONAL RESULTS

We present additional results for our VQ-VAE models and AutoFold models.
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Figure 5: Backbone reconstruction lDDT for VQ-VAE models. Left: reconstruction lDDTs vs. the
codebook size in VQ-VAE. Right: reconstruction lDDTs vs. the distance threshold used to construct
the graphs. 95% confidence intervals are shown by shading.

E.1 ADDITIONAL RESULTS FOR VQ-VAE

To further supplement the reconstruction results in Section 5.1, we provide the reconstruction lDDT
scores in Figure 5. Our lDDT results are consistent with the RMSD results.

E.2 PAE AND PLDDT COMPARISON TO LA-PROTEINA

We compare the distribution of pAE and pLDDT scores from Autofold-m and La-Proteina in Fig-
ure 6. Note that for La-Proteina 100 proteins for lengths 100, 200, 300, 400, and 500 each are
assessed. Our results show that AutoFold-m is only slightly outperformed by La-Proteina, despite
being a fully discrete autoregressive model.
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Figure 6: Comparison of pAE and pLDDT distributions between Autofold-m and La-Proteina

F VISUALIZATION OF GENERATED STRUCTURES

F.1 UNCONDITIONAL GENERATION

We provide additional examples of generated structures for unconditional generation in Figure 7

F.2 MOTIF SCAFFOLDING

We provide several examples of generated structures in Figure 8.
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Figure 7: Further examples of generated structures showcasing an overabundance of α-helices.
Blue: AutoFold generated structures. Gray: ESMFold predicted structures. Note the last struc-
ture as an example of a structure considered non-designable.
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1YCR 3IXT 4ZYP 5TPN

1PRW 2KL8 5IUS 6VW1

Figure 8: Examples of generated structures for motif scaffolding tasks. The red part indicates the
motif structures.
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Table 7: Reconstruction quality comparison of a VQ-VAE model with and without edge symmetriza-
tion. 95% confidence intervals are shown in the brackets.

Symmetrization AFDB CATH

RMSD ↓ lDDT ↑ RMSD ↓ lDDT ↑

w/ 0.807([0.791, 0.826]) 0.937([0.936, 0.938]) 0.676([0.636, 0.721]) 0.913([0.909, 0.916])
w/o 0.812([0.795, 0.831]) 0.933([0.932, 0.933]) 0.676([0.635, 0.725]) 0.910([0.906, 0.913])

G ABLATION EXPERIMENTS

Here, we provide several ablation experiments to support the choices made in our main experiments.

G.1 IMPACT OF EDGE SYMMETRIZATION

We first study the impact of the symmetrization of edge features. Without symmetrization, our
VQ-VAE would generate a bidirected graph, making the generation task more challenging for au-
toregressive models. We show in Table 7 that this choice of symmetrizing edges does not degrade
but even slightly improves the reconstruction quality of the VQ-VAE models.

G.2 IMPACT OF MODEL SIZE

In addition to the results of model sizes for unconditional generation presented in Section 5.2, we
investigate the impact of model size on AutoFold for motif scaffolding. Table 8 presents the number
of successful designs for all motifs. Our results demonstrate that AutoFold’s performance increases
monotonically with the model size, as indicated by the number of successful designs. The largest
model, AutoFold-m, performs the best across almost all tasks. This suggests that increasing the
model size may further improve the performance.
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Table 8: Impact of the model size on motif scaffolding tasks

Motif # Segments AutoFold-t AutoFold-s AutoFold-m

All Unique All Unique All Unique

1YCR 1 67 32 52 37 68 44
3IXT 1 2 1 4 2 11 6
4ZYP 1 3 2 17 8 23 8
5TPN 1 2 2 4 4 1 1
5WN9 1 0 0 0 0 2 1
5TRV short 1 1 1 3 2 4 3
5TRV med 1 0 0 0 0 0 0
5TRV long 1 0 0 0 0 0 0
6E6R short 1 10 6 12 8 23 16
6E6R med 1 0 0 3 1 8 4
6E6R long 1 0 0 2 2 1 1
7MRX 60 1 6 2 7 2 20 5
7MRX 85 1 3 1 2 1 8 1
7MRX 128 1 0 0 3 1 2 1

1PRW 2 50 7 141 20 162 16
2KL8 2 161 5 197 3 200 1
4JHW 2 0 0 0 0 1 1
5IUS 2 2 2 28 7 52 9
6VW1 2 89 4 75 5 86 6

1BCF 4 6 1 88 10 157 9

Total 398 64 638 113 838 133
Total (w/o fixed length) 378 54 606 96 772 102
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