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Abstract

We consider the problem of recovering a structured signal x ∈ Rn from noisy linear
observations y = Mx +w. The measurement matrix is modeled as M = BA,
where B ∈ Rl×m is arbitrary and A ∈ Rm×n has independent sub-gaussian
rows. By varying B, and the sub-gaussian distribution of A, this gives a family of
measurement matrices which may have heavy tails, dependent rows and columns,
and singular values with a large dynamic range. When the structure is given as a
possibly non-convex cone T ⊂ Rn, an approximate empirical risk minimizer is
proven to be a robust estimator if the effective number of measurements is sufficient,
even in the presence of a model mismatch. In classical compressed sensing with
independent (sub-)gaussian measurements, one asks how many measurements are
needed to recover x? In our setting, however, the effective number of measurements
depends on the properties of B. We show that the effective rank of B may be used
as a surrogate for the number of measurements, and if this exceeds the squared
Gaussian mean width of (T − T ) ∩ Sn−1, then accurate recovery is guaranteed.
Furthermore, we examine the special case of generative priors in detail, that is
when x lies close to T = ran(G) and G : Rk → Rn is a Generative Neural
Network (GNN) with ReLU activation functions. Our work relies on a recent result
in random matrix theory by Jeong, Li, Plan, and Yılmaz [10].

1 Introduction

In compressed sensing [7], the goal is to reconstruct a high-dimensional signal x ∈ Rn from a noisy
low-dimensional linear transformation of it, y = Mx + w ∈ Rl, l < n. Even in the absence of
noise, the reconstruction would not be possible without a further assumption of signal structure,
i.e., some restriction of the possible values of x. In early works in compressed sensing, the signal
structure was encoded via sparsity, or sparsity with respect to a dictionary. A sufficient condition
on the measurement matrix M that enables robust recovery is the celebrated Restricted Isometry
Property (RIP) [4]. Intriguingly, all known algorithms for certifying RIP either are computationally
intractable or only function in the parameter regimes which are highly suboptimal [6], but a sub-
gaussian measurement matrix with independent rows satisfies the RIP with high probability in near
optimal parameter regimes [2].

More recently, compressed sensing ideas have been generalized to allow the signal structure to be
almost arbitrary, encoded as a subset T ⊂ Rn, provided that the measurements are appropriately
random. Gaussian measurement matrices are rotationally invariant [23], which allows them to be
universally effective for general compressed sensing. This was proven using [5, 18] or generalizing
[19, 15, 20] Gordon’s theorem [8], and also through a foundational result in conic geometry [1].
Sub-gaussian matrices, as defined later, are essentially the largest class of matrices that approximately
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satisfy rotation invariance, and also enjoy universal guarantees, although with different proof tech-
niques relying on chaining arguments [14, 11, 10]. We also note a few results outside of the Gaussian
or sub-gaussian framework: [21, 16, 13, 12].

The recent results of [10] extend previous theory by allowing the measurement matrix to take
the form M = BA with arbitrary B and sub-gaussian A with independent rows. They prove a
general restricted isometry property, thereby giving basic signal recovery guarantees for measurement
matrices with dependent rows. This random model is compelling because real-data measurement
matrices often have highly variable singular values, but sub-gaussian matrices with independent rows
typically have nearly uniform singular values. In fact, under mild assumptions, the singular values
of BA concentrate around the singular values of B (after rescaling), and so, one may target any
singular value vector by adjusting the singular values of B. We build upon the work of [10] to show
accurate signal recovery by the generalized Lasso, even in the presence of inexact optimization and/or
a mismatch in the signal structure. We believe this provides the first general compressed sensing
guarantees allowing any two of the following three items simultaneously (we allow all three): (i) the
measurement matrix need not have independent rows, (ii) the signal may be estimated by generalized
Lasso, but without exact optimization, and (iii) the signal is allowed to be only approximately
structured, i.e. close to the structure set and not belonging to it. The improved dependence on the
sub-gaussian parameter of the measurement matrix in [10] is reflected in our work as well.

Items (ii) and (iii) above make our framework well-suited to the setting in which the signal structure is
the range of a neural network. Indeed, in recent years, it has been shown empirically that learning the
appropriate signal structure by fitting it to the range of a neural network can be much more effective
than using a predetermined structure such as sparsity [3, 22, 9]. In this case, one assumes that T
is the range of a generative model G : Rk → Rn which is already trained. While training often
approximates the signal structure well, any new signal outside of the training set will typically be
close, but not in T ; thereby necessitating item (iii). The standard method of estimating x is to find
the restricted least squares fit, i.e., to let the estimate x̂ be the solution to the program, sometimes
called generalized Lasso:

minimize ||y −Mx′||22 s.t. x′ ∈ T. (P)

Since T = ran(G) is non-convex, and no convex relaxation of such a program is known in general,
typical gradient-descent-based algorithms would not be guaranteed to approach a global minimum;
thereby necessitating item (ii). Our theory requires an upper bound of the Gaussian mean width of
(T − T ) ∩ Sn−1, which we give in Proposition 3.2 below; we believe this is novel.

2 Main Results

2.1 Problem Setup

Recall that a random variable Z is called sub-gaussian, if its tail probability is dominated by that of a
Gaussian random variable. An equivalent rigorous definition requires the sub-gaussian norm to be
finite: ||Z||ψ2

:= inf
{
t > 0

∣∣ E(Z2/t2) ≤ 2
}
<∞. A random vector v ∈ Rn is sub-gaussian, if all

of its one-dimensional marginals are sub-gaussian random variables. Mathematically, if ||〈θ,v〉||ψ2

is finite for all θ ∈ Sn−1, we define ||v||ψ2
:= supθ∈Sn−1 ||〈θ,v〉||ψ2

.

We will consider a random matrix A ∈ Rm×n whose rows {a>1 , · · · ,a>m} are statistically inde-
pendent, mean-zero (Eai = 0), isotropic (Eaia>i = In), and sub-gaussian with parameter K
(||ai||ψ2

≤ K). We let the measurement matrix be the product BA, where B ∈ Rl×m is arbitrary.
In other words, we let every row of our measurement matrix be an arbitrary linear combination of
a>1 , · · · ,a>m. Our goal is to determine the criteria that B, A, and the structure set T must satisfy for
accurate recovery to be possible. Informally, one requires B to be far from low-rank, otherwise, the
number of independent effective measurements would not be sufficient. An appropriate quantity is
the stable rank defined as

sr(B) :=
||B||2F
||B||2

=

∑rank(B)
i=1 σ2

i

maxi σ2
i

≤ rank(B), (1)

where σi’s are the singular values of B. The main advantage of this definition over rank itself is that
it is robust to the small non-zero singular values that increase the rank but do not contribute to an

2



effective measurement, hence the name stable rank. Furthermore, one requires T to be small in some
sense, ideally not to intersect the null space of M = BA. A useful notion of size is the Gaussian
mean width defined as

w(T ) := E sup
v∈T
〈v,g〉, (2)

where the expectation is calculated with respect to g ∼ N (0, In). The reader may consult [17] for
some basic properties of Gaussian mean width. The following theorem gives the desired estimation
bound.

2.2 Main Theorem

Theorem 2.1. Let x ∈ Rn, B ∈ Rl×m be an arbitrary fixed matrix, and A ∈ Rm×n be a matrix
whose rows are independent, mean-zero, isotropic, and sub-gaussian vectors with sub-gaussian
parameter K. Let T ⊂ Rn be a closed cone and define T ′ := (T − T ) ∩ Sn−1. Let y = BAx+w
for some fixed unknown w ∈ Rm. Let x̂ ∈ T satisfy ||y −BAx̂||22 ≤ minx′∈T ||y −BAx′||22 + ε2.
If sr(B)� K2 logK · w2(T ′), then with probability larger than 1− 11e−w

2(T ′),

||x− x̂||2 .
Kw(T ′)

||B||F
√
sr(B)

||w||2 +
ε

||B||F
+

K
√
l√

sr(B)
dist(x, T ). (3)

There are three sources of error present here: the additive noise w, the inaccuracy in optimization ε,
and the model mismatch, i.e., x not exactly belonging to T . Note that sr(B) ≤ rank(B) ≤ min(l,m),
so basically the effective number of measurements is bounded by the number of underlying indepen-
dent measurements m. When B is a multiple of identity, the equality case sr(B) = m occurs.

What happens if we have more effective measurements than needed? The energy of the noise that
appears in the total error in (3) is decreased by the oversampling factor sr(B)/w2(T ′). In other words,
if we have some control over the measurement matrix, then we are able to denoise the original signal
by increasing sr(B). In case of B = Im, this simply means increasing the number of measurements
m. This denoising effect is well known for stochastic noise, but we believe that it had previously
been shown only for non-random noise under the assumption of a Gaussian measurement matrix, as
in [20]. We note, it is important here that the noise is fixed i.e., not chosen adversarially depending on
the realization of A.

3 Application on Generative Neural Networks

Due to the success of deep generative neural networks to learn complex structures, recent works
on compressed sensing have considered generative priors instead of the traditional sparsity [3].
While some works require the trained network G : Rk → Rn to be L-Lipschitz [3] and prove
that O(k logL) number of measurements would suffice for a recovery guarantee, a drawback of
such analysis is that the Lipschitz constant of the network cannot be calculated solely based on its
architecture. Here we present a different approach: we give an upper bound of the Gaussian mean
width of T ′ =

(
ran(G)− ran(G)

)
∩Sn−1, which only depends on the hyperparameters of the model.

Then we apply Theorem 2.1 to achieve a recovery guarantee for compressed sensing with generative
priors.

3.1 GNN and Guassian Mean Width

A d-layer GNN with ReLU activation function is a function G : Rk → Rn of the form

G(z) = σ(Adσ(Ad−1σ(. . .A2σ(A1z) . . . ))), (4)

where σ(·) = max(·, 0) is applied entrywise and Ai ∈ Rpi×pi−1 , p0 = k, and pd = n. The weight
matrices Ai are sometimes assumed to have iid Gaussian entries, however, our analysis puts no
requirement on Ai. To bound the Gaussian mean width of ran(G), we first show that the set is
contained in a union of subspaces with minimal count. Note that the choice of ReLU activation
function is not essential to what follows, and any piecewise linear function with only two pieces (e.g.
leaky ReLU) could be substituted. Similar counting arguments have appeared in various theoretical
works on expansive neural nets.
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Lemma 3.1. Let G be as in (4) and T = ran(G). We have T ⊂
⋃N
i=1Ei, where each Ei is a

subspace of dimension at most k and

N ≤
[(2e
k

)d( d∏
i=1

pi

)]k
. (5)

Consequently,

T − T ⊂
(N2 )⋃
i=1

Fi,

where each Fi is a subspace of dimension at most 2k.

Proposition 3.2. Let G be as in (4) and T = ran(G) ⊂ Rn. Then the following holds:

w
(
T ∩ Sn−1

)
≤ w

(
(T − T ) ∩ Sn−1

)
.

√
kd log

(p′
k

)
, (6)

where p′ =
(∏d

j=1 pj

)1/d
is the geometric mean of p1, · · · , pd.

3.2 Compressed Sensing with Generative Priors

The effective number of measurements required for any recovery algorithm to be successful is
O
(
w2(T ′)

)
= O

(
kd log(p′/k)

)
. Typically, a GNN is assumed to be expansive, that is k = p0 ≤

p1 ≤ · · · ≤ pd = n. Thus, k ≤ p′ ≤ n, which slightly improves O(kd log n) in [3]. Moreover, by
combining Theorem 2.1 and Proposition 3.2, we present a recovery guarantee for the compressed
sensing with generative priors that not only allows for a much broader range of measurement matrices,
but also demonstrates the dependence on their parameters.
Corollary 3.2.1. Consider the settings of Theorem 2.1 for T = ran(G) as in (4). If sr(B) �
K2 logK · kd log(p′/k), then

||x− x̂||2 .
K
√
kd log(p′/k)

||B||F
√
sr(B)

||w||2 +
ε

||B||F
+

K
√
l√

sr(B)
dist

(
x, ran(G)

)
. (7)

Our analysis improves upon the best known results in three ways: Firstly, our result suggests a
denoising behaviour as the number of measurements (or the stable rank of B) increases, even though
the noise is not assumed to be random. Intuitively, one expects a smaller error bound associated
with less compression, and our theory highlights this dependence. In contrast, the bound in [3]
shows constant dependence on the noise level, the optimization margin, and the model mismatch,
regardless of the number of measurements. Secondly, we improve the logarithmic factor in the
compression bound, i.e. we need O(kd log(p′/k)) ≤ O(kd log(n/k)) effective measurements,
rather than O(kd log n). This was also available to the authors of [3], had they used a tighter
inequality in proof of Lemma 8.3. Finally, we require milder conditions for the measurement matrix,
allowing for a fixed mixing matrix to create dependence among the rows. This improvement is based
on the geometry-preserving properties discussed in [10].

4 Summary

We achieve an estimation bound for the reconstruction of structured signals using noisy and dependent
random measurements. The generality of our model enables its application on the non-traditional
structure sets such as the range of a ReLU generative neural network. We believe that this is the first
general compressed sensing result that specializes well to the generative structure. Whether a similar
recovery guarantee is obtainable for GNNs with other activation functions (e.g. sigmoid or tanh),
remains an open question.
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A Appendix

Proof of Theorem 2.1. Since T is closed, there exists a (possibly not unique) point x0 =
argminx′∈T ||x− x′||2. Let r := x− x0 and h := x̂− x0 ∈ T − T . We have

||BAh− (BAr+w)||22 = ||BAx̂−BAx0 −BAr−w||22 (8)

= ||BAx̂− (BAx+w)||22 (9)

= ||y −BAx̂||22 (10)

≤ ||y −BAx0||22 + ε2 = ||BAr+w||22 + ε2. (11)

Expanding the LHS and rearranging yields

||BAh||22 ≤ 2〈BAh,w〉+ 2〈BAh,BAr〉+ ε2. (12)

The LHS is concentrated about ||B||2F · ||h||22. In fact, by Theorem 1.1 of [10] we can write

||BAh||22 ≥ ||h||22
[
||B||F − CK

√
logK||B||

(
w(T ′) + α · rad(T ′)

)]2
(13)

with probability at least 1−3e−α
2

. Choosing α = w(T ′) and using the fact that sr(B)� K2 logK ·
w2(T ′), we get

||BAh||22 & ||B||2F · ||h||22, (14)

with probability at least 1− 3e−w
2(T ′).

To bound the first term on the RHS, define the random process Xt := 〈BAt,w〉, for t ∈ T ′.
Recall that || · ||ψ2

= sup||u||2=1 ||〈u, ·〉||ψ2
. So, ||Xt − Xs||ψ2

= ||〈t − s,A>B>w〉||ψ2
≤

||t − s||2||A>B>w||ψ2
. K||B>w||2||t − s||2 ≤ K||B|| · ||w||2 · ||t − s||2. Therefore, by

Talagrand’s comparison inequality (Exercise 8.6.5 of [23]),

sup
t∈T ′
|Xt| = sup

t∈T ′
〈BAt,w〉 . K||B|| · ||w||2

(
w(T ′) + β · rad(T ′)

)
(15)

with probability at least 1− 2e−β
2

. Again, by setting β = w(T ′) we get

〈BAh,w〉 ≤ ||h||2 · sup
t∈T ′
〈BAt,w〉 . ||h||2 ·K||B|| · ||w||2w(T ′) (16)

with probability at least 1− 2e−w
2(T ′).

Now let us bound the second term on the RHS. By Cauchy-Schwarz inequality, 〈BAh,BAr〉 ≤
||BAh||2||BAr||2. Theorem 1.1 of [10] implies that ||BAh||2 . ||B||F ||h||2 with probability at
least 1− 3e−w

2(T ′), considering that sr(B)� K2 logK · w2(T ′). The same theorem can be used
on singleton {r} to bound ||BAr||2. Since w({r}) = 0 and rad({r}) = ||r||, we get

||BAr||2 ≤ ||B||F ||r||2 + CuK
√
logK||B||||r||2 (17)

= ||B||F ||r||2
(
1 +

CuK
√
logK√

sr(B)

)
, (18)

with probability at least 1 − 3e−u
2

. Choosing u = w(T ′) and using sr(B) � K2 logK · w2(T ′)

yields ||BAr||2 . ||B||F ||r||2, with probability at least 1− 3e−w
2(T ′). Thus,

〈BAh,BAr〉 . ||B||2F · ||h||2||r||2, (19)

with probability at least 1− 3e−w
2(T ′) − 3e−w

2(T ′) ≥ 1− 6e−w
2(T ′).

Combining equations (12)-(19) gives us

||B||2F ||h||22 − C||h||2
(
K||B||w(T ′)||w||2 + ||B||2F ||r||2

)
− ε2 ≤ 0, (20)
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which implies

||h||2 ≤
C(K||B||w(T ′)||w||2 + ||B||2F ||r||2)

2||B||2F
(21)

+

√(C(K||B||w(T ′)||w||2 + ||B||2F ||r||2)
2||B||2F

)2
+

ε2

||B||F
(22)

≤ C(K||B||w(T ′)||w||2 + ||B||2F ||r||2)
||B||2F

+
ε

||B||F
(23)

.
Kw(T ′)

||B||F
√
sr(B)

||w||2 +
ε

||B||F
+ ||r||2, (24)

with probability at least 1− 3e−w
2(T ′) − 2e−w

2(T ′) − 6e−w
2(T ′) = 1− 11e−w

2(T ′). Finally,

||x̂− x||2 ≤ ||x̂− x0||2 + ||x− x0||2 = ||h||2 + ||r||2 (25)

.
Kw(T ′)

||B||F
√

sr(B)
||w||2 +

ε

||B||F
+ ||r||2, (26)

with the aforesaid probability.

Lemma A.1. A k-dimensional subspace in Rn intersects at most 2k
(
n
k

)
different orthants.

Lemma A.2. Let D ⊂ Rn be a k-dimensional subspace, and Q be an orthant with q number of
positive (and n− q negative) coordinates. Then σ(D ∩Q) is contained in a subspace of dimension
at most min(k, q).

Proof of Lemma 3.1. By the rank-nullity theorem, the subspace im(A1) ⊂ Rp1 is at most k-
dimensional. By Lemma A.1, this particular subspace hits at most 2k

(
p1
k

)
different orthants. Therefore,

by Lemma A.2, σ(im(A1)) is contained in a union of at most 2k
(
p1
k

)
subspaces of dimension at most

k. Each of these subspaces, when multiplied by A2, is mapped to another subspace of dimension at
most k in Rp2 . Thus, the linear transformations do not increase the number nor the dimension of the
subspaces. Hence, at each layer i, every subspace breaks into 2k

(
pi
k

)
subspaces, at most. All in all,

after d layers, we end up having a union of N subspaces of dimension at most k, where

N ≤
d∏
i=1

2k
(
pi
k

)
≤

d∏
i=1

(2epi
k

)k
=
[(2e
k

)d( d∏
i=1

pi

)]k
. (27)

Thus,

T = ran(G) ⊂
N⋃
i=1

Ei, (28)

and

T − T ⊂
N⋃
i=1

N⋃
j=1

(Ei − Ej) =
⋃

1≤i<j≤N

(Ei + Ej), (29)

where dim(Ei) ≤ k and dim(Ei + Ej) ≤ 2k.

Lemma A.3. Let g ∼ N (0, In) and f : Rn → R be a Lipschitz function. Then

||f(g)− Ef(g)||ψ2
. ||f ||Lip. (30)

Lemma A.4. Let X1, X2, · · · , XN be sub-gaussian random variables with K = maxi ||Xi||ψ2
.

Then
Emax

i
|Xi| . K

√
logN. (31)
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Lemma A.5. Let T1, · · · , TN ⊂ Sn−1 ⊂ Rn. Then

w
( N⋃
i=1

Ti
)
. max

i
w(Ti) +

√
logN. (32)

Proof of Lemma A.5. Let g be a standard Gaussian vector and define zi := supx∈Ti
〈x,g〉 − w(Ti).

Equivalently, let fi(·) := supx∈Ti
〈x, ·〉 and check that zi = fi(g) − Efi(g). Lemma A.3 implies

||zi||ψ2 = ||fi(g) − Efi(g)||ψ2 . ||fi||Lip = 1. Then, by Lemma A.4, we have Emaxi zi .√
logN maxi ||zi||ψ2

.
√
logN . Hence,

w
( N⋃
i=1

Ti

)
= E sup

x∈∪Ti

〈x,g〉 (33)

= Emax
i

sup
x∈Ti

〈x,g〉 (34)

= Emax
i

(
zi + w(Ti)

)
(35)

= max
i
w(Ti) + Emax

i
zi (36)

. max
i
w(Ti) +

√
logN. (37)

Proof of Proposition 3.2. By Lemma 3.1, T − T ⊂
⋃(N2 )
i=1 Fi, where dim(Fi) ≤ 2k. Thus,

w
(
(T − T ) ∩ Sn−1

)
≤ w

( (N2 )⋃
i=1

(Fi ∩ Sn−1)
)
. (38)

Using Lemma A.5 and Lemma 3.1 respectively, then we have

w
( (N2 )⋃
i=1

(Fi ∩ Sn−1)
)
. max

i
w(Fi ∩ Sn−1) +

√
log

(
N

2

)
(39)

≤ max
i

√
dim(Fi) +

√
2 logN (40)

≤
√
2k +

√
2kd log(

2ep′

k
) (41)

.

√
kd log(

p′

k
). (42)
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