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ABSTRACT

Operator Learning models usually rely on a fixed sampling scheme for training
which might limit their ability to generalize to new situations. We present CORAL,
a new method which leverages Coordinate-Based Networks for OpeRAtor
Learning without any constraints on the training mesh or input sampling. CORAL
is able to solve complex Initial Value Problems such as 2D Navier-Stokes or 3D-
spherical Shallow-Water and can perform zero-shot super-resolution to recover
a dense grid, even when the training grid is irregular and sparse. It can also be
applied to the task of geometric design with structured or point-cloud data, to infer
the steady physical state of a system given the characteristics of the domain.

1 INTRODUCTION

Most methods for solving physical problems rely on architectures with spatial inductive bias, such
as CNNs (Ayed et al. (2020), Bézenac et al. (2019)) or GNNs (Pfaff et al. (2021) Brandstetter et al.
(2022)), and therefore expect an input over a mesh. Similarly recent approaches such as Neural
Operators transform the physical state with both a local map and a kernel integrator requiring a mesh
over the domain (Kovachki et al., 2021). Moreover, the state of the art Fourier Neural Operator (Li
et al., 2021) approximates this integrator with a Fourier transform and requires a regular rectangular
grid to apply the Fast Fourier Transform (FFT). Geo-FNO (Li et al., 2022) is a first attempt to mitigate
the FNO model dependency to fixed grids. DeepONet and its variants (Lu et al., 2022) have mesh
requirements over the inputs as they expect the same sensors (same number, same locations, same
order) for a new input and cannot adapt to a change of mesh (Prasthofer et al., 2022).

Therefore, existing methods for operator learning may face difficulties when dealing with applications,
including variable sampling, i.e. missing inputs or a change of grid between train and test, different
geometries, i.e. a change of domain or boundary conditions between the train and test, or data lying
on non-euclidean manifolds, for instance 2D-Torus or 3D-Sphere.

Implicit Neural Representation (INRs) (Park et al., 2019), (Mildenhall et al., 2020) and Physics
Informed Neural Networks (PINNs) (Raissi et al., 2019) only depend on a coordinate system over a
spatial domain and can off-the-shelf be applied with unstructured data, missing inputs or complex
geometries. Initially aimed at representing a single function at a time, they can be combined with a
hypernetwork (Ha et al., 2017), (Sitzmann et al., 2020b) to work with different samples.

In this work, we aim at learning a PDE-based Operator between function spaces with a model that
can easily overcome the aforementioned limitations. We introduce CORAL, an INR-based model for
Operator Learning, with the following contributions. In order to be discretization-invariant, CORAL
encodes the input and output functions into small latent spaces with the help of INRs, and infers the
mapping between them with an MLP. To facilitate this inference task, we learn to quickly encode
physical data on a given mesh with a meta-learning training procedure. Unlike most existing methods,
our framework is able to learn an Operator conditioned on an irregular mesh while maintaining
similar performance when applied to a new grid unseen at training time. We empirically validate
the performance of our framework vs state-of-the-art models on a selection of Initial Value Problems
(IVP) and Geometric Design Tasks (GD).
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2 PROBLEM DESCRIPTION

Problem setting. Let Ω ⊂ Rd be a bounded open set of spatial coordinates. We seek to learn
a mapping G from one infinite-dimensional space A ⊂ L2(Ω,Rda) to another U ⊂ L2(Ω,Rdu)
through an i.i.d collection of pointwise evaluations of input-output functions. At training time, we
have access to n pairs of input and output functions (ai, ui)ni=1 evaluated over a free-form spatial grid
Xtr. To simplify the notation, we note a|Xtr

= (a(x))x∈Xtr
and u|Xtr

= (u(x))x∈Xtr
the vectors of

the function values over the training grid. At test time, i.e. when a new input function a is considered,
we evaluate the model on a spatial grid Xte that can be different from Xtr. In the context of PDEs,
we target two different tasks • solving an Initial Value Problem, i.e. mapping the initial condition
u0

.
= x 7→ u(x, t = t0) to the solution at a certain time uT

.
= x 7→ u(x, t = T ), • or solving a

Geometric Design task, i.e. mapping a parameter function a characterizing an object geometry
associated with a meshed description of the domain (e.g. an airfoil) to the equation solution u of the
quantity of interest (e.g. its Mach number).

3 MODEL

Our model mitigates the dependency on fixed grids for operator learning by learning a mapping
between the parameter space of two implicit neural representations. At inference stage, we encode
the input function a in a small latent code za with a spatial encoder ea : A 7→ Rdz . Then we infer the
output latent code with an MLP gψ : Rdz 7→ Rdz and finally decode it to a spatial function with a
decoder ξu : Rdz 7→ U . Overall our operator can be written as G̃ = ξu ◦ gψ ◦ ea and we represent its
flow in Figure 1. During training, we learn to reconstruct the input and output functions a and u with
an encoder-decoder framework. This requires an input decoder ξa : Rdz 7→ A and an output encoder
eu : U 7→ Rdz , even though they are not used during inference.
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Figure 1: Inference for CORAL. First, the model embeds the input function a without constraints
on the locations of the observed sensors into a latent code za, then infers the latent z̃u and finally
predicts the output value ũ(x) for any query coordinate x ∈ Ω. For the grid X , we use the vector
notation a|X = (a(x))x∈X , ũ|X = (ũ(x))x∈X .

3.1 MODEL ARCHITECTURE

The model consists of three main components.

Decoder Let fθu ∈ U be a parameterized INR with paramaters θu. We derive a space-continuous
decoder by conditioning the network fθu with a latent code zu. The corresponding function is denoted
ξu and defined as ξu : zu 7→ fθu,hu(zu) where hu is a hypernetwork to be later defined. fθu,hu(zu) is
an INR, i.e. a function of spatial coordinates, which we can freely query at any point within the domain.
We thus have ∀x ∈ Ω, ũ(x) = ξu(zu)(x) = fθu,hu(zu)(x). Similarly for the input, by noting fθa ∈ A
a parameterized INR with parameters θa, we have ∀x ∈ Ω, ã(x) = ξa(za)(x) = fθa,ha(za)(x). We
denote wu and wa the parameters of hu and ha. See Figure 6 and 7 in Appendix A.4 for details.

Encoder Given a function a, the encoder outputs a code za = ea(a) such that the decoder can
retrieve the function a, i.e. ∀x ∈ X , ξa(za)(x) = a(x). To find an approximate solution to this
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inverse problem, our encoder maps the function a to the final code ea(a) = z
(K)
a of a gradient descent

optimization:
z(0)a = 0;

z(k)a = z(k−1)
a − α∇

z
(k−1)
a
Lµ(ξa(z(k−1)

a ), a); for 1 ≤ k ≤ K;
(1)

where α is the inner learning rate, K the number of inner steps, Lµ(v, w) = Ex∼µ[(v(x)− w(x))2]
for a measure µ ∈ σ(Ω). We define in the same way eu the encoder for the output functions. Note that
in practice, the measure µ is defined through the observation grid X , µ(·) = µ|X (·) =

∑
x∈X δx(·)

where δx(·) is the dirac measure. Since we can query the INRs anywhere within the domain, we can
hence freely encode functions without mesh constraints. This is the essential part of the architecture
that enables us to feed data defined on different grids to the model. We show the encoding flow in
Appendix A.4 Figure 8.

Inference model We infer the latent code z̃u = gψ(za) with a feed-forward Neural Network with
parameters ψ.

3.2 MODULATED SIREN

We choose SIREN (Sitzmann et al., 2020b) – a state-of-the-art coordinate-based network – as the
standard INR block of our architecture. SIREN is a neural network that uses sine activations:

fθ(x) = WL(ΦL ◦ ΦL−1 ◦ ΦL−2 ◦ ....Φ0(x)) + bL,with Φi(hi) = sin(ω0(Wihi + bi)) (2)

where w0 ∈ R∗
+ is a frequency hyperparameter. Instead of generating all the SIREN parameters

(Wi, bi)
L
i=0 with the hypernetwork h, we implement scale and shift modulations (Perez et al.,

2018). Formally, given an input code z the hypernetwork yields the modified set of parameters
(θ, h(z)) = (γi ⊙Wi, bi + ω0Wiβi)

L
i=0, where γi = Aiz + ci and βi = Biz + di.

3.3 TRAINING

We implement a two-step training procedure that first adjusts the modulated INR parameters, before
training the inference model. We outline the training pipeline in Appendix A.4 Figure 9. Formally,
the optimization problem is the following.

argmin
ψ

Ea,u∼νa,νuMSE(gψ(ẽa(a)), ẽu(u))

s.t. ẽa = argmin
ξa,ea

Ea∼νaL(ξa ◦ ea(a), a)

and ẽu = argmin
ξu,eu

Eu∼νuL(ξu ◦ eu(u), u)

(3)

In our architecture, note that the functions (eu, ea, ξa, ξu) are parameterized by the weights
(θa, wa, θu, wu) of the INRs and hypernetworks, and thus optimization is tackled on the latter
parameters. During training, we constrain the encoder to take only a few steps of gradient descent
to facilitate the inference task. We found in practice that a meta-learning strategy based on CAVIA
(Zintgraf et al., 2019) was able to faithfully reconstruct new physical data in a few steps. In other
words, at each epoch we encode a batch B of functions (ai)i∈B, (ui)i∈B into their respective codes
(zai)i∈B, (zui

)i∈B following Equation 1 with K inner steps, and update the common parameters
during the outer loop. This is a second-order meta-learning algorithm as the gradient of the outer loop
backpropagates through the K inner steps of encoding. See Appendix A.4 Algorithm 1 for details.

4 EXPERIMENTS

We performed experiments on two tasks, solving an initial value problem (Section 4.1 and Appendix
A.2) and solving a design problem (Section 4.2). All metrics are expressed in relative L2 error.

4.1 INITIAL VALUE PROBLEM

• Datasets We consider a dataset from the following PDE: 2D-Navier-Stokes equation (Navier-
Stokes) for a viscous, incompressible fluid in vorticity form on the unit torus: ∂w∂t +u·∇w = ν∆w+f ,
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∇u = 0 for x ∈ Ω, t > 0, where ν = 10−3 is the viscosity coefficient. We learn to map the vorticity
at time t0 = 10, i.e. w(·, t0 = 10) to the vorticity at time T = 20, i.e w(·, T = 20) (more details in
Appendix A.3). • Evaluation. (Same-grid) First, we validate that the model is able to generalize to
a new test input with the same sensors as for training : Xte = Xtr. (Regular up-sampling) Then, we
consider a more challenging setting where the train grid is a regular subsampling of the test grid, and
wish to perform well on this up-sampling task for new inputs. (Irregular up-sampling) Similarly,
we assess the up-sampling capability of the model when the train grid has been obtained by randomly
selecting πtr percent of the test grid sensors irregularly sampled. The train size is n = 1000 samples
and test size is 200 samples. • Baselines We compare our model to popular Operator Learning
methods: DeepONet (Lu et al., 2021) an Operator Network that expects fixed inputs. FNO (Li et al.,
2021) a Neural Operator that can work with regular grids of different resolutions. Geo-FNO (Li
et al., 2022) has been designed for irregular meshes. • Results In Table 1a, we can see that CORAL
outperforms DeepONet and is competitive with FNO for Navier-Stokes on regular grids. Furthermore,
we observe in Table 1b that it outperforms FNO in all up-sampling tasks, with more stable results
across train and test resolutions. Besides, we show in Appendix A.2 Table 3 that CORAL is able to
learn on an irregular grid and generalize to a new dense grid, with performance similar to the regular
up-sampling setting.

Table 1: Test results on Navier-Stokes.

(a) Same-grid - Xtr = Xte

Networks 64 × 64 128 × 128

FNO 0.00378 0.00339
DeepONet 0.0398 0.0384
CORAL 0.00259 0.00209

(b) Regular up-sampling

Xtr ↓ Xte → 128× 128 256× 256

64× 64
FNO 0.1153 0.1321

CORAL 0.00267 0.0231

128× 128
FNO 0.00339 0.0648

CORAL 0.00209 0.0225

4.2 GEOMETRIC DESIGN

• Euler equation (Airfoil) We consider the tran-
sonic flow over an airfoil, where the governing
equation is the Euler equation described in A.3.
Each sample i represents a different airfoil shape,
and thus has a different fluid domain Ωai and a
different mesh Xai . The mesh is obtained by de-
forming a rectangular grid X ⊂ Ω to obtain more
nodes near the airfoil. The input function a is the
grid deformation, mapping coordinates ξ ∈ Ω to
physical coordinates a(ξ) = x ∈ Ωa, and the out-
put function represents the mach numbers. Figure 2: Qualitative results on Airfoil.

• Evaluation At test time, we assess the ability of
the model to generalize for a new input geometry,
e.g. a new airfoil shape. The train size is n = 1000
samples and test size is 200. • Results On Airfoil,
CORAL achieves state-of-the-art results with the
lowest relative error among all models (Table 2).
From a qualitative point of view, we notice in Fig-
ure 2 that CORAL is able to predict with high
accuracy the output values near the airfoil.

Table 2: Test results on Airfoil.

Networks Rel. L2 err.

Geo-FNO 0.0138
FNO Interpolation 0.0421
UNet Interpolation 0.0519
CORAL 0.0107

5 CONCLUSION

We propose CORAL, a new approach for Operator Learning without any constraints on the training
mesh or the input sampling. We assess the performance of CORAL on a couple of Initial Value
Problems and its abilities to generalize to new initial conditions and to new grids. CORAL shows
promising results for system design and could become an alternative choice of surrogate models.
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A APPENDIX

A.1 RELATED WORK

Operator Learning We present two popular methods for Operator Learning, an emerging research
direction in Deep Learning for Physics that aims at learning mappings between infinite-dimensional
functions. Neural Operator is a class of models that process inputs by iterative kernel integration
over the spatial domain. This integration step, which is more expensive than a convolutional-layer
and resembles an attention scheme, needs to be approximated to reduce the time complexity in grid
size. FNO (Li et al., 2021) uses the FFT to approximate this integral, since a convolution in the
observation domain is a multiplication in the Fourier domain. A second model family, DeepONet (Lu
et al., 2021) is an Operator Network that formulates the operator directly as an affine combination of
spatial functions with several extensions (Seidman et al. (2022), Prasthofer et al. (2022)).

Spatial INRs Spatial INRs are a class of coordinate-based Neural Networks that model data as the
realization of an implicit function of a spatial location x ∈ Ω 7→ fθ(x). They make use of positional
embedding and sinusoidal activation to better capture high-frequency details (Tancik et al. (2020),
Sitzmann et al. (2020b), Fathony et al. (2021), Lindell et al. (2022)). Vanilla INR architectures can be
evaluated on any domain location without the need for data interpolation, but are compatible with
only one data sample u|X . Prior works based on meta-learning (Tancik et al. (2021), Sitzmann et al.
(2020a)), auto-encoders (Chen & Zhang (2019) Mescheder et al. (2019)), or modulation (Park et al.
(2019), Dupont et al. (2022)) have tackled this limitation so that an INR with parameters θ can decode
different functions ui|X with the help of per-sample parameter zi. Yin et al. (2022) and Chen et al.
(2022) used spatial INRs to model physical dynamics.

A.2 ADDITIONAL RESULTS ON INITIAL VALUE PROBLEM

We provide in this section additional results for the initial value problem task. First we complete
the results on Navier-Stokes, and then present the performance of CORAL on the more challenging
Shallow-Water dataset.

A.2.1 NAVIER-STOKES

We show in Table 3 the comparison of our method against Geo-FNO. Even in the sparse πtr = 5%
setting, CORAL is able to generalize to new initial conditions on denser grid. In comparison, the
performance of Geo-FNO drops drastically when test samples are observed on a different grid. We
display in Figure 3 the train grid used for the πtr = 5% setting, and show the super-resolution
capabilities of CORAL in Figure 4.

Table 3: Irregular up-sampling - Test results on Navier-Stokes. The model is trained on πtr percent
of a 128× 128 grid. We write n.a. when the inference diverges.

Xtr ↓ Xte → 128× 128 256× 256

πtr = 5%
Geo-FNO n.a. n.a.
CORAL 0.00566 0.0231

πtr = 25%
Geo-FNO 1.161 n.a.
CORAL 0.00277 0.0227

A.2.2 SHALLOW-WATER

• Dataset. We also assessed the performance of our model on the 3D-Spherical Shallow-Water
equation (Shallow-Water). This equation can be used as an approximation to a flow on the earth’s
surface. The data consists of the Vorticity w, and Height h of the fluid. We handle them separately
and learn to map the vorticity at time t0 = 180, ie. w(·, t0 = 180) to the vorticity at time T = 240,
i.e. w(·, T = 240); as well as the height at time t0 = 180, i.e. h(·, t0 = 180) to the height at time
T = 240, i.e. h(·, T = 240). The train size is n = 1000 samples and test size is 200 samples.

For Shallow-Water, the Vorticity channel exhibits higher frequency patterns than Height and is thus
more challenging to predict. Yet CORAL is able to capture the dynamics on both channels with
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Figure 3: Visualization of the irregular grid for Navier-Stokes. Here we randomly subsampled
πtr = 5% of the 128× 128 grid.

Figure 4: Visualization of super-resolution for Navier-Stokes. We train CORAL on a 64× 64 grid
and show the prediction for a test input of resolution 256× 256 compared to the ground truth.
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regular or irregular training grids. In Table 4, we can see it is on par with FNO when the test resolution
stays the same, and obtains far superior results on the up-sampling settings.

Table 4: Test results on Shallow-water. (a) Same-grid Xtr = Xte (b) Regular up-sampling with
train resolution of 64× 128 and test resolution of 128× 256 (c) Irregular up-sampling with πtr =
25 % and test resolution 128× 256. For both (a) and (b) baseline is FNO as the grids are regular; and
we use geo-FNO in (c). We write n.a. when the inference diverges.

(a) 64× 128 (b) 128× 256 (c) πtr = 25%

Model Height Vorticity Height Vorticity Height Vorticity

FNO \ Geo-FNO 0.00285 0.00316 0.156 0.651 n.a. n.a.
CORAL 0.00146 0.00374 0.00184 0.0118 0.00565 0.0399

(a) Prediction

(b) Ground truth

Figure 5: Visualization of super-resolution on Vorticity. We train CORAL on a randomly sub-sampled
grid with πtr = 25% of a 128 × 256 grid and show the prediction for a test input of resolution
128× 256 compared to the ground truth.

A.3 DATASET DETAILS

2D-Navier-Stokes (Navier-Stokes) We consider the 2D Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form on the unit torus:

∂w(x, t)

∂t
+ u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈]0, 1[2, t ∈]0, T ] (4)

∇u(x, t) = 0, x ∈]0, 1]2, t ∈ [0, T ] (5)

w(x, 0) = w0(x), x ∈]0, 1[2 (6)

where u is the velocity field, w = ∇× u is the vorticity, w0 is the initial vorticity, ν is the viscosity,
and f is the forcing funtion. We want to learn the mapping w(·, t0 = 10) to w(·, T = 20). We
generate the data as in Li et al. (2021).

3D-Spherical Shallow-Water (Shallow-Water). We consider the global shallow-water equations:

du

dt
= −f · k × u− g∇h+ ν∆u (7)

dh

dt
= −h∇ · u+ ν∆h (8)

9
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where d
dt is the material derivative, k is the unit vector orthogonal to the spherical surface, u is

the velocity field tangent to the surface of the sphere, which can be transformed into the vorticity
w = ∇× u, h is the height of the sphere. We generate the data with the Dedalus software (Burns
et al., 2020).

Euler’s Equation (Airfoil) We consider the transonic flow over an airfoil, where the governing
equation is Euler equation, as following,

∂ρf
∂t

+∇ · (ρfu) = 0,
∂ρfu

∂t
+∇ · (ρfu⊗ u+ pI) = 0,

∂E

∂t
+∇ · ((E + p)u) = 0, (9)

where ρf is the fluid density, u is the velocity vector, p is the pressure, and E is the total energy. The
viscous effect is ignored. We use the dataset from Li et al. (2022).

A.4 IMPLEMENTATION DETAILS

Shift modulated Siren In practice, we observed no gain of performance in using both scale and
shift modulations, and chose to stick with shift modulations only. The INR forward pass is thus
written as: 

h0 = x

hl+1 = sin(ω0(Wlhl + bi +Biz + di)), for 0 ≤ l ≤ L− 1,

ỹ = WLhL + bL

(10)

input
function

obs.
space

decoding

Figure 6: Architecture of the input decoder ξa. The hypernetwork ha maps the code za to the
parameter space of an INR fθa ∈ A. We can query this INR on any coordinate x ∈ Ω.

output
function

output
space

decoding

Figure 7: Architecture of the output decoder ξu. The hypernetwork hu maps the code zu to the
parameter space of an INR fθu ∈ U . We can query this INR on any coordinate x ∈ Ω.
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obs.
space

 steps

encoding as
auto-decoding

Figure 8: Starting from a code z(0)a = 0, the input encoder performs K inner steps of gradient
descent over za to minimize the reconstruction loss LX (ã, a) and outputs the resulting code z(K)

a

of this optimization process. During training, we accumulate the gradients of this encoding phase
and back-propagate through the K inner-steps to update the parameters θa and wa. At inference,
we encode new inputs with the same number of steps K and the same learning rate α, unless stated
otherwise. The output encoder works in the same way during training, and is not used at inference.

Train MLP to
forecast output

code

Step 1

Step 2

Input INR
training

Output INR
training

Figure 9: Proposed training for CORAL. For each epoch we perform, (1) a learning step to minimize
the reconstruction loss over the inputs ai and outputs ui; (2) a learning step to minimize the MSE
between the inferred codes gψ(zai) and zui

.
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Algorithm 1: CORAL Training
while not done do

Sample batch B of data (ai, ui)i∈B;
Set codes to zero zai ← 0, zui ← 0,∀i ∈ B ;
for i ∈ B and step ∈ {1, ...,Ka} do

zai ← zai − αa∇zai
LXtr

(fθa,ha(zai
), ai) ; // input encoding inner step

end
for i ∈ B and step ∈ {1, ...,Ku} do

zui ← zui − αu∇zui
LXtr (fθu,hu(zui

), ui) ; // output encoding inner step

end
/* outer loop update for input */

θa ← θa − η 1
|B|

∑
i∈B∇θaLXtr

(fθa,ha(zai
), ai),

wa ← wa − η 1
|B|

∑
i∈B∇wa

LXtr
(fθa,ha(zai

), ai)

/* outer loop update for output */

θu ← θu − η 1
|B|

∑
i∈B∇θuLXtr

(fθu,hu(zui
), ui),

wu ← wu − η 1
|B|

∑
i∈B∇wu

LXtr
(fθu,hu(zui

), ui)

/* inference update */

ψ ← ψ − ηψ 1
|B|

∑
i∈B∇ψL(gψ(zai), zui

) ;
end

Algorithm 2: CORAL Inference given a
Set code to zero za ← 0 ;
for step ∈ {1, ...,Ka} do

za ← za − αa∇zaLX (fθa,ha(za), a) ; // input encoding inner step

end
z̃u = gψ(za) ; // predict latent code
ũ = fθu,hu(z̃u) ; // decode output function

12
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