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Abstract001

the performance of MoE-based LLMs depends002
on the router’s ability to select suitable ex-003
perts; however, the router is typically not explic-004
itly supervised to acquire this routing ability.005
We propose Exploration-Driven Reinforcement006
Learning (ERL), which explicitly optimizes007
the router by exploration of alternative rout-008
ing paths. For every input, ERL evaluates by (i)009
the original routing path and (ii) paths in which010
an α-fraction of routing decisions is randomly011
perturbed, and treats their performance gap as012
an advantage signal in a reinforcement learn-013
ing. Moreover, MoE-ERLwPL mitigates the014
risk of performance collapse caused by routing015
reinforcement learning–induced expert over-016
specialization by intentionally enforcing over-017
lap in experts’ knowledge. Without adding pa-018
rameters or external reward models, our method019
improves summarization (SAMSum, XSUM),020
question answering (SQuAD), and language021
modeling (WikiText-2), and raises routing qual-022
ity, delivering up to 8.9 × higher MRR than023
baselines over 100 perturbed routing paths.024
Code is available at our github1.025

1 Introduction026

The rapid advancement of large language mod-027

els (LLMs) has significantly improved artificial028

intelligence, with conversational systems such as029

ChatGPT (OpenAI, 2022) have already brought030

significant changes to our daily lives (Bommasani031

and et al, 2021). Empirical studies show scaling032

training data and parameters to billions—even033

trillions—consistently leads to improvements in034

AI performance. (Kaplan et al., 2020; Henighan035

et al., 2020). However, increasing model size in-036

curs higher memory consumption and computa-037

tional costs. To alleviate this, recent LLMs like038

DeepseekMoE (Dai et al., 2024) and Mixtral (Jiang039

et al., 2024) have adopted the Mixture-of-Experts040

1https://anonymous.4open.science/r/MoE-ERL-ED8E

Method α SAMSum XSUM

MoE 0 26.68 20.05
+random routing 0.25 26.21 18.49
+random routing 0.50 25.52 16.02
+random routing 0.75 23.39 12.07
+random routing 1.00 18.85 6.8

Table 1: Summarization performance on SAMSum and
XSUM when an α fraction of the MoE layer’s routing
decisions are ignored and tokens are assigned to random
experts in a Switch Transformer-base-8.

(MoE) architecture (Shazeer et al., 2017). MoE dy- 041

namically activates only a subset of experts per in- 042

put, enabling conditional sparse computation. This 043

approach maintains large model capacity while sig- 044

nificantly improving computational efficiency (Liu 045

et al., 2025; Huang et al., 2024a). 046

The Switch Transformer (Fedus et al., 2022) 047

extends the standard Transformer (Vaswani et al., 048

2017) by applying a Mixture-of-Experts architec- 049

ture. Each feed-forward network (FFN) layer is 050

split into multiple experts, and a learned router 051

selects the most suitable expert for each token. Dur- 052

ing training, it combines the language modeling 053

loss with a z-loss and an auxiliary load-balancing 054

loss to encourage balanced expert utilization. De- 055

spite providing no explicit supervision for expert 056

selection, most previous MoE studies nonetheless 057

rest on the unvalidated assumption that jointly min- 058

imizing these three losses is sufficient for the router 059

to implicitly learn optimal routing decisions. How- 060

ever, MoE performance heavily depends on the 061

router’s ability to accurately select appropriate 062

experts. Our experiments (Table 1) confirm that 063

randomly perturbing routing decisions markedly 064

degrades performance, highlighting MoE models’ 065

vulnerability to suboptimal expert selection. Al- 066

though previous approaches have attempted to im- 067

prove routing quality, they mainly rely on heuris- 068
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tics, additional side information, or auxiliary mod-069

els rather than directly optimizing the routing prob-070

ability, as detailed in Appendix D.071

In this work, we explicitly optimize the router072

using reinforcement learning to select optimal ex-073

perts at each token and layer. Specifically, we074

encourage the MoE-based LLM to explore mul-075

tiple alternative routing paths and compute an076

advantage signal based on how each path im-077

pacts prediction performance. Using this advan-078

tage, we directly train the existing router to enhance079

its routing accuracy. Crucially, our method intro-080

duces no additional parameters or external mod-081

els, achieving improved MoE-based LLM perfor-082

mance solely through more suitable expert selec-083

tion. Furthermore, because we leave the standard084

single-layer MLP router—adopted by most MoE-085

based LLMs—completely unchanged in structure086

and mechanism, our approach can be seamlessly in-087

tegrated into most pretrained MoE models without088

any architectural modification.089

Many prior studies applying reinforcement learn-090

ing to LLMs (Ryu et al., 2024; Böhm et al., 2019;091

Ouyang et al., 2022) typically train separate reward092

models or rely on external evaluation sources such093

as APIs or human judgments, thereby increasing094

model size and pipeline complexity. In contrast, our095

approach computes reward signals directly from the096

router’s own prediction probabilities, allowing the097

model to autonomously assess performance and ex-098

plore alternative routing paths without introducing099

additional modules or external evaluators.100

2 Background101

2.1 Mixture-of-Experts102

Mixture-of-Experts (MoE) (Fedus et al., 2022)103

arranges multiple expert modules in parallel to104

enhance computational efficiency and scalability.105

Each MoE layer is composed of N parallel experts106

E1, E2, . . . , EN , and, depending on the input, acti-107

vates only a sparse subset expert. A router G selects108

the suitable experts for each input token. Formally,109

the output of an MoE layer is defined as:110

MoE(h) =

N∑
i=1

Gi(h)Ei(h) (1)111

Here, h ∈ Rd is the input vector to the MoE112

layer, and Gi(h) denotes the routing weight as-113

signed by the router to the i-th expert Ei. The router114

activates only the top-K experts by retaining their115

weights and sets the others to zero. Formally, Gi(h) 116

is computed as follows: 117

P = Softmax(Wr · h) (2) 118

Gi(h) =

{
Pi∑

j∈topK(P ) Pj
i ∈ topK(P )

0 otherwise.
(3) 119

Here, P ∈ RN is the vector of expert activa- 120

tion probabilities, computed by projecting input h 121

through a learnable matrix Wr ∈ RN×d. 122

By leveraging conditional sparse computation, 123

MoE models significantly increase model capacity 124

while maintaining active parameters and computa- 125

tions per token comparable to dense models. Typ- 126

ically, Transformer feed-forward network (FFN) 127

layers are replaced with MoE layers to utilize this 128

benefit. 129

2.2 Clipped Surrogate Objective of RL 130

Policy gradient–based (Sutton et al., 1999) rein- 131

forcement learning updates the policy πθ to maxi- 132

mize expected rewards through agent–environment 133

interactions, guided by the advantage signal (Sut- 134

ton and Barto, 2018). The advantage—defined 135

as the reward benefit of an action over a base- 136

line—quantifies how much better or worse an ac- 137

tion performed, so positive advantages are rein- 138

forced and negative ones discouraged of action. 139

In this work, we utilize the Clipped Surro- 140

gate Objective from Proximal Policy Optimiza- 141

tion (PPO)(Schulman et al., 2017). PPO simplifies 142

computation while retaining the stability of Trust 143

Region Policy Optimization (TRPO)(Schulman 144

et al., 2015). The Clipped Surrogate Objective con- 145

strains policy updates to prevent excessive changes, 146

thus ensuring stable and incremental learning. This 147

technique is also employed in many PPO vari- 148

ants, such as Group Relative Policy Optimization 149

(GRPO) (Zhihong Shao, 2024). 150

The reinforcement learning objective in this 151

work aims to maximize the Clipped Surrogate Ob- 152

jective Oclip, defined as follows: 153

Oclip(θ) =

Ec [min (rc(θ)Ac, clip(rc(θ), 1− ϵ, 1 + ϵ)Ac)] ,
(4) 154

rc(θ) =
πθ(ac|sc)
πθold(ac|sc)

(5) 155
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Figure 1: The overall procedure of Exploration-Driven Reinforcement Learning

Here, πθ(ac | sc) denotes the action probability156

under the current policy, and πθold(ac | sc) repre-157

sents the corresponding probability under the previ-158

ous policy, used to stabilize updates. The clipping159

parameter ϵ bounds the change in the probability160

ratio to prevent abrupt policy shifts. Ac is the advan-161

tage estimate, encouraging the policy to increase162

πθ(ac | sc) when Ac > 0 and decrease it when163

Ac < 0.164

3 Methodology165

Many MoE-based LLMs assume that the router will166

autonomously learn to select suitable experts. How-167

ever, existing methods do not explicitly train the168

router for optimality, which makes it challenging169

to reliably achieve optimal expert selection. So, We170

propose Exploration-Driven Reinforcement Learn-171

ing (ERL), which explicitly trains the router toward172

improved expert selection. ERL explores perturbed173

(alternative) routing paths and compares their per-174

formance against the original path. If an perturbed175

routing path yields better predictions, the router is176

reinforced perturbed routing decision; otherwise,177

the original routing is strengthened. The overall178

reinforcement learning procedure is illustrated in179

Figure 1.180

3.1 Original vs. Perturbed Forward181

Given an input sequence X = {x1, x2, . . . , xt},182

the model explores multiple expert routing paths183

via two types of forward .184

Original forward: At each MoE layer, we select185

the top-K experts based on the original router’s186

probability distribution. It perform the standard187

MoE computation described in Section 2.1.188

Perturbed forward: To encourage exploration,189

we deliberately disrupt a subset of routing deci- 190

sions. Given a sequence of length t passing through 191

l MoE Transformer blocks, a total of t× l routing 192

decisions occur. We randomly select an α fraction 193

(0 < α ≤ 1) of these routing decisions and replace 194

them with perturbed routings. In perturbed rout- 195

ing, the router’s original decisions are overridden, 196

and experts are selected randomly. This perturb en- 197

courages the model to explore alternative expert 198

routes. 199

For clarity, we denote the standard MoE layer 200

computation as MoE(h) and the perturbed MoE 201

layer as MoEp(h). The computation of a single 202

perturbed MoE layer is defined as follows: 203

MoEp(h) =

N∑
i=1

Gp
i (h)Ei(h) (6) 204

ppi ∼ Uniform(0, 1), i = 1, 2, .., N (7) 205

P p = (pp1, p
p
2, ..., p

p
N ) (8) 206

Gp
i (h) =

{
1
K i ∈ topK(P p)

0 otherwise.
(9) 207

To implement random selection, we assign each 208

expert a score sampled from a uniform distri- 209

bution and activate the top-K experts based on 210

these scores. Here, P p ∈ RN denotes the vec- 211

tor of random scores assigned to each expert, and 212

Gp(h) ∈ RN represents the weight for each expert, 213

uniformly set based solely on the K, independent 214

of the input h or the router’s output. 215
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In this study, for each input sequence X , we216

perform one original forward and m distinct per-217

turbed forward, each with independently applied218

perturbations.219

3.2 Advantage Strategy220

For each perturbed forward , we compute an ad-221

vantage, the primary reinforcement learning signal222

indicating the relative benefit of an action. In our223

setting, the action corresponds to a perturbed rout-224

ing decision, and the policy is the router G. The225

advantage is computed independently at each token226

generation step. If the perturbed forward assigns227

a higher probability to the correct token predic-228

tion than the original forward, the advantage is set229

to +1; if lower, −1; and 0 if equal. Formally, the230

advantage Ãj for the j-th token is defined as:231

ãj = LMp(xj |x<j)− LMo(xj |x<j) (10)232

Ãj =


1 ãj > 0

0 ãj = 0

−1 ãj < 0

(11)233

In these equation, LMo(xj | x<j) denotes the234

probability assigned to the correct token xj by the235

original forward , while LMp(xj | x<j) is the cor-236

responding probability produced by the perturbed237

forward.238

3.3 Training loss239

We define the reinforcement learning loss for the240

perturbed forward by taking the negative of the241

objective in Section 3.2, converting it into a mini-242

mization problem.243

The loss is designed to adjust the routing proba-244

bilities Gi(i.e., it same as adjust Pi; see Eq.2 and245

Eq.3) of randomly selected experts in each per-246

turbed MoE layer based on their advantage values247

Ã—increasing them when Ã > 0 and decreasing248

them when Ã < 0. Formally, the reinforcement249

learning loss function f(G, Ã) for a single per-250

turbed routing decisions is defined as:251

ri =
Gi(h)

Gold
i (h)

(12)252

f(G, Ã) =

− 1

K

∑
i∈topK(Pp)

min
(
ri Ã, clip(ri, 1− ε, 1 + ε) Ã

)
.

(13)253

Here, Gold
i (h) denotes the expert selection prob- 254

ability under the previous policy. By directly incor- 255

porating the advantage signal to action policy, the 256

loss function explicitly optimizes the router toward 257

selecting more suitable experts. 258

A single perturbed forward involves t× l rout- 259

ing decisions, of which α × t × l are perturbed. 260

An advantage is independently assigned to each 261

perturbed routing decision. Specifically, if a per- 262

turbed routing decision occurs at the k-th Trans- 263

former block during prediction of the j-th token, 264

only the corresponding Ãj is used. Thus, each per- 265

turbed routing decision has its own reinforcement 266

learning loss function f(Gj,k, Ãj). The overall re- 267

inforcement learning loss LRL is computed as the 268

average loss across all perturbed routing decisions. 269

LRL =
1

|S|
∑
j,k∈S

f(Gj,k, Ãj) (14) 270

Lp = LRL (15) 271

Here, S = {(j1, k1), . . . , (jM , kM )} denotes 272

the set of perturbed routing positions, where jm ∈ 273

[1, l], km ∈ [1, t], and |S| = M ≈ αlt. Gj,k de- 274

notes the router at the k-th Transformer block dur- 275

ing generation of the j-th token. Using only the 276

advantage Ãj corresponding to the exact perturba- 277

tion step yields a finer-grained credit assignment 278

and lowers the variance of the RL updates. 279

The training loss for the original forward , Lo, 280

follows the Switch Transformer formulation(Fedus 281

et al., 2022), comprising the LM loss, z-loss, and 282

auxiliary load-balancing loss. We combine this 283

with the perturbed forward loss Lo, scaled by a 284

weighting factor δ. The overall training loss is: 285

L = Lo + δLp (16) 286

3.4 LM Loss of Perturbed Forward 287

As reinforcement learning progresses, the router 288

converges to selecting the “most suitable” expert 289

for each input. Although this promotes expert spe- 290

cialization on specific information types, during 291

training the router may consistently select the same 292

expert for all inputs requiring a given information 293

type I . While such specialization allows each ex- 294

pert to specialize in its domain, it also significantly 295

reduces knowledge overlap among experts. Con- 296

sequently, if the router mistakenly selects an in- 297

appropriate expert, there is an increased risk that 298
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the expert will fail to adequately process the in-299

put. We refer to this vulnerability as the “expert300

misclassification risk” of routing.301

To address the expert misclassification risk, we302

incorporate an auxiliary loss—the language model-303

ing loss of perturbed forward (LpLM ). This encour-304

ages randomly activated experts to learn similar305

information, thereby preserving a degree of knowl-306

edge overlap. As a result, even when a suboptimal307

expert is selected, performance degradation can be308

alleviated. The combined perturbed forward loss in309

this setting is defined as:310

Lp
wPL = LRL + LpLM (17)311

This auxiliary loss explicitly promotes knowl-312

edge overlap by encouraging different experts to313

learn from the same data. While various mecha-314

nisms could be used to induce such overlap, we315

adopt this simple strategy to clearly assess whether316

reinforcement learning enables the router to dis-317

cover optimal routing path.318

4 Experiment319

4.1 Task and Datasets320

Summarization. SAMSum (Gliwa et al., 2019)321

consists of 15k dialogue–summary pairs from322

everyday conversations. XSUM (Narayan et al.,323

2018) contains approximately 227k BBC news ar-324

ticles paired with single-sentence summaries.325

Question Answering. SQuAD (Rajpurkar et al.,326

2016) is an extractive QA dataset comprising ap-327

proximately 98k question–answer pairs derived328

from Wikipedia passages.329

Language Modeling. We evaluate language330

modeling performance using WikiText-2 (Merity331

et al., 2016), approximately 2.5M token corpus332

commonly used for small- to medium-scale mod-333

els.334

These three tasks enable us to assess the gener-335

alizability and effectiveness of our reinforcement336

learning method across diverse settings. Dataset337

statistics are provided in Appendix A.338

4.2 Baselines339

In this work, we compare with following three340

baseline configurations: (1) Dense. A fully dense341

model with MoE disabled; only a single expert is342

used, and no sparse computation is performed. (2)343

MoE. A standard MoE model with routing. We344

adopt the Switch-base-8 configuration. (3) MoE-345

share. A shared-expert variant based on Deepseek-346

MoE (Dai et al., 2024), where one shared expert is 347

activated for all inputs with router-selected expert. 348

Summarization and QA Baselines. For summa- 349

rization and QA tasks, all baselines are fine-tuned 350

using pretrained Switch-base-8(Fedus et al., 2022). 351

MoE. The original Switch Transformer without 352

modification. Dense. Sparse computation is dis- 353

abled by retaining only a single expert and remov- 354

ing the router. MoE-share. We replicate one expert 355

from the MoE configuration to create a shared ex- 356

pert that is activated for every input. 357

Language Modeling Baselines. For language 358

modeling tasks, which use decoder-only architec- 359

tures, we construct three baselines based on pre- 360

trained GPT-2 (Radford et al., 2019), following the 361

Hyper-MoE setup (Zhao et al., 2024): 362

Dense. The original GPT-2 without modification. 363

MoE. The GPT-2 FFN layer is replicated to form 364

eight parallel experts, with a initialized router en- 365

abling sparse computation. MoE-share. Augment 366

the MoE configuration with a shared expert created 367

by replicating the FFN layer. 368

To ensure a fair comparison, we use the top- 369

1 routing configuration from switch-base-8 and 370

match all other MoE hyperparameters (number of 371

experts, expert capacity, etch) to it. Since deep 372

learning performance also depends on hyperpa- 373

rameters, model size and experiment enviorments, 374

we re-evaluate both the baseline and our proposed 375

method in our experiments. 376

4.3 Experiment Setting 377

For summarization and QA tasks, we used iden- 378

tical hyperparameters across all experiments. For 379

language modeling, a few hyperparameters were 380

adjusted. All hyperparameters were selected via 381

greedy search on SAMSum and WikiText-2, and 382

applied consistently across datasets. Reported re- 383

sults reflect the best performance among epochs 5, 384

10, and 15. 385

To address training instability when adapting 386

GPT-2 to an MoE setting, we initialized router pa- 387

rameters from N (0, 0.1), following Fedus et al. 388

(2022). Additional implementation details are pro- 389

vided in Appendix B. 390

We apply our proposed method to MoE baseline 391

configuration and reinforcement the model accord- 392

ingly. Since advantage computation depends on 393

next-token prediction probabilities, all experiments 394

and analyses in this paper focus exclusively on the 395
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Model #Exp. #Act. Exp.
SAMSum XSUM

R-1 (↑) R-2 (↑) R-L (↑) R-1 (↑) R-2 (↑) R-L (↑)

Dense – – 51.85 26.61 42.61 42.98 19.89 34.96
MoE 8 1 51.70 26.68 42.89 42.97 20.05 35.00
MoE-share 9 2 51.64 26.65 42.92 42.90 19.93 34.87

HyperMoE (2024) 8 1 51.50 26.84 43.01 - 19.67* -

MoE-ERL 8 1 51.98 26.94 43.11 43.10 20.13 35.05
MoE-ERLwPL 8 1 52.29 27.20 43.47 43.26 20.25 35.27

Table 2: Downstream task performance on the SAMSum and XSUM (ROUGE scores (%); higher is better). Within
each column, the bold numbers denote the best result and the underlined numbers denote the second-best. * denotes
scores reported in the original paper.

Model SQuAD WIKI2

EM (↑) F1 (↑) ppl. (↓)

Dense 83.11 90.44 20.53
MoE 82.80 90.37 21.20
MoE-share 83.03 90.31 20.70

HyperMoE(2024) 84.6* - 21.49*
SimSMoE(2025) 82.80* - -

MoE-ERL 83.16 90.50 20.53
MoE-ERLwPL 83.26 90.63 20.44

Table 3: Downstream task performance on SQuAD (Ex-
act Match & F1 score; higher is better) and WikiText-2
perplexity (lower is better).

decoder. We refer to our proposed method as MoE-396

ERL, and its variant incorporating the perturbed397

forward LM loss (Section 3.4) as MoE-ERLwPL.398

5 Main Results399

Tables 2–3 indicate that MoE-ERL and400

MoE-ERLwPL outperform conventional baselines401

on the majority of datasets.402

Summarization. On both SAMSum and XSUM,403

MoE-ERL outperforms all baselines across404

ROUGE metrics. In ROUGE-2, it improves over405

the strongest baseline by 0.26 (SAMSum) and 0.08406

(XSUM). The variant MoE-ERLwPL achieves im-407

proves of 0.52 and 0.20, respectively. These results408

demonstrate that reinforcement learning improves409

the summarization capability of MoE models, and410

incorporating the LM loss for perturbed forwards411

yields additional benefit.412

Question Answering. On SQuAD,413

MoE-ERLwPL achieves modest gains of 0.14414

EM and 0.06 F1 over the best baseline. While 415

improvements are smaller than in other tasks and 416

do not surpass HyperMoE, this is likely due to the 417

limited effect of decoder-side routing in extractive 418

QA, where answers are typically short. 419

Language Modeling. On WikiText-2, the Dense 420

baseline achieved relatively strong performance, 421

likely due to its direct use of GPT-2’s pretrained 422

dense weights without modify architecture. Despite 423

this, MoE-ERL reduced perplexity by 0.67 com- 424

pared to the MoE baseline, achieving performance 425

on same with Dense. MoE-ERLwPL further im- 426

proved perplexity by 0.09, resulting in a total re- 427

duction of 0.76 over MoE. 428

MoE-ERL consistently matches or outper- 429

forms the performance of Dense, MoE, and MoE- 430

share baselines. In all cases, the LM-loss vari- 431

ant (MoE-ERLwPL) further improves upon MoE- 432

ERL. Supplementary experiments confirm that 433

these improvement hold across varying number 434

of expert (Appendix C). 435

6 Analysis 436

6.1 Analysis of Routing 437

To evaluate whether the RL-trained router selects 438

improved routing paths, we conduct an additional 439

analysis. For each fine-tuned model, we record 440

the ROUGE-2 score (summarization) or perplex- 441

ity (language modeling) from the original forward. 442

We then generate 99 perturbed forward per data 443

by randomly altering decoder routing 33 times at 444

each α ∈ 0.25, 0.50, 0.75, yielding 100 scores per 445

data. We report the rank of the original path using 446

Mean Reciprocal Rank (MRR) and Hit@1 (the pro- 447

portion of cases where the original forward ranks 448

first). Evaluations are conducted on 300 randomly 449
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Model SAMSum XSUM WIKI2

MRR (↑) Hit@1 (↑) MRR (↑) Hit@1 (↑) MRR (↑) Hit@1 (↑)

MoE 0.11 6.8 0.06 2.0 0.05 2.9
MoE-ERL 0.35 18.4 0.37 17.8 0.17 9.5
MoE-ERLwPL 0.16 11.7 0.10 5.0 0.14 8.0

Table 4: Routing quality - original routing path vs. 99 perturbed routing path. Reported are Mean Reciprocal Rank
and Hit@1 (higher is better) of original routing path.

sampled data per dataset, with results shown in450

Table 4.451

MoE vs. MoE-ERL. For baseline MoE, the orig-452

inal routing path rarely ranked highly, with MRRs453

of 0.11, 0.06, and 0.05, and Hit@1 scores of 6.8%,454

2.0%, and 2.9% across the datasets. This indicates455

that conventional routers often fail to select optimal456

routing paths. In contrast, MoE-ERL achieved sig-457

nificantly higher MRRs of 0.35, 0.37, and 0.17, and458

Hit@1 scores of 18.4%, 17.8%, and 9.5%, improv-459

ing the likelihood of optimal selection by 2.7–8.9×.460

These results confirm that reinforcement learning461

substantially enhances routing quality.462

MoE-ERLwPL shows lower MRR and Hit@1463

scores compared to MoE-ERL. We estimate this is464

because intentionally increasing knowledge over-465

lap among experts, through the additional LM466

loss of perturbed forwards, raises the likelihood467

that even suboptimal routing paths achieve accept-468

able performance. Nevertheless, MoE-ERLwPL469

still outperformed the MoE baseline by improv-470

ing both metrics approximately 1.5–2.75×, clearly471

demonstrating that it effectively enhances routing472

quality.473

6.2 Expert Misclassification Risk of ERL474

We analyze the "expert misclassification risk" de-475

scribed in Section 3.4. Specifically, we compare our476

proposed methods to the MoE baseline under ex-477

perimental settings similar to those in Table 5. We478

measure the performance degradation of fine-tuned479

models when perturbing decoder routing decisions480

at inference time, with varying fractions α. Un-481

like the experiment presented in Table 1, here we482

perturb only in the decoder.483

Baseline (MoE). In our experiments, the stan-484

dard MoE baseline exhibited minimal degradation485

under decoder-only perturbations. Some perfor-486

mance drops became when the perturbation ratio α487

exceeded 0.75. On XSUM, scores declined by 3.8488

and 6.15 for α = 0.75 and α = 1.00.489

Model α SAMSum XSUM SQuAD

MoE

0.00 26.68 20.05 82.80
0.25 27.10 19.31 82.81
0.50 26.42 18.14 82.61
0.75 26.05 16.25 82.59
1.00 25.11 13.90 82.13

MoE-ERL

0.00 26.94 20.13 83.16
0.25 14.19 4.73 31.95
0.50 2.93 0.24 10.49
0.75 0.56 0.01 2.90
1.00 0.02 0.00 0.36

MoE-ERLwPL

0.00 27.20 20.25 83.26
0.25 26.99 20.14 83.11
0.50 27.01 20.10 83.03
0.75 27.18 20.02 82.95
1.00 27.01 19.84 82.99

Table 5: Impact of randomly confusing a fraction α
of decoder’s routing. Scores are reported for SAM-
Sum/XSUM (ROUGE-2) and SQuAD (EM)

MoE-ERL. In contrast, MoE-ERL exhibited 490

substantial performance degradation starting from 491

α = 0.25, consistently across all datasets. As an- 492

ticipated, this suggests that reinforcement learning 493

reduces knowledge overlap among experts, increas- 494

ing the expert misclassification risk and leading to 495

performance drops under suboptimal routing. 496

MoE-ERLwPL. In MoE-ERLwPL, explicitly 497

augmenting expert overlap mitigated performance 498

degradation under routing perturbations, maintain- 499

ing stable results with only minor drops (0.1–0.4 500

points). This robustness likely stems from the per- 501

turbed LM loss, which encourages knowledge shar- 502

ing among experts. AOverall, the results here and in 503

Table 4 show that MoE-ERLwPL both enhances 504

the router’s ability to select optimal routing paths 505

and reduces the risk of expert misclassification. 506

6.3 Analysis of Routing Confidence 507

To assess the model’s confidence in its routing de- 508

cisions, we measured the probability of selecting 509

the top-1 expert, Gtop1(h), and visualized the dis- 510

tribution using histograms (Figure 2). For MoE- 511
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Figure 3: Effect of the perturbed routing decision ratio
(α) during training on SAMSum.

ERL, approximately 80% of routing decisions had512

a top-1 probability above 0.9, indicating high con-513

fidence—about 30 percentage points higher than514

the baseline MoE. This suggests that reinforcement515

learning significantly enhances routing certainty. In516

comparison, MoE-ERLwPL showed around 67%517

in the same threshold, higher than MoE but lower518

than MoE-ERL, reflecting its induced expert over-519

lap.520

6.4 Ablation Study521

Figure 3 presents SAMSum ROUGE-2 scores for522

MoE-ERL models trained with different pertur-523

bation rates α ∈ [0.1, 1.0]. Performance remains524

stable for α values between 0.3 and 0.8, but drops525

sharply when α is too small or too large. We esti-526

mate Low α results in insufficient exploration, lim-527

iting the benefit of reinforcement learning, while528

high α introduces excessive randomness, weaken-529

ing the learning signal and degrading performance.530

We additionally conduct an ablation study on531

the advantage strategy for reinforcement learning.532

Our proposed approach, referred to as the static533

advantage strategy (Equations 10–11), assigns a534

static value of +1, 0, or −1 depending on whether535

the perturbed outperforms the original forward. As536

an alternative, we implement a log advantage strat-537

Model Advantage
Strategy SAMSum Wiki2

MoE-ERL static 26.94 20.53
MoE-ERL log 26.64 20.55

MoE-ERLwPL static 27.20 20.44
MoE-ERLwPL log 26.90 20.45

Table 6: Ablation—static vs. log advantage. Reported
are SAMSum ROUGE-2 (higher is better) and WikiText-
2 perplexity (lower is better)

egy, which uses the log-difference between the per- 538

turbed and original token prediction probabilities: 539

Ãj = log(Pp(xj |x<j))− log(Po(xj |x<j)) (18) 540

While the log advantage strategy captures fine- 541

grained differences between original and perturbed 542

outputs, the static strategy provides clearer sample- 543

level ranking, even under small performance gaps. 544

The results in Table 6 show that the static ad- 545

vantage strategy consistently outperforms the log- 546

based variant across all experiments. We observed 547

that the log advantage strategy frequently caused 548

loss divergence during training. We attribute this 549

issue to the nature of the logarithmic operation, 550

which can yield extremely large advantage values, 551

thereby destabilizing training and resulting in di- 552

vergence. 553

7 Conclusion 554

We proposed MoE-ERL, a reinforcement learning 555

method that explicitly optimizes expert routing in 556

MoE-based LLMs without introducing additional 557

parameters or external reward models. MoE-ERL 558

leverages the performance gap between original 559

and perturbed routing paths as an advantage signal 560

to guide the router toward optimal expert selection. 561

We further proposed MoE-ERLwPL, which incor- 562

porates an auxiliary LM loss on perturbed routing 563

paths to mitigate the risk of over-specialization. 564

Most of experiments on SAMSum, XSum, 565

SQuAD, and WikiText-2 demonstrated that both 566

variants outperform Dense, MoE, and MoE-share 567

baselines, improving routing quality (MRR and 568

Hit@1) by up to 8.9×. We also identified the expert 569

misclassification risk due to reduced knowledge 570

overlap, which MoE-ERLwPL effectively allevi- 571

ates. Future work may explore additional strategies 572

to further reduce misclassification risk while main- 573

taining routing precision. 574
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Limitations575

The reinforcement learning proposed in this study576

is only applicable to decoder models. MoE-ERL577

calculates advantages by comparing token-level578

prediction probabilities between original and per-579

turbed forward , naturally aligning the t token-level580

advantages with corresponding MoE routing deci-581

sions. However, encoder models typically provide582

a single document- or sentence-level classification583

probability, resulting in only one overall advantage584

value (Ã). allocating this single advantage across585

all perturbed MoE layer and token is highly chal-586

lenging. If one resorts to naively broadcasting the587

same value uniformly across all perturbed MoE588

layers and tokens, the credit signal becomes so di-589

luted that it can no longer reveal which specific590

tokens or MoE layers are responsible for the ob-591

served performance gains, thereby impeding effec-592

tive learning. Thus, future research should explore593

designing effective token-level reward schemes and594

credit assignment strategies specifically tailored to595

encoder-based MoE architectures.596

Additionally, our proposed method incurs higher597

training costs. Typically, standard deep learning598

methods perform one forward per backpropagation599

step. In contrast, our method requires additional600

forward to compute results from the perturbed for-601

ward. Specifically, for each backpropagation step,602

the method performs 1 +m forward depending on603

the number of perturbed forwards m, increasing604

the training time. Under our experimental setting605

(m = 3), the training times measured for encoder-606

decoder tasks (SQuAD, SAMSum, and XSUM),607

where only decoder forward are multiplied, were608

approximately 1.2×, 1.6×, and 1.8× respectively,609

proportional to the length of generated sequences.610

For the decoder-only language model (WikiText-2),611

where the entire model needs multiple forward ,612

training required approximately 2.8× longer. The613

additional inclusion of wPL showed minimal dif-614

ferences in training time. However, it is important615

to note that the extra computational overhead oc-616

curs only during training; inference remains unaf-617

fected, requiring just the original forward identical618

to conventional MoE models.619
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A Dataset Statistics828

In this study, we evaluated our proposed approach829

across various tasks and datasets. Since our method830

is applied exclusively to the decoder for text gen-831

eration, we present detailed statistical information,832

including the number of tokens used for genera-833

tion, in Table 9. The datasets, ordered by size, are834

XSUM, SQuAD, SAMSum, and WikiText-2. We835

specifically report the number of tokens input to836

the decoder—the context in which our proposed837

method operates. Among these datasets, WikiText-838

2, where entire sentences serve as decoder input,839

has the longest token length, followed by XSUM,840

SAMSum, and SQuAD, respectively.841

hyperparameter value

α (sum.&QA) 0.7
α (lm) 0.6
δ (sum.&QA) 2.0
δ (lm) 0.5
m 3
ϵ 0.2

learning rate 1e-5
weight decay 0.1
batch size (sum.&QA) 8
batch size (lm) 4
optimizer Adam
Beta1,2 0.9,0.999
lr scheduling linear
n beam 6

Table 7: Detailed Hyperparameter Value. (sum. & QA)
denote value for summarization and QA task and (lm)
denote value for language modeling task

B Additional Experiment Setting842

All hyperparameters used in our experiments are843

listed in Table 7. Here, α denotes the fraction844

of routing decisions perturbed in the perturbed845

forward ; δ controls the weight of the perturbed-846

forward loss Lp in the overall loss L; m is the847

number of perturbed forwards generated per origi-848

nal forward; and ϵ is the clipping coefficient in the849

Clipped Surrogate Objective. Hyperparameters for850

the WikiText experiments were tuned via greedy851

search on WikiText-2, while those for all other852

datasets were tuned on SAMSum and then applied853

uniformly. We use the HuggingFace evaluate li-854

brary(Wolf et al., 2020) for all evaluation metrics.855

All main experiments reported in the paper were856

run on a machine with RTX 4090 × 2, whereas 857

the supplementary experiments in this appendix 858

were conducted on a machine with RTX 3090 × 859

4. Training times for the proposed method were 860

approximately 4h on SAMSum, 60h on XSUM, 861

20h on SQuAD, and 1.5h on WikiText-2. 862

To verify the fairness of our comparisons, we re- 863

port both the total parameter count and the number 864

of parameters actually activated during inference 865

for every model (Table 10). Because MoE-share 866

introduces one additional shared expert per layer, it 867

contains the largest number of parameters; the pro- 868

posed MoE-ERL and MoE-ERLwPL have exactly 869

the same capacity as the vanilla MoE, while the 870

Dense baseline is the smallest. The same ordering 871

holds for activated parameters: MoE-share routes 872

two experts per token, whereas MoE, MoE-ERL, 873

and MoE-ERLwPL route a single expert, and the 874

Dense model, which lacks a router, activates none. 875

These statistics confirm that our performance gains 876

come solely from improved routing quality, not 877

from an increase in model size. 878

#.Experts Model SAMSum (↑)

16
MoE 26.47
MoE-ERL 26.53
MoE-ERLwPL 27.20

32
MoE 26.76
MoE-ERL 27.17
MoE-ERLwPL 27.90

Table 8: Experiment of difference model capacity on
SAMSum(ROUGE-2)

C Additional Results 879

We conducted additional experiments to verify the 880

effectiveness of our proposed method on mod- 881

els with a larger number of experts. Experimental 882

results confirmed that even when increasing the 883

number of experts, our proposed MoE-ERL and 884

MoE-ERLwPL consistently improved ROUGE-2 885

scores compared to the baseline. This demonstrates 886

the efficacy of our approach across various MoE 887

configurations with differing numbers of experts. 888

D Related Works 889

The router is a critical component in Mixture-of- 890

Experts (MoE) architectures, responsible for se- 891

lecting the most suitable experts. Several studies 892

have explored ways to enhance routing decisions; 893
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Dataset #data
avg. #token of

{summary, answer, document}

#train #dev #test #train #dev #test

SAMSum 14,732 818 819 25.5 25.5 25.2
XSUM 204,045 11,332 11,334 26.1 26.1 26.1

SQuAD 87,599 10,570 - 4.7 4.4 -

WikiText-2 36,718 3,760 4,358 65.1 65.8 65.0

Table 9: Statistics of the datasets used in our experiments.

pre-trained model Model #Exp. #Act. Exp. Total Parameter Act. Parameter

switch-base-8

Dense - - 222.94 M 222.94 M
MoE 8 1 619.34M 222.98M
MoE-share 9 2 647.65M 251.29M
MoE-ERL 8 1 619.34M 222.98M
MoE-ERLwPL 8 1 619.34M 222.98M

gpt2

Dense - - 124.44 M 124.44 M
MoE 8 1 322.86 M 124.51 M
MoE-share 9 2 351.19 M 152.85 M
MoE-ERL 8 1 322.86 M 124.51 M
MoE-ERLwPL 8 1 322.86 M 124.51 M

Table 10: Model capacities used in our experiments. “# Exp.” is the number of experts per MoE layer, “# Act.” is
activated.

however, as discussed in Dikkala et al. (2023),894

these efforts have primarily focused on improving895

computational efficiency. For example, Zhou et al.896

(2022) addressed load imbalance among experts897

to enhance efficiency in multi-node settings, while898

recent approaches like Huang et al. (2024b) and899

Zeng et al. (2024) dynamically adjusted the number900

of activated experts, enabling computations strictly901

as needed.902

Beyond efficiency, several approaches have been903

proposed with the explicit goal of improving rout-904

ing accuracy. Techniques such as hash-based rout-905

ing (Roller et al., 2021) and cosine similarity-based906

allocation in XMoE (Yang et al., 2024) have refined907

token-expert mappings. However, these methods908

predominantly rely on non-trainable routing mech-909

anisms that process tokens independently, thus fail-910

ing to effectively capture interactions between to-911

kens. In contrast, Dikkala et al. (2023) empirically912

demonstrated that trainable router significantly out-913

perform fixed (non-trainable) routers, with perfor-914

mance gaps widening as the number of experts915

increases. More recently, Nguyen et al. (2025) uti-916

lized token similarity and attention matrices to clus-917

ter similar tokens toward the same experts, while 918

RMoE (Qiu et al., 2025) employed shared GRUs 919

across layers to propagate prior routing decisions, 920

thereby improving routing accuracy. 921

Instead of complicating the router with aux- 922

iliary structures, we retain the standard single- 923

layer MLP router—used by virtually most MoE- 924

based LLMs—unchanged and optimize it with re- 925

inforcement learning (RL). Concretely, we treat the 926

router’s expert-selection probabilities as the pol- 927

icy, define a token-level reward as the confidence 928

gap between the original and a perturbed routing 929

path, and update the router with RL. To the best 930

of our knowledge, no prior work applies an using 931

reinforcement learning of router optimization. Be- 932

cause the algorithm introduces no extra parameters, 933

modules, or inference-time operations, it can be 934

incorporated into most pretrained MoE model with 935

minimal engineering effort, yielding substantial 936

accuracy gains while preserving—or even improv- 937

ing—inference efficiency. 938
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Use of AI Assistant939

We used ChatGPT(OpenAI; accessed May 19,940

2025) solely to translate the draft into English, and941

all translated content was thoroughly reviewed by942

the authors.943
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