
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TANGRAM: A DATASET FOR FPGA-BASED
HETEROGENEOUS SYSTEMS-ON-CHIP OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

With the end of Moore’s Law and Dennard Scaling, high-performance comput-
ing (HPC) architectures are evolving to include large Field Programmable Gate
Arrays (FPGAs) to improve efficiency. Identifying the optimal configuration for
such FPGAs, in terms of the number and type of CPUs, hardware accelerators,
and memory channels, is crucial for the creation of efficient computing platforms.
However, the complexity of the design space, the difficulty of modeling the interac-
tions between the concurrently executed applications, and the strict time-to-market
requirements fostered the use of heuristics to perform the exploration, thus lead-
ing to the identification of suboptimal solutions with no quality guarantees. To
support the exploration of new systematic methodologies for the design of FPGA-
based heterogeneous multi-core architectures, we present TANGRAM, a dataset
composed of performance and resource consumption results of more than 40, 000
different designs, collected from two high-end FPGAs executing heterogeneous
and concurrent applications. To assess the suitability of this dataset for machine-
learning-based optimization strategies, we tested it with some baseline regression
methodologies, showing the possibility of accurately predicting the performance of
multiple applications running on the same system.

1 INTRODUCTION

With the decline of Moore’s Law (Moore, 1998) and Dennard Scaling (Dennard et al., 2018),
hardware acceleration has become the de facto standard in data centers, with service providers
continuously upgrading their infrastructures to meet the growing computational demands of modern
applications (Theis and Wong, 2017). In this scenario, FPGAs have seen widespread adoption
by major companies like Microsoft, AWS, Alibaba, and Huawei due to their superior efficiency
compared to traditional CPU- and GPU-based architectures (Caulfield et al., 2016). High-end FPGAs
now incorporate millions of logic elements and large on-chip memories, making them capable
of handling complex and heterogeneous computing platforms while concurrently implementing
a wide range of hardware accelerators. For instance, an Advanced Encryption Standard (AES)
accelerator (Joachim Strömbergson, 2014) implemented on an AWS F1 instance with an AMD Virtex
UltraScale+ FPGA uses less than 0.4% of the available programmable logic cells. Considering this
large resource availability and the significant cost of high-end FPGAs, dedicating an entire device to
a single application represents a suboptimal approach, both computationally and economically. This
consideration has fueled the development of several strategies that allow sharing an FPGA between
multiple applications, like multi-tenancy frameworks (Bobda et al., 2022).

Such an approach, however, poses the problem of identifying the optimal application allocation on an
FPGA to satisfy a set of service-level agreements (SLAs) between the users and the provider while
minimizing the resources utilized by the design to reduce the provider costs. There are primarily two
factors that make this problem extremely complex. First, the number of possible FPGA configurations
increases exponentially with the number of applications and the resource availability on the device,
making an exhaustive exploration impractical. Second, the interaction between several applications
sharing the same resources, especially interconnect buses and memory connections, represents a
problem that cannot be solved in a closed form. For this reason, several heuristics have been proposed
to approach the identification of the optimal FPGA configuration (Jordan et al., 2021; Damak et al.,
2014; Brandalero et al., 2019; Xu et al., 2019; Cong and Charot, 2021). However, they require

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: A schematic representation of a 3×3
SoC. The colored squares represent the tiles,
while the black grid is the NoC.

1 2 3 4 5 6

2

4

6

of concurrent accelerators

T
hr

ou
gh

pu
t(

M
B

/s
)

Real
Estimated

Figure 2: Real and estimated throughput of a
dfadd accelerator with different numbers of ac-
celerators sharing the same memory.

in-depth knowledge of the specific system they try to model, failing to provide a general solution that
can be applied to any FPGA architecture or application set.

This paper presents TANGRAM, a dataset containing the area and performance statistics of more than
40, 000 heterogeneous systems-on-chip (SoCs), where several hardware accelerators run concurrently,
sharing the same interconnect and memory resources. TANGRAM is composed of high-quality data
collected through the implementation and execution of the designs on two different HPC-oriented
FPGA boards. The goal of TANGRAM is to provide a set of ready-to-use data that can be employed
to develop novel machine-learning techniques targeting the optimization of heterogeneous SoCs. In
fact, the adoption of machine learning is crucial for identifying a general solution to this problem,
overcoming the need for low-level knowledge characterizing the use of heuristics.

We validated TANGRAM using classical machine-learning algorithms (Williams and Rasmussen,
2006; Segal, 2004; Peterson, 2009), solving two different problems: regression and optimization.
The former allowed us to demonstrate the possibility of performing accurate predictions regarding
the throughput of concurrently executing hardware accelerators with minimal a priori knowledge.
For the latter, we combined the predictive features of machine learning models with a multi-armed
bandit approach to identify the optimal configuration given a specific set of constraints. The dataset
is completely open source and publicly available at 1.

2 BACKGROUND

A system-on-chip is an integrated circuit that implements a computing platform made of an on-chip
interconnect, a set of computing elements, a set of memories, and auxiliary and I/O logic. An
SoC is defined heterogeneous if it implements computing elements of different kinds, for example,
general-purpose CPUs and domain-specific accelerators. The on-chip interconnect of modern SoCs
is usually implemented with a network-on-chip (NoC) (Bjerregaard and Mahadevan, 2006), which
is composed of routers, each of them associated with a tile performing a specific functional role,
connected together with links. Without losing generality, we consider 2D-mesh topologies (as the
one shown in Figure 1), since it is the most widespread implementation of NoCs (Bjerregaard and
Mahadevan, 2006).

In this context, we define a configuration of a SoC as a specific arrangement of tiles over the NoC
grid. Configurations differ for the size of the NoC and for the type and implementation of the
tiles. Generally speaking, SoCs are evaluated using two main metrics, resource consumption and
performance. The resource consumption represents the area occupied by the integrated circuit, and it
is a direct indicator of its total implementation cost. On FPGAs, a SoC using more resources may
require a larger device to host it. However, the area of a SoC can be estimated with a good degree of
accuracy as the sum of the areas of its tiles and its interconnect extracted in isolation, so it can be
assessed in advance before implementing the SoC on the FPGA.

1The url is omitted for blind review.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

On the contrary, the performance of different computing elements sharing resources (in particular,
the interconnect and the memories) is much more difficult to predict, since it depends on the specific
hardware implementation of the various components included in the SoC. This is exemplified in
Figure 2, which depicts the throughput of a dfadd accelerator (Hara et al., 2008) instantiated on a
2D-mesh architecture featuring a single memory channel, implemented on an AMD Virtex7-2000
FPGA. The actual throughput of the accelerator decreases when multiple accelerators are running
concurrently, with an error of almost 70% with respect to a naive estimation of the performance
ignoring the effect of resource sharing.

Thus, the performance of a SoC is tightly related to its configuration, and its increase is often achieved
at the expense of more area consumption. For example, a computing element can be parallelized
within a tile or spanned over several tiles to improve its performance. Alternatively, more tiles
can be devoted to memory channels, sacrificing raw computing power for a higher communication
bandwidth (such an approach would be particularly effective in the scenario depicted in Figure 2,
where the memory access constitutes the performance bottleneck). In any case, the identification of
feasible configurations, i.e., the ones achieving the desired area-performance trade-off, is a complex
problem requiring an extensive design space exploration (DSE) of the possible configurations.

Indeed, exploring the configuration space is a challenging goal, for two main reasons. The first issue
is the huge size of the design space, which increases exponentially with the number of tiles in the
SoC and the available functionalities that can be hosted by each tile. The second problem is the time
required to assess the performance of a configuration. Whether this process employs simulations
(whose accuracy, however, is suboptimal (O’Neal and Brisk, 2018)) or implements the design on
a real FPGA, the evaluation of a single configuration may require tens of minutes, or even hours,
setting a limit on the maximum amount of configurations that can be effectively tested.

3 RELATED WORKS

Several studies in the literature have addressed the optimization of heterogeneous SoCs as a DSE
problem. For example, Damak et al. (2014) formulates the design space exploration as a mixed-integer
linear programming (MILP) problem, whereas Brandalero et al. (2019) devises an application-specific
metric to optimize the assignment of shared accelerators to CPU cores. To further reduce exploration
time, Xu et al. (2019) introduce a two-phase methodology that separates configuration generation
from SoC evaluation. The evaluation step can rely on either cycle-accurate simulation, approximate
simulation with accelerator models, or direct execution on FPGA hardware. Jordan et al. (2021)
propose an algorithm based on the genetic multidimensional knapsack approach, that can swiftly
determine the optimal task deployment on a heterogeneous system. The work of Cong and Charot
(2021) presents an iterative design exploration method that continuously refines a hyperparameter-
based performance model using feedback from previously evaluated configurations. This strategy
allows for the progressive improvement of design quality during exploration.

Notably, all of the discussed proposals adopt heuristics-based approaches, which need a deep
knowledge of the tasks to allocate and are not generalizable to different types of SoCs (Kim et al.,
2018). Conversely, the adoption of machine learning would allow the extrapolation of an accurate
performance model of an SoC using execution statistics from previously evaluated configurations,
providing a general approach that can be easily extended to any SoC architecture or application
set. We mention that machine learning was successfully employed in other aspects of the design
and optimization of SoCs, including the enhancement of accelerators generated with high-level
synthesis (HLS) (Wu et al., 2023)(Bai et al., 2023), the floorplanning on the FPGA (Farooq et al.,
2021), and the design of the NoC (Rao et al., 2018). We believe that the lack of machine-learning-
based solutions to the problem of accelerators’ performance prediction in heterogeneous SoCs is
partially caused by the unavailability of a large and curated dataset of SoC execution statistics since
collecting results for large systems requires a huge amount of computational time together with
specialized hardware design skills.

4 THE TANGRAM DATASET

TANGRAM is a curated dataset containing the resource consumption and throughput statistics of
more than 40, 000 different heterogeneous SoCs. This massive amount of data is the result of several

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

CPU AUX

Tilei Tilei+1 Tilei+2

Tile0

Empty MEM

ACC1 ACCn

or

or

Figure 3: Architecture of the SoC employed for the collection of TANGRAM results.

months of computation, employing two different HPC-class FPGA boards for the collection of
real execution statistics. The rest of this section is divided into three parts. Section4.1 details the
experimental setup employed for data collection. Section4.2 describes the content of the TANGRAM
dataset. Finally, Section4.3 explains the format used to store the execution and area results of the
SoCs.

4.1 EXPERIMENTAL SETUP

Hardware and software setup All the results available in the TANGRAM dataset have been
collected through the execution on FPGA boards (thus, no simulations or modeling have been
used). The experiments targeted two different devices belonging to distinct FPGA families, with
the goal of providing a more varied set of results. The first board is part of a Siemens proFPGA
prototyping system, consisting of an FPGA daughter board (fm-xctv2000t-r2) (Siemens Electronic
Design Automation GmbH, a), that features an AMD Virtex-7 2000T FPGA (xc7v2000t-2flg1925-
c), mounted on a quad motherboard (mb-4m-r3) (Siemens Electronic Design Automation GmbH,
b). With 1221600 look-up tables (LUT), 2443200 flip-flops (FF), 2584 18Kb blocks of block
RAM (BRAM), and 2160 digital signal processing (DSP) elements, the Virtex-7 2000T is the largest
device of AMD’s Series 7 family. The second board is an AMD Alveo U55C, which is based on an
FPGA belonging to the AMD Virtex UltraScale+ family (xcu55c-fsvh2892-2L-e). This device features
1303680 look-up tables (LUT), 2607360 flip-flops (FF), 4032 18Kb blocks of block RAM (BRAM),
and 9024 digital signal processing (DSP) elements. Moreover, the U55C chip is equipped with 16GB
of 2nd generation high-bandwidth memory (HBM2).

The software used to compute and collect the data was AMD Vivado 2019.2 for synthesis, implemen-
tation, and bitstream generation, Siemens proFPGA Builder 2019A-SP2 for FPGA programming, and
AMD Vivado HLS 2019.2 for the HLS of accelerators. The host computer executing this software
was equipped with an Intel i5 processor (Intel Core i5-12400) and 64GB of DDR4 RAM, with a
Kubuntu 22.04 OS.

Architectural setup TANGRAM makes use of NoC-based SoCs, generated using the open-source
SoC prototyping platform described in (Montanaro et al., 2024), in which each tile can assume any
implementation between CPU, AUX, MEM, and ACC, or can remain empty, as shown in Figure 3.
Every SoC allocates just one tile for the CPU (a CVA6 64-bit RISC-V processor (Zaruba and Benini,
2019)) and another one for the auxiliary functions, which are always placed in the top-left corner of
the mesh. Notably, the CPU and AUX tiles have little to no impact on the accelerators’ performance
since they produce very limited traffic on the NoC. Thus we decided to fix their position in the top-left
corner to avoid an increase in the (already huge) design space. As for the other tiles, they can assume
any other implementation (i.e., MEM, ACC, or remain empty) in no particular order.

Concerning the memory tiles, each of them is completely independent from the others, ensuring the
absence of any interference between accelerators allocated to different memory tiles. Moreover, in
our experiments we have employed two distinct on-chip memory resources: BRAMs and HBM2 (the
latter is only available on the Virtex UltraScale+ FPGA). The memory implementations that have
been chosen for each scenario are specified in Tables 1 and 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: List of the exhaustive results included in the TANGRAM dataset. Legend: UC use case, EX
exhaustive, Mem. memory implementation, disp. dispositions, comb. combinations, #Conf. number
of configurations.

UC FPGA Mem. NoC Space size Application set Strategy #Conf.

EX1 Virtex 7 BRAM 2×3 342 dfadd disp. 342
EX2 Virtex 7 BRAM 2×3 972 adpcm, dfadd disp. 972

EX3 Virtex 7 BRAM 3×3 157

adpcm comb. 157
aes comb. 157
dfadd comb. 157
dfmul comb. 157
gsm comb. 157
sha3 comb. 157

EX4 Virtex US+ HBM2 3×3 3294 aes, dfadd, motion comb. 3294
Total 5550

Regarding the accelerator tiles, they can be implemented with different parallelism levels in order
to increase their throughput without occupying more tiles. Most of the employed benchmarking
applications (adpcm, dfadd, dfdiv, dfmul, gsm, mips, and motion) have been taken from the CHStone
benchmark suite (Hara et al., 2008), a set of accelerators written in C and generated using HLS. To
provide more variability to the results, we added to this set two high-performance cryptographic
accelerators (aes and sha3) written in SystemVerilog (adapted from Joachim Strömbergson (2014)
and Josh Moles (2013), respectively).

On-board execution All area results have been collected after the implementation phase of the
SoC in Vivado. Regarding the collection of the execution statistics, it has been performed as follows.
First, the bitstream is sent to the board and the SoC is instantiated on the FPGA. Then, a binary file
containing the testing program is loaded into the main memory and the system is booted. Finally, the
program starts on the CPU tile: during its execution, it initiates all the accelerators, lets them operate
for several seconds, and sends the execution statistics to the host server through a USB-to-serial
interface.

4.2 DATASET DESCRIPTION

Tables 1 and 2 list all the use cases included in the dataset, with the number of collected configurations
for each scenario. The use cases differ for the employed FPGA (the Virtex 7 included in the ProFPGA
Virtex-7 2000T board or the Virtex UltraScale+ featured in the Alveo U55C), for the chosen memory
implementation (BRAM or HBM2), for the size of the NoC, and the application set. The use cases
NX7 to NX17 allow the accelerator tiles to assume two levels of parallelism (1 and 2), while the rest
of the scenarios permit also a third level of parallelism (4). Depending on the setting, we provided
either an exhaustive (EX) or a non-exhaustive (NX) search of the configuration space.

More specifically, we performed an exhaustive exploration only for scenarios with a limited design
space size (< 5000). They are an example of those results that are obtainable in a reasonable amount
of time during the design phase of a SoC. The EX1 and EX2 experiments involve a smaller tile
configuration (2× 3), with one and two applications, respectively. Instead, EX3 and EX4 evaluated
larger SoCs (3× 3), consequently increasing the configuration space. Notably, during the collection
of EX1 and EX2 results, we found only small discrepancies in terms of performances between
configurations having the same accelerators and memories displaced differently over the tiles. For
this reason, we decided to consider only the possible accelerators and memory combinations for
the larger scenarios, reducing the total amount of configurations with respect to the space of all the
possible dispositions.

The non-exhaustive searches represent those scenarios in which it was not possible to perform the
complete exploration in a reasonable time. Such settings simulate a realistic scenario in which the
huge size of the design space prevents the identification of the globally-optimal configuration, and thus,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: List of the results of non-exhaustive explorations included in the TANGRAM dataset.
Legend: UC use case, NX non-exhaustive, Mem. memory implementation, #Conf. number of
configurations.

UC FPGA Mem. NoC Space size Application set #Conf.

NX1

Virtex 7 BRAM 3×4

52 432 adpcm, aes, dfadd 461
NX2 adpcm, dfadd, sha3 426
NX3 178 443 adpcm, aes, dfadd, gsm 406
NX4 adpcm, dfmul, gsm, sha3 476
NX5 352 134 adpcm, aes, dfadd, gsm, sha3 461
NX6 adpcm, aes, dfadd, dfmul, gsm 401
NX7

Virtex US+ BRAM 4×4

18 578
aes, dfadd, sha3 4 111

NX8 aes, dfadd,motion 1 215
NX9 dfadd, dfdiv, dfmul 6 858
NX10

79 740

aes, dfadd, motion, sha3 358
NX11 aes, mips, motion, sha3 208
NX12 dfadd, dfdiv, dfmul, motion 5 649
NX13 aes, dfmul, mips, sha3 4 211
NX14

221 055

aes, dfdiv, dfmul, motion, sha3 767
NX15 aes, dfadd, dfmul, mips, sha3 4 483
NX16 dfadd, dfdiv, dfmul, mips, motion 2 474
NX17 aes, dfadd, dfdiv, dfmul, motion 1 833
NX18

Virtex US+ HBM2 4×4
308 813 aes, dfadd, motion 799

NX19 1 962 040 aes, dfadd, dfdiv, motion 802
NX20 7 499 673 aes, dfadd, dfdiv, dfmul, motion 791
Total 37 210

it is necessary to employ modeling and optimization techniques to efficiently explore the design space
and find the best SoC configuration. Fostering the research of novel SoC optimization techniques is,
in fact, the main goal of the TANGRAM dataset. The selection of the configurations included in the
NX scenarios have been performed in part at random (over the whole design space), and in part by
using a sequential decision-making approach (i.e., multi-armed bandit), whose implementation is
detailed in the Appendix.

Listing 1: Dataset entry extracted from EX2.
1 "ADPCMx1_ADPCMx1_DFADDx2_MEM": {
2 "BRAM18": 1212, "DSP": 207, "FF": 93558, "LUT": 100584,
3 "throughput": {"ADPCM_0": 1.375, "ADPCM_1": 1.374,
4 "DFADD_0": 12.011},
5 "throughput_total": {"ADPCM": 2.749, "DFADD": 12.011},
6 "tile_config": {
7 "X0Y0": "CPU", "X0Y1": "ADPCMx1", "X0Y2": "DFADDx2",
8 "X1Y0": "AUX", "X1Y1": "ADPCMx1", "X1Y2": "MEM"}
9 }

4.3 DATA FORMAT

In Listing 1, we report an entry of the dataset formatted as a JSON file. The information provided
for each entry is divided into three main parts: area, performance, and tile configuration. Four
different fields are used to express the area of a configuration: BRAM18, DSP, FF, and LUT, rep-
resenting the number of 18Kb BRAM blocks, DSP elements, FFs, and LUTs, consumed on the
device by the complete system, respectively. The performance is further subdivided into two fields:
the throughput of the single accelerator tiles (throughput) and the global throughput of the ap-
plication (throughput_total). The accelerator tiles are identified by a number, that indicates
the appearance order of that accelerator tile in the SoC. For instance, in the example, we have a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

throughput of 1.375 for the first adpcm accelerator listed in the configuration name, 1.374 for the
second adpcm one, and 12.011 for the dfadd one. Instead, the global application throughput is
the sum of the individual throughput of the accelerator tiles. Regarding the configuration section,
each tile is uniquely identified by its X-Y coordinates. Non-accelerator tiles can assume 4 different
implementations: CPU, AUX, MEM, or EMPTY. Accelerator tiles are characterized by the specific
application name, and by the parallelism level of the accelerator (the figure after the x character in
the configuration name).

5 EXPERIMENTAL EVALUATION

To verify the potential of the TANGRAM dataset for the development of new prediction and opti-
mization strategies targeting complex heterogeneous SoCs, we carried out an experimental campaign
to show how different machine-learning models can make use of this testbed. In particular, we
formulate two different problems: a regression problem, targeting the estimation of the throughput of
a specific configuration, and an optimization problem, which has the goal of identifying the optimal
configuration starting from a minimal set of information regarding the SoC and the accelerators
using a multi-armed bandit strategy to efficiently explore the configuration space. In the rest of this
section, we expand the description of these problems and provide the experimental results obtained
by applying these approaches to the TANGRAM dataset.

5.1 PROBLEM DEFINITION

We cast the problem in two different flavors: as a classical regression and as a multi-armed bandit
problem.

Regression Given a set of configurations for which we already have performance information,
the goal is to estimate the overall throughput of each application over the same architecture for
any newly provided configuration. This scenario can be cast as a classical multi-output regression
problem, where a subset of the information available for each accelerator in a given configuration is
used as input. For our specific model, the features employed to model the accelerator’s behavior are
the parallelism level of the tile itself and the number of memory- and compute-bound accelerators
allocated on the same memory tile.2 Here, we considered different standard approaches for solving
this problem, as Gaussian Process (Williams and Rasmussen, 2006), Random Forest (Segal, 2004),
and K-Nearest Neighbors (Peterson, 2009). In this setting, it is crucial to quantify the minimal
amount of data required to get a good throughput approximation, while minimizing the number of
implemented configurations to reduce exploration time. In order to answer this question, we perform
estimations using different percentages of the design space for the training of the regression models
in the exhaustive scenarios, progressively increasing the amount of training data.

Multi-armed bandit Given a set of constraints in terms of application throughput (i.e., a set of
SLAs), the goal of this optimization problem is to minimize the total area of the SoC. This problem
can be cast as a combinatorial bandit problem (Chen et al., 2013), in which the arms correspond
to the different accelerators, the set of the feasible configuration is provided by the thresholds, and
the objective function is the overall area utilization. In our case, we use the number of LUTs as a
proxy for the overall area consumption of the design. We resorted to the approach provided in Accabi
et al. (2018) to solve such a problem. We compare this FPGA combinatorial multi-armed bandit (FC-
MAB) approach with a random strategy that selects configurations at random. This problem can be
applied only to exhaustive scenarios since in non-exhaustive settings, the FC-MAB selector would
be limited in the choice of which configurations to explore.3 Moreover, the availability of all the
possible configurations allows us to match the optimization strategy against the absolute optimal
configuration.

Performance Evaluations and Parameters To implement the regressors, we used the scikit-learn
Python library functions with default parameters. For the FC-MAB, we set the exploration parameter

2We provided in the Appendix a detailed mathematical description of the employed model.
3Notice that comparing such methods with other heuristics mentioned in Section 3, would require to have a

priori information about the setting. Conversely, a bandit approach can be run starting from scratch.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 40 60 80
perc

0.00

0.05

0.10

er
r(

pe
rc

)

GP
RF

k-NN

(a) adpcm

20 40 60 80
perc

0.05

0.10

er
r(

pe
rc

)

GP
RF

k-NN

(b) dfadd

Figure 4: Regression error for two different applications in the EX3 scenario.

20 40 60 80
perc

0.05

0.10

0.15

0.20

er
r(

pe
rc

)

GP
RF

k-NN

(a) NX3

20 40 60 80
perc

0.1

0.2

er
r(

pe
rc

)

GP
RF

k-NN

(b) NX6

Figure 5: Regression error in two different multi-application scenarios, as the average error of the
single applications.

for FC-MAB bj,t−1 = 5 and we run it over 50 iterations. We compared the analyzed algorithms in
terms of:

• êrr(perc) [adimensional] normalized average reconstruction error for the throughput of
a specific accelerator type using a percentage perc of the available configurations as the
training set (averaged over the configurations and the instances of the same accelerator
present in each configuration);

• t̂hr(n) [MB/s] average throughput after n rounds of the configuration selected by the
algorithm;

• L̂UT (n) [adimensional] occupied area of the configuration selected by the algorithm;

where the average is taken with 10-fold cross-validation in the regression problem and w.r.t. 30
independent runs of the algorithms in the multi-armed bandit case. We report the 95% (Gaussian)
confidence intervals in the plots as semi-transparent areas.

5.2 EXPERIMENTAL RESULTS: REGRESSION

Figure 4 shows the regression error êrr(perc) of the employed model for the adpcm and dfadd
applications in the EX3 scenario. Figure 5, instead, portrays the average regression error over the
application set for the NX3 and NX6 settings. A larger set of regression errors collected in our
experiments is provided in the Appendix. These examples show the ability of the models to predict
the throughput of the applications with an acceptable degree of accuracy. As expected, larger training
percentages provide a significant reduction in the overall error. In particular, we can observe two
different behaviors when comparing EX3 scenarios in Figure 4 with larger and more complex ones in
Figure 5. The former reaches the minimum error when using 20−30% of the available configurations
as a training set, while the latter shows a continuously improving trend proportional to the training
sample percentages. This behavior can be explained by considering that the EX3 dataset is exhaustive,
while the non-exhaustive scenarios include just a small fraction of the design space (≈ 0.2%). Indeed,
the ability to reach an accuracy lower than the 5% with such a minimal exploration of the design space
represents a promising result. As a final consideration, the k-NN model always returns the highest

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

110K

120K

130K

FC-MAB Optimal

150K

140K

(a) Area.

FC-MAB Threshold

(b) aes throughput.

FC-MAB Threshold

(c) dfadd throughput.

FC-MAB Threshold

(d) motion throughput.

Figure 6: Area and throughput of the best-identified configuration at each iteration of the optimization
flow for the EX4 scenario.

error, with RF usually achieving the best accuracy. These results confirm the idea that machine
learning models can prove extremely useful in predicting the performance of multiple accelerators
interacting on the same system.

5.3 EXPERIMENTAL RESULTS: MULTI-ARMED BANDIT

Figure 6 provides the evolution of the throughput and the area consumption over the rounds for
the FC-MAB strategy targeting the EX4 scenario. Similar results have been obtained by running
the optimization process over the other three exhaustive scenarios. In all the studied cases, the
FC-MAB was able to converge to the optimal solution before the end of the 50 rounds. For the
EX4 scenario, this allowed us to identify the optimal solution by exploring just the 1.5% of the
design space. Conversely, the random approach is unable to consistently identify configurations
that satisfy the throughput constraints: over the 30 runs performed for the EX4 scenario, it found a
feasible configuration just 14 times. These promising results suggest that the use of online learning
approaches for the optimization of heterogeneous SoCs constitutes a suitable option.

6 CONCLUSIONS

This paper presented TANGRAM, a dataset comprising the area and execution statistics of more than
40, 000 heterogeneous SoCs collected on datacenter-grade FPGAs. For each configuration included in
the dataset, we reported the area and performance results as well as the allocation of each application.
The statistics have been extracted by implementing and executing the corresponding configuration on
real FPGA boards, namely a Siemens ProFPGA Virtex-7 2000T and an AMD Alveo U55C, which
required several months of computation. An extensive set of experimental results demonstrates the
possibility of accurately modeling complex SoCs with different regression strategies, motivating
the need to explore the use of machine learning for the optimization of heterogeneous SoCs. The
TANGRAM project is still under development, and we plan to expand the dataset with new results
and use cases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The regression and optimization results reported in this study were derived from the SoC area and
performance statistics provided in the dataset. These results are fully reproducible using the source
code available in the dataset repository, which is documented both within the repository and in the
Appendix.

REFERENCES

G. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86,
no. 1, pp. 82–85, 1998.

R. H. Dennard, J. Cai, and A. Kumar, “A perspective on today’s scaling challenges and possible
future directions,” in Handbook of Thin Film Deposition. Elsevier, 2018, pp. 3–18.

T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new beginning for information technology,”
Computing in science & engineering, vol. 19, no. 2, pp. 41–50, 2017.

A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey,
P. Kaur, J.-Y. Kim et al., “A cloud-scale acceleration architecture,” in 2016 49th Annual IEEE/ACM
international symposium on microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

Joachim Strömbergson, “AES Verilog Implementation,” https://github.com/secworks/aes, 2014,
[Online; accessed 10-May-2024].

C. Bobda, J. M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J. C. Vega, K. Eguro, D. Koch, S. Handa-
gala, M. Leeser et al., “The future of fpga acceleration in datacenters and the cloud,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 15, no. 3, pp. 1–42, 2022.

M. G. Jordan, G. Korol, M. B. Rutzig, and A. C. S. Beck, “Resource-aware collaborative allocation
for cpu-fpga cloud environments,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 68, no. 5, pp. 1655–1659, 2021.

B. Damak, R. Benmansour, M. Baklouti, S. Niar, and M. Abid, “Design space exploration for
customized asymmetric heterogeneous mpsoc,” in 2014 17th Euromicro Conference on Digital
System Design. IEEE, 2014, pp. 50–57.

M. Brandalero, T. D. Souto, L. Carro, and A. C. S. Beck, “Predicting performance in multi-core
systems with shared reconfigurable accelerators,” Journal of Systems Architecture, vol. 98, pp.
201–213, 2019.

S. Xu, S. Liu, Y. Liu, A. Mahapatra, M. Villaverde, F. Moreno, and B. C. Schafer, “Design space explo-
ration of heterogeneous mpsocs with variable number of hardware accelerators,” Microprocessors
and Microsystems, vol. 65, pp. 169–179, 2019.

T. Cong and F. Charot, “Design space exploration of heterogeneous-accelerator socs with hyper-
parameter optimization,” in Proceedings of the 26th Asia and South Pacific Design Automation
Conference, 2021, pp. 338–343.

C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning. MIT press
Cambridge, MA, 2006, vol. 2, no. 3.

M. R. Segal, “Machine learning benchmarks and random forest regression,” eScholarship, Center for
Bioinformatics and Molecular Biostatistics, UC San Francisco, 2004.

L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-on-chip,” ACM
Computing Surveys (CSUR), vol. 38, no. 1, pp. 1–es, 2006.

Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone: A benchmark program suite for
practical c-based high-level synthesis,” in 2008 IEEE International Symposium on Circuits and
Systems (ISCAS), 2008, pp. 1192–1195.

10

https://github.com/secworks/aes

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

K. O’Neal and P. Brisk, “Predictive modeling for cpu, gpu, and fpga performance and power
consumption: A survey,” in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2018, pp. 763–768.

R. G. Kim, J. R. Doppa, and P. P. Pande, “Machine learning for design space exploration and
optimization of manycore systems,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2018, pp. 1–6.

N. Wu, Y. Xie, and C. Hao, “Ironman-pro: Multiobjective design space exploration in hls via reinforce-
ment learning and graph neural network-based modeling,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 42, no. 3, pp. 900–913, 2023.

Y. Bai, A. Sohrabizadeh, Z. Qin, Z. Hu, Y. Sun, and J. Cong, “Towards a comprehensive benchmark
for high-level synthesis targeted to fpgas,” Advances in Neural Information Processing Systems,
vol. 36, pp. 45 288–45 299, 2023.

U. Farooq, N. U. Hasan, I. Baig, and M. Zghaibeh, “Efficient fpga routing using reinforcement
learning,” in 2021 12th International Conference on Information and Communication Systems
(ICICS). IEEE, 2021, pp. 106–111.

N. Rao, A. Ramachandran, and A. Shah, “Mlnoc: A machine learning based approach to noc
design,” in 2018 30th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 2018, pp. 1–8.

Siemens Electronic Design Automation GmbH, “FPGA Module XC7V2000T,” https://www.profpga.
com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t, [Online; accessed 10-
May-2024].

——, “proFPGA quad Motherboard for multi-FPGA System,” https://www.profpga.com/products/
motherboards-overview/profpga-quad, [Online; accessed 10-May-2024].

G. Montanaro, A. Galimberti, and D. Zoni, “A prototype-based framework to design scalable
heterogeneous socs with fine-grained dfs,” in 2024 IEEE 42nd International Conference on
Computer Design (ICCD). IEEE, 2024, pp. 681–684.

F. Zaruba and L. Benini, “The cost of application-class processing: Energy and performance analysis
of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, Nov 2019.

Josh Moles, “Keccak Verilog Implementation,” https://github.com/jmoles/keccak-verilog/tree/main,
2013, [Online; accessed 10-May-2024].

W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit: General framework and
applications,” in International conference on machine learning. PMLR, 2013, pp. 151–159.

G. M. Accabi, F. Trovo, A. Nuara, N. Gatti, and M. Restelli, “When gaussian processes meet
combinatorial bandits: Gcb,” in 14th European Workshop on Reinforcement Learning, 2018, pp.
1–11.

11

https://www.profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t
https://www.profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t
https://www.profpga.com/products/motherboards-overview/profpga-quad
https://www.profpga.com/products/motherboards-overview/profpga-quad
https://github.com/jmoles/keccak-verilog/tree/main

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A TANGRAM DATASET DESCRIPTION

In this section, we describe the content and the main features of the TANGRAM dataset. In particular,
Section A.1 details the organization of the TANGRAM repository, while Section A.2 outlines its
expected usage.

A.1 DIRECTORY CONTENT

Figure 7: Organization of the TANGRAM reposi-
tory. The letter k marks the scenario index, while
the suffix suf represents the strategy used to collect
the data.

/
data

EX
...
exk.json
...

NX
...
nxk

...
nxk_suf.json
...

...
tiles_alveo_bram.json
tiles_alveo_hbm2.json
tiles_virtex7.json

models
gaussianProcess.py
kNearestNeighbors.py
randomForest.py

scripts
optimization_main.py
regression_main.py

LICENSE
README.md

Figure 7 shows the structure of the TAN-
GRAM folder. The root directory contains a
README.md file, which briefly introduces the
dataset and explains how to replicate the ex-
periments described in Section 5, a LICENSE
file providing the Apache 2.0 license of the
dataset, and three sub-folders: data, models,
and scripts. The data folder contains all
the area and performance results related to the
SoCs implemented and tested during this study.
The results are divided into two folders, EX and
NX, following the organization described in Ta-
bles 1 and 2, respectively. Each dataset file
is characterized by a prefix and a suffix. The
prefix indicates the name of the correspond-
ing scenario. Instead, the suffix specifies the
strategy employed to collect the data. There
are three possible suffixes: opt, meaning that
the data were collected through an optimization
process, rand, meaning that the configurations
were selected at random, and total, which sig-
nals that this dataset comprises all the configura-
tions included in the other datasets related to the
same scenario. Instead, the tiles_x.json
files collect some information about the SoC
tiles, in particular, the area consumption of non-
accelerator tiles and the area consumption with
several other features for the accelerator tiles, for
the three hardware targets adopted in this study
(as described in Section 4.1). The models di-
rectory includes the three models used to vali-
date the TANGRAM dataset, namely the Gaus-
sian Process (Williams and Rasmussen, 2006),
the K-Nearest Neighbors (Peterson, 2009), and
the Random Forest (Segal, 2004). The relative
Python sources define various methods that implement the modeling of the problem (that will
be detailed later in Section B.1) and the training and throughput prediction functionalities of the
models. Finally, the scripts folder includes two python scripts, regression_main.py and
optimization_main.py, that execute the experiments described in Section 5.2 and 5.3, re-
spectively. These scripts convert the dataset from JSON to Python dictionaries and then employ
the methods defined in the models folder to perform the prediction and compute the regression
error (regression_main.py) or to identify the optimal configuration with an iterative procedure
given a set of constraints on the throughput (optimization_main.py).

A.2 INTENDED USE

The goal of the TANGRAM dataset is to allow researchers to develop methodologies for performance
prediction and optimization of complex SoCs without having to generate the necessary hardware

i

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

results by themselves. In this sense, the scripts included in the repository can be viewed as templates
for the use and manipulation of the dataset. In fact, the throughput modeling that we propose, while
effectively showing the suitability of TANGRAM for regression purposes, is excessively simplistic
and returns a non-negligible error for the more complex scenarios. A more refined methodology
could adopt customized regression models and use a more extensive set of accelerators and SoC
features to model the applications’ throughput. For this reason, we want to encourage researchers to
approach the problem with novel ideas and proposals.

B METHODOLOGY AND RESULTS

This section details the model used to assess the suitability of the dataset for machine learning method-
ologies and reports regression results for all the considered scenarios. In particular, the experiments
described in Section 5 adopt a specific approach to solve the allocation problem, that makes use of a
subset of the features of each accelerator to model the variations in the throughput. These features
are then fed to a regression methodology to predict the performance of the accelerators. Moreover,
we will provide all the regression results concerning the experiments described in Section 5.2.

The rest of this section is organized as follows. Section B.1 details the mathematical formulation of
the allocation setting, as well as the modeling methodology adopted in the dataset validation, while
Section B.2 shows the tables containing the complete regression results.

B.1 SETTING FORMULATION AND REGRESSION STRATEGY

Let us assume that we have a set of applications P = {pi}Ni=1. Considering the architecture depicted
in Figure 3, the SoC is composed by a fixed number of tiles T , where the number of tiles is strictly
larger than the number of applications, i.e., T > N . Each tile ti, where i ∈ {1, . . . , T}, can host
either i) an accelerator executing a specific application pi, ii) a memory channel, or iii) can be left
empty. The total throughput can be increased by instantiating multiple accelerators executing the
same application on different tiles. Each accelerator can also be implemented with different levels of
parallelism r ∈ {0, . . . , Rmax}, being Rmax the maximum level of parallelism that can be deployed
on a single tile.

We model each accelerator xj as a tuple xj =
(
rj , o

(mb)
j , o

(cb)
j , sj , aj

)
, where rj is the parallelization

of that accelerator on tile tj , o(mb)
j and o

(cb)
j are the amount of memory- and compute-bound

accelerators allocated to the same memory tile as xj , respectively, sj ∈ P is the application
implemented by the accelerator, and aj is the area consumption of tile tj . A configuration c = (M,A)
is defined as the number of memory channels M and the set of accelerators A = {xj}j instantiated
on the SoC. The execution of a configuration c returns a vector θθθ(c) = (θ1(x1), . . . , θ|A|(x|A|))
whose elements θj(xj) are the throughput corresponding to the accelerators xj , where | · | is the
cardinality operator.

Generally speaking, given a set of pairs (c,θθθ(c)), our goal is to predict the global throughput of
each application for a generic configuration c′, which is not part of the original set. We approach
this scenario as a multi-output regression problem, where the input is a subset of the features zj
of each accelerator xj in a configuration c. In particular, we model such a relationship using a
vector zj := (rj , o

(mb)
j , o

(cb)
j). Given a set of size k − 1 of the characteristics {zh}k−1

h=1 for a specific
accelerator {xh}k−1

h=1 each of which is of type sj and the corresponding throughput {θh(xh)}k−1
h=1, the

regression model provides an estimate for the expected value of the throughput µ̂j,k−1(z) of a generic
characteristic z. Such a modeling allows to handle the problem with standard regression approaches,
like the ones we used for the dataset validation. This modeling, coupled with the FC-MAB strategy
described in Section 5.1, was also employed for the optimization experiments reported in Section 5.3.

B.2 COMPLETE REGRESSION RESULTS

In the following tables, we collected the normalized regression error and the confidence interval for
every scenario. The methodology behind these experiments is described in Section 5.2. For each
model, we report the regression error and the confidence interval for training set sizes that range from
the 10% to the 90% of the entire dataset, whose size is reported in Table 1 and 2.

ii

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C LLM USAGE

LLMs were used in the preparation of this paper solely as writing assistant tools, specifically to check
grammar and improve the clarity of the text.

iii

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Normalized regression error and confidence interval for all the exhaustive scenarios. Since
precision has been set to 0.01, results lower than this figure are shown as 0.0.

EX Model Training set size

10% 20% 30% 40% 50% 60% 70% 80% 90%

EX1

GP 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

EX2

GP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

GP 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

EX3 ±0.03 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.06 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01

adpcm ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

GP 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

EX3 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.05 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0

aes ±0.02 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

GP 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02

EX3 ±0.01 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.11 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03

dfadd ±0.04 ±0.01 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
±0.01 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

GP 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02

EX3 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.11 0.05 0.03 0.02 0.03 0.02 0.02 0.02 0.02

dfmul ±0.03 ±0.01 ±0.01 ±0.0 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.05 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.02 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

GP 0.05 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

EX3 ±0.04 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.07 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02

gsm ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

GP 0.19 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13

EX3 ±0.04 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

k-NN 0.19 0.16 0.16 0.15 0.15 0.16 0.16 0.15 0.15

sha3 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02

RF 0.2 0.17 0.16 0.15 0.14 0.14 0.13 0.14 0.14
±0.03 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02

EX4

GP 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.24
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

RF 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.24
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

k-NN 0.26 0.25 0.25 0.25 0.25 0.26 0.25 0.26 0.26
±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.02

iv

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Normalized regression error and confidence interval for NX1 to NX9 scenarios. Since
precision has been set to 0.01, results lower than this figure are shown as 0.0.

NX Model Training set size

10% 20% 30% 40% 50% 60% 70% 80% 90%

NX1

GP 0.13 0.08 0.05 0.05 0.04 0.04 0.03 0.03 0.03
±0.04 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.01

k-NN 0.18 0.12 0.1 0.09 0.08 0.07 0.06 0.06 0.05
±0.04 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02

RF 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

NX2

GP 0.39 0.32 0.29 0.28 0.27 0.27 0.26 0.26 0.26
±0.08 ±0.06 ±0.06 ±0.04 ±0.04 ±0.04 ±0.03 ±0.03 ±0.03

k-NN 0.36 0.32 0.3 0.3 0.29 0.28 0.27 0.26 0.26
±0.07 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.04 ±0.04

RF 0.3 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.26
±0.05 ±0.03 ±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.04

NX3

GP 0.14 0.09 0.07 0.05 0.05 0.04 0.04 0.04 0.04
±0.04 ±0.03 ±0.02 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01

k-NN 0.18 0.13 0.1 0.08 0.07 0.07 0.06 0.06 0.06
±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01

RF 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.01 ±0.0 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX4

GP 0.26 0.21 0.19 0.19 0.18 0.17 0.17 0.17 0.17
±0.05 ±0.02 ±0.03 ±0.02 ±0.03 ±0.02 ±0.02 ±0.03 ±0.02

k-NN 0.29 0.24 0.22 0.2 0.19 0.19 0.19 0.18 0.19
±0.03 ±0.04 ±0.04 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03

RF 0.2 0.19 0.18 0.18 0.17 0.17 0.17 0.17 0.17
±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03

NX5

GP 0.22 0.18 0.16 0.15 0.15 0.14 0.13 0.14 0.13
±0.04 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02

k-NN 0.26 0.2 0.18 0.17 0.17 0.16 0.15 0.15 0.15
±0.04 ±0.03 ±0.03 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02

RF 0.16 0.14 0.14 0.13 0.13 0.13 0.13 0.12 0.13
±0.02 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01

NX6

GP 0.15 0.09 0.06 0.05 0.05 0.04 0.04 0.04 0.04
±0.04 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

k-NN 0.21 0.14 0.11 0.09 0.08 0.07 0.06 0.06 0.05
±0.03 ±0.02 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

RF 0.07 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03
±0.01 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX7

GP 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.1
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.0 ±0.01

NX8

GP 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX9

GP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

v

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Normalized regression error and confidence interval for NX10 to NX18 scenarios. Since
precision has been set to 0.01, results lower than this figure are shown as 0.0.

NX Model Training set size

10% 20% 30% 40% 50% 60% 70% 80% 90%

NX10

GP 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
±0.01 ±0.01 ±0.0 ±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX11

GP 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
±0.01 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.0 ±0.0 ±0.0

NX12

GP 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX13

GP 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX14

GP 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX15

GP 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX16

GP 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX17

GP 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

RF 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

k-NN 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

NX18

GP 0.58 0.44 0.37 0.35 0.31 0.3 0.28 0.27 0.27
±0.15 ±0.12 ±0.1 ±0.1 ±0.08 ±0.07 ±0.07 ±0.07 ±0.07

RF 0.33 0.27 0.27 0.24 0.24 0.23 0.23 0.22 0.22
±0.09 ±0.05 ±0.06 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03

k-NN 0.27 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.22
±0.02 ±0.03 ±0.03 ±0.03 ±0.02 ±0.03 ±0.03 ±0.02 ±0.02

vi

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Normalized regression error and confidence interval for NX19 and NX20 scenarios. Since
precision has been set to 0.01, results lower than this figure are shown as 0.0.

NX Model Training set size

10% 20% 30% 40% 50% 60% 70% 80% 90%

NX19

GP 0.14 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12
±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

RF 0.14 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12
±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

k-NN 0.15 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.01 ±0.02

NX20

GP 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

RF 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

k-NN 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

vii

	Introduction
	Background
	Related Works
	The TANGRAM Dataset
	Experimental Setup
	Dataset Description
	Data Format

	Experimental Evaluation
	Problem Definition
	Experimental Results: Regression
	Experimental Results: Multi-Armed Bandit

	Conclusions
	TANGRAM Dataset Description
	Directory Content
	Intended Use

	Methodology and Results
	Setting Formulation and Regression Strategy
	Complete Regression Results

	LLM Usage

