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ABSTRACT

Large multimodal models (LMMs) have recently emerged as a powerful tool for
long video understanding (LVU), prompting the development of standardized LVU
benchmarks to evaluate their performance. However, our investigation reveals a
rather sober lesson for existing LVU benchmarks. First, most existing benchmarks
rely heavily on multiple-choice questions (MCQs), whose evaluation results are
inflated due to the possibility of guessing the correct answer; Second, a significant
portion of questions in these benchmarks have strong priors to allow models to
answer directly without even reading the input video. For example, Gemini-1.5-
Pro can achieve over 50% accuracy given a random frame from a long video
on Video-MME. We also observe that increasing the number of frames does not
necessarily lead to improvement on existing benchmarks, which is counterintu-
itive. As a result, the validity and robustness of current LVU benchmarks are
undermined, impeding a faithful assessment of LMMs’ long-video understanding
capability. To tackle this problem, we propose VIDEOEVAL-PRO, a realistic LVU
benchmark containing questions with open-ended short-answer, which truly require
understanding the entire video. VIDEOEVAL-PRO assesses both segment-level and
full-video understanding through perception and reasoning tasks. By evaluating 27
proprietary and open-source video LMMs, we conclude the following findings: (1)
video LMMs show drastic performance (>25%) drops on open-ended questions
compared with MCQs; (2) surprisingly, higher MCQ scores do not lead to higher
open-ended scores on VIDEOEVAL-PRO; (3) compared to other MCQ benchmarks,
VIDEOEVAL-PRO benefits more from increasing the number of input frames. Our
results show that VIDEOEVAL-PRO offers a more realistic and reliable measure of
long video understanding, providing a clearer view of progress in this domain. Our
benchmark and evaluation code will be fully released.

1 INTRODUCTION

Long video understanding (LVU) refers to the task of using AI systems to process, interpret, and
reason over long-duration video content. Key applications of long video understanding include
event and anomaly detection in video surveillance (Lv and Sun, 2024), temporal reasoning and
behaviour prediction in autonomous driving (Ettinger et al., 2021), as well as content summarization
in instructional/lecture videos (Zhou et al., 2018). Designing AI systems capable of understanding
and reasoning over long videos is therefore a fundamental challenge in artificial intelligence.

Recently, large multimodal models (LMMs) have emerged as a promising solution for understanding
long videos. Ongoing research enhances the capability of LMMs to process longer videos by
extending their context length (Zhang et al., 2024a; Chen et al., 2024a), dropping or merging video
tokens (Li et al., 2024a; Wang et al., 2025a), and leveraging efficient, linear-complexity models
(Ren et al., 2025; Jiang et al., 2025; Islam et al., 2025). Besides model architecture improvements,
recent studies also investigate curating better training data (Zhang et al., 2024b; Ren et al., 2024) and
applying reinforcement learning approaches (Li et al., 2025; Feng et al., 2025) for LMMs tailored
to LVU tasks. As a result, LMMs have rapidly advanced to achieve stronger LVU capabilities: the
preliminary attempt of Video-LLaVA (Lin et al., 2023) can only process short videos with eight
frames. Today, LMMs such as Vamba (Ren et al., 2025), Video-XL-Pro (Liu et al., 2025), and
InternVideo2.5 (Wang et al., 2025a) can encode thousands of frames and reason over hour-long
videos.
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Figure 1: Comparison between VIDEOEVAL-PRO and MCQ benchmarks. Left: MCQ benchmarks
yield inflated scores on identical questions (MCQ vs. Open) and can misrepresent model performance
(LVBench (Wang et al., 2024a)). Right: VIDEOEVAL-PRO cannot be effectively solved with a single
input frame, and performance scales consistently with more frames. Video-MME (Fu et al., 2024)
exhibits contradictory trends.

To rigorously evaluate ongoing advances in video LMMs, researchers have introduced dedicated long
video understanding benchmarks (Fu et al., 2024; Zhou et al., 2024; Wang et al., 2024a; Wu et al.,
2024; Chandrasegaran et al., 2024), which provide standardized scores to quantitatively measure
and compare different models’ ability to reason over long videos. Nevertheless, upon examining the
current LVU benchmarks more closely, our findings are sobering. First, most current LVU benchmarks
rely almost exclusively on multiple-choice questions (MCQs), a format that can inadvertently provide
hints to the model, enabling it to answer correctly through guesswork. As shown in Figure 1a, for the
same set of questions, we observe over 20% accuracy drop when switching from MCQ to open-ended
question answering. This significant gap suggests that MCQ-based accuracies may be substantially
inflated and do not reliably reflect the model’s true understanding of the video content. Second, many
questions in existing LVU benchmarks exhibit strong priors that allow models to answer correctly
without comprehending the input video. As illustrated in Figure 1b, both proprietary (Gemini-1.5-Pro
(Team et al., 2024)) and open-source (Qwen2.5-VL-7B (Bai et al., 2025)) models achieve around
50% accuracy on Video-MME (Fu et al., 2024) with only one input frame. These issues lead to
performance plateauing or even declining as input frames increase—an outcome that contradicts the
expectation that more frames should offer richer context and improve long video understanding. Our
investigations of existing LVU benchmarks prompt us to think about two central questions:

(1) Do existing long video benchmarks faithfully reflect models’ real capacity to understand
long video content? (2) Do the gains reported by newer models genuinely translate into stronger
long video comprehension capability, or are they illusional?

To probe these questions, we present VIDEOEVAL-PRO, a more robust and realistic long video under-
standing benchmark containing open-ended, short-answer QA problems. To construct VIDEOEVAL-
PRO, we source the questions from four existing long video understanding MCQ benchmarks:
Video-MME (Fu et al., 2024), MLVU (Zhou et al., 2024), LVBench (Wang et al., 2024a) and
LongVideoBench (Wu et al., 2024), and reformat these questions into free-form questions. We apply
a series of filtering methods based on video duration, question and answer type, answerability and QA
difficulty to ensure the quality. Our final benchmark contains a total of 1,289 short-answer questions
based on 465 videos, with an average duration of 38 minutes. By evaluating a total of 27 proprietary
and open-source models, our main findings can be summarized as below:
1. VIDEOEVAL-PRO and its open-ended QA format introduce substantial challenges for video

LMMs, as evidenced by performance drops exceeding 25% compared to the MCQ format.
2. VIDEOEVAL-PRO’s results show that LMMs perform better at questions about local video

segments and struggle more with those requiring holistic video understanding. They also perform
better on perception tasks than on reasoning tasks.

3. Unlike existing MCQ benchmarks, VIDEOEVAL-PRO reveals that proprietary models still hold a
significant lead, indicating the brittleness of open-source models on challenging LVU tasks.

4. Current LMMs achieve only ∼10% accuracy on VIDEOEVAL-PRO with a single input frame,
but performance steadily improves with more frames. These results highlight our benchmark’s
requirement for rich temporal information and show that VIDEOEVAL-PRO is a more suitable
benchmark for long video understanding.
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2 RELATED WORK

2.1 LARGE MULTIMODAL MODELS FOR LONG VIDEO UNDERSTANDING

The recent growing demand for long video understanding has driven the rapid evolution of large
multimodal models (LMMs). Prior methods such as Video-ChatGPT (Maaz et al., 2023) and Video-
LLaVA (Lin et al., 2023) focus on understanding short videos based on limited input frames (e.g. 8
frames). Since then, the development of video LMMs generally follows two directions. First, prior
work investigates various model architecture improvements to enable LMMs to process more input
frames. For example, LongVU (Shen et al., 2024), Video-XL (Shu et al., 2024), InternVideo2.5 (Wang
et al., 2025a) and VideoChat-Flash (Li et al., 2024a) investigates token dropping to reduce sequence
length. STORM (Jiang et al., 2025), Vamba (Ren et al., 2025) and BIMBA (Islam et al., 2025) utilize
hybrid architectures (Gu and Dao, 2023) to enable more efficient video processing. Second, recent
work also investigates methods to improve the training of video LMMs. LLaVA-Video (Zhang et al.,
2024b), Vript (Yang et al., 2024) and VISTA (Ren et al., 2024) collect higher-quality training data
to enhance video LMM training. LLaVA-Hound-DPO (Zhang et al., 2024c), Video-R1 (Feng et al.,
2025) and VideoChat-R1 (Li et al., 2025) investigate preference optimization and reinforcement
learning techniques to enhance the reasoning capabilities of video LMMs.

2.2 LONG VIDEO UNDERSTANDING BENCHMARKS

The rapid development of video LMMs has spurred the creation of video understanding benchmarks,
aiming at evaluating video LMM’s perception and reasoning capabilities based on video inputs. Earlier
video QA benchmarks such as MSRVTT-QA/MSVD-QA (Xu et al., 2017) and ActivityNet-QA (Yu
et al., 2019) focus on short video clips with simple questions. MVBench (Li et al., 2024b) constructs
a unified benchmark by regenerating QA pairs from existing datasets, while TempCompass (Liu et al.,
2024) and VideoVista (Li et al., 2024c) focus on assessing temporal reasoning. More recently, LVU
benchmarks such as Video-MME (Fu et al., 2024), MLVU (Zhou et al., 2024), LVBench (Wang et al.,
2024a), and LongVideoBench (Wu et al., 2024) have emerged to evaluate the performance of LMMs
on extremely long videos using MCQ questions. However, the potential influence of MCQ options,
such as providing answer hints or inducing bias in LVU evaluation, has not been systematically
studied. To bridge this gap, we aim to introduce a new benchmark featuring concise free-form
answers, aiming to better reflect models’ true LVU capability without relying on pre-defined choices.

3 VIDEOEVAL-PRO

3.1 DATA CURATION PIPELINE

VIDEOEVAL-PRO’s data curation pipeline comprises two main steps: Data Collection and Data
Filtering. In this section, we describe each step in detail.

Data Collection To construct VIDEOEVAL-PRO, we first collect source QA pairs from four publicly
available long video understanding benchmarks: Video-MME (Fu et al., 2024), MLVU (Zhou et al.,
2024), LVBench (Wang et al., 2024a) and LongVideoBench (Wu et al., 2024). These benchmarks
span diverse video content and question types, providing a rich source for long video understanding
tasks. Our initial seed question set contains a total of 5,562 questions, which are all in MCQ format
with 4-6 options. To create an open-ended evaluation benchmark, we transform each multiple-choice
question into a free-form question: the correct MCQ option becomes the reference answer, while the
distractors are discarded. During evaluation, the models receive only the question itself, forcing them
to generate an answer based on the input video rather than exploiting hints from different options.

Video Duration and Answer Type Filtering Once the initial pool of questions is collected, we
apply a multi-stage filtering process to ensure that the resulting dataset emphasizes long-term video
comprehension and presents a meaningful challenge for current models. We first filter out all samples
associated with videos shorter than 10 minutes, as shorter clips often contain less complicated
contents that may lower the difficulty of video perception and reasoning tasks. Next, we remove
questions for which the average word count of answer options in the original MCQ format exceeds
five words. For example, questions such as “What is this video about?” often yield overly detailed
responses, which complicates answer evaluation. This word-count constraint reduces uncertainty

3
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from overly verbose options and ensures that the converted open-ended questions have concise yet
meaningful answers, making it easier for LLM judges (c.f. Section 3.3) to evaluate model responses,
thereby enhancing the stability and precision of our benchmark and improving its overall validity.

Answerability Filtering In the next stage, we assess whether each multiple-choice question can
be reasonably reformulated into a free-form question without losing clarity or answerability. From
the question pools we collected, we notice three types of questions with low answerability: (1)
Option-evaluating or comparing questions, which require the model to compare different options and
pick the most reasonable option; (2) Timestamp-dependent questions, which requires the model to
answer questions for a given numerical timestamp; (3) Subtitle-dependent questions, which queries
information that only appeared in the subtitles. We prompt Gemini-2.0-Flash with the question
(excluding the answer choices) and ask it to determine whether the question can be answered solely
based on the video content. This step helps identify and discard questions that rely heavily on
inspecting MCQ options, which are unsuitable for open-ended evaluation.

Difficulty Filtering Finally, we filter out questions that are too easy to answer. To identify such
cases, we randomly sample a single frame from each input video and prompt Gemini-2.0-Flash to
generate an answer to the corresponding MCQ and open-ended question using only that frame. We
then use Gemini-2.0-Flash to judge the open-ended answers. Questions for which Gemini-2.0-Flash
produces a correct response on both MCQ and open-ended formats are excluded from the benchmark.
This filtering step ensures that the remaining questions require broader temporal understanding and
cannot be resolved using minimal visual context.

3.2 DATASET STATISTICS

Our rigorous data collection and filtering pipeline ensures that the final benchmark questions demand
deeper temporal comprehension and reasoning beyond surface-level cues. Our final dataset comprises
1,289 question-answer pairs in free-form QA, each grounded in a long video with a duration greater
than 10 minutes. As shown in Table 1, VIDEOEVAL-PRO includes a total of 465 videos, with an
average length of 38.25 minutes. Among them, 204 videos are between 10 and 30 minutes and 261
videos exceed 30 minutes. For the 1,289 questions used in our benchmark, 371 are associated with
videos in the 10–30 minute range, while 918 are based on videos longer than 30 minutes. The average
length of an answer is 2.1 words. These design choices ensure the evaluation focuses on the model’s
ability to retrieve concise and accurate information from long video content.

Table 1: Video and QA statistics for VIDEOEVAL-PRO.
VIDEOEVAL-PRO Total 10–30 min >30 min Note

Videos 465 204 261 Average video duration: 38.25 minutes
QA Pairs 1,289 371 918 Average answer length: 2.1 words

QA Source Distribution As mentioned in Section 3.1, the questions in VIDEOEVAL-PRO are
drawn from four existing benchmarks: Video-MME (Fu et al., 2024), MLVU (Zhou et al., 2024),
LVBench (Wang et al., 2024a), and LongVideoBench (Wu et al., 2024). Given the variability in video
duration and question quality across these sources, their contributions to the final dataset differ. As
illustrated in Figure 2a, LVBench accounts for the largest portion, contributing 714 questions (55%)
due to its long and information-rich video sources. MLVU contributes 267 questions (21%), with
many QAs excluded because of the relatively short video lengths. Video-MME adds 272 questions
(21%), although a significant number were filtered out due to limited answerability. LongVideoBench,
which is smaller in scale and subject to strict selection criteria, contributes 36 questions (3%). This
diverse composition ensures that VIDEOEVAL-PRO spans a wide range of content domains and video
types, ensuring a comprehensive model evaluation.

Task Definition and Distribution Given the questions we collected, we propose a unified and
generalizable task taxonomy to categorize our benchmark questions into four main types and 15
subtypes. These task types capture both perception and reasoning demands for both local video
segments and holistic long video understanding tasks. The four main task types are:

• Local Perception (LP): LP focuses on identifying and retrieving visual elements or actions from
a short video clip in a long video.

4
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Figure 2: Summary of VIDEOEVAL-PRO data composition and task type distribution.

• Local Reasoning (LR): LR focuses on reasoning within short temporal windows, such as inferring
causality, temporal order, or changes that happen over a local sequence of events.

• Holistic Perception (HP): HP involves a global and holistic understanding of statistical, structural,
or spatial information, typically requiring visual aggregation.

• Holistic Reasoning (HR): HR requires abstract or high-level understanding of long videos across
events or scenes, often involving narrative or intent understanding.

Detailed information for each task type and its subtypes can be found in Figure 2b and Appendix H.
This taxonomy enables fine-grained evaluation of model capabilities across different cognitive
demands required by long video understanding. According to Figure 2b, the majority of questions
(59%) fall under Local Perception, reflecting VIDEOEVAL-PRO’s emphasis on fine-grained tracking
and understanding of visual dynamics. Holistic Reasoning accounts for 21% of the questions, while
Local Reasoning and Holistic Perception represent 11% and 10% of the questions in the dataset.

3.3 EVALUATION PIPELINE

For each question in the benchmark, we uniformly sample a fixed number of frames from the
corresponding video. We use all frames if the total number of available frames is fewer than the
required frame count. The sampled frames, along with the open-ended question, are passed to the
evaluated model to generate an answer. To evaluate the correctness of each model’s responses, we
adopt the evaluation criteria introduced in SimpleQA (Wei et al., 2024) and Video-SimpleQA (Cao
et al., 2025). Specifically, each model response is classified into one of the following categories:

• Correct: The predicted answer comprehensively includes all essential information present in the
reference answer and contains no contradictory content.

• Incorrect: The predicted answer includes statements that contradict the reference answer, or
provides uncertain responses such as “possibly” or “I think”.

• Not Attempted: The predicted answer omits critical elements of the reference answer but does
not contradict it, or the model refuses to answer the question.

We follow the LLM-as-a-Judge (Gu et al., 2024; Zheng et al., 2023) paradigm and employ
GPT-4o-0806 as our evaluation model to assess the accuracy of generated short answers. The
detailed prompt we use for judgment is shown in Appendix F. Finally, we report the overall correct
rate as the proportion of responses labelled “Correct” across the entire dataset. This metric reflects
the model’s ability to provide accurate, faithful answers grounded in the visual content. Note that we
do not report the F-score (harmonic mean of overall correct and correct given attempted) adopted
in SimpleQA and Video-SimpleQA, as we want the results from our open-ended questions and the
corresponding MCQ scores to be comparable.
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Table 2: Main results of our VIDEOEVAL-PRO benchmark. ∆ indicates the gap between MCQ and
open-ended questions.

LP LR HP HR Overall
Models Size Frames

Open MCQ Open MCQ Open MCQ Open MCQ Open MCQ ∆

Proprietary Models
GPT-4o - 256 39.4 64.8 23.1 62.6 26.4 42.1 29.2 50.4 34.2 59.5 25.3
Gemini-1.5-Flash - 512 41.5 65.5 25.9 63.9 27.3 36.4 25.8 55.7 35.1 60.6 25.5
Gemini-2.5-Flash - 256 42.4 64.1 30.6 65.3 25.6 33.9 26.9 54.2 36.3 59.3 23.0
Gemini-2.0-Flash - 512 43.6 69.0 27.9 58.5 27.3 42.1 30.7 53.8 37.6 62.1 24.5
Gemini-1.5-Pro - 512 43.7 66.7 32.7 69.4 35.5 40.5 31.8 61.0 39.3 63.4 24.1
GPT-4.1-mini - 256 46.0 68.6 32.0 68.7 27.3 38.8 32.6 57.6 39.9 63.5 23.6
GPT-4.1 - 256 47.2 68.8 29.9 68.7 28.1 38.0 34.5 59.5 40.8 64.0 23.2
Gemini-2.5-Pro - 512 47.2 73.3 35.4 69.4 41.3 46.3 42.0 67.4 44.2 69.1 24.9

Open-source Models
Video-LLaVA 8B 8 13.2 27.5 6.1 33.3 14.0 24.8 6.1 26.5 11.0 27.7 16.7
Mantis-Idefics2 8B 24 17.8 33.2 9.5 29.9 16.5 16.5 8.3 29.9 14.8 30.6 15.8
LongVA 7B 64 20.5 43.3 6.8 33.3 19.0 24.0 9.5 31.8 16.5 38.0 21.5
Phi-4-Mini 5.6B 128 19.2 46.4 12.9 47.6 18.2 30.6 10.2 31.4 16.5 42.0 25.5
LongLLaVA 9B 512 21.7 41.2 15.0 34.0 14.0 29.8 10.2 29.2 17.8 36.9 19.1
Video-XL 7B 512 22.3 41.9 15.0 34.0 18.2 28.1 10.2 29.2 18.6 38.2 19.6
LongVU 7B 512 25.9 45.6 12.9 38.8 19.8 24.0 17.4 37.1 22.1 41.0 18.9
Vamba 10B 512 28.1 52.4 10.9 40.8 21.5 26.4 12.5 37.9 22.3 45.7 23.4
LLaVA-Video 7B 64 28.5 53.5 13.6 47.6 20.7 28.9 19.3 40.2 24.2 47.8 23.6
InternVL3.5 8B 128 28.4 55.5 20.4 58.5 20.7 38.0 17.0 36.7 24.4 50.3 25.9
InternVL2.5 8B 64 28.8 54.3 19.7 46.3 21.5 35.5 16.7 39.0 24.6 48.5 23.9
InternVL3 8B 64 30.3 54.6 17.0 49.0 24.0 34.7 13.3 36.7 24.7 48.4 23.7
Qwen2-VL 7B 512 31.7 53.9 14.3 51.7 21.5 28.1 20.5 39.0 26.5 48.2 21.7
VideoChat-Flash 7B 512 33.3 57.7 16.3 43.5 21.5 33.9 17.4 44.7 27.0 51.2 24.2
InternVideo2.5 8B 512 33.6 59.8 17.0 47.6 19.8 34.7 18.2 45.8 27.2 53.2 26.0
Qwen2.5-VL 7B 512 33.9 51.7 15.6 48.3 24.8 31.4 17.8 39.8 27.7 46.9 19.2
Video-XL-2 7B 512 33.3 57.6 25.2 55.1 21.5 38.8 20.5 45.1 28.6 53.0 24.4
MiMo-VL-SFT 7B 512 34.7 57.7 19.0 55.8 26.4 36.4 19.7 41.7 29.1 52.2 23.1
MiMo-VL-RL 7B 512 35.5 57.5 18.4 55.8 28.1 33.1 18.9 42.8 29.5 52.0 22.5

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We consider a total of 27 proprietary and open-source LMMs and conduct evaluations on our
VIDEOEVAL-PRO. For proprietary models, we consider the GPT series (OpenAI, 2024a;b; 2025)
(GPT-4o, GPT-4.1, GPT-4.1-mini) and the Gemini series (Team et al., 2024; Kavukcuoglu, 2025)
(Gemini-2.5-Flash/Pro, Gemini-1.5-Flash/Pro, Gemini-2.0-Flash). For open-source models, we
include prior methods such as Video-LLaVA (Lin et al., 2023), Mantis-Idefics2 (Jiang et al., 2024),
and LongVA (Zhang et al., 2024a); recent large-scale pretrained LMMs such as the Qwen-VL model
family (Qwen2-VL (Wang et al., 2024b) and Qwen2.5-VL (Bai et al., 2025)), InternVL model
family (InternVL2.5 (Chen et al., 2024b), InternVL3 (Zhu et al., 2025), InternVL3.5 (Wang et al.,
2025b) and InternVideo2.5 (Wang et al., 2025a)), MiMo-VL-SFT and MiMo-VL-RL (Team et al.,
2025)), LLaVA-Video (Zhang et al., 2024b) and Phi-4 (Abdin et al., 2024); finally, we also consider
extra-long video understanding LMMs such as Video-XL/Video-XL-2 (Shu et al., 2024; Qin et al.,
2025), LongVU (Shen et al., 2024), Vamba (Ren et al., 2025) and VideoChat-Flash (Li et al., 2024a).

As different candidate models are trained using different numbers of frames, we evaluate each one
with inputs of 32, 64, 128, 256, and 512 frames and report its highest score. If a model cannot
handle larger inputs (e.g. due to API restrictions or model context length limits), we instead report
its best score among the frame counts that fit within its allowable context window. We employ the
LLM-based scoring method described in Section 3.3 to compute each model’s final accuracy on the
short-answer tasks. For all models and the LLM judge, we use greedy decoding (set temperature to 0)
to ensure deterministic outputs. For comparison, we also measure multiple-choice performance: we
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Table 3: Comparison between proprietary and open-source models on VIDEOEVAL-PRO and other
standard medium and long video benchmarks.

Model VideoEval-Pro MVBench LVBench LongVideoBench MLVU

Proprietary Models

GPT-4o 34.2 64.6 30.8 66.7 64.6
Gemini-1.5-Pro 39.3 60.5 33.1 64.0 61.2

Open-source Models

InternVideo2.5-8B 27.2 75.5 46.4 60.6 72.8
InternVL3-8B 24.7 75.4 44.2 58.8 70.8
VideoChat-Flash-7B 27.0 73.2 47.2 64.2 74.5

∆ (Open - Proprietary) -13.1 +9.9 +14.1 -2.5 +9.9

rerun the evaluation and provide the original answer options to each model. All models are prompted
to output only the selected choice, and accuracy is computed via exact string matching.

4.2 MAIN RESULTS AND DISCUSSIONS

Evaluation results are shown in Table 2. Our VIDEOEVAL-PRO open-ended QA accuracy is denoted
as “Open” while “MCQ” represents the corresponding multiple choice accuracy. Overall, we observe
that GPT-4.1 (OpenAI, 2025) performs the best among proprietary models, while MiMo-VL-RL
(Team et al., 2025) leads the open-source models. We summarize our key findings as follows:

MCQ vs. VIDEOEVAL-PRO As shown in Table 2, compared to MCQ accuracy, all models
demonstrate a substantial drop in performance on open-ended questions. Moreover, the scores
obtained from MCQ and open-ended questions are not necessarily correlated. For example, although
InternVL2.5/3/3.5 outperform Qwen2.5-VL on MCQ accuracy, their open-ended QA scores are lower
than those of Qwen2.5-VL. These findings suggest that MCQ-based accuracy may overestimate model
performance and fail to capture the true capacity of models to understand long videos. Consequently,
MCQ results may not serve as a reliable indicator for ranking video LMMs.

Local vs. Holistic Tasks When comparing performance on local versus holistic understanding
tasks, we observe that most models perform better on local tasks, suggesting that holistic tasks are
generally more challenging. This disparity is expected, as holistic tasks require models to process
the entire video and reason over complex temporal dynamics that span long durations. In contrast,
local tasks are confined to short video segments, where the actions or events are typically simpler and
more temporally localized, making them easier to identify and interpret.

Perception vs. Reasoning Tasks Comparing results between perception and reasoning tasks,
we find that although models often achieve similar MCQ accuracy across both task types, their
performance on open-ended questions diverges significantly. Specifically, models tend to perform
considerably better on perception tasks than on reasoning tasks in the open-ended setting. For
instance, Gemini-2.5-Flash achieves comparable MCQ accuracies of 64.1% on local perception tasks
and 65.3% on local reasoning tasks. However, its open-ended QA accuracy drops to 30.6% on local
reasoning tasks, whereas it maintains a much higher accuracy of 42.4% on local perception tasks.
This discrepancy highlights the increased difficulty of long video reasoning tasks, which can be
correctly reflected by our VIDEOEVAL-PRO.

Proprietary vs. Open-source Models We compare proprietary and open-source models across
several benchmarks and observe an interesting phenomenon. As shown in Table 3, though the best
open-source video LMMs like InternVideo2.5 or InternVL3 have surpassed GPT-4o/Gemini-1.5-Pro
by as much as 14% across existing long video understanding benchmarks, their performances on
VIDEOEVAL-PRO are lagging behind GPT-4o/Gemini-1.5-Pro by 13%. This prominent contrast
reveals the brittleness of open-source models on more challenging long video understanding tasks.

4.3 FRAME SCALING PROPERTIES OF VIDEOEVAL-PRO

In this section, we examine how performance on VIDEOEVAL-PRO scales with varying numbers of
input frames. We evaluate two proprietary models: Gemini-1.5-Flash and Gemini-1.5-Pro, alongside
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Figure 3: Comparison between VIDEOEVAL-PRO and Video-MME accuracy across five LMMs.

three open-source models: Qwen2-VL, Qwen2.5-VL, and InternVideo2.5. For each model, we
plot the VIDEOEVAL-PRO accuracy across different frame counts (1, 32, 64, 128, 256 and 512)
in Figure 3a. For comparison, we also present the corresponding results from the Video-MME
benchmark using the same models and frame settings in Figure 3b.

Our first observation is that existing benchmarks such as Video-MME yield relatively high accuracy
even when only one frame is provided to the model. As shown in Figure 3b, both proprietary and
open-source models achieve around 45% accuracy under this setting, with Gemini-1.5-Pro surpassing
50% accuracy. These results suggest that current long video benchmarks may include insufficiently
challenging questions, allowing models to answer correctly even when most of the video information
is missing. In contrast, all models achieve only around 10% accuracy on our VIDEOEVAL-PRO
when provided with a single input frame, as shown in Figure 3a. This performance drop highlights
that VIDEOEVAL-PRO cannot be easily solved without incorporating richer visual cues from the
input video, demonstrating that VIDEOEVAL-PRO poses a substantially more challenging and
discriminative benchmark for long video understanding evaluation.

We also find that performance on existing long video benchmarks tends to saturate or even decline as
the number of input frames increases. As illustrated in Figure 3b, all models achieve their highest
accuracy on Video-MME with 256 input frames, but performance begins to plateau or drop when the
input is extended to 512 frames. This is a counterintuitive finding, as one would expect that providing
more input frames would supply additional contextual information that models could leverage to
improve performance. On the other hand, the five tested models exhibit a consistent improvement in
accuracy on VIDEOEVAL-PRO as the number of input frames increases. This divergence suggests
that VIDEOEVAL-PRO is a more robust benchmark in assessing long video tasks, and offers a more
faithful evaluation of a model’s ability to integrate and reason over longer video contexts.

Table 4: LLM-rater and inter-rater agreement study results. R1, R2, R3 and MV correspond to the
three human raters and their majority vote. Acc. denotes the mean accuracy of the 100 questions.

LLM-R1 LLM-R2 LLM-R3 LLM-MV R1-R2 R1-R3 R2-R3

κ 0.86 0.80 0.93 0.95 0.71 0.80 0.78

LLM R1 R2 R3 MV

Acc. 28% 33% 26% 31% 30%

4.4 HUMAN STUDY OF LLM JUDGE VALIDITY

To study the robustness and correctness of our LLM judges, we provide a human-LLM agreement
study based on four models: GPT-4.1, Gemini-2.5-Flash, Qwen2.5-VL and Mantis-Idefics2. For
each model, we randomly sample 25 questions from VideoEval-Pro along with the corresponding
model-generated answers, resulting in a total of 100 QA pairs. These QA pairs are then evaluated by
three human raters using the same evaluation format employed by the LLM-based judges. Finally, we
compute the human-LLM agreement and inter-rater agreement using Cohen’s kappa (κ) coefficients.
We show the κ value between LLM and each human rater (R1, R2, R3) and their majority vote
(MV), as well as between each pair of human raters in Table 4. We also include the final evaluated
accuracy for the LLM judge, the human raters and their majority vote in the same table. Our human
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MCQ Question: At the beginning of the video, what kind of
vehicle is the man riding? A. Camel cart, B. Donkey cart, C. Horse
carriage, D. Ox cart

VideoEval-Pro: At the beginning of the video, what kind of vehicle
is the man riding?

VideoEval-Pro: What is at the remembrance war memorial in
Toronto, Canada?

MCQ Question: What is at the Remembrance War Memorial in
Toronto, Canada? A. A fountain, B. Thousands of Canadian flags,
C. A large statue of a horse, D. A large statue of a soldier

Gemini-2.0-Flash: B. Thousands of Canadian flags

Gemini-2.0-Flash: That's not something that can be answered from
the provided video.  The video shows scenes from a movie, not the
Toronto Remembrance War Memorial.

Gemini-2.0-Flash: D. Ox cart Gemini-2.0-Flash: That’s a horse

Figure 4: Qualitative comparisons between VIDEOEVAL-PRO and the corresponding MCQ problems.

study results show a strong correlation between our LLM judge and human raters, with a κ score of
0.95 compared to the human majority vote. We also observe strong inter-rater agreement, with all κ
values for human rater pairs exceeding 0.7. As a result, the final aggregated accuracy provided by our
LLM judge is very similar to the human majority vote (28% vs. 30%). This high level of agreement
suggests that our LLM judge serves as a reliable automatic evaluator for our VIDEOEVAL-PRO.

4.5 QUALITATIVE ANALYSIS

We conduct a qualitative analysis using results from Gemini-2.0-Flash to better understand the
challenges posed by our VIDEOEVAL-PRO. We identify several interesting cases where the model
selects the correct answer in the MCQ setting but fails to produce accurate factual details in the
free-form response. The results are shown in Figure 4.

In the first example, the question asks about the appearance of the Toronto Remembrance War
Memorial. While Gemini correctly selects the answer “Thousands of Canadian flags” in the multiple-
choice (MCQ) format, it fails to produce the correct response in the open-ended setting. This suggests
that when MCQ options are available, the model may rely on common knowledge (Toronto and
Canada are associated), rather than engaging in detailed video analysis. In the second example,
although the model correctly identifies the option “Ox cart” in the MCQ format, it incorrectly
describes the content as “That’s a horse” in its open-ended response. This indicates that fine-grained
visual recognition in long videos remains a significant challenge for LMMs, and MCQ options may
provide cues that help the model circumvent this difficulty. This discrepancy suggests that the correct
MCQ answer may have been chosen through guesswork or elimination strategies rather than precise
analysis of the video content.

5 CONCLUSION

In this paper, we introduced VIDEOEVAL-PRO, a robust and realistic LVU benchmark designed to
faithfully evaluate LMM’s understanding and reasoning capabilities over long videos. Compared to
existing LVU benchmarks, VIDEOEVAL-PRO reformulates MCQ problems into open-ended questions,
preventing models from exploiting shortcuts inherent in the options and reducing performance
variations caused by the MCQ format. VIDEOEVAL-PRO also employs a rigorous data filtering
pipeline to eliminate questions with strong priors that allow LMMs to answer based on common
knowledge or stereotypical associations, without truly reading the video. By evaluating 21 proprietary
and open-source models, we find that VIDEOEVAL-PRO poses significant challenges to current video
LMMs, with the best-performing model GPT-4.1 achieving 40.8% accuracy. We also observe that, in
contrast to other LVU benchmarks where model performance tends to saturate with an increasing
number of input frames, performance on VIDEOEVAL-PRO consistently improves as more frames are
provided. These observations demonstrate that our VIDEOEVAL-PRO is a more reliable benchmark
to track the progress of long video understanding.
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REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our benchmark, we plan to release our evaluation set and the full
evaluation code in the future. For a better understanding of the resource requirements of running our
benchmarks, we provide detailed information on GPU usage and the amount of tokens required for
the proprietary API calls in Appendix D. We also list the necessary prompts used during our data
filtering and answer judging processes in Appendix E and F.
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Appendix

A DECLARATION OF LLM USAGE

In this paper, LLMs have been used for processing and filtering our benchmark datasets, as well
as judging the correctness of model responses. For these two tasks, we have included detailed
descriptions in Section 3. We further listed relevant LLM prompts for these tasks in Appendix E
and F. During paper writing, we applied LLMs to perform grammar checking and polish some
sentences, but LLMs are not significantly used in the overall paper writing process.

B LIMITATIONS

Our VIDEOEVAL-PRO employs the LLM-as-a-Judge paradigm and therefore inherits certain limita-
tions from this judging paradigm. Notably, LLM judges may exhibit biases from their training data,
which may affect their consistency and fairness during evaluation. We have applied data filtering
methods to filter out questions that are potentially hard to judge to avoid this situation, but we
cannot guarantee that all questions remain in VIDEOEVAL-PRO can all be judged without issues.
Furthermore, we apply a specific version of GPT-4o (GPT-4o-0806) to ensure the fairness of the
judgement, which could become outdated and eventually inaccessible after the model provider stops
its service.

C BROADER IMPACTS

Long video understanding is crucial for applications such as video surveillance and autonomous
driving. In real-world scenarios, models need to be properly evaluated in order to verify their
capability, reliability and trustworthiness before putting them into production. Failure to do so
may lead to critical impacts or even life-threatening scenarios (e.g. in autonomous driving). Our
VIDEOEVAL-PRO covers diverse question types and video content, providing a more reliable and
robust assessment of current models’ long video understanding capability, thereby enhancing the
credibility of LMMs in real-world applications.

D COMPUTE RESOURCES

We ran all experiments for open-source models on NVIDIA A800 GPUs. We use FlashAttention-2
(Dao, 2023) to accelerate the inference speed of the LMMs. As the main bottleneck for our evaluation
comes from the decoding speed of very long videos, we pre-extract all the video frames from
the source video and directly load the frame images during evaluation. A 7B-scale model takes
approximately 8-10 hours to finish evaluation on a single A800 80G GPU based on 256 frame inputs
and 15-20 hours based on 512 frames. For proprietary models with API calls, our evaluation translates
to approximately 25K input tokens per query for 256 input frames, resulting in 30M input tokens for
the full evaluation. Our LLM judge consumes another 10K input tokens per judgement request.

E PROMPT FOR ANSWERABILITY CHECKING

Here we provide the prompt for question answerability judging during the data filtering stage:

prompt = f"""You are helping filter a dataset of multiple-choice
questions based on their answerability from video content.

Your task is to determine whether a given question is answerable **based
solely on watching the video**, assuming you are familiar with its
content. The key criterion is: **can the question be answered
directly from the video, without relying on reading the answer
choices?**

Please return:
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- "Keep" if the question can be answered by someone who has watched the
video, even if the answer requires reasoning or summarizing visual or
auditory evidence.

- "Discard" if **any** of the following apply:
- The question requires **comparing or evaluating** the answer options.
- The question **depends on specific timestamps or time ranges** (e.g.,

"When does...?", "What happens between 01:00-01:30?").
- The question **relies on subtitle text, captions, or exact subtitle

timing** (e.g., "What is shown when the subtitle says...", "Which
subtitle appears when...").

Here is the question:
"{question}"
"""

F EVALUATION PROMPT FOR VIDEOEVAL-PRO

Here we provide the prompt used in LLM-as-a-Judge during the evaluation. The prompt is similar to
that of SimpleQA (Cao et al., 2025) with additional adjustments.

prompt = f"""Your job is to look at a question generated from the video,
a gold target, and a predicted answer, and then assign a grade of
either ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"]. First, I will give
examples of each grade, and then you will grade a new example. The
following are examples of CORRECT predicted answers. ‘‘‘ Question:
What is the name of the man’s child in the video? Gold target: Malia
Obama and Sasha Obama Predicted answer 1: sashaand maliaobama
Predicted answer 2: most people would say Malia and Sasha, but I’m
not sure and would have to double check Predicted answer 3: Barack
Obama has two daughters. Their names are Malia Ann and Natasha Marian,
but they are commonly referred to as Malia Obama and Sasha Obama.

Malia was born on July 4, 1998, and Sasha was born on June 10, 2001.
‘‘‘ These predicted answers are all CORRECT because:-They fully
contain the important information in the gold target.-They do not
contain any information that contradicts the gold target.-Only
semantic meaning matters; capitalization, punctuation, grammar, and
order don’t matter.-Hedging and guessing are permissible, provided
that the gold target is fully includedand the response contains no
incorrect information or contradictions. The following are examples
of INCORRECT predicted answers. ‘‘‘ Question: What is the name of the
man’s child in the video? Gold target: Malia and Sasha Predicted

answer 1: Malia. Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Barack Obama does not have any children.
Predicted answer 4: I think it’s either Malia and Sasha. Or it could
be Malia and Jackie. Or it could be Joey and Malia. Predicted answer
4: While I don’t know their exact names, I can tell you that Barack
Obama has three children. Predicted answer 5: It’s possible you may
mean Betsy and Olivia. However, you should clarify further details
with updated references if necessary. Is that the correct answer?
Predicted answer 6: It may be the case that Obama’s child is named
James. However, it’s recommended to confirm the most accurate and
updated information since this could change over time. This model may
not always reflect the most current information. ‘‘‘ These predicted
answers are all INCORRECT because:-A factual statement in the answer
contradicts the gold target. Incorrect statements that have some

hedging (e.g., "it is possible that", "although i’mnot sure, i think")
are also considered incorrect. The following are examples of

NOT_ATTEMPTED predicted answers. ‘‘‘ Question: What is the name of
the man’s child in the video? Gold target: Malia and Sasha Predicted
answer 1: I don’t know. Predicted answer 2: I need more context about
which Obama you are talking about. Predicted answer 3: Without

researching the web, I cannot answer this question. However, I can
tell you that Barack Obama has two children. Predicted answer 4:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Barack Obama has two children. I know that one of them is Malia, but
I’m not sure about the other one. ‘‘‘ These predicted answers are all
NOT_ATTEMPTED because:-The important information in the gold target

is not included in the answer.-No statements in the answer contradict
the gold target.

Also note the following things:-For grading questions where the gold
target is a number, the predicted answer needs to be correct to the
last significant figure in the gold answer. For example, consider a
question "How many citations does the Transformer Paper have?" with
gold target "120k". -Predicted answers "120k", "124k", and 115k" are
all CORRECT. -Predicted answers "100k" and "113k" are INCORRECT. -
Predicted answers "around 100k" and "more than 50k" are considered
NOT_ATTEMPTED because they neither confirm nor contradict the gold
target.-The gold target may contain more information than the
question. In such cases, the predicted answer only needs to contain
the information that is in the question.-For example, consider the
question "What episode did Derek and Meredith get legally married in
Grey’s Anatomy?" with gold target "Season 7, Episode 20: White
Wedding". Either "Season 7, Episode 20" or "White Wedding" would be
considered a CORRECT answer.-Do not punish predicted answers if they
omit information that would be clearly inferred from the question.-
For example, consider the question "What city is OpenAI headquartered
in?" and the gold target "San Francisco, California". The predicted

answer "San Francisco" would be considered CORRECT, even though it
does not include "California".-Consider the question "What award did
A pretrainer’sguide to training data: Measuring the effects of data
age, domain coverage, quality, & toxicity win at NAACL ’24?", the
gold target is "Outstanding Paper Award". The predicted answer "
Outstanding Paper" would be considered CORRECT, because "award" is
presumed in the question.-For the question "What is the height of
Jason Wei in meters?", the gold target is "1.73 m". The predicted
answer "1.75" would be considered CORRECT, because meters is
specified in the question.-For the question "What is the name of
Barack Obama’s wife?", the gold target is "Michelle Obama". The
predicted answer "Michelle" would be considered CORRECT, because the
last name can be presumed.-Do not punish for typos in people’s name
if it’s clearly the same name. -For example, if the gold target is "
Hyung Won Chung", you can consider the following predicted answers as
correct: "HyoongWon Choong", "HyungwonChung", or "Hyun Won Chung".

Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT
ATTEMPTED. Don’t apologize or correct yourself if there was a mistake;
we are just trying to grade the answer.

‘‘‘
Question:{question}
Goldtarget:{target}
Predictedanswer:{predicted_answer}
‘‘‘
Grade the predicted answer ofthe question as one of: A: CORRECT B:

INCORRECT C: NOT_ATTEMPTED Just return the letter "A", "B", or "C",
with no text around it.

"""

G SOURCE DATASETS FOR VIDEOEVAL-PRO

LVBench (Wang et al., 2024a) is a benchmark developed to evaluate the capability of video LMMs
in understanding extremely long videos. It comprises 1,549 QA pairs with videos averaging 4,101
seconds in length. The evaluation spans six core dimensions: (1) temporal grounding, identifying
precise moments in the video; (2) video summarization, condensing key information; (3) video
reasoning, drawing logical inferences; (4) entity recognition, detecting people, objects, or places; (5)
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event understanding, interpreting event sequences and significance; and (6) key information retrieval,
extracting crucial facts. The full test set is used for the construction of VIDEOEVAL-PRO.

Video-MME (Fu et al., 2024) targets the evaluation of video-level reasoning in LMMs across six
visual domains, containing 900 videos and 2,700 questions. Videos are categorized into short,
medium, and long based on length (median durations: 26s, 164.7s, and 890.7s). Two settings are
offered: (1) with subtitles and (2) without subtitles. When doing experiments and constructing
VIDEOEVAL-PRO, our study adopts the subtitle-free setting to better evaluate pure video-based
reasoning, avoiding reliance on textual cues.

MLVU (Zhou et al., 2024) assesses long video understanding across diverse genres and tasks. It
includes both multiple-choice and free-form questions. Evaluations are conducted on three levels:
(1) holistic understanding, requiring global context comprehension; (2) single-detail understanding,
focusing on brief segments; and (3) multi-detail understanding, reasoning across multiple segments.
For the construction of the VIDEOEVAL-PRO, we collect questions from both the development and
test sets.

LongVideoBench (Wu et al., 2024) is a large-scale benchmark featuring 3,763 videos and 6,678
human-written multiple-choice questions spanning 17 fine-grained categories. It supports two input
formats: (1) a standard format where video tokens precede the question, and (2) an interleaved format
where subtitles are inserted between video frames. We adopt the standard format in our work and
collect questions from the validation split.

H VIDEOEVAL-PRO TASK SUBTYPE DESCRIPTION

Local Perception (LP): This category emphasizes the model’s ability to identify and extract visual
elements or actions from brief segments of a long video. It typically requires fine-grained recognition
of localized content. The subtypes include:

• Segment QA: Answering questions based on a specific video segment.
• Needle-In-A-Haystack (NIAH) QA: Locating and answering questions based on a tiny slice

video segment, which is non-relevant to other video content.
• Attribute Perception: Recognizing specific visual attributes (e.g., color, texture, emotion).
• Action Recognition: Identifying short-term physical actions.
• Object Recognition: Detecting and identifying objects within scenes.
• Entity Recognition: Recognizing named entities like people, places, or organizations.
• Key Information Retrieval: Extracting critical event information from segments.
• Other: A combination of less frequent perception-focused tasks.

Local Reasoning (LR): This category focuses on inference-making within short temporal contexts.
It involves reasoning over nearby frames to understand short-term causal relationships or event
progressions. The subtypes include:

• Egocentric Video Reasoning: Reasoning from a first-person point of view.
• Object Reasoning: Drawing logical connections based on object states or interactions.
• Temporal Reasoning: Understanding time-based sequences or ordering of events.
• Action Reasoning: Inferring causality or outcomes of human actions.

Holistic Perception (HP): Tasks in this category demand an overall understanding of visual structures
or statistical patterns throughout the entire video. It involves aggregation across the video rather than
localized snapshots. The subtype is:

• Visual Counting: Estimating quantities of repeated patterns or events across the video.

Holistic Reasoning (HR): This category targets abstract reasoning over an entire video narrative. It
often requires understanding intent, storyline, or the relationships among multiple scenes or events.
The subtypes include:
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• Event Understanding: Recognizing and interpreting sequences of high-level events.
• Plot Reasoning: Understanding the underlying narrative or logic connecting video segments.
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