
Simple linear attention language models balance the recall-throughput tradeoff

Simran Arora * 1 Sabri Eyuboglu * 1 Michael Zhang * 1 Aman Timalsina 2 Silas Alberti 1 Dylan Zinsley 2

James Zou 1 Atri Rudra 2 Christopher Ré 1

Abstract
Recent work has shown that attention-based lan-
guage models excel at recall, the ability to ground
generations in tokens previously seen in context.
However, the efficiency of attention-based mod-
els is bottle-necked during inference by the KV-
cache’s aggressive memory consumption. In this
work, we explore whether we can improve lan-
guage model efficiency (e.g. by reducing mem-
ory consumption) without compromising on re-
call. By applying experiments and theory to a
broad set of architectures, we identify a key trade-
off between a model’s state size and recall abil-
ity. We show that efficient alternatives to atten-
tion (e.g. H3, Mamba, RWKV) maintain a fixed-
size recurrent state, but struggle at recall. We
propose BASED a simple architecture combining
linear and sliding window attention. By vary-
ing BASED window size and linear attention fea-
ture dimension, we can dial the state size and
traverse the Pareto frontier of the recall-memory
tradeoff curve, recovering the full quality of at-
tention on one end and the small state size of
attention-alternatives on the other. We train lan-
guage models up to 1.3b parameters and show that
BASED matches the strongest sub-quadratic mod-
els (e.g. Mamba) in perplexity and outperforms
them on real-world recall-intensive tasks by 10.36
accuracy points. We further develop IO-aware
algorithms that enable BASED to provide 24×
higher throughput on language generation than
FlashAttention-2, when generating 1024 tokens
using 1.3b parameter models. Overall, BASED ex-
pands the Pareto frontier of the throughput-recall
tradeoff space beyond prior architectures.

*Equal contribution 1Stanford University 2University of Buffalo.
Correspondence to: Simran Arora <simarora@stanford.edu>,
Sabri Eyuboglu <eyuboglu@stanford.edu>, Michael Zhang
<mzhang20@stanford.edu>.

Proceedings of the 2nd Efficient Systems for Foundation Models
Workshop at the International Conference on Machine Learning
(ICML), Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
The choice of sequence mixer (e.g. attention, convolu-
tion) in a language model affects both its quality and ef-
ficiency (Arora et al., 2023a; Vaswani et al., 2017). Prior
work shows that attention excels at recall, the ability to
ground generations in previously seen tokens (Olsson et al.,
2022; Arora et al., 2023a). On the other hand, the throughput
of attention-based models is bottle-necked during training
by quadratic compute complexity and during inference by
aggressive memory consumption. The natural question is:
can we improve the real-world speed and memory-use of
language models without comprising on quality?

Recently, a number of architectures have been proposed
that enable substantially higher throughput while competing
with attention in perplexity (Wang et al., 2022; Gu and Dao,
2023; Yang et al., 2023; Poli et al., 2023; Peng et al., 2023).
However, coarse metrics like overall perplexity can obscure
important differences in model quality. For example, recent
work shows that a specific class of architectures, gated-
convolutions, despite complexity scaling sub-quadratically
in sequence length, are asymptotically less efficient than
attention at performing recall (Arora et al., 2023a). Building
on this analysis, we evaluate a broader class of architectures
across real-world recall-intensive tasks and show attention
improves over a currently-popular attention-free alternative,
Mamba, by 32.2 accuracy points (Table 1). 1

Motivated by these observations, we explore the Pareto fron-
tier of the tradeoff between high-recall and high-throughput
models. We evaluate a range of architectures on a popu-
lar synthetic associative recall task (Arora et al., 2023a;
Fu et al., 2023a; Olsson et al., 2022). Since generation
throughput is bottle-necked by memory consumption, we
vary hyperparameters (e.g. model dimension) that affect the
size of the recurrent state during generation and demonstrate
a fundamental recall-memory tradeoff that holds across ar-
chitecture classes (Figure 2). Attention performs associative
recall perfectly, but the recurrent state (i.e. the KV-cache)
grows linearly with the sequence length. Sliding window

1Examples of recall-intensive tasks include information extrac-
tion, reading comprehension, summarization and code generation.
These require using in context information (contrasting memorized
information) during generation.

1

Simple linear attention language models balance the recall-throughput tradeoff

Figure 1.BASED overview. Combining linear attention withtiny sliding window softmax attention (e.g., 64 or 128 tokens in width)
enables improved recall accuracy with limited ef�ciency overhead vs. smaller tile sizes. (Left) Time to execute Cutlass GEMMs (y) vs.
sliding window attention size (x), with batch size512on tensor cores. (Center)Model recall accuracy (y) vs. sliding window attention
size (x). We compare linear attention alone (dark blue), sliding window attention alone (light blue), and their combination (BASED,
orange). (Right) Schematic diagram of BASED illustrating how the two components complement each other.

attention (SWA) can cap the size of the recurrent state at the
cost of worse long-range recall (Jiang et al., 2023). However,
Mamba, a recently proposed SSM architecture expands the
Pareto frontier beyond SWA. This begs the question:are
there other, perhaps simpler, models that can also expand
the Pareto frontier?

To reduce the memory consumption, we consider using two
simple techniques: SWA and softmax-approximating linear
attention. Our results on language modeling (Table 1) and
synthetic recall experiments (Figure 1, center) suggest nei-
ther primitive alone suf�ces to navigate the Pareto frontier.

1. We �nd that linear attentionalone struggles to solve
associative recall (Figure 1, center). We hypothesize
that this is because linear attention lacks the precision
to perform local token shifts and comparisons (Fu et al.,
2023a; Arora et al., 2023a).

2. In sliding window attention, associative recall range is
limited by the width of the windows (Figure 1, center).
As we increase the window size, the recurrent state grows
linearly and has a non-linear affect on speed during par-
allel training and inference (Figure 1, left).

We combine these two techniques into a single architec-
ture, which we callBASED (Figure 1, right). We �nd that
SWA and linear attention complement each other, enabling
BASED to expand the pareto frontier of the recall-memory
tradeoff (Figure 2). We suspect that (1) the large recurrent
memory of linear attention could help model long-range
token interactions in the sequence and (2) SWA handles the
precise local shifts needed to perform associative recall.

To makeBASED competitive with SoTA attention (Dao,
2023) and recurrent (Gu and Dao, 2023) models under
wall-clock and throughput metrics, we introduce several
IO-aware optimizations.

1. Despite the theoretical ef�ciency bene�ts,linear at-
tention implementations are oftenslower than well-
optimized attention implementations (Dao et al., 2022).
In BASED, we use the 2nd-order Taylor approximation
of softmax as the linear attention feature map. With
sequence lengthN and head dimensiond, this nä�vely
requiresO(Nd3) time and space complexity (Zhang
et al., 2024; Keles et al., 2023). To make our attention
competitive in real-world wall-clock time and memory
usage, we provide hardware-ef�cient CUDA algorithms
for generation pre�ll (Algorithm 1) and decoding (Algo-
rithm 2). Relative to the baseline, our algorithm reduces
data movement from HBM (slower-to-access memory) to
SRAM (faster-to-access memory) byO(Nd2) bytes and
from SRAM to register byO(Nd3) bytes (Section 5).

2. Sliding window attentionexploits tensor cores, special-
ized units on modern GPUs for performing matrix mul-
tiplications (GEMMs). While popular architectures use
long window sizes (e.g. 4096 for Mistral-7B (Jiang et al.,
2023)), we choose small64� 128windows, guided by
hardware properties. In particular, it is important to keep
the GPU tensor core occupancy high, while avoiding
window sizes that drastically increase latency. Although
tensor cores operate on16� 16 tiles, in Figure 1 (left),
we see that the latency for performing16� 16vs. 64� 64
(or even128� 128) dimension matrix multiplications
is similar because in the former setting, the tensor cores
are not fully occupied. Beyond128, the latency starts
increasing quadratically with dimension.

In experiments, we show thatBASED competes in qual-
ity with strong Transformer++ (Touvron et al., 2023) and
SoTA sub-quadratic baselines in models up to the 1.3Bn
parameters across language modeling on the Pile language,
DNA modeling, and the LM Eval Harness (Gao et al., 2023).
Beyond this,BASED outperforms a strong sub-quadratic

2

Simple linear attention language models balance the recall-throughput tradeoff

architecture, Mamba, on the associative recall slice of the
Pile and in downstream recall-intensive tasks by10:36ac-
curacy points. In ef�ciency,BASED enables up to24�
higher throughput than the strong FlashAttention-2 imple-
mentation on generation. Code for this work is provided at:
https://github.com/HazyResearch/based .

2. Preliminaries and Related Work
We discuss the key relevant work in this section and provide
an extended discussion in Appendix A.

Attention Thede factolanguage modeling primitive, soft-
max attention (Vaswani et al., 2017) takes inputsx 2 RN � d

of lengthN and head dimensiond, and computes outputs
y 2 RN � d via the softmax over projectionsq; k ; v =
xW q; xW k ; xW v , i.e.,

y i =
iX

j =1

exp(q>
i k j =

p
d)v j

P i
m =1 exp(q>

i km =
p

d)
(1)

in the causal case whereW q; W k ; W v 2 Rd� d are learn-
able matrices . While effective at recall (Arora et al., 2023a)
and ef�cient to train (Eq 1 is parallelizable on GPUs and
O(N) in memory with recent advances (Dao et al., 2022)),
attention remains expensive for generation. For every new
outputyn , we requirend operations over a growingKV-
cacheof prior f k i ; v i gn � 1

i =1 . This results in larger memory
consumption and lower-throughput for longer sequences.

Ef�cient attentions Various works thus try to improve
on attention's ef�ciency without sacri�cing quality.Sparse
attentionsreduce attention's time and memory requirements
by only attending over speci�c strided patterns or localslid-
ing windows(Parmar et al., 2018; Child et al., 2019; Beltagy
et al., 2020). While further popularized in large language
models (Mistral, Jiang et al. (2023)), prior works either un-
derperform full attention with sparse patterns that fail to
capture dense interactions, or use large window sizes that
still permit large KV-caches and subsequent inef�ciency.

Meanwhile,linear attentionsreplace the softmax in standard
attention with alternative kernel functions (Katharopoulos
et al., 2020a; Choromanski et al., 2020; 2021; Qin et al.,
2022a; Keles et al., 2023). By removing theexp(q> k) in
favor of feature map dot-products� (q)> � (k), these meth-
ods use matrix product associativity to compute attention
in O(Nd2) time and space (Katharopoulos et al., 2020b).
Furthermore, they permit arecurrent viewfor constant mem-
ory andO(1) time per-token generation (Kasai et al., 2021;
Schlag et al., 2021). However, present linear attention fea-
ture maps either fail to match standard attention on recall
or remain expensive to compute (Zhang et al., 2024). Lin-
ear attentions are slower in wall-clock time compared to
optimized attention implementations (Dao et al., 2022).

The line of work studying how to combine sparse and linear

attention into a single layer is also closely related to our
work (Zaheer et al., 2020; Beltagy et al., 2020; Chen et al.,
2021a; Zeng et al., 2022).

Attention alternatives Finally, various models use
attention-free sequence mixers such as state-space models
(SSMs) (Gu et al., 2021; Sun et al., 2023), gated convolu-
tions (Fu et al., 2023a; Poli et al., 2023) and input-dependent
recurrences (Peng et al., 2023; Gu and Dao, 2023) to rival
attention performance while improving its ef�ciency. How-
ever, while recent such models can match attention in overall
perplexity, further study suggests they may underperform
Transformers on tasks such as recall and in-context learn-
ing (Arora et al., 2023a; Akÿurek et al., 2024).

3. No Free Lunch: Memory-Recall Tradeoff

In this section, we demonstrate a fundamental tradeoff be-
tween a model's memory consumption during inference (i.e.,
the size of its recurrent state) and its capacity to perform
recall. We use a combination of experiments on synthetic
data and theoretical analysis.

• Empirical study of memory-recall tradeoff : In Sec-
tion 3.1, we evaluate a number of popular architecture
classes (e.g.Mamba, Hyena) on a synthetic associative re-
call task, varying hyperparameters that affect the model's
recurrent state size (Figure 2). Within each architecture
class, we observe a clear tradeoff: the larger the recur-
rent state size, the better recall. However, for a �xed
recurrent state size, performance is not consistent across
architectures. We observe that some sequence mixers fall
well-below the Pareto-frontier. This motivates the design
of sequence mixers that can expand the Pareto frontier.

• Lower bounds on memory required for recall: In Sec-
tion 3.2, we lower bound the recurrent state size required
to perform exact recall withanyrecurrent model Theo-
rem F.6. This analysis reinforces our empirical observa-
tions on the throughput-recall tradeoff.

3.1. Empirical study of memory-recall tradeoff

Setup. We use a synthetic AR task called Multi-Query
Associative Recall (MQAR) (Arora et al., 2023a) to demon-
strate the trade-off. In this task, input sequences consist
of a number of key-value pairs followed by queries. For a
given query, the model must recall the corresponding key-
value pair from earlier in the sequence in order to predict
the next token. For example, the correct output for input
below would be 4, 6, 1, 2, 3:

A 4 B 3 C 6 F 1|{z}
Key-Value

E 2 ! A ? C ? F ?|{z}
Query

E ? B ?

3

Simple linear attention language models balance the recall-throughput tradeoff

Figure 2. Throughput (memory) - recall tradeoff. x-axis shows
state size (bytes) during generation;y-axis shows accuracy on
the MQAR MQAR recall task (Arora et al., 2023a). For each
architecture, we train several models varying hyperparameters that
affect the recurrent state size (e.g. model dimension). The plot
shows a fundamental tradeoff between the recurrent state size and
recall capacity that applies to broad class of models (Arora et al.,
2023a; Gu and Dao, 2023; Fu et al., 2023a).

We train on sequences of length 256 tokens containing be-
tween 4 and 64 key-value pairs. During evaluation, we
measure accuracy on sequences of length 1,024 tokens con-
taining between 4 and 256 key-value pairs.

We train and evaluate six sequence mixers: atten-
tion (Vaswani et al., 2017), sliding window attention (Belt-
agy et al., 2020), Mamba (Gu and Dao, 2023), H3 (Fu et al.,
2023a), Hyena (Poli et al., 2023), andBASED. For each, we
vary hyperparameters that affect the memory consumption
during inference (e.g., in sliding window attention we vary
the window width). We measure howMQAR accuracy
varies with the size of the recurrent state and Appendix E.1
contains details on how state sizes are calculated.

Figures 2 and 3 can be reproduced or extended to new archi-
tectures using the scripts provided athttps://github.
com/HazyResearch/zoology .

Results In Figure 2, we demonstrate a fundamental trade-
off between recurrent state size and accuracy onMQAR
that holds within and across architecture classes. Within
each architecture class (e.g. H3 models), increasing the

recurrent state size almost always leads to an improvement
in accuracy. Across architecture classes, we see a tradeoff
as well. Attention achieves perfect recall accuracy, but its
recurrent state size grows with the length of the sequence.
Other architecture classes like Mamba and H3 admit models
with much smaller recurrent states, but these models have
limited recall capacity.

Given a �xed recurrent state, not all architectures have the
same recall capacity. Among architectures proposed in
prior work, Mamba makes the best use of a limited memory
budget. Notably, architectures with a convolutional view
(e.g.Hyena and H3) fall well below the Pareto frontier. Our
proposed architecture,BASED (introduced in Section 4),
expands the Pareto-frontier beyond Mamba. By varying
hyper-parameters that determine its state size (e.g.feature
dimension and model dimension), we can smoothly navigate
the tradeoff between ef�cient models and memory-hungry
models with high recall capacity.

3.2. Theoretical Analysis

Our theoretical analysis provides further insight into the
empirical observations described above. First, using results
from communication complexity theory, we show that the
recall capacity ofanycausal model (e.g.Mamba, Attention)
is bounded by the size of its recurrent state (Theorem F.12
in Appendix F).

Theorem 3.1. Any recurrent model2 depending causally on
input u 2 f 0; 1gN � d requires
(N)-bits3 in state size to
solveMQAR .

This result suggests that the tradeoff observed in Figure 2 is
fundamental, not an artifact of architectural quirks.

Next, we focus ongated-convolutions, a broad class of ar-
chitectures built from gating and convolutions (e.g. H3,
Hyena, RWKV v4). To make progress in theoretically an-
alyzing the broad set of gated convolution proposals, prior
work develops acanonicalgated-convolution, referred to as
BaseConv which can provably simulateanyarchitecture
built from gating and convolution primitives.

Building on this work, we show thatBaseConv cannot
solveMQAR in constant-many layers (Theorem F.19 and
Theorem F.29 in Appendix F).

Theorem 3.2. Given an input sequenceu 2 f 0; 1g3N � d,
whereN andd denote the sequence length and head dimen-
sion, respectively, a data-independentBaseConv model
needslog(2d)-layers to solveMQAR for d = log 2(c),
wherec denotes the vocabulary size4.

2For Mamba (Gu and Dao, 2023), see Corollary F.13.
3Here, we need the entries of the state to be bounded.
4That is, each token from the vocabulary has the natural binary

encoding inf 0; 1glog 2 (c)

4

