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ABSTRACT

Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek-
R1) have led to remarkable improvements through long Chain-of-Thought (CoT).
However, existing benchmarks mainly focus on immediate, single-horizon tasks,
failing to adequately evaluate models’ ability to understand and respond to complex,
long-horizon scenarios. To address this incomplete evaluation of Large Reasoning
Models (LRMs), we propose R-HORIZON, a method designed to stimulate long-
horizon reasoning behaviors in LRMs through query composition. Based on
R-HORIZON, we construct a long-horizon reasoning Benchmark, comprising
complex multi-step reasoning tasks with interdependent problems that span long
reasoning horizons. Through comprehensive evaluation of LRMs using the R-
HORIZON Benchmark, we find that even the most advanced LRMs suffer significant
performance degradation. Our analysis reveals that LRMs exhibit limited effective
reasoning length and struggle to allocate thinking budget across multiple problems
appropriately. Recognizing these limitations, we use R-HORIZON to construct long-
horizon reasoning data for reinforcement learning with verified rewards (RLVR).
Compared to training with single-horizon data, RLVR with R-HORIZON not only
substantially improves performance on the multi-horizon reasoning tasks, but
also promotes accuracy on standard reasoning tasks (+7.5 on AIME2024). These
results position R-HORIZON as a scalable, controllable, and low-cost paradigm for
enhancing and evaluating the long-horizon reasoning capabilities of LRMs.

0.00

0.50

1.00

R
1-

Q
w

en
-7

B

MATH500

0.00

0.20

0.40

AIME24

0.00

0.25

0.50

0.75

AMC23

0.40

0.60

0.80

1.00

R
1-

Q
w

en
-3

2B

0.00

0.20

0.40

0.60

0.25

0.50

0.75

1 2 4 8 16

Composed Query Num

0.85

0.90

0.95

D
ee

pS
ee

k-
R

1

1 2 3 4 5

Composed Query Num

0.60

0.80

1 2 4 6 8

Composed Query Num

0.80

0.90

1.00

Accuracy Expected Accuracy

Figure 1: Actual versus expected accuracy of R1-series models on R-HORIZON datasets.
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1 INTRODUCTION

Recent advances in reasoning-focused language models, exemplified by OpenAI’s o1 (OpenAI et al.,
2024) and DeepSeek-R1 (Guo et al., 2025), have established test-time scaling as a fundamental
component for enhancing reasoning abilities in large reasoning models (LRMs). Specifically, test-time
scaling enables long Chain-of-Thought (CoT) (Wei et al., 2023) and induces sophisticated reasoning
behaviors, leading to remarkable improvements on challenging reasoning tasks like mathematical
reasoning (He et al., 2025b; Yu et al., 2025; Yue et al., 2025; Zeng et al., 2025), code generation (Luo
et al., 2025a; Zeng et al., 2025) and agentic tasks (Team et al., 2025b;a).

By continuously expending computational resources throughout the reasoning process, models with
longer reasoning trajectories achieve superior performance on various reasoning benchmarks (Muen-
nighoff et al., 2025), yet this simultaneously exposes critical limitations in current training and
evaluation paradigms. Existing training and evaluation datasets (Cobbe et al., 2021; Hendrycks et al.,
2021; Jain et al., 2024) primarily confine themselves to the reasoning of isolated problems, focusing
on immediate single-horizon tasks where questions and answers remain independent of each other.
However, real-world scenarios often require an AI agent to reason, plan, and act over an extended
series of steps, sometimes thousands or even millions, where inference must span across multiple
sequential and potentially interdependent problems (Yao et al., 2024; Tao et al., 2025). Single-horizon
evaluation paradigms cannot effectively assess the ability of a model to understand and respond to
complex, multi-horizon tasks or scenarios that require a sequence of logical steps over a longer period
of time. Moreover, conventional reinforcement learning (RL) typically focuses on single, isolated
problems, preventing models from developing long-horizon reasoning capabilities to tackle multiple
problems through the RL process. The incomplete picture of training and evaluation paradigms raises
a fundamental question: How far can large reasoning models really go in breadth and depth?

In this study, we propose R-HORIZON, a simple yet effective method to stimulate long-horizon reason-
ing behaviors in LRMs through query composition. This method aims to construct dependencies and
concatenate existing single-horizon tasks, transforming isolated problems into complex multi-horizon
reasoning scenarios. For instance, in mathematical tasks, we first extract key information from all
problems, then establish dependencies by linking one problem’s answer to another problem’s critical
information, requiring models to solve multiple problems sequentially to obtain all correct answers.
To address the limitations of current training and evaluation paradigms, we leverage this method
to establish an evaluation benchmark and training data to evaluate and enhance the long-horizon
reasoning capabilities of LRMs.

We first establish R-HORIZON benchmark, which comprises 6 representative datasets across math-
ematics, code generation, and agent applications (e.g. MATH500 (Hendrycks et al., 2021), Live-
CodeBench (Jain et al., 2024), WebShaper (Tao et al., 2025)). Through evaluating 26 LRMs, we
find that even the most advanced LRMs suffer significant performance degradation on R-HORIZON
benchmark. The performance in multi-horizon reasoning scenarios falls substantially below the
expected performance (Section 3.2) in Figure 1. Further analysis reveals critical limitations of current
LRMs that contribute to the performance gap: (1) LRMs possess a limited effective reasoning length,
with performance declining sharply once the thinking budget exceeds this threshold. (2) LRMs exhibit
constrained reflection scope—LRMs often reflect within the current problem, failing to identify errors
from previous questions. (3) The overthinking phenomenon (Chen et al., 2025) in LRMs prevents the
appropriate allocation of thinking budget when facing multiple reasoning problems.

To address the absence of long-horizon problems in current RL training data, we leverage R-
HORIZON to reconstruct training datasets and design different reward functions, then conduct
reinforcement learning with verified rewards (RLVR) with varying composed problems and reward
schemes to investigate the impact of long-horizon reasoning data on the training process. By
employing mainstream RLVR algorithms GRPO (Shao et al., 2024) with R-HORIZON, we observe
that traditional RLVR provides limited improvements on multi-step reasoning tasks. In contrast,
training with R-HORIZON data is a highly efficient training approach that not only enhances single-
problem performance more effectively but also rapidly improves performance on multiple problems.
Our analysis demonstrates that training with R-HORIZON also improves response length efficiency
and thinking budget allocation. In summary, R-HORIZON mitigates the current limitations of long-
horizon reasoning in training and evaluation paradigms—offering a scalable, controllable and low-cost
path to improve and evaluate the long-horizon abilities of LRMs.
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2 RELATED WORK

2.1 TEST TIME SCALING IN LARGE REASONING MODELS

The success of OpenAI’s o1 introduced a new scaling paradigm, test-time compute scaling, which
improves performance through increasing inference computation (OpenAI et al., 2024). However,
recent studies reveal that LRMs may generate verbose reasoning trajectories with marginal accuracy
gains. Chen et al. (2025) reveals the “overthinking” phenomenon, showing that LRMs generate
significantly more tokens than conventional LLMs on simple arithmetic tasks, with minimal increase
in accuracy. To address this, Aggarwal & Welleck (2025) proposed length-controlled policy opti-
mization, providing precise control over the length of the reasoning trajectories during generation.
Yang et al. (2025b) developed a thinking-optimal scaling strategy, allowing models to flexibly adjust
their reasoning depth according to the available test-time compute budget. Recent studies have
also focused on fine-tuning models to think efficiently according to task complexity (Hao et al.,
2024; Liu et al., 2025; Fang et al., 2025; Arora & Zanette, 2025; Zhang et al., 2025). In agentic
tasks, overthinking also reduces performance while increasing inference costs (Cuadron et al., 2025).
Although previous studies indicate that overthinking leads to computational inefficiency with limited
performance gains, our findings reveal that prolonged reasoning substantially degrades performance
on compound multi-step reasoning tasks.

2.2 EFFECTIVE REASONING LENGTH OF LARGE REASONING MODELS

Recent studies explore the effective reasoning length of LRMs in mathematical benchmarks (i.e.,
GSM8k (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021) and AIME (AIME, 2024; 2025)).
Su et al. (2025); Yang et al. (2025b); Wu et al. (2025b) investigate the relationship between reasoning
length and accuracy. Su et al. (2025) finds that models fail to adaptively calibrate their response
length according to the problem difficulty. Wu et al. (2025b); Ghosal et al. (2025); Chen et al. (2024)
demonstrate the existence of an optimal CoT length beyond which performance degrades. By directly
concatenating multiple independent questions, NEST (Pan et al., 2025) reveals that LRMs fail to keep
their performance under multi-context stress. However, these tasks either focus on a single problem or
concatenate independent problems without meaningful logical dependencies. In contrast, we design
multi-dependent synthetic tasks to expose failure modes amplified by extended reasoning, consistent
with findings that reasoning chains exceeding optimal length reduce accuracy. GSM-Infinite (Zhou
et al., 2025) builds dependencieSs within a computational graph across problems, but it mainly focus
on long-context input. However, R-HORIZON focuses on scenarios with short inputs but long outputs
with long CoT, which more closely match real reasoning scenarios.

3 R-HORIZON

We propose R-HORIZON, a method designed to stimulate long-horizon reasoning behaviors in LRMs
via query composition. As illustrated in Figure 2, R-HORIZON supports the concatenation of three
types of expanded questions and can be employed in both the training and evaluation stages to
enhance and evaluate the long-horizon capabilities of LRMs.

3.1 R-HORIZON DATASETS CONSTRUCTION

For mathematical tasks, we adopt the sequentially composed concatenation to construct a dataset
of multi-step mathematical problems with explicit dependencies that enforce sequential solving.
The construction pipeline consists of two stages: seed problem filtering and expanded problem
composition. For code and agentic tasks, we provide the construction process in Appendix A.

Seed Problem Filtering Given an initial dataset D = {(qi, ai)}Ni=1 where (qi, ai) is a pair of a
question and an answer. We apply the following filtering criteria to obtain a seed set Dseed:

Dseed = {(q, a) ∈ D | |I(q)| > 0 ∧ a ∈ Z} , (1)
where I(·) = extract_int(·) denotes extracting all integers appearing in the input text.

For each (q, a) ∈ Dseed, we identify key variables from the extracted integers. We then employ a
model M to verify each interger m ∈ I(q) whether is a key variable:

K(q) = {m ∈ I(q) |M(q,m) = 1} , (2)
where M(q,m) = 1 indicates that removing m from q renders the problem unsolvable. Each filtered
seed problem is then represented as a triple (q, a,K(q)).
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Figure 2: The R-HORIZON data composition pipeline is illustrated in (a)-(c). We leverage R-
HORIZON to construct a comprehensive long-horizon reasoning evaluation benchmark spanning 6
tasks and generate multi-horizon training data for long-horizon reinforcement learning.

Expanded Problem Composition Given seed problems with annotated key variables, we construct
dependency chains using Algorithm 1. The algorithm ensures that each modified problem q′i+1
contains a placeholder variable vi+1 that must be resolved through the dependency function fi(ai) =
mi+1, requiring the solution ai from the previous problem. The augmentation step prepends the
dependency specification to the problem statement, making the sequential constraint explicit. The
final dataset Dcomposed consists of problem sequences that enforce strict sequential solving.

Algorithm 1: Dependency Chain Construction
Input: Seed problems {(q1, a1,K1), . . . , (qn, an,Kn)}
Output: Composed problem Q
Initialize Q ← [q1];
for i = 1 to n− 1 do

Select key variable mi+1 ∈ Ki+1 and create placeholder variable vi+1;
Define dependency function fi(x)← x+ (mi+1 − ai);
Substitute mi+1 with vi+1 in qi+1 to obtain q′i+1;
Augment q′i+1 with dependency constraint vi+1 = fi(ai);
Append q′i+1 to Q;

end
return Q = (q1, q

′
2, . . . , q

′
n);

3.2 R-HORIZON BENCHMARK

We use R-HORIZON to reconstruct existing evaluation datasets, combining different datasets through
problem filtering and composition approaches, and design evaluation metrics for composed problems.

Evaluation Metrics R-HORIZON evaluates model performance by extracting all answers from
the model’s response. Given a composed problem sequence Q = (q1, q

′
2, . . . , q

′
n) ∈ Dcomposed, we

extract the corresponding answer sequence Â = (â1, â2, . . . , ân) from the model’s responseR. We
use all-or-nothing scoring: correct only if all sub-problems are solved:

Acc(Q) =
{
1 if âi = ai for all i ∈ {1, . . . , n},
0 otherwise.

(3)

We also propose a metric to estimate its expected accuracy. For each (q, a) ∈ Dseed, we use the pass
rate of these atomic problems to estimate the expected accuracy of composed problems through:

Accexpected(Q) =
n∏

i=1

pi, (4)
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where pi is the pass rate of atomic problem qi. We use model-based extraction to handle diverse
response formats (details in Appendix E.2).

3.3 REINFORCEMENT LEARNING WITH R-HORIZON

To investigate the formation of long-horizon reasoning capabilities and understand how multi-step
dependent queries influence the reinforcement learning process, we employ R-HORIZON datasets
as training data for reinforcement learning from verifiable rewards (RLVR). We follow Skywork-
OR1 (He et al., 2025a) RLVR pipelines while utilizing our constructed training data.

Group Relative Policy Optimization (GRPO) We adopt GRPO (Shao et al., 2024) as our opti-
mization algorithm, which eliminates the value function requirement of PPO (Schulman et al., 2017)
by computing advantages in a group-relative manner. For each question q, the behavior policy πθold

samples a group of G response candidates {o1, . . . , oG}. We use GRPO with token-level policy
gradient loss, which optimizes the policy model by maximizing the following objective:

J GRPO(θ) = Eq,{oi}G
i=1

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

(
ri,tÂi,t, clip (ri,t, 1− ϵ, 1 + ϵ) Âi,t

)
− βDKL [πθ||πref]

}
,

(5)
where ri,t =

πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

, ϵ and β are hyperparameters, Âi,t is the advantage calculated based
on the relative rewards of the outputs inside each group only, and DKL denotes the KL divergence
between the learned policy and a reference policy πref.

Reward Design We design two reward schemes for multi-horizon training data:

Rlast =

{
1 if ân = an,

0 otherwise,
and Rall =

{
1 if âi = ai for all i ∈ {1, . . . , n},
0 otherwise.

(6)

Last-only reward Rlast provides feedback on the final answer only, while all-correct reward Rall
requires all intermediate steps to be correct. This distinction allows us to study how different reward
function influence the development of long-horizon reasoning capabilities.

4 EXPERIMENT

4.1 EVALUATION SETUP

Datasets For mathematical tasks, we construct MATH500 (Hendrycks et al., 2021),
AIME24 (AIME, 2024), AIME25 (AIME, 2025), and AMC23 (AMC, 2023) with multiple de-
pendent queries, using n ∈ {1, 2, 4, 8, 16, 20} for MATH500, n ∈ {1, 2, 4, 6, 8} for AMC23 and
n ∈ {1, 2, 3, 4, 5} for the more challenging AIME datasets. For code tasks, we reconstruct Live-
CodeBench (v5) 1 (Jain et al., 2024) with n ∈ {1, 2, 3, 4, 5}. For agentic tasks, we use Web-
Shaper (Tao et al., 2025) with multi-round tool calls for web search (n ∈ {1, 2, 3, 4, 5}). Details
about dataset statistics, evaluation metric, models, and prompt examples are in Appendix E.1.

Models We select 25 advanced LRMs to perform evaluation on our built R-HORIZON benchmark,
including the R1-distill series models (Guo et al., 2025), Qwen series (Yang et al., 2025a) models,
and Nemotron (Bercovich et al., 2025) series models. Model details are in Appendix E.1. We set the
generation length to 64k tokens to avoid truncation. More inference settings are in Appendix E.3.

4.2 EVALUATION RESULT

Performance Degradation as the Reasoning Horizon Increases As shown in Figure 3, we observe
that models across different categories experience performance degradation as the reasoning horizon
increases. Even the most powerful models, including DeepSeek-R1, Qwen3-235B-A22B-Thinking,
and o4-mini, suffer from severe performance degradation as the reasoning horizon increases. For
instance, on AIME25, DeepSeek-R1 drops from 87.3% (n = 1) to 24.6% (n = 5). Additionally, we
find that larger models exhibit less degradation when confronting composed problems, while smaller
models experience more severe performance degradation. For example, R1-Qwen-7B drops from
93.6% (n = 1) to 0% (n = 16), which is 34.1% more than the R1-Qwen-32B model.

1The time is ranged from August 2024 to May 2025.
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1 2 4 8 16

Qwen3-235B-Thinking
o4-Mini

DeepSeek-R1
Gemini-2.5-Pro

Qwen3-235B-Instruct
Gemini-2.5-FT

Claude-Sonnet-4
QwQ-32B

Qwen3-32B
Skywork-OR1-32B

R1-Llama-70B
R1-Qwen-32B

DAPO-Qwen-32B
Qwen3-8B

Nemotron-Nano-8B
Skywork-OR1-7B

Laser-DE-7B
R1-Llama7B

Efficient-R1-7B
R1-Qwen-7B

OpenThinker3-7B
Polaris-4B

Polaris-1.7B
Nemotron-Qwen-1.5B

DeepScale-1.5B
R1-Qwen-1.5B

99.6 99.0 97.2 97.4 93.4
98.4 96.8 90.8 85.0 73.4
99.0 98.6 96.8 91.2 82.8
97.6 94.0 84.0 70.4 64.6
98.8 96.4 93.4 90.0 70.2
98.4 92.6 80.2 67.8 45.6
86.6 89.0 82.2 69.4 50.8
97.8 94.2 86.4 76.2 54.2
98.4 94.2 88.6 81.8 60.2
97.6 93.0 88.6 80.2 56.4
94.8 83.0 74.6 58.4 25.6
97.5 93.0 83.0 65.4 38.0
94.4 87.8 71.8 54.2 23.0
97.8 94.8 86.6 72.4 41.4
95.6 88.4 69.8 42.6 4.6
96.8 90.2 56.0 11.6 0.0
93.0 80.6 51.8 17.2 0.4
88.2 70.6 47.0 25.4 2.4
89.4 76.2 45.2 11.4 9.4
93.6 83.2 43.6 11.8 0.0
89.0 75.8 39.0 7.2 0.0
97.0 94.0 85.8 73.2 23.6
95.4 91.2 71.0 46.4 6.6
91.6 84.4 22.6 0.0 0.0
87.4 77.6 14.0 0.4 0.0
87.4 56.6 10.4 0.0 0.0

Math500

1 2 3 4 5

93.7 81.3 57.9 69.8 69.2
82.3 63.6 40.4 44.1 30.5
89.0 76.7 46.4 60.1 52.8
82.0 59.1 43.8 53.1 40.7
82.3 66.6 32.0 34.6 20.0
74.3 46.1 20.1 18.4 12.0
46.3 34.1 32.8 31.0 8.9
75.9 51.8 20.9 23.6 19.4
81.3 51.7 26.9 27.6 22.7
79.8 53.1 27.0 27.8 23.0
59.1 40.0 11.1 9.3 4.7
57.3 39.6 14.0 11.2 8.2
55.3 19.5 2.8 1.6 1.5
76.6 46.0 18.4 19.5 14.1
60.8 29.5 4.0 2.0 0.7
65.7 25.5 1.8 0.1 0.0
47.3 18.6 0.9 0.1 0.0
26.8 12.1 0.6 0.2 0.0
44.2 18.0 0.9 0.1 0.0
48.3 16.4 1.1 0.1 0.0
45.7 11.2 0.5 0.1 0.0
72.5 43.8 12.2 13.0 2.0
49.5 18.6 2.9 0.6 0.1
50.7 7.5 0.0 0.0 0.0
37.5 5.5 0.2 0.0 0.0
18.4 2.9 0.0 0.0 0.0

AIME24

1 2 3 4 5

92.3 61.8 48.2 51.4 29.2
79.7 50.2 37.3 48.8 16.4
87.3 56.2 41.1 47.0 24.6
73.7 50.2 37.8 42.2 23.8
70.3 36.2 19.4 17.6 6.0
53.7 22.2 9.0 9.9 2.4
70.5 21.8 21.7 22.3 2.7
70.7 36.8 14.9 16.1 6.2
71.8 37.0 17.0 19.8 5.7
71.5 40.6 14.6 21.1 6.0
45.3 14.4 3.8 6.1 0.7
33.0 19.8 4.7 9.6 2.0
34.5 6.8 0.5 2.6 0.1
68.4 32.0 12.6 15.1 4.3
49.1 11.5 1.4 2.6 0.0
45.7 4.5 0.1 0.0 0.0
37.2 4.2 0.0 0.0 0.0
21.5 4.1 0.2 0.1 0.0
38.2 4.4 0.0 0.0 0.0
33.3 3.5 0.0 0.0 0.0
38.8 5.0 0.0 0.3 0.0
66.5 22.7 7.1 7.9 0.4
44.1 4.6 2.2 0.9 0.0
35.5 2.9 0.0 0.0 0.0
30.7 3.1 0.0 0.0 0.0
15.3 1.4 0.0 0.0 0.0

AIME25

1 2 4 6 8

Qwen3-235B-Thinking
o4-Mini

DeepSeek-R1
Gemini-2.5-Pro

Qwen3-235B-Instruct
Gemini-2.5-FT

Claude-Sonnet-4
QwQ-32B

Qwen3-32B
Skywork-OR1-32B

R1-Llama-70B
R1-Qwen-32B

DAPO-Qwen-32B
Qwen3-8B

Nemotron-Nano-8B
Skywork-OR1-7B

Laser-DE-7B
R1-Llama7B

Efficient-R1-7B
R1-Qwen-7B

OpenThinker3-7B
Polaris-4B

Polaris-1.7B
Nemotron-Qwen-1.5B

DeepScale-1.5B
R1-Qwen-1.5B

100.0 97.5 98.1 99.1 96.6
100.0 91.6 90.6 84.4 80.9
97.2 80.9 80.9 89.7 79.1
97.5 85.9 77.5 79.4 70.6
96.9 90.6 87.2 78.4 65.0
95.3 59.4 55.6 51.9 29.7
81.6 60.0 42.2 30.6 17.2
97.8 81.9 73.8 66.6 32.8
99.4 74.1 63.7 63.3 43.8
99.1 77.5 78.1 65.3 46.2
96.6 62.2 48.1 34.1 12.2
96.2 67.5 60.0 50.0 22.5
93.4 76.9 57.2 29.4 19.7
94.4 65.6 51.2 43.4 15.6
92.8 65.0 33.1 13.8 1.2
93.8 60.9 6.6 0.3 0.0
88.1 47.5 11.6 1.9 0.0
88.1 47.7 15.2 6.7 0.9
88.1 47.2 9.4 2.2 0.0
90.2 48.8 6.2 0.3 0.0
79.4 37.2 5.9 0.9 0.0
98.4 66.6 54.1 37.5 6.9
84.4 55.9 10.6 3.8 0.0
86.2 35.3 0.9 0.0 0.0
81.2 27.5 0.0 0.0 0.0
75.9 20.6 0.0 0.0 0.0

Composed Query Num

AMC23

1 2 3 4 5

77.8 35.8 23.3 10.8 9.0
76.3 39.8 20.1 13.3 10.0
74.9 35.5 16.9 7.9 5.0
68.8 33.3 15.4 6.5 3.6
57.0 23.3 10.8 5.4 3.2
45.5 18.6 6.8 1.4 1.1
50.9 11.8 4.3 2.5 1.4
59.9 13.3 0.0 1.1 0.0
33.3 16.1 10.0 6.5 2.1
64.5 22.9 11.5 4.3 2.9
57.0 19.4 9.3 3.2 2.1
59.1 21.1 7.5 3.6 1.4
30.8 0.0 0.0 0.0 0.0
58.1 44.4 34.8 26.2 19.7
47.7 0.0 0.0 0.0 9.0
20.1 0.0 0.0 0.0 0.0
36.6 7.9 2.9 2.1 0.7
38.0 3.9 0.4 0.0 0.0
36.6 1.8 0.0 0.0 0.0
39.1 0.4 0.0 0.0 0.0
27.2 7.2 3.6 2.5 0.7
58.4 12.9 4.3 1.4 0.4
39.4 13.6 5.4 2.5 1.8
27.2 0.0 0.0 0.0 0.0
18.6 0.4 0.0 0.0 0.0
18.3 0.0 0.0 0.0 0.0

Composed Query Num

LiveCodeBench

1 2 3 4 5

45.3 41.3 36.7 34.0 27.9
83.7 82.6 84.4 76.3 81.4
53.3 42.7 41.3 33.3 31.3
76.2 77.8 70.7 65.3 64.0
75.3 67.3 64.7 58.0 56.7
45.3 56.5 55.3 48.7 47.3
48.0 43.3 35.3 35.3 40.7
72.0 54.7 46.7 33.3 30.0
66.0 56.0 38.1 29.8 19.1
18.7 16.0 14.0 13.2 13.9
33.3 29.3 23.3 19.3 20.7
1.3 4.0 2.0 4.0 2.0

12.7 14.0 10.7 12.0 12.7
66.0 56.0 38.1 29.8 19.1
6.7 1.7 1.8 1.0 0.9
2.0 4.7 6.7 4.0 5.3
3.3 4.0 9.3 4.0 4.0

11.6 10.0 8.5 5.8 8.0
5.3 4.7 5.3 4.0 1.4
3.3 3.3 2.0 2.7 2.0
4.7 4.0 3.3 4.0 2.0

56.0 38.7 27.3 20.7 19.3
54.0 22.7 22.4 10.0 8.7
0.0 1.3 0.0 0.0 0.7
1.4 2.0 3.3 2.0 2.0
1.6 2.1 0.0 3.7 0.0

Composed Query Num

WebShaper

Figure 3: Evaluation results of R-HORIZON Benchmark.

Same Degradation Trends Across Different Model and Task Categories We observe consistent
degradation trends across tasks of varying difficulty and types. Models exhibit greater performance
drops when facing more challenging tasks. For instance, Qwen3-235B-Thinking drops from 93.7%
(n = 1) to 69.2% (n = 5) on AIME24, but experiences a steeper decline from 92.3% (n = 1)
to 29.2% (n = 5) on AIME25. For code tasks, we find that the degradation trend is more severe
compared to mathematical tasks, with smaller models (7B) struggling to complete multiple code
problems. For web search tasks, we observe that many trained reasoning models have lost their ability
to call tools, resulting in poor performance.

4.3 REINFORCEMENT LEARNING WITH R-HORIZON DATASETS

Despite reinforcement learning bringing long CoT thinking capabilities to models, current mainstream
LRMs still cannot achieve good performance on R-HORIZON Benchmark. We follow Skywork-
OR1 (He et al., 2025a) to observe the changes in long-horizon reasoning capabilities of long CoT
models before and after standard RL in Appendix B. We find that training with only single-problem
data leads to slow improvement in models’ ability to handle composed problems. To investigate
the impact of R-HORIZON data on RL training, we construct composed training data through
R-HORIZON based on the original math training datasets.

Training Setup We construct a data pool Dfiltered from Skywork-OR1-RL training data using
Problem Filtering (Section 3.1). To manage difficulty, we combine problems by pass rates, keeping
Accexpected > 0.25. We train on R1-Qwen-7B and set maximum response length to 40k to prevent
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truncation and use the last-only reward Rlast as default, which provides feedback on the final answer
only. Details are in Appendix F.
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Figure 4: Training curves comparing single and composed data on AIME24avg@8 and reward.

Training with R-HORIZON Datasets We train R1-Qwen-7B using both original data and 2-query
composed data. As shown in Figure 4, compared to the original data, composed data significantly
improves performance on composed problems (+17.4 on AIME24 (n=2)). Additionally, we find that
training with composed problem data also substantially improves performance on the original tasks
(+7.5 on AIME24). During the training process, the reward for composed data gradually increases
and surpasses the reward for the original data.

Impact of Number of Composed Queries and Different Reward Schemes To further investigate
the impact of the number of composed problems, we construct four types of training data based on
the number of composed problems: composed problem counts of (1, 2, 4, and a mixture of problems
with counts 1, 2, 3, 4). We also study the effects of different rewards on composed data in Table 1.

Table 1: Results of different number of composed queries and reward function

MATH500 AIME24 AIME25 AMC23 Avg.

Model Origin n=8 Origin n=2 Origin n=2 Origin n=2 Origin Multi

R1-Qwen-7B 93.6 11.8 48.3 16.4 33.3 3.5 90.2 48.8 66.4 20.1

Naive Training Data (n=1) 95.6 8.4 57.9 16.7 47.9 5.1 95.9 55.0 74.3 21.3

w/ composed queries (n=2) 95.4 21.4 65.4 34.1 49.6 10.0 94.1 80.6 76.1 36.5
w/ composed queries (n=4) 94.6 50.6 62.9 34.8 45.4 8.1 91.9 79.1 73.7 43.2
w/ composed queries (mixed) 96.8 47.8 57.1 32.8 44.2 10.0 93.1 81.6 72.8 43.1

w/ Rall (n=2) 95.0 26.8 64.6 38.8 48.8 11.9 95.0 83.4 75.9 40.2

All models trained with composed data demonstrate significant performance improvements on
composed problems. Moreover, composed data also substantially enhances performance on the
original datasets. For instance, composed problems with n=2 yield the largest improvements on
AIME24 and AIME25. As the number of composed problems increases, models exhibit stronger
capabilities in handling problems requiring more reasoning steps. Additionally, we observe that
using Rall as the reward function on training data with 2 composed problems outperforms Rlast when
confronting scenarios with multiple problems. More training dynamics are provided in Appendix C.

5 ANALYSIS

Our analysis covers evaluation results of the R-HORIZON benchmark (Section 5.1) and RL training
results using R-HORIZON datasets (Section 5.2). Ablation studies on evaluation metrics, dependency
relationships, and problem difficulty ordering are in Appendix D.
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5.1 EVALUATION RESULT ANALYSIS

Error Type Analysis We analyze the error types of the evaluation result in Figure 5. We find
that as the number of problems increases, Problem Reasoning Errors increase rapidly. Adding
simple dependencies between problems increases the overall reasoning difficulty, and the number of
Dependency Reasoning Errors gradually increases with the number of problems, though the overall
count remains relatively small. We observe that when facing multiple problems, models frequently
terminate their responses prematurely, answering only a subset of the problems.
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Figure 5: Error type distribution across different query numbers. Four error categories: Problem
Reasoning Error represents reasoning errors made by the model for specific problems; Dependency
Reasoning Error indicates the model correctly solved previous problems but made errors when
calculating the dependencies; Early Stop indicates the model prematurely terminated generation
after solving previous problems; Output Truncation indicates generation exceeded token limit.

Effective Reasoning Length of LRMs As shown in Figure 6, as the number of problems increases,
the gap between the actual accuracy and expected accuracy of models becomes increasingly larger,
indicating that models struggle to maintain their original performance as reasoning length increases.
We observe that the error position of models gradually declines and stabilizes within a certain range
as the number of problems increases. Comparing R1-Qwen-7B and R1-Qwen-32B, we observe that
larger models can reason over longer contexts, and each model has its own reasoning boundary. For
example, the 7B model’s error range is (4-6k tokens) while the 32B model’s error range is (8-10k
tokens) for Math500.
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Figure 6: Analysis of accuracy and error position with R1-Qwen-7B and R1-Qwen-32B.

Reflection Frequency and Depth of LRMs Reflection refers to the model’s self-reflective behav-
iors such as “wait,” “but. . . ”. As shown in Figure 7, the reflection frequency of models gradually
increases with the number of problems and converges to a maximum value. As the number of
problems increases, the proportion of problems involving long-range reflection also rises, yet we
find that more than half of the problems lack any long-range reflection process, which indicates that
LRMs’ reflections are highly localized.

Thinking Budget Allocation of LRMs As shown in Figure 8, current models tend to allocate more
tokens to early reasoning stages. Even DeepSeek-R1 cannot effectively distribute the thinking budget
reasonably to subsequent problems, indicating that current mainstream LRMs have not yet developed
the capability to allocate thinking budgets according to reasoning horizon.
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Figure 7: Reflection analysis on MATH500 dataset. Reflection Frequency refers to the average
number of reflections per question. Long Reflection Rate refers to the proportion of questions whose
reflection range exceeds the current question. Shaded areas indicate standard deviation.
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Figure 8: The thinking budget allocation for different query configurations (1-5 queries) across
R1-Qwen-7B, R1-Qwen-32B, and Deepseek-R1 models on AIME24 datasets.

5.2 ANALYSIS OF REINFORCEMENT LEARNING WITH R-HORIZON

Analysis on Models Trained with Composed Data We analyze models trained with R-HORIZON
data versus those trained with original data using RL, as shown in Figure 9. In Figure 9 (a), we find
that training with composed queries significantly improves model performance on composed tasks
and can generalize to longer reasoning horizons. Additionally, we find it alleviates the overthinking
phenomenon. Models generate shorter responses when facing multiple problems compared to models
trained on original data in Figure 9 (b), and training with composed problems enables models to learn
more reasonable token budget allocation in Figure 9 (d). These results demonstrate that training
with composed data promotes efficient reasoning, which is consistent with the findings of training
dynamics in Appendix C. We also provide a case study in Appendix H to compare the reasoning
behavior between standard training and training with R-HORIZON datasets.

In Figure 9 (c), as the number of problems increases, training with composed problems enables
models to engage in longer reflections with increasing frequency, while the reflection frequency
of models also increases more reasonably. This demonstrates that using R-HORIZON facilitates
longer-range reflection in models, thereby improving performance on long-horizon reasoning tasks.
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Figure 9: Analysis of reinforcement learning effects with single and composed datasets. (a) Math500
performance comparison, (b) error position analysis, (c) reflection analysis, and (d) token budget
allocation across multi-horizon scenarios.

Analysis on Rollout Efficiency We compute the proportion of Solve None, Solve All, and Effective
samples in each rollout batch in Figure 10. Models trained with compositional data using n = 2 and n
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= 4 obtain, on average, 20% more effective samples compared with n = 1. This indicates that the
composed datasets indeed yield more balanced reward signals. By combining multiple problems, the
model receives a larger amount of effective training data, thereby improving rollout efficiency.
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Figure 10: Rollout efficiency analysis across training steps for n=1, n=2, and n=4 composed queries,
showing Effective, Solve None, and Solve All ratios.

6 CONLUSION

In this paper, we present R-HORIZON, a novel and efficient approach to stimulating long-horizon
reasoning in LRMs through query composition. By composing simple problems into sequential,
interdependent tasks, R-HORIZON constructs multi-step reasoning datasets that serve dual purposes:
evaluating LRMs’ long-horizon reasoning capabilities and enhancing their complex reasoning abilities
during training. Our method establishes a foundation for future advances in complex reasoning data
synthesis and the development of models with robust long-horizon reasoning capabilities.
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A R-HORIZON DATASETS CONSTRUCTION FOR CODE AND AGENTIC TASKS

Datasets Construction for Code Tasks For code tasks, we adopt a composition approach similar
to mathematical tasks, using data points from existing datasets as seed questions for composition.
We continue to employ the Expanded Problem Composition process described in Section 3.1. How-
ever, unlike the sequential composition used for mathematical tasks, we apply a directly composed
concatenation format for code tasks without adding explicit dependencies between problems. This
design choice is motivated by the fact that code tasks require sandbox execution to obtain answers,
making it challenging to construct direct dependency relationships between problems and answers as
in mathematical tasks.

Datasets Construction for Agentic Tasks For agentic tasks, we incorporate web search tasks for
evaluation. We decompose questions based on the structured data from WebShaper (Tao et al., 2025),
which consists of “Target” (target variable) and “Variable” (intermediate variables). Specifically,
for each question, we follow this processing pipeline: We filter the original WebShaper dataset to
obtain questions with varying complexity levels, ultimately selecting 50 questions. Each question’s
associated URLs are accessed using a browsing tool, with browsing results stored for subsequent
processing (URLs that cannot be accessed are filtered out). We employ Claude-Sonnet-4 to extract
values for each variable V from the web pages (variables that cannot be extracted are excluded). The
original questions and variables V are then assembled into a directed acyclic graph (DAG). Following
topological sorting, we perform pruning to derive sub-questions and seed questions (questions with
erroneous or duplicate decompositions are filtered out). This process yields a final dataset of 50
questions, with each question categorized into 5 levels based on the number of variables (ranging
from 1 to 5), resulting in a total of 250 seed problems.

B HOW REINFORCEMENT LEARNING IMPROVES LONG-HORIZON REASONING

Despite reinforcement learning bringing long CoT thinking capabilities to models, we find that
current mainstream LRMs still cannot achieve good performance on R-HORIZON evaluation. To
further analyze the relationship between long-horizon reasoning capabilities and RL, we follow
Skywork-OR1 (He et al., 2025a), an effective and scalable RL implementation for long CoT models,
to observe the changes in long-horizon reasoning capabilities of long CoT models before and after
RL.

Training Setup We follow the Skywork OR1 (He et al., 2025a) multi-stage training approach,
gradually increasing context length across different stages. Once the model’s performance converged,
we increased the context length in the subsequent stage. This approach led to significant performance
improvements on benchmarks while also enhancing training efficiency. We employ 3 stage training
with max response lengths increasing from 8k (0-600 steps) to 16k (600-1400 steps), and finally to
32k (1400-1680 steps). We train on the math subsets of the Skywork-RL dataset. Additional training
settings are provided in Appendix F.
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Figure 11: The AIME24, AIME25 performance for single query and 2-query settings and response
length evolution during multi-stage training progression across 8k, 16k, and 32k context lengths.
Vertical dashed lines mark stage transitions.
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Observations During Training Process We find that RL training can improve model performance
on composed problems, but the improvement is smaller than that on corresponding single problems
(+36.6% on AIME24 and +9.1% on AIME24 n = 2). Additionally, we observe that the improvement
on composed problems shows no clear correlation with the increase in response length. When training
at the 32k stage, although response length increases significantly, the model’s performance on both
single and composed problems does not improve substantially.

C TRAINING DYNAMICS OF RL WITH R-HORIZON

We present the training dynamics of models trained with composed training data (n = 1, n = 2, n =
4) in Figure 12. The response length of models trained with composed data initially decreases and
then increases as training progresses, ultimately reaching levels comparable to those trained with
original data, with similar training time per step. This indicates that models require fewer tokens to
solve each problem, demonstrating that training with composed data promotes efficient reasoning.
However, the entropy loss of models trained with composed data decreases more rapidly than those
trained with original data, which may limit the model’s capacity for effective exploration.
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Figure 12: Training dynamics comparison across different training data compositions (n=1, n=2, n=4)
showing response length, training time per step, and entropy loss evolution during the RL training
process.

D ABLATION STUDY

D.1 ABLATION ON DEPENDENCIES
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Figure 13: Comparison between
multiple dependent and indepen-
dent problems.

We compare the difference between multiple dependent prob-
lems and multiple independent problems. We remove the de-
pendency construction step and directly concatenate multiple
problems. We conduct experiments using R1-Qwen-7B on
Math500, with results shown in Figure 13. We find that the
accuracy of both problem composition methods falls below the
theoretical accuracy, and the accuracy of multiple sequentially
dependent problems is significantly lower than that of multiple
independent problems. This indicates that current models still
have substantial deficiencies when handling multiple correlated
problems.

D.2 ABLATION ON EVALUATION METRIC

R-HORIZON adopts an all-or-nothing scoring criterion Accall
to ensure models correctly answer all problems. An alternative
evaluation metric Acclast considers a response correct if only the final problem is answered correctly.
Theoretically, these two metrics should be identical for problems with sequential dependencies, as
correctly answering the final problem requires sequentially solving all preceding problems. However,
our ablation experiments reveal substantial differences between these metrics as the number of
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problems increases, as shown in Figure 14 (Left). The probability of correctly answering only
the final problem far exceeds the probability of correctly answering all problems. We observe an
anomalous phenomenon: models can correctly solve subsequent problems despite incorrect solutions
to preceding ones, indicating that models can produce correct answers even when problems should
be unsolvable. We provide statistics on these anomalous cases in Figure 14 (right). We hypothesize
that this phenomenon is related to data contamination in models (Wu et al., 2025a).
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Figure 14: R1-Qwen models showing anomalous behavior in sequential reasoning. Left: Accall vs.
Acclast revealing increasing divergence. Right: Anomalous sample counts where models correctly
answer final problems despite preceding errors.

D.3 IMPACT OF QUERY DIFFICULTY ORDERING

We conduct an ablation study to examine whether the ordering of query difficulty affects model
performance and thinking budget allocation. Using the pass rate of R1-Qwen-7B as the reference
metric, we define a query as easy if its pass rate exceeds 0.5 and hard otherwise. We then compare
the performance of both 7B and 32B models under different orderings of easy and hard queries (i.e.,
easy-to-hard vs. hard-to-easy). Figure 15 (b) and (c) show that DeepSeek-R1 and R1-Qwen-32B
fail to allocate thinking budget reasonably according to problem difficulty, but can benefit from
difficulty ordering in Figure 15 (a). We hypothesize that this is because placing difficult problems at
the beginning leads models to allocate more token budget to difficult problems, thereby improving
overall success rate, while smaller models (R1-Qwen-7B) show no significant benefit.
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Figure 15: Ablation study on the impact of query difficulty ordering for R1-Qwen-7B, R1-Qwen-32B,
and DeepsSeek-R1 models. (a) Performance comparison between easy-to-hard and hard-to-easy
query orderings. (b) Thinking budget allocation in the easy-to-hard scenario. (c) Thinking budget
allocation in the hard-to-easy scenario.
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E EVALUATION IMPLEMENTATION DETAILS

E.1 MODELS AND DATASETS IN R-HORIZON BENCHMARK

Datasets Statistics and Evaluation Metric We present the statistics and evaluation metric of
the R-HORIZON benchmark in Table 2, showing the number of problems in the original datasets,
extracted seed questions, and final composed datasets.

Table 2: Dataset statistics and evaluation metric for R-HORIZON benchmark

Dataset Number of Problems Metric
Original Seed Composed

Mathematical Tasks
Math500 500 257 500 Accuracy
AIME24 30 28 30 Avg@32
AIME25 30 28 30 Avg@32
AMC23 40 37 40 Avg@8

Code Tasks
LiveCodeBench 279 279 279 Pass@1

Agentic Tasks
WebShaper 500 117 50 Avg@3

Model Details In the R-HORIZON benchmark, we evaluate the following open-source models.
We present the model sources and their corresponding evaluation lengths (max new tokens for
generation) as follows: DeepSeek-R1-0528 (64k), R1-Qwen-1.5B (64k), R1-Qwen-7B (64k), R1-
Qwen-32B (64k), R1-Llama8B (64k), R1-Llama70B (64k) (Guo et al., 2025), Qwen3-8B (40k),
Qwen3-32B (40k), Qwen3-235B-A22B-2507 (64k), Qwen3-235B-A22B-Thinking-2507 (64k),
QwQ-32B (64k) (Yang et al., 2025a), Nemotron-Research-Reasoning-Qwen-1.5B (64k), Llama-3.1-
Nemotron-Nano-8B-v1 (64k) (Nvidia et al., 2024), DeepScaleR-1.5B-Preview (64k) (Luo et al.,
2025b), Polaris-1.7B-Preview (64k), Polaris-4B-Preview (64k) (An et al., 2025), Skywork-OR1-7B
(64k), Skywork-OR1-32B (64k) (He et al., 2025a), OpenThinker3-7B (32k) (Guha et al., 2025),
Efficient-R1-7B (α = 0.2) (64k) (Arora & Zanette, 2025), Laser-DE-L4096-7B (64k) (Liu et al.,
2025), DAPO-Qwen-32B (64k) (Yu et al., 2025).

Prompt Examples We present the prompt examples for math, code, and websearch tasks in
Figure 16, Figure 17 and Figure 18.

Prompt 1: Prompt Example for Mathematical Tasks

Problem 1: {Question 1} Using the result {[answer 1]} from the previous calculation, {[variable 2]} =

{dependency_function}. Problem 2: {Question 2} ...... Problem n: {Question n} Note: In this problem set: -

[variable k] represents the calculated variable needed to solve problem k. - [answer k] represents the answer

to problem k. Solve all problems step by step and provide the answers for all problems in the following

format: ### Final Answers Problem 1: \boxed{[answer 1]} Problem 2: \boxed{[answer 2]} ...... Problem n:

\boxed{[answer n]}

Figure 16: Prompt Example for Mathematical Tasks

E.2 EVALUATION METRICS CALCULATION

For mathematical and agent-based WebShaper tasks, we utilize GPT-4.1 to extract answers from
all problems and perform subsequent scoring. For code tasks, we first extract code blocks from the
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Prompt 2: Prompt Example for Code Tasks

### Question: {Questions} Solve all problems step by step and provide the code for all problems. For each

problem, read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on

the sample inputs). Enclose your code within delimiters in the following format: “‘python # YOUR CODE

HERE “‘ ### Answer: (use the provided format with backticks)

Figure 17: Prompt Example for Code Tasks

Prompt 3: Prompt Example for Web Search Tasks

You may call one or more functions to assist with the user query.\n\nYou are provided with function signatures

within <tools></tools> XML tags: {Tools} Please answer the following question by using the available

tools to search for information and visit relevant webpages. Before each action, conduct brief reasoning to

determine your next step. After reasoning, if you find you lack some knowledge, you can call the tools to

get new information. If you find no further external knowledge needed, you can provide the answer within

<answer></answer> XML tags. For example, <answer> Beijing </answer>. {Question}

Figure 18: Prompt Example for Web Search Tasks

responses and assess their correctness via sandbox execution. The prompts used for scoring are
presented in Figure 19 and Figure 20.

Prompt 4: Answer Extraction Prompt for Mathematical Tasks

You are a helpful assistant. Extract the question numbers and corresponding answers from the given results,

and return them in JSON format, where the key is the question number and the value is the answer.

Figure 19: Answer Extraction Prompt for Mathematical Tasks

We also compare the consistency rate between using model-based answer extraction and rule-
based “\boxed{}” pattern extraction in Table 3. We find that as the number of problems increases,
many models fail to accurately follow the output format, making model-based answer extraction
more accurate for evaluation. Therefore, we uniformly adopt model-based answer extraction for
mathematical tasks.

E.3 INFERENCE HYPERPARAMETERS

We set the maximum generation length for inference to 64k tokens. For models with maximum
lengths below 64k, we set the max generation length to their max sequence length. For inference
hyperparameters, we set temperature to 1.0, top-k to 10, and top-p to 0.95. For the Qwen series
hybrid reasoning models that switch between thinking mode and non-thinking mode, we consistently
test their thinking mode.

F TRAINING IMPLEMENTATION DETAILS

F.1 TRAINING SETUP

We show the training hyperparameters for training with R-HORIZON datasets in Section 4.3. The
maximum response length is set to 40k tokens to prevent truncation. Training is conducted exclusively
on the mathematical components of the Skywork-RL dataset. All training progress are fine-tuned by
optimizing the policy loss (see Eq. 5) with a constant learning rate of 1× 10−6. We set the batch size
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Prompt 5: Answer Extraction Prompt for WebShaper

You are an evaluation assistant. Please determine if the predicted answer is equivalent to the labeled answer.

Question: {question}

Labeled Answer: {correct_answer}

Predicted Answer: {response}

Did the model give an answer equivalent to the labeled answer? Please respond with “Correct” if they are

equivalent, or “Incorrect” if they are not equivalent. Do not include any other text.

Figure 20: Answer Extraction Prompt for WebShaper

Table 3: Consistency rate between model-based and rule-based extraction for R1-Qwen-7B on
Math500

Composed Problem Num 2 4 8 16
Consistency Rate (%) 96.83 96.41 93.77 91.04

to 256, mini-batch size to 128, and group size to 16. We employ a higher clip ratio of 0.265, target
entropy of 0.2, sampling temperature of 1.0, and rejection sampling. Notably, we do not apply any
KL loss in our training process.

We use the same training hyperparameters for standard RL training in Appendix B. We implement
a three-stage training paradigm following Skywork OR1 (He et al., 2025a), where context length
is incrementally expanded upon reaching performance convergence at each stage. This progressive
approach, advancing from 8k to 16k and ultimately to 32k maximum response tokens, delivers both
improved benchmark results and enhanced computational efficiency.

F.2 R-HORIZON TRAINING DATASETS

We initialize a filtered data pool Dfiltered from the original Skywork-OR1-RL training data via the
R-HORIZON Problem Filtering process (Section 3.1). To control the problem difficulty, we compose
problems according to their pass rates while maintaining Accexpected > 0.25 for all composed
instances. We show the datasets’ statistics in Table 4.

Table 4: Dataset statistics for Skywork-o1-RL Data

Original Seed Composed (pass_rate>0.25)

Skywork-o1-RL Data 48371 18015 18000

G THE USE OF LARGE LANGUAGE MODELS

Large language models were employed exclusively as writing aids to refine sentence clarity, format
tables, and improve overall readability. They were not involved in the central research contributions,
experimental design, or scientific content of this work. The authors bear full responsibility for all
content presented in the paper.

H CASE STUDY

We provide a case study with an example prompt from AIME24 shown in Figure 21, and compare
model outputs on multi-horizon problems when trained with original data (n=1 model in Section 4.3)
versus R-HORIZON training data (n=4 model in Section 4.3), as illustrated in Figure 22 and Fig-
ure 23. We observe that models trained with R-HORIZON training data consume fewer tokens per
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problem, avoid excessive thinking budget allocation on individual problems, and successfully solve
all problems.

Prompt 6: Example Prompt for Case Study

Instructions:

Problem 1: Alice and Bob play the following game. A stack of n tokens lies before them. The players take

turns with Alice going first. On each turn, the player removes either 1 token or 4 tokens from the stack.

Whoever removes the last token wins. Find the number of positive integers n less than or equal to 2024 for

which there exists a strategy for Bob that guarantees that Bob will win the game regardless of Alice’s play.

Problem 2: Using the result [answer1] from the previous calculation, [variable2] = [answer1] - 805. Every

morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she walks at a

constant speed of s kilometers per hour, the walk takes her [variable2] hours, including t minutes spent in the

coffee shop. When she walks s+2 kilometers per hour, the walk takes her 2 hours and 24 minutes, including

t minutes spent in the coffee shop. Suppose Aya walks at s + 1
2

kilometers per hour. Find the number of

minutes the walk takes her, including the t minutes spent in the coffee shop.

Problem 3: Using the result [answer2] from the previous calculation, [variable3] = [answer2] - 150. Let B be

the set of rectangular boxes with surface area [variable3] and volume 23. Let r be the radius of the smallest

sphere that can contain each of the rectangular boxes that are elements of B. The value of r2 can be written

as p
q

, where p and q are relatively prime positive integers. Find p+ q.

Problem 4: Using the result [answer3] from the previous calculation, [variable4] = [answer3] - 720. Let

ω ̸= [variable4] be a 13th root of unity. Find the remainder when

12∏
k=0

(2− 2ωk + ω2k)

is divided by 1000.

Note: In this problem set: - [variablek] represents the calculated variable needed to solve problem k. -

[answerk] represents the answer to problem k.

Solve all problems step by step and provide the answers for all problems in the following format:

Final Answers

Problem 1: [answer1]

Problem 2: [answer2]

Problem 3: [answer3]

Problem 4: [answer4]

Target Answers:

Problem 1: 809

Problem 2: 204

Problem 3: 721

Problem 4: 321

Figure 21: Example Prompt for Case Study
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Prompt 7: Model Output for Model Trained with Original Data

<Problem 1 Start>

Okay, so I have four problems here, and I need to solve each one step by step. Let me start with Problem 1.

Problem 1: Game Theory

Alice and Bob play a game with a stack of n tokens. They take turns removing either 1 or 4 tokens. Alice

goes first, and the player who takes the last token wins. I need to find how many n ≤ 2024 where Bob has a

winning strategy, regardless of Alice’s moves.

...... Problem 1 thinking

Therefore, our answer for Problem1 is 809.

Final Answer

Problem 1: 809

<Problem 1 END, Output Length=3154, Status=Correct>

<Problem 2 Start>

Problem 2: Walking Speeds

Every morning, Aya walks 9 km and stops at a coffee shop. Walking at speed s km/h takes her t minutes in

the shop. When she walks s+ 2 km/h, the walk takes 2 hours and 24 minutes, including t minutes. Find the

number of minutes the walk takes when she walks at s+ 1/2 km/h.

Wait, let me try to parse this.

...... Problem 2 thinking

When walking at s+ 1
2

, total time= 9
s+0.5

+ t
60

.

But without knowing s and t, I can’t compute it.

I think I’ve spent too much time without progress, so I might need to move to problem3 and return.

<Problem 2 END, Output Length=14055, Status=Wrong>

<Problem 3 Start>

Problem3:

Using the result [variable2] from problem1=809 and [answer2] from problem2= let’s say it’s 100, find the

remainder when [variable3] is divided by 1000.

...... Problem 3 thinking

But I’m not confident.

Wait, alternatively, perhaps problem2’s answer is the number of solutions ≤ 2024, which was 809, so

problem3 uses that.

But without more info, I can’t compute. Given the time constraints, I think I’ll settle on:

Problem1: 809

Problem2: 100

Problem3: (809 + 100) = 909

<Problem 3 END, Output Length=16055, Status=Wrong>

<Problem 4 Start>

Status: NOT_ATTEMPTED

<Problem 4 END, Output Length=16055, Status=NOT_ATTEMPTED>

Figure 22: Case Study for Model Trained with Original Data
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Prompt 8: Model Output for Model Trained with Composed Data

<Problem 1 Start>

Alright, I have four problems to solve. They’re all math problems, each building on the previous one with

some variables. Let me take them one by one.

Problem 1: Alice and Bob play a game with a stack of n tokens. They take turns removing 1 or 4 tokens,

Alice goes first. We need to find the number of positive integers n ≤ 2024 where Bob has a winning strategy

regardless of Alice’s play.

This is a combinatorial game theory problem. Looking at losing positions, I find they are n ≡ 0 or 2

(mod 5).

...... Problem 1 thinking

So the answer for Problem 1 is 809. So answer1=809.

<Problem 1 END, Output Length=2015, Status=Correct>

<Problem 2 Start>

Problem 2: Using the result [answer1] from the previous calculation, [variable2] = [answer1] - 805. Every

morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.

So variable2 = 809− 805 = 4.

...... Problem 2 thinking

Solving, I get s = 2.5 km/h and t = 24 minutes.

When she walks at s+ 1
2
= 3 km/h: Total time = 204 minutes.

So the answer is 204. So answer2=204.

<Problem 2 END, Output Length=3081, Status=Correct>

<Problem 3 Start>

Problem 3: Using the result [answer2] from the previous calculation, [variable3] = [answer2] - 150. Let B
be the set of rectangular boxes with surface area [variable3] and volume 23.

So variable3 = 204− 150 = 54.

...... Problem 3 thinking

Thus r2 = 657
64

, so p = 657, q = 64, p+ q = 721.

So answer3=721.

<Problem 3 END, Output Length=6819, Status=Correct>

<Problem 4 Start>

Problem 4: Using the result [answer3] from the previous calculation, [variable4] = [answer3] - 720. Let ω ̸=
[variable4] be a 13th root of unity.

So variable4 = 721− 720 = 1.

...... Problem 4 thinking

The remainder when 8321 is divided by 1000 is 321.

So answer4=321.

<Problem 4 END, Output Length=9336, Status=Correct>

Figure 23: Case Study for Model Trained with Composed Data
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