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Abstract
This paper investigates a deep reinforcement learn-
ing (RL) approach for autonomous driving. Since
interpretability is essential for such a high-stake do-
main, in contrast to previous deep RL work, we
exploit a recent neuro-symbolic model called dif-
ferentiable logic machine to learn an interpretable
controller in the form of a first-order logic pro-
gram. As a proof of concept, we demonstrate
the feasibility of our approach on two classical
decision-making scenarios in autonomous driving:
lane changing and intersection management. Our
preliminary results obtained in a simple simula-
tor suggest that learning an interpretable controller
does not penalize performance. Moreover, since
the controller is a logic program, it is understand-
able and is amenable to analysis.

1 Introduction
Deep Reinforcement learning (RL) has shown great poten-
tial in various applications [Silver et al., 2017; Rong, 2017;
Levine et al., 2016] thanks to the generality of RL and the
approximation power of deep learning. Thus, it has started
to be also investigated in autonomous driving [Kiran et al.,
2020]. Although deep RL is a promising machine learning
technique, the learned controllers (or policies) are generally
black boxes since they are usually large neural networks.

However, for a successful application in a high-stake do-
main such as autonomous driving, the interpretability of the
learned controller becomes essential (see Section 2). Indeed,
before any deployment, a controller should be inspectable and
verifiable, which would help to achieve trust in the system.
During its operation, its decision-making process should be
robust and understandable. Moreover, in case of an accident,
the decisions made by the autonomous car should be trace-
able and explainable.

To achieve interpretability, some recent neuro-symbolic
methods have been developed where an interpretable model is
learned in the form of a first-order logic program. These ap-
proaches usually consists in formulating the problem as an in-
ductive logic programming (ILP) problem [Muggleton, 2019]
(see Section 3.2) In this paper, using a model called differen-

tiable logic machine (DLM) [Zimmer et al., 2021] (see Sec-
tion 3.4), we evaluate the feasibility of learning a logic-based
controller in two classical decision-making scenarios in au-
tonomous driving [Urmson et al., 2009]: lane changing and
intersection management.

Main Contributions Our contributions can be summarized
as follows. We formulate the autonomous driving scenarios
as ILP problems (see Section 4). We evaluate DLM as a so-
lution method to solve those problems. We compare it with
several relevant state-of-the-art methods and demonstrate its
good performance (see Section 5). Since the solution yielded
by DLM is interpretable, we provide it as a reference and dis-
cuss it.

2 Related Work
Numerous methods based on RL [Kiran et al., 2021] and im-
itation learning [Pomerleau, 1988; Bojarski et al., 2016] with
neural network-based controllers have been proposed for au-
tonomous driving. Due to the black-box nature of neural net-
works, recent research has started to investigate interpretable
methods in this domain. For instance, Schmidt et al. [2021]
investigate an interpretable and verifiably-safe reinforcement
learning approach for self-driving cars using decision trees.
Kim and Canny [2017] develop an interpretable end-to-end
reinforcement learning by visualizing causal attention. Chen
et al. [2020] propose a joint learning of environment model
and driving policy using graphical models in sequential latent
reinforcement learning. In contrast, to the existing work, we
aim to learn a policy in the form of a logic program, assuming
that the observations can be encoded in first-order logic. Such
a program could then be debugged if necessary, verified, used
to explain the decisions of the autonomous system.

Given the importance of explainable and interpretable arti-
ficial intelligence [Barredo Arrieta et al., 2019], various other
approaches have been proposed for interpretable RL. For in-
stance, PIRL [Verma et al., 2018] or its extension [Anderson
et al., 2020] learn a policy in the form of a computer pro-
gram starting from a domain-specific language and a program
sketch. Similar neuro-symbolic approaches have also been
tried in autonomous driving [Sun et al., 2020]. In contrast
to those approaches, the DLM model [Zimmer et al., 2021]
that we adopt in this work can learn a logic controller that
is independent of the number of objects (e.g., vehicles). In



particular, it can learn from situations with a small number of
objects and generalize to cases with a much larger number of
objects. Although, we do not exploit this feature in our cur-
rent work, it may be important for autonomous driving, since
the number of objects that the self-driving car will interact
with cannot be known in advance. Furthermore, DLM can
be trained via online RL, whereas other neuro-symbolic work
often relies on imitation learning.

3 Background
In this section, we present the necessary background knowl-
edge and notations used in later sections.

3.1 First Order Logic
First Order Logic (FOL) [Barwise, 1977] is a formal language
that describes the world (i.e., domain of discourse) in terms
constants (or objects) and their relations. Formally, it is de-
fined with the following elements:

• A constant corresponds to an object of the world. A set
C of constant is given, which contains all the possible
objects. Its size is denoted |C| = m.

• A variable represents an unspecified constant.
• An r-ary predicate P (x1, . . . , xr) corresponds to a re-

lation between the r terms x1 to xr, which can be con-
stants or variables. A predicate with all its arguments
provided as constants is called grounded. Its value can
be evaluated to True or False.

FOL generally also contains functions (i.e., mappings from
constants to constants), which are a way to define constants
from other constants. Following previous work, we only con-
sider a fragment of FOL, where functions are not allowed.
Using predicates, one can recursively define more complex
formulas using (existential ∃ or universal ∀) quantifiers and
logic operators (e.g., conjunction ∧, disjunction ∨, negation
¬, implication→ or biconditional↔).

3.2 Inductive Logic Programming
Inductive Logic Programming (ILP) [Muggleton, 2019] is a
machine learning framework where given a set of positive ex-
amples and negative examples expressed in first-order logic,
the goal is to learn a logic formula that entails all positive
examples and none of the negative ones. ILP is a natural ap-
proach for explainable AI since understanding logic programs
is generally much easier than neural network models; it is also
applicable in transfer learning thanks to its symbolic repre-
sentation. Solving an ILP problem is in general hard since it
amounts to searching in a combinatorial discrete space of pro-
grams whose size grows exponentially with the depth of the
program. In this work, we use a recent model, Differentiable
Logic Machine, to solve our ILP problems.

3.3 Reinforcement Learning
Reinforcement learning (RL) tasks can be formulated with
a Markov Decision Process (MDP) model [Bellman, 1957],
which is defined as a tuple (S,A, T, r, µ, γ) where S is a set
of states, A is a set of actions, transition function T speci-
fies the probability of the next state s′ ∈ S from the previous

state and action s ∈ S, a ∈ A, r : S × A → R is the reward
function, µ is a distribution of all initial states, and γ ∈ [0, 1)
is a discount factor for calculating the return of a state-action
sequence. A policy π is a mapping from states to actions (or
more generally probability distributions over actions), speci-
fying how actions are selected based on current states. The
goal in RL is generally expressed as learning a policy π∗ that
maximizes the expected discounted total reward:

π∗ = arg max
π

{
Eµ,T,π

[ ∞∑
t=0

γtr(st, at)

]}
(1)

where t is the time step in one episode of simulation, Eµ,T,π
is the expectation w.r.t. initial state distribution µ, transition
function T and policy π.

Deep RL is a combination of reinforcement RL and deep
learning. In deep RL, a policy is usually represented by a dif-
ferentiable model (e.g., neural network), which is trained to
obtain a good performance in terms of expected discounted
total reward. Such a model corresponds in fact to a pol-
icy πθ parameterized by θ, which corresponds to trainable
weights. One popular state-of-the-art deep RL algorithm for
training πθ is the Proximal Policy Optimization (PPO) algo-
rithm [Schulman et al., 2017], which we use in our experi-
ments.

3.4 Differentiable Logic Machine
Differentiable Logic Machine (DLM) [Zimmer et al., 2021] is
a recent differentiable neural-symbolic architecture. It builds
on Neural Logic Machine (NLM) [Dong et al., 2019], which
is neural network architecture with a strong logic architec-
tural bias to simulate forward chaining. In contrast to NLM,
a trained DLM model (if trained successfully) can provide a
solution as a FOL formula. We overview how DLM works
below.
Architecture. A DLM model (illustrated in Figure 1) is
specified by a max depth D and a max breadth B. It consists
of (D + 1)×B units organized into layers. The units are in-
dexed by both depth d ∈ {−1, 0, 1, · · · , D − 1} (d = −1
represents the inputs and d = D − 1 represents the last
layer, which provides the output of the model) and breadth
b ∈ {0, 1, · · · , B − 1}.

For depth d ≥ 0, a unit (see Figure 1, right) at breadth
b, denoted by Ud,b, takes as inputs the b-ary predicates ob-
tained from layer d − 1 and outputs Nd,b new (invented) b-
ary predicates whose truth values depend on the input predi-
cates. Those output predicates can be denoted as Pb,d,i with
i ∈ {0, 1, · · · , Nd,b − 1}. Concretely, those units process
predicates as tensors. The shape of the tensor output by Ud,b
is [Nd,b,m,m− 1, · · · ,m− b+ 1] where m is the total num-
ber of objects in the problem and [m,m− 1, · · · ,m− b+ 1]
corresponds to all the permutations of b objects. It can be
seen as Nd,b tensors with size [m,m − 1, · · · ,m − b + 1],
each represents the truth values of a b-ary predicate in a fixed
permutation order of input objects.

The components of a tensor correspond to the probability
that a corresponding predicate is true for some constants of
the problem. In training process, the probabilities are float
numbers between 0 and 1 for gradient descent method. In



Figure 1: DLM model with max breadth B and max depth D: (left) overall architecture; (right) a unit in DLM and its workflow: If b = 0,
then no inputs from expansion and no outputs to reduction; if b = B − 1, then no inputs from reduction and no outputs to expansion; if
d = −1, then no previous layer and no inputs; if d = D − 1, then no next layer and no outputs.

test environment and real usage, the probabilities in every unit
are rounded to Boolean values, 0 for false and 1 for true. For
conciseness, we refer to those probabilities simply as truth
values below.

For d ≥ 0, the b-ary input predicates of unit Ud,b come
from the predicates output by units Ud−1,b−1 (if b > 0),
Ud−1,b, and Ud−1,b+1 (if b < B − 1) of the previous layer.
Those predicates are either computed by the corresponding
units (d − 1 ≥ 0) or directly corresponds to the initial predi-
cates (d−1 = −1). Since Ud−1,b−1 (resp. Ud−1,b+1) outputs
b−1-ary (resp. b+1) predicates, they are first processed by an
expansion (resp. reduction) operator (see below) to increase
(resp. decrease) the arity of those predicates. Moreover, all
the input predicates are also processed by a permutation op-
erator (see below) to increase the potential expressivity of the
output predicates.
Expansion. Expansion is the operator changing an r-ary
predicate P r to an r+ 1-ary predicate P r+1, where the addi-
tional object does not influence the truth value. The formula
can be given as follows:

P r+1(X1, · · · , Xr+1) = P r(X1, · · · , Xr) (2)

and we can denote it by Expand (P r).
Reduction. Reduction is the operator changing an r-ary
predicate P r to an r − 1-ary predicate P r−1. There are two
methods of reduction, using existential quantifier or univer-
sal quantifier respectively, with respect to the eliminated vari-
able. The formula can be given as follows:

P r−11 (X1, · · · , Xr−1) = ∃XrP
r(X1, · · · , Xr) (3)

P r−12 (X1, · · · , Xr−1) = ∀XrP
r(X1, · · · , Xr) (4)

and we can denote them as ∃ (P r) and ∀ (P r) respectively.
Permutation. Permutation is an operator applied to all in-
put predicates. The number of predicates generated by per-
mutation is equal to the number of permutation of the vari-
ables, i.e., for arity r, it is r!. One permuted predicate can be
written as follows:

P rσ (X1, · · · , Xr) = P r(Xσ1 , · · · , Xσr ) (5)

where (σ1, · · · , σr) is one permutation of {1, · · · , r}.
In the experiments of this paper, the max breadth B is

chosen to be B = 3, and the highest arity of predicates is

Operator Type Meaning

∧ binary Boolean and
∨ binary Boolean or
¬ unary Boolean negation
∀ unary Reduction
∃ unary Reduction
Expand unary Expansion
Rotate unary Permutation

Table 1: Notations for operators in DLM

B − 1 = 2. For each 2-ary predicate P 2, the permutation
operator produces P 2 and another predicate where the two
arguments are swapped, which we denote:

Rotate(P 2)(X1, X2) = P 2(X2, X1). (6)

Logic Module. A unit at depth d ≥ 0 computes its out-
put using a logic module from the input predicates obtained
after expansion, reduction, and permutation. A logic mod-
ule is a fully differentiable learning component parameterized
by learnable weights. The weights mapped into [0, 1] using
Gumbel-softmaxes [Jang et al., 2017] are then used to select
input predicates to be combined with logic operators such as
conjunction, disjunction, and negation. In our experiments,
each unit Ud,b for d ≥ 0 is designed to learn output predi-
cates of the following forms:

Pd,b,i =


P1 ∧ P2

P1 ∨ P2

P1 ∧ ¬P2

P1 ∨ ¬P2

(7)

with i ∈ {0, 1, · · · , Nd,b − 1} and P1, P2 are in the form of

P1, P2 =


Pd−1,b,k(Xσ1

t
, · · · , Xσb

t
)

(∀Pd−1,b+1,k) (Xσ1
t
, · · · , Xσb

t
)

(∃Pd−1,b+1,k) (Xσ1
t
, · · · , Xσb

t
)

Expand (Pd−1,b−1,k) (Xσ1
t
, · · · , Xσb

t
)

(8)

where k represents the index of the selected predicate and
(σ1
t , · · · , σbt ) is the index of objects in a selected order.

Concluding Remarks. We summarize the operators used
in DLM in Table 1. For more details about DLM, we refer the



readers to Zimmer et al. [2021] where several training tech-
niques are proposed to find an interpretable solution. In our
experiments, we use their online RL training method, which
is based on PPO [Schulman et al., 2017] using their novel
critic adapted to the logical inputs. This method is designed
to make the model converge to an interpretable solution us-
ing notably a controlled reduction of Gumbel softmax noise,
dropout, and softmax temperatures. After training, the trained
DLM model can be significantly reduced by extracting from
it the logical formula it encodes.

4 General Approach
In this section, we describe our general approach and discuss
our modeling decisions for the experiments.

4.1 Methodology
To apply DLM in autonomous driving, the following steps
should be followed:

• List the objects that can appear in the environment,
• List the relevant predicates that are necessary to describe

the world,
• Construct a perception module that transform observa-

tions to predicate valuations,
• Build and train a DLM,
• Analyze the logic program extracted from the trained

DLM model.
Below we discuss those steps in the context of autonomous
driving. Notably, we highlight the assumptions made in our
preliminary work and discuss possible extensions, which we
leave for future work.

For autonomous driving, objects could consist of vehicles,
pedestrians, or other potential obstacles. Since DLM requires
the predicates to be grounded over all combinations of ob-
jects, this can lead to very large inputs if many objects are
considered. To alleviate this issue, DLM could be extended
to use typed first-order logic where objects can be of different
types (e.g., vehicle vs pedestrian). Doing so would allow to
restrict the grounding of a predicate only to the relevant com-
binations of objects depending on the types that are required
by that predicate.

In our experiments, we use a simple simulator where only
vehicles are present. In this context, our agent simply fo-
cuses on the vehicles that are the closest to it. Moreover, we
only use predicates that are nullary or unary for the initial
predicates to describe the observation of the agent. Binary
predicates can be avoided by considering relative distances
and speeds. Those simplifying assumptions allow the inputs
of the DLM model to be of small size, which is sufficient to
demonstrate the feasibility of our approach.

Predicates for autonomous driving need to describe the
kinematic information of the agent and its surrounding ve-
hicles. For simplicity, we discretize the ranges of relative po-
sitions and speeds. Our approach (and DLM) could be gener-
alized to use an extension of first-order logic where predicates
could be for instance parameterized inequalities (e.g., to de-
scribe if some safety distance holds), which would avoid the
discretization.

Figure 2: Lane-Changing Scenario: All vehicles drive from left to
right. The lanes L1 . . . L4 are from top to bottom.

In the description of our experiments that we provide be-
low, we give the complete list of the predicates that we used.
Since we need to describe kinematic information and rela-
tions between vehicles, we can limit the arity of predicates to
a maximum of two. For our experiments, we adapt the list
of predicates to the specific scenario under consideration, but
more generally, we could consider a generic set of predicates
to cover all driving scenarios.

For the DLM model to learn and reason about the road en-
vironment, it needs to be provided with predicate groundings
over the objects that exist around the agent. The values of
those groundings have to be computed from sensors. In prac-
tice, this step can be more or less complex depending on the
types of sensors (e.g., tachometers or lidar vs video inputs).
Since we rely on a simulator, for simplicity, we extract use-
ful information directly from the simulation to compute the
grounding values.

For the last two steps, we rely on the DLM model. We
build and train it according to the online training method sug-
gested by Zimmer et al. [2021], which we overviewed in the
previous section. Once the model is trained, we extract the
obtained logic program and analyze it.

4.2 Modeling Decisions
The main goal of this work is to show as a proof of concept
that an interpretable controller can be learned for autonomous
driving using RL training. To demonstrate the feasibility of
the approach, we use the Highway-env [Edouard, 2018] envi-
ronment, which is an autonomous driving simulator for tacti-
cal decision-making tasks. Two scenarios, lane changing and
intersection management, are selected in the experiments. We
explain next in details how we modeled the two scenarios.
Refer to Appendix C in appendix for detailed values of pa-
rameters used in initial predicates.

Lane-Changing Scenario
In lane changing (see Figure 2 for an illustration), the goal is
to drive the vehicle as fast as possible without colliding with
other social vehicles. We detail next what the observations,
actions, objects, and predicates are in this scenario.
Observations. There are 4 parallel lanes in total, denoted as
L1, · · · , L4. One vehicle is controllable, denoted as agentAt,
and other social vehicles are denoted as vehicles V ti where t
is the time step and i is the index of vehicles.

For each vehicle V ti , the simulated environment can pro-
duce the x-axis coordinate V ti [x], the y-axis coordinate V ti [y],
the x-axis speed V ti [vx], the y-axis speed V ti [vy], and the oc-
cupied lane V ti [L]. The relative distance V ti [∆x], V ti [∆y] and
relative speed V ti [∆vx], V ti [∆vy] w.r.t. the agent are also cal-
culated.



Actions. The agent can operate one of the four following
actions at each time step, which are acceleration, decelera-
tion, left turn, and right turn.

Objects. To satisfy the inputs requirement of DLM, m = 4
vehicles are selected at each time step t to be the input ob-
jects, denoted as Otk = V ti where k ∈ {1, · · · ,m} for some
existing vehicle V ti in the environment. Intuitively, the V ti ’s
are the vehicles that are the closest to the agent in each lane.
More specifically, the selection rule is shown below.

1. Categorize vehicles by lanes using V ti [L] = k.

2. Filter vehicles to only keep those in front of the agent
with V ti [∆x] > −(dsafe +dvehicle), where dsafe is the safe
distance of social vehicles and dvehicle is the length of
social vehicles and the agent.

3. Choose the nearest vehicle w.rt. V ti [∆x] for each k.

4. The four selected vehicles are denoted asOtk in the order
of Otk[L] = k.

Note that it may happen that in some lane k, no vehicles
are found. In that case, a dummy object is used for Otk. Pred-
icates evaluated on dummy objects yield False.

Predicates. Since all the lanes are parallel with the y-axis,
so the relative distance in y-axis represents the same meaning
as the relation of lane indexes.

Nullary initial predicates are features related to the whole
environment. Predicates 0-2 act as sensors on the agent,
detecting whether there is no nearby vehicle on its left lane,
on its current lane and on its right lane.

0. P−1,0,0 ← ¬∃k
[
(k = At[L]− 1) ∧

(−(dsafe + dvehicle) < Otk[∆x] < dmedium)
]

1. P−1,0,1 ← ¬∃k
[
(k = At[L] + 1) ∧

(−(dsafe + dvehicle) < Otk[∆x] < dmedium)
]

2. P−1,0,2 ← ¬∃k
[
(k = At[L]) ∧

(−(dsafe + dvehicle) < Otk[∆x] < dmedium + dvehicle)
]

Predicates 3-5 measure the speed of the agent. vs1, vs2 and
vs3 are three target speed values for the agent defined in the
environment.

3. P−1,0,3 ← At[vx] < 1
2vs1 + 1

2vs2

4. P−1,0,4 ← 1
2vs1 + 1

2vs2 ≤ At[vx] < 1
2vs2 + 1

2vs3

5. P−1,0,5 ← At[vx] ≥ 1
2vs2 + 1

2vs3

Unary initial predicates are features that are evaluated on
one selected object. Predicate 0 is the validation label, indi-
cating whether the vehicle exists or not.

0. P−1,1,0 ← True

Predicates 1-3 determine the relation of lanes w.r.t. the agent.

1. P−1,1,1 ← k = At[L]− 1

2. P−1,1,2 ← k = At[L]

3. P−1,1,3 ← k = At[L] + 1

Predicates 4-8 measures the relative distance in the x-axis.
dnear, dmedium, dfar and dmax are relative distance thresholds
defined from near to the agent to far away from the agent.

4. P−1,1,4 ← −(dsafe +dvehicle) < Otk[∆x] < dsafe +dvehicle

5. P−1,1,5 ← dsafe + dvehicle ≤ Otk[∆x] < dnear

6. P−1,1,6 ← dnear ≤ Otk[∆x] < dmedium

7. P−1,1,7 ← dmedium ≤ Otk[∆x] < dfar

8. P−1,1,8 ← dfar ≤ Otk[∆x] < dmax

Predicates 9-13 measures the relative speed in the x-
axis. ∆[vx]slow, ∆[vx]same and ∆[vx]fast. The vehicles
slower than the agent should be emphasized, so the range
[∆[vx]slow,∆[vx]same] is proportionally divided into three sub-
ranges.

9. P−1,1,9 ← Otk[∆vx] < ∆[vx]slow

10. P−1,1,10 ← ∆[vx]slow ≤ Otk[∆vx] <
2
3∆[vx]slow + 1

3∆[vx]same

11. P−1,1,11 ← 2
3∆[vx]slow + 1

3∆[vx]same ≤ Otk[∆vx] <
1
3∆[vx]slow + 2

3∆[vx]same

12. P−1,1,12 ← 1
3∆[vx]slow + 2

3∆[vx]same ≤ Otk[∆vx] <
∆[vx]same

13. P−1,1,13 ← ∆[vx]same ≤ Otk[∆vx] < ∆[vx]fast

Predicates 14-16 measures the relative speed in the y-axis,
representing whether the relation of lanes w.r.t. the agent is
changing. ε is a small value which is enough to test whether
a vehicle is changing its lane.

14. P−1,1,14 ← Otk[∆vy] < −ε
15. P−1,1,15 ← −ε ≤ Otk[∆vy] < ε

16. P−1,1,16 ← Otk[∆vy] ≥ ε
Predicates 17-21 measures the predicted relative distance in
the x-axis, calculated by the relative distance after two time
steps if both the agent and the selected vehicle keep their
speed and direction. d′near and d′far represents a dangerous dis-
tance and a safe distance of the predicted relative distance.
The ranges are divided proportionally.

17. P−1,1,17 ← Otk[∆x] + 2Otk[∆vx] < d′near

18. P−1,1,18 ← d′near ≤ Otk[∆x] + 2Otk[∆vx] < 2
3d
′
near +

1
3d
′
far

19. P−1,1,19 ← 2
3d
′
near + 1

3d
′
far ≤ Otk[∆x] + 2Otk[∆vx] <

1
3d
′
near + 2

3d
′
far

20. P−1,1,20 ← 1
3d
′
near+

2
3d
′
far ≤ Otk[∆x]+2Otk[∆vx] < d′far

21. P−1,1,21 ← Otk[∆x] + 2Otk[∆vx] ≥ d′far

Intersection Management Scenario
In intersection management (see Figure 3 for an illustration,
the goal is to cross an intersection without traffic lights as fast
as possible while avoiding any collision with other vehicles.
For simplicity, we focus on the case where the agent aims to
turn left across the intersection, which is the hardest situation.
We explain next what the observations, actions, objects, and
predicates are in this scenario.



Figure 3: Intersection Management Scenario: The agent arrives
from the south and aims to make a left turn.

Observations. There are 4 directions in total, south, east,
north, and west, denoted as D1, · · · , D4. One vehicle start-
ing in D1 is controllable, denoted as agent At, and other ve-
hicles are social vehicles controlled by the simulator, denoted
as vehicles V ti where t is the time step and i is the index of
vehicles. Similarly to the highway scenario, for each vehicle
V ti , the environment can produce the x-axis and y-axis co-
ordinates V ti [x], V ti [y], the x-axis and y-axis speeds V ti [vx],
V ti [vy], the direction it comes from V ti [D], the relative dis-
tance to the agent V ti [∆x], V ti [∆y], and relative speed to the
agent V ti [∆vx], V ti [∆vy].
Actions. The agent can execute one of the three longitudi-
nal actions, which are acceleration, keeping the current speed,
and deceleration.
Objects. To satisfy the inputs requirement of NLM and
DLM, m = 8 vehicles are selected at each time step t
to be the input objects, denoted as Otk = V ti where k ∈
{1, · · · ,m} for some existing vehicle V ti in the environment.
In words, the eight objects represent the nearest vehicles in
each direction with respect to the agent. Formally, the selec-
tion rule is shown below.

1. Select object only if the agent is close to the intersec-
tion, judging by At[y] ≤ dintersection, where dintersection is
the distance between the entry and the center of the in-
tersection.

2. Categorize vehicles by directions using V ti [D] (2 vehi-
cles for each direction).

3. Choose the two nearest vehicles according to√
V ti [∆x]2 + V ti [∆y]2 for each direction.

4. The eight selected vehicles are denoted as Otk in the or-
der of Otk[D] = dk2 e.

Moreover, for a specific k, if no vehicle is found, dummy ob-
jects are used. As for the other scenario, predicates evaluates
to False on dummy objects.
Predicates. Nullary predicates are defined as follows.
Predicates 0-7 detect whether there is any vehicle located in
a specified nearby area w.r.t. the agent.

0. P−1,0,0 ← ∃i
[
(−2dvehicle < Otk[∆x] ≤ −dvehicle) ∧

(−dintersection < Otk[∆y] < dintersection)
]

1. P−1,0,1 ← ∃i
[
(−dvehicle < Otk[∆x] ≤ 0) ∧

(−dintersection < Otk[∆y] < dintersection)
]

2. P−1,0,2 ← ∃i
[
(0 < Otk[∆x] ≤ dvehicle) ∧

(−dintersection < Otk[∆y] < dintersection)
]

3. P−1,0,3 ← ∃i
[
(dvehicle < Otk[∆x] < 2dvehicle) ∧

(−dintersection < Otk[∆y] < dintersection)
]

4. P−1,0,4 ← ∃i
[
(−dintersection < Otk[∆x] < dintersection) ∧

(−2dvehicle < Otk[∆y] ≤ −dvehicle)
]

5. P−1,0,5 ← ∃i
[
(−dintersection < Otk[∆x] < dintersection) ∧

(−dvehicle < Otk[∆y] ≤ 0)
]

6. P−1,0,6 ← ∃i
[
(−dintersection < Otk[∆x] < dintersection) ∧

(0 < Otk[∆y] ≤ dvehicle)
]

7. P−1,0,7 ← ∃i
[
(−dintersection < Otk[∆x] < dintersection) ∧

(dvehicle < Otk[∆y] < 2dvehicle)
]

Predicates 8-10 measure the speed of the agent. vslow and
vfast separates the speed range to slow, medium and fast for
intersection-management scenario.

8. P−1,0,8 ← At[vx] ≤ vslow

9. P−1,0,9 ← vslow < At[vx] ≤ vfast

10. P−1,0,10 ← At[vx] > vfast

Predicates 11-13 measure the position of the agent, indicating
whether it is near the intersection or not.

11. P−1,0,11 ← 0 ≤ At[y] ≤ dintersection

12. P−1,0,12 ← −dintersection ≤ At[x] ≤ 0

13. P−1,0,13 ← (At[x] ≥ −dintersection) ∧
(At[y] ≤ dintersection)

Unary input predicates are related to properties of the se-
lected objects. Predicates 0-3 specify the coming direction.

0. P−1,1,0 ← Otk[D] = 1

1. P−1,1,1 ← Otk[D] = 2

2. P−1,1,2 ← Otk[D] = 3

3. P−1,1,3 ← Otk[D] = 4

Predicates 4-9 measure the predicted relative distance in the
x-axis after one time step. dface

near, d
face
medium and dface

far specify four
ranges of predicted relative distance, for those vehicles facing
with the direction of the agent (i.e., vehicles from north and
west). dback

near , dback
medium and dback

far are chosen for those vehicles
orienting the back of the agent (i.e., vehicles from south and
east).

4. P−1,1,4 ← −dface
far ≤ Otk[∆x] +Otk[∆vx] ≤ 0

5. P−1,1,5 ← −dface
medium ≤ Otk[∆x] +Otk[∆vx] ≤ 0

6. P−1,1,6 ← −dface
near ≤ Otk[∆x] +Otk[∆vx] ≤ 0

7. P−1,1,7 ← 0 ≤ Otk[∆x] +Otk[∆vx] ≤ dback
near

8. P−1,1,8 ← 0 ≤ Otk[∆x] +Otk[∆vx] ≤ dback
medium

9. P−1,1,9 ← 0 ≤ Otk[∆x] +Otk[∆vx] ≤ dback
far

Predicates 10-15 measure the predicted relative distance in
the y-axis after one time step.

10. P−1,1,10 ← −dface
far ≤ Otk[∆y] +Otk[∆vy] ≤ 0

11. P−1,1,11 ← −dface
medium ≤ Otk[∆y] +Otk[∆vy] ≤ 0

12. P−1,1,12 ← −dface
near ≤ Otk[∆y] +Otk[∆vy] ≤ 0



13. P−1,1,13 ← 0 ≤ Otk[∆y] +Otk[∆vy] ≤ dback
near

14. P−1,1,14 ← 0 ≤ Otk[∆y] +Otk[∆vy] ≤ dback
medium

15. P−1,1,15 ← 0 ≤ Otk[∆y] +Otk[∆vy] ≤ dback
far

5 Experimental Results
Regarding the architecture size of DLM, we set the breadth of
the model to be B = 3 and the depth to be D = 7 to ensure
enough expressivity. Thus, since B = 3, the invented pred-
icates can be nullary, unary, or binary predicates, although
the initial predicates are only nullary and unary. Moreover,
D = 7 means that apart from the initial predicates, 7-layer
predicates will be invented iteratively. A larger depth than
necessary is not problematic because a logic unit can preserve
one of its input predicates P as one of its outputs by learning
expressions such as P ∧ P , P ∨ P . For lane-changing sce-
nario (resp. intersection-management scenario), the number
of output predicates for each unit is set to Nd,b = 8 (resp.
Nd,b = 12). For each logic unit, there are two (resp. three)
predicates for each type of connections (see Section 3.4).

As baselines to compare with our DLM-based approach,
we consider two different models. First, we selected a stan-
dard neural network (NN) to serve as a basic baseline. To
be fair, the NN is given as inputs the same information as
DLM, but in the form of a feature vector. Second, we selected
the state-of-the-art neuro-symbolic model, NLM [Dong et al.,
2019]. Since NLM and DLM share a similar architecture, we
used the same network size (i.e., smae B, D, and Nd,b) and
the same initial predicates for both of them. All the models
are trained independently. For the two baselines, we used the
PPO algorithm [Schulman et al., 2017] while DLM is trained
using the procedure proposed by Zimmer et al. [2021].

We present below the experimental results in the two sce-
narios we selected. Notably, for each of them, we first de-
scribe the performance of the different models with respect
to several metrics, then we provide and discuss the simplified
logic formulas learned by DLM.

5.1 Lane-Changing Scenario
Performance. After the training process, the three models
are tested in the same test environment, with a maximum of
100 time steps in each episode. The comparison is shown in
Table 2.

Quantities NN NLM DLM

avg time steps 93.43 96.8 96.77
crash rate 7.2% 4.8% 3.7%
avg speed 22.22 25.20 27.26
avg distance 2060.91 2418.56 2615.34
avg acceleration 43.43 69.50 71.78
avg deceleration 42.58 20.26 16.59
avg left turn 3.65 3.65 4.49
avg right turn 3.77 3.39 3.91

Table 2: Test evaluation on the lane-changing scenario

The quantities named avg time steps, avg speed and avg
distance correspond to the average lasting time steps, aver-

age speed, and average passed distance for each episode re-
spectively. The crash rate is the percentage of episodes that
end in a crash. Note that some crashes are unavoidable be-
cause the other cars are controlled by a simple fixed policy.
The quantities named avg acceleration, avg deceleration,
left turn, and right turn provide statistics about how often
actions are selected by the trained model.

Rule Extraction. After training, we extracted the learned
rules and simplified them (see Appendix A for more details).
The obtained controller can then be written as follows:

Pdec = ¬P−1,0,2 ∧ ¬P−1,0,0 ∧ ¬P−1,0,1
Pleft = ¬P−1,0,2 ∧ P−1,0,0
Pright = ¬P−1,0,2 ∧ ¬P−1,0,0 ∧ P−1,0,1
Pacc = P−1,0,2

Interpretation. The learned rule for lane-changing sce-
nario is fairly simple. The decision making is only related to
three inputs, P−1,0,0, P−1,0,1, P−1,0,2, which detect whether
there is a nearby vehicle on the left lane, on the current lane
and on the right lane in front of the agent. Under the trained
model, the agent accelerates if no front vehicle on the current
lane is detected; if that is not possible, it tries to turn left if no
front vehicle on the left lane is detected; otherwise, it tries to
turn right if no front vehicle on the right lane is detected; as a
last option, it decelerates if the three lanes are all blocked.

Analysis. The learned rule is reassuringly simple and rea-
sonable. Although the logic rule is intuitively obvious, it may
have some limitations. Notably, it does not try to plan ahead
by considering cars farther. This may be due to our simpli-
fying modeling assumptions. More importantly, the model
decides the action without any information about speed or
relative speed. This implies that the model cannot tell apart
the difference between fast vehicles and slow vehicles, which
may potentially lead to unexpected problem like colliding
with a very slow car.

Motivated by the success of these preliminary experiments,
some of our simplifying modeling decisions could be relaxed
and made more realistic. For example, in this experiment, the
information of the current lane of the agent could be added,
so that the relation of lanes between social vehicles and the
agent could be learned. The speed range of all cars could be
increased and the discretization could be made finer. More-
over, more cars could be selected so that the decision-making
of the agent could be less myopic.

5.2 Intersection Management Scenario
Performance. After training, the three models are tested in
the same test environment, with a maximum of 100 time steps
in each episode. The comparison is shown in Table 3.

The quantity named avg time steps gives the average last-
ing time steps for each episode respectively. The quantities,
crash rate, timeout rate, and success rate, are the percent-
ages of episodes that the agent respectively ends in a crash,
reaches the maximum steps, or passes the intersection. Due
to the difficulty of the intersection management scenario, the
issue of crashes and timeouts due to other cars is even more
acute than in the previous scenario, as also noted by the author



Quantities NN NLM DLM

avg time steps 103.72 83.06 96.76
crash rate 10.4% 9.5% 6.5%
timeout rate 16.4% 7.5% 11.6%
success rate 73.2% 83.0% 82.0%
avg acceleration 59.47 45.10 45.04
avg deceleration 6.92 16.80 51.73
avg keep speed 37.33 21.16 0.00

Table 3: Test evaluation on the intersection management scenario

of the highway-env simulator. The quantities, avg accelera-
tion, avg deceleration, and keep speed, reflect the general
distribution of actions selected by the trained model.
Rule Extraction. Using the same techniques of rule extrac-
tion as in the lane-changing scenario, the predicates for ac-
tions in FOL form can be derived:

Pdec = P1 ∨ P2 ∨ P3 (9)
Pkeep = False (10)
Pacc = ¬Pdec (11)

P1 =
[
P−1,0,0 ∨ ∃P−1,1,5 ∨ ∀ (P−1,1,11 ∨ P−1,1,3)

]
∧[

¬P−1,0,0 ∧ P−1,0,7 ∧ ¬P−1,0,8

]
(12)

P2 =
[
∀(P−1,1,11 ∨ P−1,1,3) ∨ P−1,0,0 ∨ ∃P−1,1,5

]
∧[

∃P−1,1,3 ∨ ∃P−1,1,4

]
(13)

P3 =
[
∀(P−1,1,11 ∨ P−1,1,3) ∨ P−1,0,0 ∨ ∃P−1,1,5

]
∧[

(∃P−1,1,11 ∧ P−1,0,1)∨
[P−1,0,0 ∧ (∃P−1,1,12 ∨ ¬P−1,0,6)]

]
(14)

Interpretation. The logic program for the intersection sce-
nario is much more complex. From the overview of the three
actions, we can notice that action keeping speed is never con-
sidered by the model. A long logic expression determine
whether the acceleration or the deceleration is selected.

The logic expression of Pdec is a disjunctive clause com-
posed of three components. It shows that three situations,
represented by P1, P2, P3 leads to a deceleration opera-
tion. Moreover, one specific term P−1,0,0 ∨ ∃P−1,1,5 ∨
∀ (P−1,1,11 ∨ P−1,1,3) occurs in all the three predicates. It
can be concluded that this term of great importance is a nec-
essary condition for deceleration. Predicate P−1,0,0 detects
whether there is a nearby vehicle in the west in some dis-
tance range (−10 < ∆x ≤ −5) w.r.t. the agent. Predicate
∃P−1,1,5 detects whether there is any vehicle that may be
located in the west of the agent after one time step. Pred-
icate ∀ (P−1,1,11 ∨ P−1,1,3) detects whether all the vehicles
are from the west or may be located in the north of the agent.
The compound term can be seen as a detection of surround-
ing vehicles. The simplest case is that no vehicle is detected
around the agent, so that the model accelerates until passing
the intersection.

The remaining parts of logic programs filter the situation
after detecting nearby vehicles. The simplest situation is

∃P−1,1,3 ∨ ∃P−1,1,4 (from P2), which selects the deceler-
ation action if any vehicle is from the west or in the west
or drives to the west w.r.t. to the agent. The situation
¬P−1,0,0∧P−1,0,7∧¬P−1,0,8 represents another simple case
that detects whether there is a nearby vehicle in the north
(from P−1,0,7) when the vehicle is in a relatively high speed
(from ¬P−1,0,8). The last situation (∃P−1,1,11 ∧ P−1,0,1) ∨
[P−1,0,0 ∧ (∃P−1,1,12 ∨ ¬P−1,0,6)] (from P3) can be divided
into two parts. One is ∃P−1,1,11 ∧ P−1,0,1 checking if there
is an extremely close car in the west. The other is P−1,0,0 ∧
(∃P−1,1,12 ∨ ¬P−1,0,6), which is not very meaningful. Pred-
icate P−1,0,0 is discussed above and ∃P−1,1,12 ∨ ¬P−1,0,6
measures if a vehicle is predicted to be on the north side of
the agent without having a close range.
Analysis. The DLM model has a relatively good perfor-
mance in this scenario, meaning that the input predicates se-
lected by the logic programs are representative. These inputs
may help better understand some important features of the
environment. From the explanations above, it is apparent that
vehicles in the west and north are much more important. This
is because the driving direction of the agent is to north-west,
and vehicles from the north side and west side are more likely
to have a collision with the agent. Moreover, the selected
predicates have a longer thresholds for detecting vehicles lo-
cated in the west or in the north, because those vehicles may
block the road. Both the agent and the social vehicles are not
able to drive backward, so they can get stuck in the middle of
the intersection until the end of an episode. The model learns
to wait until the intersection becomes free enough in case of
such bad situations.

6 Conclusion
This preliminary work provides a basic proof of concept for
interpretable reinforcement learning in autonomous driving,
in particular for tactical decision-making. By describing the
autonomous vehicle’s environment in first-order logic (FOL),
a pure FOL program can be learned using the DLM model.
Our experiments demonstrate that our approach is competi-
tive against standard deep reinforcement learning and state-
of-the-art neuro-symbolic methods, while having the added
benefit of yielding an interpretable controller. Representative
information and potential problems could then be detected by
analyzing the learned logic programs.

Our discussion of our modeling decisions and our analysis
of the learned interpretable controllers already suggest vari-
ous potential improvements of our methodology, such as the
introduction of finer-grained predicates. Furthermore, future
work may also include the use of verification tools to guaran-
tee the good properties of the obtained logic programs or the
generation of explanations in natural language to articulate
the decision-making process of the agent while it is driving.
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A Equations for simplifying extracted rules
Let P = P r(x1, · · · , xr) is an r-ary predicate, F (P ) is a
predicate composed by P and other predicates, with operators
excluding dimensional operators (∀,∃,Expand,Rotate).
With respect to the operation and notation mentioned in Table
1 Notation, the following statements hold true.

• P ∧ F (P ) = P ∧ F (True)

• P ∨ F (P ) = P ∨ F (False)

• ∀(ExpandP ) = ∃(ExpandP ) = P

• for r ≥ 1, ¬(∀P ) = ∃(¬P )

• for r ≥ 1, ¬(∃P ) = ∀(¬P )

• for r = 0,
Rotate (Expand(ExpandP )) = Expand(ExpandP )

• for r = 2, ∀ (Rotate(ExpandP )) = Expand(∀P )

• for r = 2, ∃ (Rotate(ExpandP )) = Expand(∃P )

• for r ≥ 1, P ∧ Expand(∃P ) = P

• for r ≥ 1, P ∧ Expand(∀P ) = Expand(∀P )

• for r ≥ 1, P ∨ Expand(∃P ) = Expand(∃P )

• for r ≥ 1, P ∨ Expand(∀P ) = P

Let P1 = P r1 (x1, · · · , xr), P2 = P r2 (x1, · · · , xr) are two
r-ary predicate. With respect to the operation and notation
mentioned in Table 1 Notation, the following statements hold
true.

• ¬(P1 ∧ P2) = ¬P1 ∨ ¬P2

• ¬(P1 ∨ P2) = ¬P1 ∧ ¬P2

• Expand(P1 ∧ P2) = ExpandP1 ∧ ExpandP2

• Expand(P1 ∨ P2) = ExpandP1 ∨ ExpandP2

• for r ≥ 1, ∀(P1 ∧ P2) = ∀P1 ∧ ∀P2

• for r ≥ 1, ∃(P1 ∨ P2) = ∃P1 ∨ ∃P2

Let P1 = P r1 (x1, · · · , xr) is an r-ary predicate and P2 =
P r+1
2 (x1, · · · , xr+1) is an r + 1-ary predicate. With respect

to the operation and notation mentioned in Table 1 Notation,
the following statements hold true.

• ∀(ExpandP1 ∨ P2) = P1 ∨ ∀P2

• ∃(ExpandP1 ∧ P2) = P1 ∧ ∃P2

B Hyperparameters in training
For lane-changing scenario, the detailed hyperparameters are
shown in Table 4. Specifications for highway-env [Edouard,
2018] is shown in Table 5. Hyperparameters and specifica-
tions for intersection-management scenario is shown in Table
6 and Table 7.

Quantities Values

DLM depth 7
DLM breadth 3
DLM output dimension 8
learning rate 0.005
maximum steps 100000

Table 4: Hyperparameters in lane-changing scenarios

Quantities Env1 Env2

maximum episode steps 50 100
speed reward coefficient 0.4 0.4
collision reward coefficient 0.3 0.3
collision penalty 0 -50
policy frequency 1 1

Table 5: Specifications of environments in lane-changing scenarios

Quantities Values

DLM depth 7
DLM breadth 3
DLM output dimension 12
learning rate 0.005
maximum steps 100000

Table 6: Hyperparameters in intersection-management scenarios

Quantities Env1 Env2

maximum episode steps 100 100
acceleration reward 0.2 0
arrival reward 50 50
collision penalty -500 -500
policy frequency 4 4

Table 7: Specifications of environments in lane-changing scenarios

C Parameters
Table 8 presents the detailed values for parameters used in
initial predicates for our experiments.

lane-changing intersection management
Quantities Values Quantities Values

dsafe 1 dintersection 20
dvehicle 5 dvehicle 5
vs1 20 vslow 2
vs2 25 vfast 4
vs3 30 dback

near 5
dnear 18
dmedium 25 dback

medium 15
dfar 50
dmax 80 dback

far 30
∆[vx]slow -9
∆[vx]same 0 dface

near 15
∆[vx]fast 1
ε 0.2 dface

medium 28
d′near 4
d′far 10 dface

far 50

Table 8: Parameters used in initial predicates for two scenarios
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