
Under review as a conference paper at ICLR 2021

END-TO-END EGOSPHERIC SPATIAL MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Spatial memory, or the ability to remember and recall specific locations and objects,
is central to autonomous agents’ ability to carry out tasks in real environments.
However, most existing artificial memory modules have difficulty recalling infor-
mation over long time periods and are not very adept at storing spatial information.
We propose a parameter-free module, Egospheric Spatial Memory (ESM), which
encodes the memory in an ego-sphere around the agent, enabling expressive 3D
representations. ESM can be trained end-to-end via either imitation or reinforce-
ment learning, and improves both training efficiency and final performance against
other memory baselines on both drone and manipulator visuomotor control tasks.
The explicit egocentric geometry also enables us to seamlessly combine the learned
controller with other non-learned modalities, such as local obstacle avoidance. We
further show applications to semantic segmentation on the ScanNet dataset, where
ESM naturally combines image-level and map-level inference modalities. Through
our broad set of experiments, we show that ESM provides a general computation
graph for embodied spatial reasoning, and the module forms a bridge between
real-time mapping systems and differentiable memory architectures.

1 INTRODUCTION

Egocentric spatial memory is central to our understanding of spatial reasoning in biology (Klatzky,
1998; Burgess, 2006), where an embodied agent constantly carries with it a local map of its sur-
rounding geometry. Such representations have particular significance for action selection and motor
control (Hinman et al., 2019). For robotics and embodied AI, the benefits of a persistent local spatial
memory are also clear. Such a system has the potential to run for long periods, and bypass both the
memory and runtime complexities of large scale world-centric mapping. Peters et al. (2001) propose
an EgoSphere as being a particularly suitable representation for robotics, and more recent works have
utilized ego-centric formulations for planar robot mapping (Fankhauser et al., 2014), drone obstacle
avoidance (Fragoso et al., 2018) and mono-to-depth (Liu et al., 2019).

In parallel with these ego-centric mapping systems, a new paradigm of differentiable memory
architectures has arisen, where a memory bank is augmented to a neural network, which can then
learn read and write operations (Weston et al., 2014; Graves et al., 2014; Sukhbaatar et al., 2015).
When compared to Recurrent Neural Networks (RNNs), the persistent memory circumvents issues
of vanishing or exploding gradients, enabling solutions to long-horizon tasks. These have also been
applied to visuomotor control and navigation tasks (Wayne et al., 2018), surpassing baselines such as
the ubiquitous Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997).

We focus on the intersection of these two branches of research, and propose Egospheric Spatial
Memory (ESM), a parameter-free module which encodes geometric and semantic information about
the scene in an ego-sphere around the agent. To the best of our knowledge, ESM is the first end-to-end
trainable egocentric memory with a full panoramic representation, enabling direct encoding of the
surrounding scene in a 2.5D image.

We also show that by propagating gradients through the ESM computation graph we can learn features
to be stored in the memory. We demonstrate the superiority of learning features through the ESM
module on both target shape reaching and object segmentation tasks. For other visuomotor control
tasks, we show that even without learning features through the module, and instead directly projecting
image color values into memory, ESM consistently outperforms other memory baselines.

1

Under review as a conference paper at ICLR 2021

Through these experiments, we show that the applications of our parameter-free ESM module are
widespread, where it can either be dropped into existing pipelines as a non-learned module, or
end-to-end trained in a larger computation graph, depending on the task requirements.

2 RELATED WORK

2.1 MAPPING

Geometric mapping is a mature �eld, with many solutions available for constructing high quality
maps. Such systems typically maintain an allocentric map, either by projecting points into a global
world co-ordinate system (Newcombe et al., 2011; Whelan et al., 2015), or by maintaining a certain
number of keyframes in the trajectory history (Zhou et al., 2018; Bloesch et al., 2018). If these
systems are to be applied to life-long embodied AI, then strategies are required to effectively select
the parts of the map which are useful, and discard the rest from memory (Cadena et al., 2016).

For robotics applications, prioritizing geometry in the immediate vicinity is a sensible prior. Rather
than taking a world-view to map construction, such systems often formulate the mapping problem
in a purely ego-centric manner, performing continual re-projection to the newest frame and pose
with �xed-sized storage. Unlike allocentric formulations, the memory indexing is then fully coupled
to the agent pose, resulting in an ordered representation particularly well suited for downstream
egocentric tasks, such as action selection. Peters et al. (2001) outline an EgoSphere memory structure
as being suitable for humanoid robotics, with indexing via polar and azimuthal angles. Fankhauser
et al. (2014) use ego-centric height maps, and demonstrate on a quadrupedal robot walking over
obstacles. Cigla et al. (2017) use per-pixel depth Gaussian Mixture Models (GMMs) to maintain an
ego-cylinder of belief around a drone, with applications to collision avoidance (Fragoso et al., 2018).
In a different application, Liu et al. (2019) learn to predict depth images from a sequence of RGB
images, again using ego reprojections. These systems are all designed to represent only at the level
of depth and RGB features. For mapping more expressive implicit features via end-to-end training,
a fully differentiable long-horizon computation graph is required. Any computation graph which
satis�es this requirement is generally referred to as memory in the neural network literature.

2.2 MEMORY

The concept of memory in neural networks is deeply coupled with recurrence. Naive recurrent net-
works have vanishing and exploding gradient problems (Hochreiter, 1998), which LSTMs (Hochreiter
& Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho et al., 2014) mediate using additive
gated structures. More recently, dedicated differentiable memory blocks have become a popular alter-
native. Weston et al. (2014) applied Memory Networks (MemNN) to question answering, using hard
read-writes and separate training of components. Graves et al. (2014) and Sukhbaatar et al. (2015)
instead made the read and writes `soft' with the proposal of Neural Turing Machines (NTM) and
End-to-End Memory Networks (MemN2N) respectively, enabling joint training with the controller.
Other works have since conditioned dynamic memory on images, for tasks such as visual question
answering (Xiong et al., 2016) and object segmentation (Oh et al., 2019). Another distinct but closely
related approach is self attention (Vaswani et al., 2017). These approaches also use key-based content
retrieval, but do so on a history of previous observations with adjacent connectivity. Despite the lack
of geometric inductive bias, recent results demonstrate the amenability of general memory (Wayne
et al., 2018) and attention (Parisotto et al., 2019) to visuomotor control and navigation tasks.

Other authors have explored the intersection of network memory and spatial mapping for navigation,
but have generally been limited to 2D aerial-view maps, focusing on planar navigation tasks. Gupta
et al. (2017) used an implicit ego-centric memory which was updated with warping and con�dence
maps for discrete action navigation problems. Parisotto & Salakhutdinov (2017) proposed a similar
setup, but used dedicated learned read and write operations for updates, and tested on simulated Doom
environments. Without consideration for action selection, Henriques & Vedaldi (2018) proposed a
similar system, but instead used an allocentric formulation, and tested on free-form trajectories of
real images. Zhang et al. (2018) also propose a similar system, but with the inclusion of loop closure.
Our memory instead focuses on local perception, with the ability to represent detailed 3D geometry
in all directions around the agent. The bene�ts of our module are complementary to existing 2D
methods, which instead focus on occlusion-aware planar understanding suitable for navigation.

2

Under review as a conference paper at ICLR 2021

3 METHOD

In this section, we describe our main contribution, the egospheric spatial memory (ESM) module,
shown in Figure 1. The module operates as an Extended Kalman Filter (EKF), with an egosphere
image� t 2 Rh s � ws � (2+1+ n) and its diagonal covariance� t 2 Rh s � ws � (1+ n) representing the state.
The egosphere image consists of 2 channels for the polar and azimuthal angles, 1 for radial depth,
andn for encoded features. The angles are not included in the covariance, as their values are implicit
in the egosphere image pixel indices. The covariance only represents the uncertainty in depth and
features at these �xed equidistant indices, and diagonal covariance is assumed due to the large state
size of the images. Image measurements are assumed to come from projective depth cameras, which
similarly store 1 channel for depth andn for encoded features. We also assume incremental agent
pose measurementsut 2 R6 with covariance� u t 2 R6� 6 are available, in the form of a translation
and rotation vector. The algorithm overview is presented in Algorithm 1.

Figure 1: Overview of the ESM module. The module consists of projection and quantization steps,
used to bring the belief from the previous agent frame to the current agent frame.

Algorithm 1: ESM Step

1 Given: f m ; Fm ; f o; Fo
2 �� t = f m (ut ; � t � 1)
3 �� t = Fm (ut ; � t � 1; � t � 1; � u t)
4 �̂ t = f o((vti ; pti) i 2 I)
5 �̂ t = Fo((vti ; pti ; Vti ; Pti) i 2 I)

6 K t = �� t

h
�� t + �̂ t

i � 1

7 � t = �� t + K t [�̂ t � �� t]
8 � t = [I � K t] �� t
9 return� t ; � t

First, the motion step takes the state from the previous
frame � t � 1; � t � 1 and transforms this into a predicted
state for the current frame�� t ; �� t via functionsf m , Fm
and the incremental pose measurementut with covariance
� u t . Then in the observation step, we use measured vi-
sual features(vti 2 Rh vi � wvi � (1+ n)) i 2f 1;:::;m g with diag-
onal covariances(Vti 2 Rh vi � wvi � (1+ n)) i 2f 1;:::;m g orig-
inated fromm arbitrary vision sensors, and associated
pose measurements(pti 2 R6) i 2f 1;:::;m g with covariances
(Pti 2 R6� 6) i 2f 1;:::;m g, to produce a new observation of
the statê� t 2 Rh s � ws � (2+1+ n) , again with diagonal covari-
ance�̂ t 2 Rh s � ws � (1+ n) , via functionsf o andFo. The
measured poses also take the form of a translation and rotation vector.

Finally, the update step takes our state prediction�� t ; �� t and state observation̂� t ; �̂ t , and fuses them
to produce our new state belief� t ; � t . We spend the remainder of this section explaining the form of
the constituent functions. All functions in Algorithm 1 involve re-projections across different image
frames, using forward warping. Functionsf m , Fm , f o andFo are therefore all built using the same
core functions. While the re-projections could be solved using a typical rendering pipeline of mesh
construction followed by rasterization, we instead choose a simpler approach and directly quantize
the pixel projections with variance-based image smoothing to �ll in quantization holes. An overview
of the projection and quantization operations for a single ESM update step is shown in Fig. 1.

3.1 FORWARD WARPING

Forward warping projects ordered equidistant homogeneous pixel co-ordinatespcf 1 from frame
f 1 to non-ordered non-equidistant homogeneous pixel co-ordinates~pcf 2 in frame f 2. We use
~� f 2 = f ~� f 2; ~� f 2; ~df 2; ~ef 2g to denote the loss of ordering following projection from� f 1 =
f � f 1; � f 2; df 1; ef 2g, where� , � , d ande represent polar angles, azimuthal angles, depth and encoded
features respectively. We only consider warping from projective to omni cameras, which corresponds

3

Under review as a conference paper at ICLR 2021

to functionsf o; Fo, but the omni-to-omni case as inf m ; Fm is identical except with the inclusion of
another polar co-ordinate transformation.

The encoded features are assumed constant during projection~ef 2 = ef 1. For depth, we must
transform the values to the new frame in polar co-ordinates, which is a composition of a linear trans-
formation and non-linear polar conversion. Using the camera intrinsic matrixK 1, the full projection
is composed of a scalar multiplication with homogeneous pixel co-ordinatespcf 1, transformation by
camera inverse matrixK � 1

1 and frame-to-frameT12 matrices, and polar conversionf p:

f ~� f 2; ~� f 2; ~df 2g = f p(T12K � 1
1 [pcf 1 � df 1]) (1)

Combined, this provides us with both the forward warped image~� f 2 = f ~� f 2; ~� f 2; ~df 2; ~ef 2g, and the
newly projected homogeneous pixel co-ordinates~pcf 2 = f kppr

~� f 2; kppr
~� f 2, 1}, wherekppr denotes

the pixels-per-radian resolution constant. The variances are also projected using the full analytic
Jacobians, which are ef�ciently implemented as tensor operations, avoiding costly autograd usage.

~̂� 2 = JV V1J T
V + JP P12J T

P (2)

3.2 QUANTIZATION , FUSION AND SMOOTHING

Following projection, we �rst quantize the �oating point pixel coordinates~pcf 2 into integer pixel
co-ordinatespcf 2. This in general leads to quantization holes and duplicates. The duplicates are
handled with a variance conditioned depth buffer, such that the closest projected depth is used,
provided that it's variance is lower than a set threshold. This in general prevents highly uncertain
close depth values from overwriting highly certain far values. We then perform per pixel fusion based
on lines 6 and 7 in Algorithm 1 provided the depths fall within a set relative threshold, otherwise the
minimum depth with suf�ciently low variance is taken. This again acts as a depth buffer.

Finally, we perform variance based image smoothing, whereby we treat eachN � N image patch
(� k;l)k2f 1;::;N g;l 2f 1;::;N g as a collection of independent measurements of the central pixel, and
combine their variance values based on central limit theory, resulting in smoothed values for each
pixel in the image� i;j . Although we use this to update the mean belief, we do not smooth the
variance values, meaning projection holes remain at prior variance. This prevents the smoothing from
distorting our belief during subsequent projections, and makes the smoothing inherently local to the
current frame only. The smoothing formula is as follows, with variance here denoted as� 2:

� i;j =

P
k

P
l � k;l � � � 2

k;lP
k

P
l � � 2

k;l

(3)

Given that the quantization is a discrete operation, we cannot compute it's analytic jacobian for
uncertainty propagation. We therefore approximate the added quantization uncertainty using the
numerical pixel gradients of the newly smoothed imageGi;j , and assume additive noise proportional
to thex andy quantization distances� pci;j :

� i;j = ~� i;j + Gi;j � pci;j (4)

3.3 NEURAL NETWORK INTEGRATION

The ESM module can be integrated anywhere into a wider CNN stack, forming an Egospheric Spatial
Memory Network (ESMN). Throughout this paper we consider two variants, ESMN and ESMN-RGB,
see Figure 2. ESMN-RGB is a special case of ESMN, where RGB features are directly projected
into memory, while ESMN projects CNN encoded features into memory. The inclusion of polar
angles, azimuthal angles and depth means the full relative polar coordinates are explicitly represented
for each pixel in memory. Although the formulation described in Algorithm 1 and Fig 1 allows for
m vision sensors, the experiments in this paper all involve only a single acquiring sensor, meaning
m = 1 . We also only consider cases with constant variance in the acquired imagesVt = kvar , and so
we omit the variance images from the ESM input in Fig 2 for simplicity. For baseline approaches, we
compute an image of camera-relative coordinates viaK � 1, and then concatenate this to the RGB
image along with the tiled incremental poses before input to the networks. All values are normalized
to 0 � 1 before passing to convolutions, based on the permitted range for each channel.

4

Under review as a conference paper at ICLR 2021

Figure 2: High level schematics of the ESM-integrated network architectures ESMN-RGB and
ESMN, as well as other baseline architectures used in the experiments: Mono, LSTM and NTM.

4 EXPERIMENTS

The goal of our experiments is to show the wide applicability of ESM to different embodied 3D
learning tasks. We test two different applications:

1. Image-to-action learning for multi-DOF control (Sec 4.1). Here we consider drone and
robot manipulator target reacher tasks using either ego-centric or scene-centric cameras.
We then assess the ability for ESMN policies to generalize between these different camera
modalities, and assess the utility of the ESM geometry for obstacle avoidance. We train
policies both using imitation learning (IL) and reinforcement learning (RL).

2. Object segmentation (Sec 4.2). Here we explore the task of constructing a semantic map, and
the effect of changing the ESM module location in the computation graph on performance.

4.1 MULTI -DOF VISUOMOTORCONTROL

While ego-centric cameras are typically used when learning to navigate planar scenes from images
(Jaderberg et al., 2016; Zhu et al., 2017; Gupta et al., 2017; Parisotto & Salakhutdinov, 2017),static
scene-centric cameras are the de facto when learning multi-DOF controllers for robot manipulators
(Levine et al., 2016; James et al., 2017; Matas et al., 2018; James et al., 2019b). We consider the more
challenging and less explored setup of learning multi-DOF visuomotor controllers from ego-centric
cameras, and also frommovingscene-centric cameras. LSTMs are the de facto memory architecture
in the RL literature (Jaderberg et al., 2016; Espeholt et al., 2018; Kapturowski et al., 2018; Mirowski
et al., 2018; Bruce et al., 2018), making this a suitable baseline. NTMs represent another suitable
baseline, which have outperformed LSTMs on visual navigation tasks (Wayne et al., 2018). Many
other works exist which outperform LSTMs for planar navigation in 2D maze-like environments
(Gupta et al., 2017; Parisotto & Salakhutdinov, 2017; Henriques & Vedaldi, 2018), but the top-down
representation means these methods are not readily applicable to our multi-DOF control tasks. LSTM
and NTM are therefore selected as competitive baselines for comparison.

4.1.1 IMITATION LEARNING

For our imitation learning experiments, we test the utility the ESM module on two simulated visual
reacher tasks, which we refer to as Drone Reacher (DR) and Manipulator Reacher (MR). Both are
implemented using the CoppeliaSim robot simulator (Rohmer et al., 2013), and its Python extension
PyRep (James et al., 2019a). We implement DR ourselves, while MR is a modi�cation of the reacher
task in RLBench (James et al., 2020). Both tasks consist of 3 targets placed randomly in a simulated
arena, and colors are newly randomized for each episode. The targets consist of a cylinder, sphere,
and "star", see Figure 3.

5

	Introduction
	Related Work
	Mapping
	Memory

	Method
	Forward Warping
	Quantization, Fusion and Smoothing
	Neural Network Integration

	Experiments
	Multi-DOF Visuomotor Control
	Imitation Learning
	Reinforcement Learning

	Object Segmentation

	Conclusion
	Appendix
	Multi-DOF Imitation Learning
	Offline Datasets
	Training
	Network Architectures
	Auxiliary Losses
	Further Discussion of Results
	Implicit Feature Analysis

	Obstacle Avoidance
	Multi-DOF Reinforcement Learning
	Training
	Network Architectures

	Object Segmentation
	Dataset
	Network Architectures
	Training

	Runtime Analysis

