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ABSTRACT

Spatial memory, or the ability to remember and recall specific locations and objects,
is central to autonomous agents’ ability to carry out tasks in real environments.
However, most existing artificial memory modules are not very adept at storing
spatial information. We propose a parameter-free module, Egospheric Spatial
Memory (ESM), which encodes the memory in an ego-sphere around the agent,
enabling expressive 3D representations. ESM can be trained end-to-end via either
imitation or reinforcement learning, and improves both training efficiency and
final performance against other memory baselines on both drone and manipulator
visuomotor control tasks. The explicit egocentric geometry also enables us to
seamlessly combine the learned controller with other non-learned modalities, such
as local obstacle avoidance. We further show applications to semantic segmentation
on the ScanNet dataset, where ESM naturally combines image-level and map-level
inference modalities. Through our broad set of experiments, we show that ESM
provides a general computation graph for embodied spatial reasoning, and the mod-
ule forms a bridge between real-time mapping systems and differentiable memory
architectures. Implementation at: https://github.com/ivy-dl/memory.

1 INTRODUCTION

Egocentric spatial memory is central to our understanding of spatial reasoning in biology (Klatzky,
1998; Burgess, 2006), where an embodied agent constantly carries with it a local map of its sur-
rounding geometry. Such representations have particular significance for action selection and motor
control (Hinman et al., 2019). For robotics and embodied AI, the benefits of a persistent local spatial
memory are also clear. Such a system has the potential to run for long periods, and bypass both the
memory and runtime complexities of large scale world-centric mapping. Peters et al. (2001) propose
an EgoSphere as being a particularly suitable representation for robotics, and more recent works have
utilized ego-centric formulations for planar robot mapping (Fankhauser et al., 2014), drone obstacle
avoidance (Fragoso et al., 2018) and mono-to-depth (Liu et al., 2019).

In parallel with these ego-centric mapping systems, a new paradigm of differentiable memory
architectures has arisen, where a memory bank is augmented to a neural network, which can then
learn read and write operations (Weston et al., 2014; Graves et al., 2014; Sukhbaatar et al., 2015).
When compared to Recurrent Neural Networks (RNNs), the persistent memory circumvents issues
of vanishing or exploding gradients, enabling solutions to long-horizon tasks. These have also been
applied to visuomotor control and navigation tasks (Wayne et al., 2018), surpassing baselines such as
the ubiquitous Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997).

We focus on the intersection of these two branches of research, and propose Egospheric Spatial
Memory (ESM), a parameter-free module which encodes geometric and semantic information about
the scene in an ego-sphere around the agent. To the best of our knowledge, ESM is the first end-to-end
trainable egocentric memory with a full panoramic representation, enabling direct encoding of the
surrounding scene in a 2.5D image.

We also show that by propagating gradients through the ESM computation graph we can learn features
to be stored in the memory. We demonstrate the superiority of learning features through the ESM
module on both target shape reaching and object segmentation tasks. For other visuomotor control
tasks, we show that even without learning features through the module, and instead directly projecting
image color values into memory, ESM consistently outperforms other memory baselines.
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Through these experiments, we show that the applications of our parameter-free ESM module are
widespread, where it can either be dropped into existing pipelines as a non-learned module, or
end-to-end trained in a larger computation graph, depending on the task requirements.

2 RELATED WORK

2.1 MAPPING

Geometric mapping is a mature field, with many solutions available for constructing high quality
maps. Such systems typically maintain an allocentric map, either by projecting points into a global
world co-ordinate system (Newcombe et al., 2011; Whelan et al., 2015), or by maintaining a certain
number of keyframes in the trajectory history (Zhou et al., 2018; Bloesch et al., 2018). If these
systems are to be applied to life-long embodied AI, then strategies are required to effectively select
the parts of the map which are useful, and discard the rest from memory (Cadena et al., 2016).

For robotics applications, prioritizing geometry in the immediate vicinity is a sensible prior. Rather
than taking a world-view to map construction, such systems often formulate the mapping problem
in a purely ego-centric manner, performing continual re-projection to the newest frame and pose
with fixed-sized storage. Unlike allocentric formulations, the memory indexing is then fully coupled
to the agent pose, resulting in an ordered representation particularly well suited for downstream
egocentric tasks, such as action selection. Peters et al. (2001) outline an EgoSphere memory structure
as being suitable for humanoid robotics, with indexing via polar and azimuthal angles. Fankhauser
et al. (2014) use ego-centric height maps, and demonstrate on a quadrupedal robot walking over
obstacles. Cigla et al. (2017) use per-pixel depth Gaussian Mixture Models (GMMs) to maintain an
ego-cylinder of belief around a drone, with applications to collision avoidance (Fragoso et al., 2018).
In a different application, Liu et al. (2019) learn to predict depth images from a sequence of RGB
images, again using ego reprojections. These systems are all designed to represent only at the level
of depth and RGB features. For mapping more expressive implicit features via end-to-end training,
a fully differentiable long-horizon computation graph is required. Any computation graph which
satisfies this requirement is generally referred to as memory in the neural network literature.

2.2 MEMORY

The concept of memory in neural networks is deeply coupled with recurrence. Naive recurrent net-
works have vanishing and exploding gradient problems (Hochreiter, 1998), which LSTMs (Hochreiter
& Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho et al., 2014) mediate using additive
gated structures. More recently, dedicated differentiable memory blocks have become a popular alter-
native. Weston et al. (2014) applied Memory Networks (MemNN) to question answering, using hard
read-writes and separate training of components. Graves et al. (2014) and Sukhbaatar et al. (2015)
instead made the read and writes ‘soft’ with the proposal of Neural Turing Machines (NTM) and
End-to-End Memory Networks (MemN2N) respectively, enabling joint training with the controller.
Other works have since conditioned dynamic memory on images, for tasks such as visual question
answering (Xiong et al., 2016) and object segmentation (Oh et al., 2019). Another distinct but closely
related approach is self attention (Vaswani et al., 2017). These approaches also use key-based content
retrieval, but do so on a history of previous observations with adjacent connectivity. Despite the lack
of geometric inductive bias, recent results demonstrate the amenability of general memory (Wayne
et al., 2018) and attention (Parisotto et al., 2019) to visuomotor control and navigation tasks.

Other authors have explored the intersection of network memory and spatial mapping for navigation,
but have generally been limited to 2D aerial-view maps, focusing on planar navigation tasks. Gupta
et al. (2017) used an implicit ego-centric memory which was updated with warping and confidence
maps for discrete action navigation problems. Parisotto & Salakhutdinov (2017) proposed a similar
setup, but used dedicated learned read and write operations for updates, and tested on simulated Doom
environments. Without consideration for action selection, Henriques & Vedaldi (2018) proposed a
similar system, but instead used an allocentric formulation, and tested on free-form trajectories of
real images. Zhang et al. (2018) also propose a similar system, but with the inclusion of loop closure.
Our memory instead focuses on local perception, with the ability to represent detailed 3D geometry
in all directions around the agent. The benefits of our module are complementary to existing 2D
methods, which instead focus on occlusion-aware planar understanding suitable for navigation.
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3 METHOD

In this section, we describe our main contribution, the egospheric spatial memory (ESM) module,
shown in Figure 1. The module operates as an Extended Kalman Filter (EKF), with an egosphere
image µt ∈ Rhs×ws×(2+1+n) and its diagonal covariance Σt ∈ Rhs×ws×(1+n) representing the state.
The egosphere image consists of 2 channels for the polar and azimuthal angles, 1 for radial depth,
and n for encoded features. The angles are not included in the covariance, as their values are implicit
in the egosphere image pixel indices. The covariance only represents the uncertainty in depth and
features at these fixed equidistant indices, and diagonal covariance is assumed due to the large state
size of the images. Image measurements are assumed to come from projective depth cameras, which
similarly store 1 channel for depth and n for encoded features. We also assume incremental agent
pose measurements ut ∈ R6 with covariance Σut ∈ R6×6 are available, in the form of a translation
and rotation vector. The algorithm overview is presented in Algorithm 1.

Figure 1: Overview of the ESM module. The module consists of projection and quantization steps,
used to bring the belief from the previous agent frame to the current agent frame.

Algorithm 1: ESM Step

1 Given: fm, Fm, fo, Fo

2 µ̄t = fm(ut, µt−1)

3 Σ̄t = Fm(ut, µt−1,Σt−1,Σut
)

4 µ̂t = fo((vti, pti)i∈I)

5 Σ̂t = Fo((vti, pti, Vti, Pti)i∈I)

6 Kt = Σ̄t

[
Σ̄t + Σ̂t

]−1
7 µt = µ̄t +Kt[µ̂t − µ̄t]

8 Σt = [I −Kt] Σ̄t

9 return µt,Σt

First, the motion step takes the state from the previous
frame µt−1,Σt−1 and transforms this into a predicted
state for the current frame µ̄t, Σ̄t via functions fm, Fm

and the incremental pose measurement ut with covariance
Σut

. Then in the observation step, we use measured vi-
sual features (vti ∈ Rhvi×wvi×(1+n))i∈{1,...,m} with diag-
onal covariances (Vti ∈ Rhvi×wvi×(1+n))i∈{1,...,m} orig-
inated from m arbitrary vision sensors, and associated
pose measurements (pti ∈ R6)i∈{1,...,m} with covariances
(Pti ∈ R6×6)i∈{1,...,m}, to produce a new observation of
the state µ̂t ∈ Rhs×ws×(2+1+n), again with diagonal covari-
ance Σ̂t ∈ Rhs×ws×(1+n), via functions fo and Fo. The
measured poses also take the form of a translation and rotation vector.

Finally, the update step takes our state prediction µ̄t, Σ̄t and state observation µ̂t, Σ̂t, and fuses them
to produce our new state belief µt,Σt. We spend the remainder of this section explaining the form of
the constituent functions. All functions in Algorithm 1 involve re-projections across different image
frames, using forward warping. Functions fm, Fm, fo and Fo are therefore all built using the same
core functions. While the re-projections could be solved using a typical rendering pipeline of mesh
construction followed by rasterization, we instead choose a simpler approach and directly quantize
the pixel projections with variance-based image smoothing to fill in quantization holes. An overview
of the projection and quantization operations for a single ESM update step is shown in Fig. 1.

3.1 FORWARD WARPING

Forward warping projects ordered equidistant homogeneous pixel co-ordinates pcf1 from frame
f1 to non-ordered non-equidistant homogeneous pixel co-ordinates p̃cf2 in frame f2. We use
µ̃f2 = {φ̃f2, θ̃f2, d̃f2, ẽf2} to denote the loss of ordering following projection from µf1 =
{φf1, θf2, df1, ef2}, where φ, θ, d and e represent polar angles, azimuthal angles, depth and encoded
features respectively. We only consider warping from projective to omni cameras, which corresponds

3



Published as a conference paper at ICLR 2021

to functions fo, Fo, but the omni-to-omni case as in fm, Fm is identical except with the inclusion of
another polar co-ordinate transformation.

The encoded features are assumed constant during projection ẽf2 = ef1. For depth, we must
transform the values to the new frame in polar co-ordinates, which is a composition of a linear trans-
formation and non-linear polar conversion. Using the camera intrinsic matrix K1, the full projection
is composed of a scalar multiplication with homogeneous pixel co-ordinates pcf1, transformation by
camera inverse matrix K−11 and frame-to-frame T12 matrices, and polar conversion fp:

{φ̃f2, θ̃f2, d̃f2} = fp(T12K
−1
1 [pcf1 � df1]) (1)

Combined, this provides us with both the forward warped image µ̃f2 = {φ̃f2, θ̃f2, d̃f2, ẽf2}, and the
newly projected homogeneous pixel co-ordinates p̃cf2 = {kpprφ̃f2, kppr θ̃f2, 1}, where kppr denotes
the pixels-per-radian resolution constant. The variances are also projected using the full analytic
Jacobians, which are efficiently implemented as tensor operations, avoiding costly autograd usage.

ˆ̃Σ2 = JV V1J
T
V + JPP12J

T
P (2)

3.2 QUANTIZATION, FUSION AND SMOOTHING

Following projection, we first quantize the floating point pixel coordinates p̃cf2 into integer pixel
co-ordinates pcf2. This in general leads to quantization holes and duplicates. The duplicates are
handled with a variance conditioned depth buffer, such that the closest projected depth is used,
provided that it’s variance is lower than a set threshold. This in general prevents highly uncertain
close depth values from overwriting highly certain far values. We then perform per pixel fusion based
on lines 6 and 7 in Algorithm 1 provided the depths fall within a set relative threshold, otherwise the
minimum depth with sufficiently low variance is taken. This again acts as a depth buffer.

Finally, we perform variance based image smoothing, whereby we treat each N ×N image patch
(µk,l)k∈{1,..,N},l∈{1,..,N} as a collection of independent measurements of the central pixel, and
combine their variance values based on central limit theory, resulting in smoothed values for each
pixel in the image µi,j . Although we use this to update the mean belief, we do not smooth the
variance values, meaning projection holes remain at prior variance. This prevents the smoothing from
distorting our belief during subsequent projections, and makes the smoothing inherently local to the
current frame only. The smoothing formula is as follows, with variance here denoted as σ2:

µi,j =

∑
k

∑
l µk,l · σ−2k,l∑

k

∑
l σ
−2
k,l

(3)

Given that the quantization is a discrete operation, we cannot compute it’s analytic jacobian for
uncertainty propagation. We therefore approximate the added quantization uncertainty using the
numerical pixel gradients of the newly smoothed image Gi,j , and assume additive noise proportional
to the x and y quantization distances ∆pci,j :

Σi,j = Σ̃i,j +Gi,j∆pci,j (4)

3.3 NEURAL NETWORK INTEGRATION

The ESM module can be integrated anywhere into a wider CNN stack, forming an Egospheric Spatial
Memory Network (ESMN). Throughout this paper we consider two variants, ESMN and ESMN-RGB,
see Figure 2. ESMN-RGB is a special case of ESMN, where RGB features are directly projected
into memory, while ESMN projects CNN encoded features into memory. The inclusion of polar
angles, azimuthal angles and depth means the full relative polar coordinates are explicitly represented
for each pixel in memory. Although the formulation described in Algorithm 1 and Fig 1 allows for
m vision sensors, the experiments in this paper all involve only a single acquiring sensor, meaning
m = 1. We also only consider cases with constant variance in the acquired images Vt = kvar, and so
we omit the variance images from the ESM input in Fig 2 for simplicity. For baseline approaches, we
compute an image of camera-relative coordinates via K−1, and then concatenate this to the RGB
image along with the tiled incremental poses before input to the networks. All values are normalized
to 0− 1 before passing to convolutions, based on the permitted range for each channel.
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Figure 2: High level schematics of the ESM-integrated network architectures ESMN-RGB and
ESMN, as well as other baseline architectures used in the experiments: Mono, LSTM and NTM.

4 EXPERIMENTS

The goal of our experiments is to show the wide applicability of ESM to different embodied 3D
learning tasks. We test two different applications:

1. Image-to-action learning for multi-DOF control (Sec 4.1). Here we consider drone and
robot manipulator target reacher tasks using either ego-centric or scene-centric cameras.
We then assess the ability for ESMN policies to generalize between these different camera
modalities, and assess the utility of the ESM geometry for obstacle avoidance. We train
policies both using imitation learning (IL) and reinforcement learning (RL).

2. Object segmentation (Sec 4.2). Here we explore the task of constructing a semantic map, and
the effect of changing the ESM module location in the computation graph on performance.

4.1 MULTI-DOF VISUOMOTOR CONTROL

While ego-centric cameras are typically used when learning to navigate planar scenes from images
(Jaderberg et al., 2016; Zhu et al., 2017; Gupta et al., 2017; Parisotto & Salakhutdinov, 2017), static
scene-centric cameras are the de facto when learning multi-DOF controllers for robot manipulators
(Levine et al., 2016; James et al., 2017; Matas et al., 2018; James et al., 2019b). We consider the more
challenging and less explored setup of learning multi-DOF visuomotor controllers from ego-centric
cameras, and also from moving scene-centric cameras. LSTMs are the de facto memory architecture
in the RL literature (Jaderberg et al., 2016; Espeholt et al., 2018; Kapturowski et al., 2018; Mirowski
et al., 2018; Bruce et al., 2018), making this a suitable baseline. NTMs represent another suitable
baseline, which have outperformed LSTMs on visual navigation tasks (Wayne et al., 2018). Many
other works exist which outperform LSTMs for planar navigation in 2D maze-like environments
(Gupta et al., 2017; Parisotto & Salakhutdinov, 2017; Henriques & Vedaldi, 2018), but the top-down
representation means these methods are not readily applicable to our multi-DOF control tasks. LSTM
and NTM are therefore selected as competitive baselines for comparison.

4.1.1 IMITATION LEARNING

For our imitation learning experiments, we test the utility of the ESM module on two simulated visual
reacher tasks, which we refer to as Drone Reacher (DR) and Manipulator Reacher (MR). Both are
implemented using the CoppeliaSim robot simulator (Rohmer et al., 2013), and its Python extension
PyRep (James et al., 2019a). We implement DR ourselves, while MR is a modification of the reacher
task in RLBench (James et al., 2020). Both tasks consist of 3 targets placed randomly in a simulated
arena, and colors are newly randomized for each episode. The targets consist of a cylinder, sphere,
and "star", see Figure 3.
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Figure 3: Visualization of (a) Drone Reacher and
(b) Manipulator Reacher tasks.

In both tasks, the target locations remain fixed
for the duration of an episode, and the agent
must continually navigate to newly specified tar-
gets, reaching as many as possible in a fixed
time frame of 100 steps. The targets are spec-
ified to the agent either as RGB color values
or shape class id, depending on the experiment.
The agent does not know in advance which tar-
get will next be specified, meaning a memory
of all targets and their location in the scene
must be maintained for the full duration of an
episode. Both environments have a single body-
fixed camera, as shown in Figure 3, and also an
external camera with freeform motion, which
we use separately for different experiments.

For training, we generate an offline dataset of 100k 16-step sequences from random motions for both
environments, and train the agents using imitation learning from known expert actions. Action spaces
of joint velocities q̇ ∈ R7 and cartesian velocities ẋ ∈ R6 are used for MR and DR respectively.
Expert translations move the end-effector or drone directly towards the target, and expert rotations
rotate the egocentric camera towards the target via shortest rotation. Expert joint velocities are
calculated for linear end-effector motion via the manipulator Jacobian. For all experiments, we
compare to baselines of single-frame, dual-stacked LSTM with and without spatial auxiliary losses,
and NTM. We also compare against a network trained on partial oracle omni-directional images,
masked at unobserved pixels, which we refer to as Partial-Oracle-Omni (PO2), as well as random and
expert policies. PO2 cannot see regions where the monocular camera has not looked, but it maintains
a pixel-perfect memory of anywhere it has looked. Full details of the training setups are provided in
Appendix A.1. The results for all experiments are presented in Table 1.

Drone Reacher Manipulator Reacher
Ego Acq Freeform Acq Ego Acq Freeform Acq

Color Shape Color Shape Color Shape Color Shape
Mono 0.6(0.7) 0.9(1.7) 2.4(5.0) 0.5(1.6) 1.8(1.5) 1.6(1.1) 0.1(0.2) 0.1(0.2)
LSTM 12.7(3.4) 4.1(2.3) 1.0(1.0) 0.6(0.8) 1.0(0.5) 0.1(0.2) 0.1(0.2) 0.1(0.4)

LSTM Aux 1.3(0.8) 0.4(0.8) 2.4(2.2) 1.9(1.7) 1.0(0.7) 0.1(0.3) 0.3(0.6) 0.0(0.2)
NTM 10.5(4.2) 2.5(1.9) 3.2(2.9) 1.6(1.5) 1.0(0.6) 0.2(0.4) 0.1(0.3) 0.1(0.2)

ESMN-RGB 20.6(7.3) 4.1(3.8) 16.1(12.7) 1.1(2.6) 11.4(5.1) 3.1(3.2) 10.5(5.7) 0.9(1.6)
ESMN 20.8(7.8) 18.3(6.4) 16.6(12.9) 8.5(11.2) 11.7(5.3) 4.7(4.0) 11.0(5.8) 1.0(1.2)

Random 0.1(0.2) 0.1(0.2) 0.1(0.2) 0.1(0.2) 0.1(0.2) 0.1(0.2) 0.1(0.2) 0.1(0.2)
PO2 21.0(8.6) 14.4(6.1) 19.1(12.7) 3.9(8.1) 13.0(5.9) 4.1(3.5) 12.5(6.1) 2.6(2.5)

Expert 21.3(8.4) 21.3(8.4) 21.3(8.4) 21.3(8.4) 16.5(5.2) 16.5(5.2) 16.5(5.2) 16.5(5.2)

Table 1: Final policy performances on the various drone reacher (DR) and manipulator reacher (MR)
tasks, from egocentric acquired (Ego Acq) or freeform acquired (Freeform Acq) cameras, with the
network conditioned on either target color or shape. The values indicate the mean number of targets
reached in the 100 time-step episode, and the standard deviation, when averaged over 256 runs.
ESMN-RGB stores RGB features in memory, while ESMN stores learnt features.

Ego-Centric Observations: In this configuration we take observations from body-mounted cameras.
We can see in Table 1 that for both DR and MR, our module significantly outperforms other memory
baselines, which do not explicitly incorporate geometric inductive bias. Clearly, the baselines have
difficulty in optimally interpreting the stream of incremental pose measurements and depth. In
contrast, ESM by design stores the encoded features in memory with meaningful indexing. The
ESM structure ensures that the encoded features for each pixel are aligned with the associated
relative polar translation, represented as an additional feature in memory. When fed to the post-ESM
convolutions, action selection can then in principle be simplified to target feature matching, reading
the associated relative translations, and then transforming to the required action space. A collection
of short sequences of the features in memory for the various tasks are presented in Figure 4, with (a),
(b) and (d) coming from egocentric observations. In all three cases we see the agent reach one target
by the third frame, before re-orienting to reach the next.

6



Published as a conference paper at ICLR 2021

We also observe that ESMN-RGB performs well when the network is conditioned on target color, but
fails when conditioned on target shape id. This is to be expected, as the ability to discern shape from
the memory is strongly influenced by the ESM resolution, quantization holes, and angular distortion.
For example, the "star" shape in Figure 4 (a) is not apparent until t5. However, ESMN is able to
succeed, and starts motion towards this star at t3. The pre-ESM convolutional encoder enables ESMN
to store useful encoded features in the ESM module from monocular images, within which the shape
was discernible. Figure 4 (a) shows the 3 most dominant ESM feature channels projected to RGB.

Figure 4: Sample trajectories through the memory for (a) ESMN on DR-Ego-Shape, and ESMN-RGB
on (b) DR-Ego-Color, (c) DR-Freeform-Color, (d) MR-Ego-Color, (e) MR-Freeform-Color. The
images each correspond to features in the full 90× 180 memory at that particular timestep t.

Scene-Centric Observations: Here we explore the ability of ESM to generalize to unseen camera
poses and motion, from cameras external to the agent. The poses of these cameras are randomized for
each episode during training, and follow random freeform rotations, with a bias to face towards the
centre of the scene, and linear translations. Again, we see that the baselines fail to learn successful
policies, while ESM-augmented networks are able to solve the task, see Table 1. The memories in
these tasks take on a different profile, as can be seen in Fig 4 (c) and (e). While the memories from
egocentric observations always contain information in the memory image centre, where the most
recent monocular frame projects with high density, this is not the case for projections from arbitrarily
positioned cameras which can move far from the agent, resulting in sparse projections into memory.
The targets in Fig 4 (e) are all represented by only 1 or 2 pixels. The large apparent area in memory is
a result of the variance-based smoothing, where the low-variance colored target pixels are surrounded
by high-variance unobserved pixels in the ego-sphere.

Figure 5: Avoidance task

Obstacle Avoidance: To further demonstrate the benefits of a local spa-
tial geometric memory, we augment the standard drone reacher task with
obstacles, see Figure 5. Rather than learning the avoidance in the pol-
icy, we exploit the interpretable geometric structure in ESM, and instead
augment the policy output with a local avoidance component. We then
compare targets reached and collisions for different avoidance baselines,
and test these avoidance strategies on random, ESMN-RGB and expert
target reacher policies. We see that the ESM geometry enables superior
avoidance over using the most recent depth frame alone. The obstacle
avoidance results are presented in Table 2, and further details of the
experiment are presented in Appendix A.2.

Camera Generalization: We now explore the extent to which policies trained from egocentric
observations can generalize to cameras moving freely in the scene, and vice-versa. The results of
these transfer learning experiments are presented in Table 3. Rows not labelled “Transferred” are
taken directly from Table 1, and repeated for clarity. Example image trajectories for both egocentric
and free-form observations are presented in Figure 6. The trained networks were not modified in any
way, with no further training or fine-tuning applied before evaluation on the new image modality.
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Policy
Random ESMN-RGB Expert

Reached Collisions Reached Collisions Reached Collisions
A

vo
id

an
ce No Avoidance 0.0(0.2) 29.4(27.9) 9.9(7.0) 64.8(67.4) 21.3(2.1) 121.7(15.8)

Single Depth Frame 0.1(0.2) 9.6(11.8) 11.1(4.3) 10.8(13.0) 15.3(2.0) 7.7(6.9)
ESM Depth Map 0.1(0.3) 4.2(7.1) 9.6(4.5) 2.7(5.5) 10.8(4.4) 2.2(3.8)

Ground Truth 0.1(0.3) 0.1(0.5) 9.6(5.1) 0.0(0.0) 15.2(3.9) 0.0(0.0)

Table 2: Targets reached and number of collision for the obstacle avoidance drone task. Full details
of this experiment are provided in Appendix A.2.

Figure 6: Example image sequences from both egocentric (E) and freeform (F) cameras, on both
reacher tasks. The images are all time-aligned, and correspond to the same agent motion in the scene.

Drone Reacher Manipulator Reacher
Ego Acq Freeform Acq Ego Acq Freeform Acq

Color Shape Color Shape Color Shape Color Shape
LSTM 12.7(3.4) 4.1(2.3) 1.0(1.0) 0.6(0.8) 1.0(0.5) 0.1(0.2) 0.1(0.2) 0.1(0.4)

Transferred 0.3(0.6) 0.5(0.7) 0.1(0.3) 0.3(0.7) 0.1(0.3) 0.0(0.2) 0.0(0.0) 0.0(0.2)
ESMN-RGB 20.6(7.3) 4.1(3.8) 16.1(12.7) 1.1(2.6) 11.4(5.1) 3.1(3.2) 10.5(5.7) 0.9(1.6)
Transferred 20.3(11.5) 5.8(4.7) 15.3(10.9) 0.8(1.6) 11.2(5.6) 3.9(4.3) 9.8(3.8) 1.1(1.3)

ESMN 20.8(7.8) 18.3(6.4) 16.6(12.9) 8.5(11.2) 11.7(5.3) 4.7(4.0) 11.0(5.8) 1.0(1.2)
Transferred 10.4(5.5) 0.7(0.9) 8.9(6.5) 1.0(1.4) 7.5(4.9) 6.3(6.2) 6.8(4.7) 0.6(1.0)

Table 3: Reacher performances both with and without camera transfer, using the same notation and
setup as described in Table 1. Successful transfers are highlighted in bold.

4.1.2 REINFORCEMENT LEARNING

Assuming expert actions in partially observable (PO) environments is inherently limited. It is not
necessarily true that the best action always rotates the camera directly to the next target for example.
In general, for finding optimal policies in PO environments, methods such as reinforcement learning
(RL) must be used. We therefore train both ESM networks and all the baselines on a simpler variant
of the MR-Ego-Color task via DQN (Mnih et al., 2015). The manipulator must reach red, blue and
then yellow spherical targets from egocentric observations, after which the episode terminates. We
refer to this variant as MR-Seq-Ego-Color, due to the sequential nature. The only other difference to
MR is that MR-Seq uses 128× 128 images as opposed to 32× 32. The ESM-integrated networks
again outperform all baselines, learning to reach all three targets, while the baseline policies all only
succeed in reaching one. Full details of the RL setup and learning curves are given in Appendix A.3.

4.2 OBJECT SEGMENTATION

We now explore the suitability of the ESM module for object segmentation. One approach is to
perform image-level segmentation in individual monocular frames, and then perform probabilistic
fusion when projecting into the map (McCormac et al., 2017). We refer to this approach as Mono.
Another approach is to first construct an RGB map, and then pass this map as input to a network. This
has the benefit of wider context, but lower resolution is necessary to store a large map in memory,
meaning details can be lost. ESMN-RGB adopts this approach. Another approach is to combine
monocular predictions with multi-view optimization to gain the benefits of wider surrounding context
as in (Zhi et al., 2019). Similarly, the ESMN architecture is able to combine monocular inference with
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the wider map context, but does so by constructing a network with both image-level and map-level
convolutions. These ESM variants adopt the same broad architectures as shown in Fig 2, with the full
networks specified in Appendix A.4. We do not attempt to quote state-of-the-art results, but rather to
further demonstrate the wide applications of the ESM module, and to explore the effect of placing
the ESM module at different locations in the convolutional stack. We evaluate segmentation accuracy
based on the predictions projected to the ego-centric map. With fixed network capacity between
methods, we see that ESMN outperforms both baselines, see Table 4 for the results, and Figure 7 for
example predictions in a ScanNet reconstruction. Further details are given in Appendix A.4.

Figure 7: Top: Segmentation predictions in ESM memory for Mono and ESMN, and ground truth.
Middle: Point cloud rendering of the predictions. Bottom: Monocular input image sequence.

Images 60× 80 Images 120× 160 Images 60× 80
Memory 90× 180 Memory 90× 180 Memory 180× 360

1-frame 16-frame 1-frame 16-frame 1-frame 16-frame
Mono 54.5(19.0) 55.1(13.6) 54.9(19.3) 55.6(13.9) 54.6(19.2) 55.3(13.7)

ESMN-RGB 51.4(19.6) 54.1(13.8) 51.7(19.3) 54.4(13.2) 54.0(19.2) 57.1(13.5)
ESMN 55.0(19.0) 59.4(12.7) 55.3(19.1) 59.8(13.0) 55.2(19.4) 59.7(12.9)

Table 4: Object segmentation segmentation accuracies on the ScanNet test set for a monocular fusion
baseline (Mono), as well as ESMN-RGB and ESMN.

5 CONCLUSION

Through a diverse set of demonstrations, we have shown that ESM represents a widely applicable
computation graph and trainable module for tasks requiring general spatial reasoning. When compared
to other memory baselines for image-to-action learning, our module outperforms these dramatically
when learning both from ego-centric and scene-centric images. One weakness of our method is
that is assumes the availability of both incremental pose measurements of all scene cameras, and
depth measurements, which is not a constraint of the other memory baselines. However, with the
ever increasing ubiquity of commercial depth sensors, and with there being plentiful streams for
incremental pose measurements including visual odometry, robot kinematics, and inertial sensors, we
argue that such measurements are likely to be available in any real-world application of embodied
AI. We leave it to future work to investigate the extent to which ESM performance deteriorates with
highly uncertain real-world measurements, but with full uncertainty propagation and probabilistic per
pixel fusion, ESM is well suited for accumulating noisy measurements in a principled manner.
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A APPENDIX

A.1 MULTI-DOF IMITATION LEARNING

A.1.1 OFFLINE DATASETS

The image sequences for the offline datasets are captured following random motion of the agent in
both the DR and MR tasks, but known expert actions for each of the three possible targets in the
scene are stored at every timestep. The drone reacher is initialized in random locations at the start
of each episode, whereas the manipulator reacher is always started in the same robot configuration
overlooking the workspace, as in the original RLBench reacher task.

For the scene-centric acquisition, we instantiate three separate scene-centric cameras in the scene. In
order to maximise variation in the dataset to encourage network generalization to arbitrary motions at
test-time, we reset the pose of each of these scene-centric cameras at every step of the episode, rather
than having each camera follow smooth motions. Each new random pose has a rotational bias to face
towards the scene-centre, to ensure objects are likely to be seen frequently. By resetting the cameras
poses on every time-step, we encourage the networks to learn to make sense of the pose information
given to the network, rather than learning policies which fully rely on smoothly and slowly varying
images.
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Both tasks use ego-centric cameras with a wider field of view (FOV) than the scene-centric cameras.
This is a common choice in robotics, where wide angle perception is especially necessary for body-
mounted cameras. RLBench by default uses ego-centric FOV of 60 degrees and scene-centric FOV of
40 degrees, and we use the same values for our RLBench-derived MR task. For the drone reacher task,
we use ego-centric FOV of 90 degrees and scene-centric FOV of 55 degrees, to enable all methods to
more quickly explore the perceptual ego-sphere.

For the manipulator reacher dataset, we also store a robot mask image, which shows the pixels
corresponding to the robot for all ego-centric and scene-centric images acquired. Known robot
forward kinematics are used for generating the masking image. All images in the offline dataset are
32× 32 resolution.

A.1.2 TRAINING

To maximize the diversity from the offline datasets, a new target is randomly chosen from each of the
three possible targets for each successive step in the unrolled time dimension in the training batch.
This ensures maximum variation in sequences at train-time, despite a relatively small number of 100k
16-frame sequences stored in the offline dataset. This also strongly encourages each of the networks
to learn to remember the location of every target seen so far, because any target can effectively be
requested from the training loss at any time.

Similarly, for the scene-centric cameras we randomly choose one of the three scene cameras at each
successive time-step in the unrolled time dimension for maximum variation. Again this forces the
networks to make use of the camera pose information to make sense of the scene, and prevents
overfitting on particular repeated sequences in the training set, instead encouraging generalization to
fully arbitrary motions. For these experiments, the baseline methods of Mono, LSTM, LSTM-Aux
and NTM also receive the full absolute camera pose at each step rather than just incremental poses
received by ESM, as we found this to improve the performance of the baselines.

For training the manipulator reacher policies, we additionally use the robot mask images to set high
variance pixel values before feeding to the ESM module. This prevents the motion of the robot from
breaking the static-scene assumption adopted by ESM during re-projections. We also provide the
mask image as input to the baselines.

All networks use a batch size of 16, an unroll size of 16, and are trained for 250k steps using an
ADAM optimizer with 1e−4 learning rate. None of the memory baselines cache the the internal state
between training batches, and so the networks must learn to utilize the memory during the 16-frame
unroll. 16 frames is on average enough steps to reach all 3 of the targets for both tasks.

A.1.3 NETWORK ARCHITECTURES

The network architectures used in the imitation learning experiments are provided in Fig 8. Both
LSTM baselines use dual stacked architectures with hidden and cell state sizes of 1024. For NTM we
use a similar variant to that used by Wayne et al. (2018), namely, we use sequential writing to the
memory, and retroactive updates. Regarding the 16-frame unroll, we again emphasize that 16 steps
is on average enough time to reach all targets once. In order to encourage generalization to longer
sequences than only 16-steps, we limit the writable memory size to 10, and track the usage of these
10 memory cells with a usage indicator such that subsequent writes can preferentially overwrite the
least used of the 10 cells. This again is the same approach used by Wayne et al. (2018), which is one
of very few works to successfully apply NTM-style architectures to image-to-action domains. It’s
important to note that the use of retroactive updates makes the total memory size actually 20, as half
of the cells are always reserved for the retroactive memory updates. Regarding image padding at the
borders for input to the convolutions, the Mono and LSTM/NTM baselines use standard zero padding,
whereas ESMN-RGB and ESMN pad the outer borders with the wrapped omni-directional image.

A.1.4 AUXILIARY LOSSES

Motivated by the fact that many successful applications of LSTMs to image-to-actions learning
involve the use of spatial auxiliary losses (Jaderberg et al., 2016; James et al., 2017; Sadeghi et al.,
2017; Mirowski et al., 2018), we also compare to an LSTM which uses two such auxiliary proposals,
namely the attention loss proposed in (Sadeghi et al., 2017) and a 3-dimensional Euler-based variant
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Figure 8: Image-to-action imitation learning network architectures for Mono, LSTM/NTM, ESMN-
RGB and ESMN.

of the heading loss proposed in (Mirowski et al., 2018), which itself only considers 1D rotations
normal to the plane of navigation. Our heading loss does not compute the 1D rotational offset from
North, as this is not detectable from the image input. Instead, the networks are trained to predict the
3D Euler offset from the orientation of the first frame in the sequence. The modified LSTM network
architecture is presented in Fig 9, and example images and classification targets for the auxiliary
attention loss are presented in Fig 10. We emphasize that we did not attempt to tune these auxiliary
losses, and applied them unmodified to the total loss function, taking the mean of the cross entropy
loss for each, and linearly scaling so that the total auxiliary loss is roughly the same magnitude
as the imitation loss at the start of training. Tuning auxiliary losses on different tasks is known to
be challenging, and the losses can worsen performance without time-consuming manual tuning, as
evidenced in the performance of the UNREAL agent (Jaderberg et al., 2016) compared to a vanilla
RL-LSTM network demonstrated in (Wayne et al., 2018). We reproduce this general finding, and
see that the untuned auxiliary losses do not improve performance on our reacher tasks. To further
investigate the failure mechanism, we plot the two auxiliary losses on the validation set during training
for each task in Fig 11. We find that the heading loss over-fits on the training set in all tasks, without
learning any useful notion of incremental agent orientation. This is particularly evidenced in the DR
tasks, which start each sequence with random agent orientations. In contrast, predicting orientation
relative to the first frame on the MR task is much simpler because the starting pose is always constant
in the scene, and so cues for the relative orientation are available from individual frames. This is why
we observe a lower heading loss for the MR task variants in Fig 11. We do however still observe
overfitting in the MR task. This overfitting on all tasks helps to explain why LSTM-Aux performs
worse than the vanilla LSTM baseline for some of the tasks in Table 1. In contrast, the ESM module
embeds strong spatial inductive bias into the computation graph itself, requires no tuning at all, and
consistently leads to successful policies on the different tasks, with no sign of overfitting on any of
the datasets, as we further discuss in Section A.1.5.

A.1.5 FURTHER DISCUSSION OF RESULTS

The losses for each network evaluated on the training set and validation set during the course of
training are presented in Fig 12. We first consider the results for the drone reacher task. Firstly,
we can clearly see from the DR-ego-rgb and DR-freeform-rgb tasks that the baselines struggle to
interpret the stream of incremental pose measurements and depth, in order to select optimal actions in
the training set, and this is replicated in the validation set, and in the final task performance in Tab 1.
We can also see that ESMN is able to achieve lower training and validation losses than ESMN-RGB
when conditioned on shape in the DR-ego-shape and DR-freeform-shape tasks, and also expectedly
achieves higher policy performance, shown in in Tab 1. What we also observe is that the baselines
have a higher propensity to over-fit on training data. Both the LSTM and NTM baselines achieve
lower training set error than ESMN on the DR-ego-shape task, but not lower validation error. In
contrast, all curves for ESM-integrated networks are very similar between the training and validation
set. The ESM module by design performs principled spatial computation, and so these networks are
inherently much more robust to overfitting.
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Figure 10: Top: pixel-wise attention classification targets for the LSTM-Aux network on DR (left)
and MR (right) tasks. Bottom: the corresponding monocular images from the DR (left) and MR
(right) tasks.

Figure 11: Auxiliary attention (left) and heading (right) losses on the validation set during training
for each of the different imitation learning reacher tasks.

Figure 9: Network architecture for the LSTM-Aux baseline.

Looking to the manipula-
tor reacher task, we first
notice that the LSTM and
NTM baselines are actually
able to achieve lower losses
than the ESM-integrated
networks on both the train-
ing set and validation set for
the MR-ego-rgb and MR-
ego-shape tasks. However,
this does not translate to
higher policy performance
in Table 1. The reason for
this is that the RLBench
reacher task always initializes the robot in the same configuration, and so the diversity in the
offline dataset is less than that of the drone reacher offline dataset. The scope of possible robot config-
urations in each 16-step window in the dataset is more limited. In essence, the baselines are achieving
well in both training and validation sets as a result of overfitting to the limited data distributions
observed. What these curves again highlight is the strong generalization power of ESM-integrated
networks. Despite seeing relatively limited robot configurations in the dataset, the ESM policies

15



Published as a conference paper at ICLR 2021

do not overfit on these, and are still able to use this data to learn general policies which succeed
from unseen out-of-distribution images at test-time. We also again observe the same superiority of
ESMN over ESMN-RGB when conditioned on shape input in the training and validation losses for
the MR-ego-shape task.

A final observation is that all methods fail to perform well on the MR-freeform-shape task. We
investigated this, and the weak performance is a combined result of low-resolution 32× 32 images
acquired in the training set and the large distance between the scene-centric cameras and the targets in
the scene. The shapes are often difficult to discern from the monocular images acquired, and so little
information is available for the methods to successfully learn a policy. We expect that with higher
resolution images, or with an average lower distance between the scene-cameras and workspace in
the offline dataset, we would again observe the ESM superiority observed for all other tasks.

Figure 12: Network losses on the training set (top 8) and validation set (bottom 8) during the course
of training for imitation learning from the offline datasets, for the different reacher task.
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A.1.6 IMPLICIT FEATURE ANALYSIS

Here we briefly explore the nature of the the features which the end-to-end ESM module learns to
store in memory for the different reacher tasks. For each task, we perform a Principal Component
Analysis (PCA) on the features encoded by the pre-ESM encoders in the ESMN networks. We
compute the principal components (PCs) using encoded features from all monocular images in the
training dataset. We present example activations for each of the 6 principal components for a sample
of monocular images taken from each of the shape conditioned task variations in in Fig 13, with the
most dominate principal components shown on the left in green, going through to the least dominant
principal component on the right in purple. Each principal component is projected to a different color-
space for better visualization, with plus or minus one standard deviation of the principal component
mapping to the full color-space. Lighter colors correspond to higher PC activations.

We can see that most dominant PC (shown in green) for the drone reacher tasks predominantly activate
for the background, and the third PC (blue) appears to activate most strongly for edges. The principal
components also behave similarly on the MR-Ego-Shape task. However, on the MR-Freeform-Shape
task, which neither ESMN nor any of the baselines are able to succeed on, the first PC appears to
activate strongly on both the arm and the target shapes.

The main conclusion which we can draw from Fig 13 is that the pre-ESM encoder does not directly
encode shape classes as might be expected. Instead, the encoder learns to store other lower level
features into ESM. However, as evidenced in the results in Table 1, the combination of these lower
level features in ESM is clearly sufficient for the post-ESM convolutions to infer the shape id for
selecting the correct actions in the policy, at least by using a collection of the encoded features within
a small receptive field, which is not possible when using pure RGB features.

Figure 13: Principal Components (PCs) of the features from the pre-ESM encoder of the ESMN
architecture on some example images for each of the four shape-conditioned reacher tasks, with each
of the six the principal components mapped to different colors to maximise clarity. PCs go from most
dominant on the left (green) to least dominant on the right (purple). Lighter values correspond to
higher PC activation, with black indicating low activation.
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A.2 OBSTACLE AVOIDANCE

For this experiment, we increase the drone reacher environment by 2× in all directions, resulting
in an 8× increase in volume. We then also add 20 spherical obstacles into the scene with radius
r = 0.1m. For the avoidance, we consider a bubble around the agent with radius R = 0.2, and flag a
collision whenever any part of an obstacle enters this bubble. Given the closest depth measurement
available dclosest, the avoidance algorithm simply computes an avoidant velocity vector va whose
magnitude is inversely proportional to the distance from collision, clipped to the maximum velocity
|v|max. Equation 5 shows the calculation for the avoidance vector magnitude. We run the avoidance
controller at 10× the rate of the ESM updates.

|va| = min

[
10−3

max [dclosest −R, 10−12]
2 , |v|max

]
(5)

In order to prevent avoidant motion away from the targets to reach, we retrain the ESMN-RGB
networks on the drone reacher task, but we train the network to also predict the full relative target
location as an additional auxiliary loss. When evaluating on the obstacle avoidance task, we prevent
depth values within a fixed distance of this predicted target location from influencing the obstacle
avoidance. This has the negative effect of causing extra collisions when the agent erroneously predicts
that the target is close, but it enables the agent to approach and reach the target without being pushed
away by the avoidance algorithm. Regarding the performance against the baseline, we re-iterate that
all monocular images have a large field-of-view of 90 degrees, and yet we still observe significant
reductions in collisions when using the full ESM geometry for avoidance, see Tab 2.

A.3 MULTI-DOF REINFORCEMENT LEARNING

A.3.1 TRAINING

For the reinforcement learning experiment, we train both ESMN and ESMN-RGB as well as all
baselines on a similar sequential target reacher task as defined in Section 4.1 via DQN (Mnih
et al., 2015), where the manipulator must reach red, blue and then yellow targets from egocentric
observations. We use (128 × 128) images in this experiment rather than (32 × 32) as used in the
imitation learning experiments. We also use an unroll length of 8 rather than 16. We use discrete
delta end-effector translations, with ±0.05 meters for each axis, with no rotation (resulting in an
action size of 6). We use a shaped reward of r = −len(remaining_targets)−‖e− g‖2, where e
and g are the gripper and current target translation respectively.

Figure 14: Average return during RL training on sequential reacher task over 5 seeds. Shaded region
represent the min and max across trials.
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A.3.2 NETWORK ARCHITECTURES

In order to make the RL more tractable, and enable larger batch sizes, we use smaller network than
used in the imitation learning experiments. Both methods use a Siamese network to process the RGB
and coordinate-image inputs separately, and consist of 2 convolution (conv) layers with 16 and 32
channels (for each branch). We fuse these branches with a 32 channel conv and 1x1 kernel. The
remainder of the architecture then follows the same as in the imitation learning experiments, but
we instead use channel sizes of 64 throughout. The network outputs 6 values corresponding to the
Q-values for each action. All methods use a learning rate of 0.001, target Q-learning τ = 0.001,
batch size of 128, and leakyReLU activations. We use an epsilon greedy strategy for exploration
that is decayed over 100k training steps from 1 to 0.1. We show the average shaped return during
RL training on the sequential reacher task over 5 seeds in Fig 14. Both ESM policies succeed in
reaching all 3 targets, whereas all baseline approaches generally only succeed in reaching 1 target.
The Partial-Oracle-Omni (PO2) baseline also succeeds in reaching all 3 targets.

A.4 OBJECT SEGMENTATION

A.4.1 DATASET

Figure 15: Object segmentation network architectures for Mono,
ESMN-RGB and ESMN.

For the object segmentation
experiment, we use down-
sampled 60× 80 and 120×
160 images from the Scan-
Net dataset, which we first
RGB-Depth align. We use a
reduced dataset with frame
skip of 30 to maximize di-
versity whilst minimizing
dataset memory. Many se-
quences contain slow cam-
era motion, resulting in ad-
jacent frames which vary
very little. We use the
Eigen-13 classification la-
bels as training targets.

A.4.2 NETWORK
ARCHITECTURES

The Mono, ESMN-RGB
and ESMN networks all ex-
hibit a U-Net architecture,
and output object segmenta-
tion predictions in an ego-
sphere map. ESMN-RGB
and ESMN do so with a
U-Net connecting the ESM
output to the final predictions, and Mono does so by projecting and probabilistically fusing the monoc-
ular segmentation predictions in a non-learnt manner. The network architectures are all presented
in Fig 15. Regarding image padding at the borders for input to the convolutions, the Mono and
LSTM/NTM baselines use standard zero padding, whereas ESMN pads the outer borders with the
wrapped omni-directional image.

A.4.3 TRAINING

For training, all losses are computed in the ego-sphere map frame of reference, either following
convolutions for ESMN and ESMN-RGB, or following projection and probabilistic fusion for the
Mono case. We compute ground-truth segmentation training target labels by projecting the ground
truth monocular frames to form an ego-sphere target segmentation image, see the right-hand-side of
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Fig 7 for an example. We chose this approach over computing the ground truth segmentations from
the complete ScanNet meshes for implementational simplicity. All experiments use a batch size of
16, unroll size of 8 in the time dimension, and Adam optimizer with learning rate 1e− 4, trained for
250k steps.

A.5 RUNTIME ANALYSIS

In this section, we perform a runtime analysis of the ESM memory module. We explore the extent to
which inference speed is affected both by monocular resolution and egosphere resolution, as well
the differences between CPU and GPU devices, and the choice of machine learning framework. Our
ESM module is implemented using Ivy (Lenton et al., 2021), which is a templated deep learning
framework supporting multiple backend frameworks. The implementation of our module is therefore
jointly compatible with TensorFlow 2.0, PyTorch, MXNet, Jax and Numpy. We analyse the runtimes
of both the TensorFlow 2.0 and PyTorch implementations, the results are presented in Tables 5,
6, 7, and 8. All analysis was performed while using ESM with RGB projections to reconstruct
ScanNet scene 0002-00 shown in Fig 16. The timing is averaged over the course of the 260 frames
in the frame-skipped image sequence, with a frame skip of 30, for this scene. ESM steps with
960 × 1280 monocular images were unable to fit into the 11GB of GPU memory when using the
PyTorch implementation, and so these results are omitted in Table 8.

Figure 16: Left: point cloud representation of the ego-centric memory around the camera after full
rotation in ScanNet scene 0002-00, with RGB features. Mid: (top) Equivalent omni-directional
RGB image, (bottom) equivalent omni-directional depth image, both without smoothing to better
demonstrate the quantization holes. Right: (top) A single RGB frame, (bottom) a single depth frame.
This is the reconstruction produced during the time-analysis. This particular reconstruction used a
monocular resolution of 120× 60, and a memory resolution of 180× 360

Monocular Res
60× 80 120× 160 240× 320 480× 640 960× 1280

M
em

or
y

R
es 45× 90 245.4 162.6 83.7 24.4 6.3

90× 180 140.1 126.5 70.8 23.3 6.1
180× 360 63.9 64.0 47.5 19.2 5.8
360× 720 16.3 14.3 14.5 11.1 4.7
720× 1440 3.9 3.7 3.6 3.6 2.7
1440× 2880 1.1 1.1 1.0 1.0 0.9

Table 5: Average frames-per-second (fps) runtime for the TensorFlow 2 implemented ESM module
on the ScanNet scene 0002-00, with RGB projections, running on 8 CPU cores.

What we see from these runtime results is that the off-the-shelf ESM module is fully compatible
as a real-time mapping system. Compared to more computationally intensive mapping and fusion
pipelines, the simplicity of ESM makes it particularly suitable for applications where depth and pose
measurements are available, and highly responsive computationally cheap local mapping is a strong
requirement, such as on-board mapping for drones.
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Monocular Res
60× 80 120× 160 240× 320 480× 640 960× 1280

M
em

or
y

R
es 45× 90 262.1 223.8 166.5 76.2 24.1

90× 180 193.5 214.8 164.4 73.5 23.6
180× 360 184.6 181.6 147.6 71.5 23.0
360× 720 91.0 89.1 83.6 56.8 21.6
720× 1440 19.8 19.5 18.7 17.6 11.3
1440× 2880 4.9 4.8 4.8 4.5 4.2

Table 6: Average frames-per-second (fps) runtime for the TensorFlow 2 implemented and pre-
compiled ESM module on the ScanNet scene 0002-00, with RGB projections, running on Nvidia
RTX 2080 GPU.

Monocular Res
60× 80 120× 160 240× 320 480× 640 960× 1280

M
em

or
y

R
es 45× 90 98.9 45.8 26.3 6.9 1.8

90× 180 57.0 36.8 22.3 6.6 1.7
180× 360 14.1 11.6 10.5 5.0 1.5
360× 720 5.5 5.1 4.8 3.2 1.4
720× 1440 1.5 1.4 1.4 1.3 0.8
1440× 2880 0.4 0.4 0.4 0.4 0.3

Table 7: Average frames-per-second (fps) runtime for the PyTorch implemented ESM module on the
ScanNet scene 0002-00, with RGB projections, running on 8 CPU cores.

Monocular Res
60× 80 120× 160 240× 320 480× 640 960× 1280

M
em

or
y

R
es 45× 90 108.2 105.5 92.5 86.1 -

90× 180 102.0 92.2 85.0 83.8 -
180× 360 81.8 79.9 76.2 72.0 -
360× 720 44.1 43.0 42.3 41.7 -
720× 1440 13.9 13.9 13.8 13.1 -
1440× 2880 3.7 3.7 3.7 3.6 -

Table 8: Average frames-per-second (fps) runtime for the PyTorch implemented ESM module on the
ScanNet scene 0002-00, with RGB projections, running on Nvidia RTX 2080 GPU.
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