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Abstract

We introduce EvaLearn, a pioneering benchmark designed to evaluate large lan-
guage models (LLMs) on their learning capability and efficiency in challenging
tasks, a critical, yet underexplored aspect of model potential. EvalLearn contains
648 challenging problems across six task types, grouped into 182 sequences, each
sequence dedicated to one task type. Diverging from most existing benchmarks that
evaluate models in parallel, Eval.earn requires models to solve problems sequen-
tially, allowing them to leverage the experience gained from previous solutions.
Eval.earn provides five comprehensive automated metrics to evaluate models and
quantify their learning capability and efficiency. We extensively benchmark nine
frontier models and observe varied performance profiles: some models, such as
Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learn-
ing ability, while some models struggle to benefit from experience and may even
show negative transfer. Moreover, we investigate model performance under two
learning settings and find that instance-level rubrics and teacher-model feedback
further facilitate model learning. Importantly, we observe that current LLMs with
stronger static abilities do not show a clear advantage in learning capability across
all tasks, highlighting that Eval.earn evaluates a new dimension of model perfor-
mance. We hope Eval.earn provides a novel evaluation perspective for assessing
LLM potential and understanding the gap between models and human capabilities,
promoting the development of deeper and more dynamic evaluation approaches.
All datasets, the automatic evaluation framework, and the results studied in this
paper are available at https://github. com/ByteDance-Seed/Evalearn.

1 Introduction

Large language models (LLMs) have advanced rapidly in recent years, driving remarkable progress
in a wide range of applications [90; 19; 655 1265 157 |4]. Rigorous evaluation of these models is essential
for understanding their current capabilities, identifying areas for improvement, and guiding the
development of more advanced LLMs [10; 395 12775 255 [102].

Although numerous benchmarks have been proposed to assess various aspects of model performance,
the overwhelming majority rely on a parallel evaluation paradigm [93}; (715 1435 [7} 475 1405 1335 [85]].
In this setting, models are tested on independent and identically distributed (i.i.d.) samples, and
their overall performance is reported as aggregate metrics. However, such benchmarks primarily
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Figure 1: Overview of Eval.earn. Instead of parallel evaluation, Eval.earn requires models to solve
problems sequentially, thereby systematically evaluating the LLM’s learning ability and efficiency.
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measure static abilities, while overlooking an equally important dimension: a model’s capability
to learn and adapt within a specific task (i.e., learning capability), as well as the speed at which
this learning occurs (i.e., learning efficiency). These dynamic learning abilities are fundamental
indicators of human learning potential and intelligence [6; 20; [79; 36], yet remain largely unexplored
in the evaluation of LLMs—mainly because the prevailing parallel evaluation paradigm is inherently
unable to capture such learning dynamics.

To address this gap, we introduce Eval.earn, a challenging benchmark designed to systematically
quantify the learning capability and efficiency of LLMs through a novel sequential evaluation
paradigm. Considering the scarcity of carefully categorized and challenging related problems in
existing benchmarks, we construct 648 challenging problems from scratch. These problems are
organized into 182 sequences, with each sequence containing seven problems from the same task type
and spanning six distinct task categories. Models are required to sequentially solve each problem
within a sequence, with each solution automatically evaluated using a combination of instance-level
rubrics and an LLM-as-a-judge [[102; 69] framework. Eval.earn is designed to assess these two core
aspects by testing whether models can leverage experience gained from solving previous problems to
improve their performance on subsequent ones. Moreover, Eval.earn includes a suite of five metrics
to comprehensively quantify the learning capability and efficiency of a model. Importantly, these
metrics are decoupled from the specific learning methods employed (i.e., how models utilize prior
experience from earlier problems), highlighting the extensibility and flexibility of Eval.earn.

We conducted a comprehensive study with nine frontier LLMs on Eval.earn. We summarize several
key findings: (a) Models exhibit diverse learning capabilities across different task types. They are
generally more adept at leveraging prior experience to solve tasks involving mathematical and logical
reasoning, while tasks such as summarization tend to rely more on knowledge acquired during
pre-training and the model’s inherent abilities. Moreover, learning efficiency also varies significantly
across tasks. (b) Thinking-based LLMs typically outperform non-thinking-based LLMs in both
learning capability and learning efficiency. They are better able to utilize experience to solve new
problems and also show greater learning stability, being more likely to solve multiple problems
consecutively within a sequence. (c¢) Feedback learning, which enables models to solve problems with
the help of feedback from previous solutions and rubric-based evaluations, significantly enhances
both the learning capability and efficiency of models. Moreover, it is often more effective than
demonstration learning, which simply provides previous problems and canonical solutions as context.
(d) Indicators of learning capability and learning efficiency should be considered jointly. These
metrics together provide a comprehensive assessment of a model’s learning potential. Moreover, they
are not strongly correlated with static model capability. Even LLMs with higher static performance
do not demonstrate a clear advantage in learning capability across all tasks.

More insightful findings are presented in Section [3]and Appendix [Gl We hope EvaLearn offers a
new perspective on assessing the learning potential of LLMs, which is a key indicator of human-
like intelligence. Eval.earn has a significant potential to foster a deeper understanding of model



capabilities within the community, promote the development of more effective learning methods, and
serve as a pioneering step toward more dynamic and realistic evaluation paradigms.

2 EvalLearn

In this section, we first describe dataset composition and task types. We also provide an example to
clearly illustrate the data structure. Section[2.2]then presents the automated evaluation procedure based
on instance-level rubrics. Section[2.3]introduces five metrics we designed to quantify the learning
capability and efficiency of LLMs. We also present the data annotation process in Appendix [E]

2.1 Datasets

Evalearn is designed to evaluate the LLM’s learning capability and efficiency. It contains 648
challenging problems, all carefully constructed from scratch and organized into 182 sequences. Each
sequence contains seven problems under the same task category. Problems within a sequence are
interrelated and collectively challenge the model’s learning potential. Figure[I] provides an overview
of EvalLearn. Each problem within a sequence includes a question and a canonical answer. Since most
of these challenging questions cannot be reliably evaluated using pre-defined rules, each problem is
also accompanied by a human-written rubric that defines the criteria for assessing the correctness of
model responses (details on the evaluation process are provided in Section [2.2).

In contrast to most existing benchmarks that evaluate models in a parallel setting, Eval_earn requires
models to solve problems sequentially within each sequence. This sequential setup is specifically
designed to evaluate a model’s ability to accumulate experience and leverage feedback from previous
problems, as reflected in its performance on subsequent problems within the same sequence.

Task types. Eval.earn comprises six distinct task types, with each sequence belonging to one
of these categories. These task types include: (1) Summarization (Sum) that evaluates whether
models can improve the accuracy and coverage of summaries by leveraging prior experience; (2)
Classification (Cla) that assesses a model’s ability to enhance its categorization skills from solving a
series of classification problems; (3) Extraction (Ex) that measures whether models can progressively
improve the accuracy and completeness of key information extraction; (4) Logical Reasoning (LR)
that tests whether models can learn from previous errors and improve logic reasoning ability; (5)
Mathematical Reasoning (MR) that examines whether models can quickly master mathematical
problem-solving methods by utilizing feedback from earlier problems; (6) Sequential Reasoning
(SR) that evaluates whether models can enhance their ability to solve sequence-based problems by
learning from historical experience, including clarifying event steps and reasoning logic.

Table [T] presents the statistics of EvaLearn. Across all tasks, the average word counts per question
is 315.45. Solving these problems requires models to possess strong and diverse capabilities. The
results and analysis for various models on EvaLearn are provided in Section 3}

An example of sequence. We use an example sequence to showcase the relationships among
problems within a sequence, as illustrated in Figure 23] which involves solving a 4 x 4 sliding puzzle.
In this case, the puzzle consists of 16 tiles, one of which is a blank space (denoted by “>’), while
the remaining tiles are filled with different symbols. By moving the blank space and swapping it
with adjacent tiles, the goal is to restore the puzzle from a given initial state to a target configuration
through a series of logical moves. This task is designed to assess the model’s logical reasoning ability,
and all problems within this sequence are centered around the sliding puzzles and logical reasoning.
Figure 24] presents another problem from the same sequence, which differs mainly in grid size, the
initial state of the puzzle, and symbol representation.

These problems are related and together assess the model’s capability for logical reasoning. Humans
are able to gain experience and improve their performance by solving a series of such problems [38;
76l. By requiring models to solve these problems sequentially within a sequence, Eval.earn evaluates
whether models can similarly learn from experience, thereby measuring their learning efficiency.

2.2 Automatic Evaluation

Most of the challenging problems in Eval.earn cannot be reliably evaluated using rule-based verifiers,
as many questions may have answers that are difficult to verify with pre-defined rules or may allow for



Table 1: Statistics of EvalLearn.

Task Type #Problems  # Sequences Problem  Average w?rds Average words
reuse rate  per question  per canonical answer
Summarization 60 16 1.87 959.97 220.79
Classification 48 13 1.90 203.18 149.31
Extraction 60 17 1.98 674.89 78.60
Logical Reasoning 360 102 1.98 227.49 81.98
Mathematical Reasoning 60 17 1.98 137.03 336.76
Sequential Reasoning 60 17 1.98 141.38 334.30
Overall \ 648 182 1.966 315.45 146.05

multiple correct answers. To address this, we employ an instance-level rubric combined with LLM-
as-a-judge [25]] to assess whether model outputs satisfy the corresponding rubrics. The evaluation
prompt is shown in Figure[T8] which includes three demonstrations to ensure that the judging model
follows the instructions. In all experiments, we use GPT-40 as the judging model.

We conduct an additional experiment to validate the effectiveness of our automatic evaluation process.
Specifically, for each problem in Eval.earn, we randomly select three models from a model list (as
shown in Table [3) to generate answers, which are then evaluated using our evaluation framework.
Human annotators further verify whether the judging model can successfully assess the correctness of
the model outputs through the instance-level rubric. Results show that the evaluation accuracy exceeds
95% for all tasks, demonstrating the high reliability of our evaluation framework that combines
instance-level rubrics with LLM-as-a-judge, consistent with findings from previous studies [69; [91].

2.3 Evaluation Metrics

In EvalLearn, models are required to sequentially solve all problems within a sequence. All evaluation
metrics are computed based on the model’s correctness across these problems. Notably, the choice of
learning method, such as learning from demonstrations (i.e., in-context learning) [8; 53] or learning
from feedback [66], is decoupled from the evaluation metrics. This design ensures that Eval.earn
remains extensible and flexible, supporting a wide range of learning strategies.

Let N = 182 denote the number of sequences and M = 7 the number of problems in each sequence
in EvalLearn. Let y,, ,, € {0, 1} indicate whether the m-th problem in the n-th sequence is answered
correctly (1 for correct, O for incorrect). We define the following five metrics to comprehensively
evaluate the learning potential of models in sequential problem-solving:

(1) Overall sequence accuracy (Acc). This metric reflects the model’s overall performance in
sequential problem-solving and serves as an indirect indicator of its learning capability. It is computed
as the average accuracy across all problems and all sequences:

1 N M
Acc = W Z Z Yn,m (1)

n=1m=1
Higher values indicate better overall performance. We further compute the position-wise accuracy
curve, i.e., the accuracy at each problem position m across all sequences:

1 N
Am:* n,m 2
cc N;y, &)

Based on this curve, we define a helpful metric, i.e., the slope of the fitted accuracy curve, to capture
dynamic learning behaviors.

(2) Slope of fitted accuracy curve (k): This metric measures the model’s learning speed across all
sequences by fitting a straight line to the position-wise accuracy curve using least squares regression
[28]. It quantifies how quickly the model’s accuracy improves as it progresses through sequences.

Specifically, let Acc,,, denote the average accuracy at position m across all sequences. The fitted line
is given by y = kx + b, where x is the problem position and & is the estimated slope obtained by
minimizing the sum of squared errors:
M
_ ; o 2
k= arg min Z (Accm — (km + b))~ . 3)

m=1



A higher k indicates greater learning efficiency and a faster rate of improvement.

(3) Average position of first correct solution (Fj;). This metric measures the average position in
the sequence where the model achieves its first correct solution, indicating its initial ability, learning
capability, and efficiency. For each sequence n, let p,, denote the position of the first correct solution
(or M + 1 if none is correct). The metric is calculated as:

1 N
Pyt = N an 4

Lower values indicate that the model can achieve its first correct solution earlier in the sequence.

(4) Average offset of first learned correct solution (Py). This metric measures how quickly

a model begins to learn within a sequence while discounting pre-existing knowledge. For each

sequence n, let ién) be the position of the first problem answered incorrectly under zero-shot (parallel)

solving; if all problems are correct in zero-shot, set 4§ = M+1. Let Azere, Afeedback € (), 1} denote

correctness at position i under zero-shot and under the sequential solving setting, respectively. We
define the per-sequence offset to the first learned correct solution as:

dn = min { i— iV ‘ T R } ©)

with the convention that d,, = M+1 — i(()”) if no such 7 exists, and d,, = 0 when ién) = M+1. The
metric is computed by averaging over sequences:

N
offset = N Z (6)

Lower values indicate that the model begins to learn earlier after excluding problems solved due to
pre-existing knowledge.

(5) Average number of consecutive correct solutions (/V.onsec). This metric reflects the model’s
capability to leverage experience to consistently solve problems within a sequence, resulting in fewer
errors. It indirectly indicates how effectively and stably the model learns. For each sequence n, we
compute the longest run of consecutive correct solutions, then average across all sequences:

1
Neonsee = 7 Zl max (b=t L yne = Yuart = = yap = 1} 7)

Higher values indicate greater consistency, while lower values suggest intermittent errors and less
stable learning.

(6) Post-warmup accuracy (Accpy,-K). This metric reflects model performance after an initial
“warmup” phase, i.e., after some experience has been accumulated. For each sequence, we exclude
the first K problems and compute the average accuracy on the remaining problems:

ACpr-K = M K Z Z Yn,m (8)

n=1m=K+1

Higher values indicate better adaptation and learning after the warmup.

These metrics provide a comprehensive and nuanced evaluation of dynamic learning behaviors of
models in sequential problem-solving, fully capturing learning capability and efficiency. In the
following sections, we use these metrics to thoroughly analyze the learning potential of various
LLMs.

3 Benchmarking LLMs with Eval.earn

In this section, we compare two problem-solving paradigms, including parallel solving and sequential
solving, to investigate the learning capability and efficiency of LLMs.

3.1 Setup

Parallel Solving. This paradigm includes two settings: (I) Zero-shot: Models solve each problem
independently, without access to any experience from previous problems. This setting aligns with



Table 2: Comparison of accuracy between zero-shot (parallel solving) and feedback Learning
(sequential solving). Values in parentheses indicate the difference between the two methods. Full
task names for the abbreviations can be found in Section[2.Tl Blue-colored cells indicate the best
performance for each task category under few-shot and feedback learning settings, respectively. All
values are shown as %.

Gemini-2.5-Flash

Model | Paradigm | Sum Cla Ex LR MR SR | Overall
Non-thinking-based
DeepSeck-V3 Zero-shot 81.7 72.9 45.0 25.6 71.7 60.0 43.5
cepseek- Feedback Learning | 76.8 (-4.9) 747 (+1.8) 36.1(-89) 24.9(-0.7) 748 (+3.1)  54.6(-54) | 41.5(-2.0)
Claude-3.7-Sonnet Zero-shot 76.7 64.6 483 8.1 483 333 28.4
aude->. /-5onne Feedback Learning | 75.0 (-1.7)  75.8 (+112) 462(-2.1) 155 (+7.4) 639 (+15.6) 49.6(+16.3) | 35.6(+7.2)
GPT4 Zero-shot 81.7 70.8 45.0 15.6 433 317 326
0 Feedback Learning | 78.6 (-3.1)  73.6 (+2.8) 487 (+3.7) 129(-2.7) 613 (+18.0) 322(+0.5) | 32.7(+0.1)
Doubao-1 5-Pro Zero-shot 71.7 70.8 45.0 103 61.7 417 313
: Feedback Learning | 71.4(-03)  68.1(-27) 429(-2.1) 108 (+05) 714(+9.7)  36.1(-56) | 31.2(-0.1)
Qwen2.5-32b-Instruct Zero-shot 66.7 60.4 317 6.9 46.7 21.7 238
-2 20N Feedback Learning | 59.8 (-6.9)  62.6(+2.2) 303 (-14) 98 (+2.9)  49.6(+2.9) 303 (+8.6) | 255 (+1.7)
Thinking-based
OpenALod-mini Zero-shot 65.0 64.6 483 45.8 733 733 543
penAl-03-mini Feedback Learning | 75.9 (+10.9)  73.6 (+9.0)  47.1(-1.2) 599 (+14.1) 80.7 (+7.4) 782 (+4.9) | 64.8 (+10.5)
Doubao-1.5-Thinkine-Pro Zero-shot 85.0 79.2 55.0 425 85.0 733 57.1
: e Feedback Learning | 82.1(-2.9)  70.3(-89)  529(-2.1) 394(3.1)  773(-1.7) 555(-17.8) | 51.6(-5.5)
DeenSeck-R1 Zero-shot 86.7 89.6 483 417 783 66.7 557
P Feedback Learning ~ 89.3 (+2.6)  79.1(-10.5) 487 (+0.4) 29.6(-12.1)  74.8(-35) 513 (-154) | 464 (-9.3)
Claude-3.7-Sonnet. Thinkin Zero-shot 86.7 66.7 433 125 46.7 317 312
e 2 | Feedback Learning \ 78.6 (-8.1) 80.2 (+13.5) 48.7 (+54) 18.8(+6.3) 58.0(+11.3) 46.2 (+14.5) 37.4 (+6.2)
Gemini-2.5-Pro Zero-shot | 850 72.9 55.0 625 90.0 76.7 68.5
. Feedback Learning ~ 89.3 (+4.3) 758 (+2.9)  52.1(-2.9)  59.9(2.6)  857(-43) 79.8(+3.1) | 67.2(-1.3)
‘ Zero-shot 81.7 66.7 383 16.1 70.0 517 363

Feedback Learning | 67.9 (-13.8) 59.3(-74) 420(+3.7) 183(+2.2) 815(+11.5) 58.8(+7.1) 375 (+1.2)

the evaluation approach used in most existing benchmarks, assessing a model’s inherent ability
to solve challenging problems without any learning opportunity. The system prompt is shown in
Figure (II) Few-shot: For each problem, we provide three demonstrations from the same task as
examples (i.e., 3-shot), offering models guidance on output format and problem-solving approach.
The demonstrations are identical for all problems within each task type. The system prompt is shown
in Figure [20]

Sequential Solving. To investigate models’ ability to learn from experience, we utilize two sequential
learning paradigms: (I) Demonstration learning: Models are provided with all previous problems
and their corresponding canonical answers from the same sequence before solving the current problem,
similar to in-context learning. The system prompt is shown in Figure[21] (II) Feedback learning:
When solving the current problem, models receive as context all previous problems, their solutions,
and detailed feedback on their own prior solutions, as assessed by a judge using instance-level
rubrics. This setting evaluates whether models can leverage their previous experience to improve on
subsequent problems. The system prompt is shown in Figure

In all experiments, we evaluate nine frontier LLMs, including both thinking-based and non-
thinking-based models: Claude-3.7-Sonnet [4], Claude-3.7-Sonnet-Thinking [4], DeepSeek-R1
[26], DeepSeek-V3 [45], Doubao-1.5-Pro [9], Doubao-1.5-Thinking-Pro [65]], OpenAl-03-mini [57],
GPT-4o0 [53], and Qwen2.5-32b-Instruct [90]. See Appendix [E] for details on these models.

3.2 RQI: Can LLMs learn a task by engaging with a sequence of problems?

Finding 1: LLMs exhibit varying abilities to learn from problem sequences, with differences
observed across both models and task types. Moreover, most models also demonstrate better
performance after a warm-up phase.

Table [2] summarizes the differences in overall accuracy between the feedback learning and zero-
shot paradigms. We observe that five models benefit from sequence learning, while four models
experience slight declines, indicating that some models can effectively leverage prior experience to
solve problems within the same task. Thinking-based models, in particular, exhibit more pronounced
performance shifts, with OpenAl-03-mini achieving the highest overall improvement (+10.5%).

Moreover, most LLMs show improvement on mathematical reasoning and classification tasks when
learning from experience. For example, GPT-40 and Claude-3.7-Sonnet-Thinking achieve gains of
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Figure 2: (Left) Average number of consecutive correct solutions (Nconsec). (Right) Average
position of the first correct solution ( Py ). Results are shown for OpenAl-03-mini, with each node
representing a sequence.

18.0% and 13.5% in mathematical reasoning and classification, respectively. This improvement likely
results from these tasks having clear solution steps, enabling feedback to pinpoint reasoning errors
and help models effectively learn specific problem-solving strategies.

In contrast, most models experience performance declines on the summarization task; for instance,
7 out of 9 models perform worse after feedback in summarization. This may be because the
summarization task rely more heavily on knowledge and instruction-following abilities acquired
during pre-training, and additional experience may sometimes interfere with the model’s ability to
solve the current problem.

We also analyze models’ Post-Warmup Accuracy (Accpy-K), with results for Claude-3.7-Sonnet-
Thinking shown in the left side of Figure [3|and additional models presented in Appendix[G.6] We
observe that most models achieve higher accuracy in the later stages of the sequence, particularly
among thinking-based models. This further demonstrates that models can use early problems as
practice, leveraging the experience gained to solve subsequent, related problems more effectively.

Finding 2: Learning stability varies significantly across different tasks and models. For
certain tasks, such as summarization, current models are more adept at leveraging their inherent
knowledge to solve problems rather than drawing on experience gained from previous problems.

We further investigate the learning stability of LLMs by analyzing the average number of consecutive
correct solutions (Ncopsec)- The left side of Figurepresents the results for 03-mini, with additional
results for other models provided in Appendix [G.5] Each colored node in the figure represents a
sequence in the dataset, and nodes positioned higher indicate that the model solves more problems
consecutively within that sequence.

From the results, we first observe that the average number of consecutive correct solutions varies
notably across tasks. For most models, logical reasoning tasks present greater challenges for main-
taining long streaks of correct solutions. For example, Claude-3.7-Sonnet and GPT-4o fail entirely or
manage to solve only one problem consecutively in over half of the sequences. However, there are
substantial differences between thinking-based and non-thinking-based models. For instance, while
Doubao-1.5-Pro struggles to maintain consecutive correct solutions in logical reasoning, Doubao-1.5-
Thinking-Pro exhibits much greater learning stability. Similar patterns appear in other model pairs,
such as DeepSeek-V3 vs DeepSeek-R1 and GPT-40 vs 03-mini, where the thinking-based variants
generally achieve higher average numbers of consecutive correct solutions. For example, 03-mini
achieves an average maximum streak of 3.42 consecutive correct solutions per sequence, compared
to only 2.58 for GPT-40. Combining these results with Table [2] we conclude that thinking-based
models not only benefit more from prior experience to improve performance, but also maintain higher
stability and are more likely to solve multiple related problems in succession.

Interestingly, in the summarization task, models tend to have relatively high N¢onsec values. However,
these same models show a marked decline in Accpy. g, indicating that their performance on later
problems in the sequence is worse than on earlier ones. This suggests that, for such tasks, the capability
to solve multiple problems consecutively may rely more on the model’s inherent knowledge and
static ability, rather than on learning from experience within the sequence. This observation further
supports the conclusion in Findings 1.



-@- Cl
Extraction
~A= Logical Reasoning

Reasoning ==
Q Sequential Reasoning k= Average

Claude-3.7-Sonnet-Thinking

Summarization

-@- C

-m- Reasoning  =#= Summarization

Extraction
~A= Logical Reasoning

<@~ Sequential Reasoning

DeepSeek-R1

k= Average

1) 0,
100% 100% w
b o——9 ® ® p ]
80% 2 —, i 2 80% |< / ‘\
> > ,*-_____——*~
o 60% y——=n .___-/'\:/ Q' 60%1 - 3 _—
o _— . = &
3 f———¢——o—¢ ; 3 S
g B0% ha = = ok = o e e ke = g 40% >—
— A — —"
20% A 20%
[} 0,
0/°0 1 2 3 4 5 6 OAJL 2 3 4 5 6 7
Warmup K Position

Figure 3: (Left) Post-warmup accuracy (Accpy-K) results of Claude-3.7-Sonnet-Thinking. (Right)
Position-wise accuracy curve and its slope k of DeepSeek-R1.

Overall, these metrics allow us to comprehensively assess the learning capability and stability of
LLMs, providing deeper insight into their potential to learn from experience within a task.

Finding 3: Learning capability provides a new perspective for evaluating models, independent
of their static performance, and reveals their underlying learning potential.

Results in Table 2] show that strong performance in parallel solving does not necessarily imply strong
learning capability. For example, although DeepSeek-R1 outperforms Claude-3.7-Sonnet in the
parallel setting, it experiences a 9% drop in the sequential solving paradigm, while Claude-3.7-Sonnet
achieves a 7.2% gain. In the logic reasoning task, Claude-3.7-Sonnet-Thinking does not outperform
DeepSeek-R1 or Doubao-1.5-Thinking-Pro in the zero-shot setting, yet it demonstrates stronger
learning capability by substantially improving its performance through experience. 03-mini, on the
other hand, exhibits the best performance in this task under both zero-shot and feedback learning
settings, showing remarkable learning capability by leveraging feedback to achieve a 14.1 percentage
point improvement. Another example is DeepSeek-R1 in the math reasoning task. Although
DeepSeek-R1 achieves higher zero-shot performance than 03-mini, it fails to learn from experience
as effectively as 03-mini and instead suffers a decline in performance.

Moreover, models with similar static abilities may exhibit markedly different learning capabilities.
For instance, Claude-3.7-Sonnet-Thinking and GPT-40 both achieve 31.7% accuracy in the sequential
reasoning task under the zero-shot paradigm, yet their learning capabilities differ significantly: the
former improves by 14.5 percentage points, while the latter only improves by 0.5 points. However,
GPT-40 demonstrates stronger learning capability than Claude-3.7-Sonnet-Thinking in the math
reasoning task. These results indicate that learning capability also varies across different tasks.

Taken together, these observations suggest that learning capability is an important and distinct metric
for model evaluation, independent of static performance and varying across different tasks. This
dimension of model assessment deserves further attention and systematic investigation by the research
community. In Research Question III (§ 3-4), we further analyze model performance under various
learning paradigms, providing additional evidence that learning capability is not solely determined by
static ability.

3.3 RQ II: How efficient are LLMs at learning from a sequence of problems?

Finding 4: Learning efficiency differs markedly across models and task types. On average, most
non-thinking-based models improve more rapidly with experience, while thinking-based models
tend to achieve more stable gains.

The right side of Figure 3] presents the position-wise accuracy curve for DeepSeek-R1, with corre-
sponding curves for other models shown in Appendix [G.7] The heatmap in Figure 7] summarizes the
slope (k) of these curves, directly indicating model learning efficiency.

We observe substantial differences in learning efficiency across models. For instance, Claude-
3.7-Sonnet achieves the highest overall learning efficiency, with & = 2.08. On average, most
non-thinking-based models exhibit steeper slopes in their position-wise accuracy curves compared to



thinking-based models, as shown in Figure [/|(e.g., Claude-3.7-Sonnet, DeepSeek-V3, and GPT-40).
This may be because non-thinking-based models often start from a lower baseline, allowing them to
quickly capitalize on “low-hanging fruit” as they accumulate experience.

In contrast, learning in thinking-based models is more stable. For example, as shown in Figure[T6]
03-mini’s position-wise accuracy curve shows a steady upward trend, even when its initial accuracy
is already high. Non-thinking-based models often display larger fluctuations between adjacent
positions, such as GPT-40, DeepSeek-V3, and Doubao-1.5-Pro. This suggests that thinking-based
models can better leverage information from previous problems, including feedback from the judging
model, to reason more effectively about subsequent solutions, resulting in more stable performance
gains. Moreover, most models display positive learning efficiency in math reasoning tasks. However,
sequential reasoning tasks remain particularly challenging, with widespread performance declines;
only Claude-3.7-Sonnet-Thinking shows meaningful positive learning on these sequences (k = 1.89).
This indicates that even in reasoning tasks with clear solution paths and feedback, learning efficiency
can vary significantly depending on the specific task, highlighting that it depends on multiple factors.

Overall, these results suggest that static model capability, task type, and reasoning approach all
influence learning efficiency. Non-thinking-based models tend to improve performance more rapidly
through experience, while thinking-based models achieve more stable improvements. Case studies in
Appendix [G.1| further illustrate how thinking-based models can utilize prior experience to solve new
problems.

3.4 RQ III: Do different learning methods lead to differences in performance?

Finding 5: Different solving approaches significantly affect model performance. Models can
acquire experience from demonstrations, and feedback further enhances their learning. Moreover,
learning capability is not strongly correlated with a model’s inherent static ability.

Table [5] and Figure [6] present model performance across four solving methods. We observe that, for
most models, demonstration learning in the sequential setting generally yields better results than
few-shot parallel solving. For instance, Claude-3.7-Sonnet-Thinking achieves consistent performance
improvements across five tasks compared to the few-shot setting. The key distinction is that demon-
stration learning allows models to access all previous problems and canonical solutions within the
sequence, enabling them to learn from prior experience.

Furthermore, Figures and [9] compare feedback learning and demonstration learning in terms
of post-warmup accuracy (Accpw.x) and the slope k, with additional results provided in Appendix
Results show that, for most models, feedback learning achieves higher average overall accuracy and
greater learning efficiency than demonstration learning. For example, DeepSeek-V3 and Doubao-1.5-
Thinking-Pro show the ability to learn from feedback provided by the judging model and apply this
experience to subsequent problems across five tasks.

Notably, we find that each LLM exhibits strong learning capability on certain tasks, but no model can
consistently achieve stable learning improvements across all tasks. Even the state-of-the-art LLMs,
as widely recognized in recent studies [775 162} 68; 30; 78], such as 03-mini and Claude-3.7-Sonnet-
Thinking, do not demonstrate a clear advantage in learning capability and efficiency across all tasks.
Moreover, for every task, there are always some models that can learn from prior experience and
improve their performance. For example, 03-mini exhibits strong learning capability in all tasks
except sequential reasoning, whereas Claude-3.7-Sonnet can improve its performance on this task by
leveraging experience from feedback.

These results indicate that each model has its own strengths, and that learning ability is not strongly
correlated with static performance. Learning capability and efficiency thus provide a valuable new
perspective for assessing model performance and understanding the gap between current models and
human abilities. We also present a case study in Appendix [G.I]to further illustrate how models learn
from prior experience.

Finding 6: The average position of the first correct solution Py and the average offset of the
first learned correct solution Py Vary across models and tasks, providing important insights into
model potential. All metrics in EvalLearn capture different aspects of a model’s learning ability
and efficiency, collectively revealing the model’s learning potential.




We analyze the average position of the first correct solution P, which measures how quickly
models achieve initial success within a sequence. The right side of Figure@]presents Pk for 03-mini,
with results for other models provided in Appendix [G.4} We observe that 03-mini and Doubao-1.5-
Thinking-Pro achieve the best performance, with average positions of 1.57 and 1.80, respectively.
These two models also achieve the highest overall accuracy in the feedback learning setting. Although
P is closely related to static model capability (since stronger models are more likely to solve
problems earlier), notable exceptions exist. For example, DeepSeek-V3 achieves the same P, value
as 03-mini on the mathematical reasoning task, yet its overall accuracy is 5.9% lower, indicating that
03-mini can better improve its problem-solving ability through experience.

We also find substantial variation in model performance across different tasks. For example, most
models struggle to solve their first problem early in logical reasoning sequences, with only 03-
mini and Doubao-1.5-Thinking-Pro consistently achieving early success. Additionally, comparing
demonstration learning and feedback learning settings, as shown in Figures [I 1] and [I0] seven out
of nine models can solve a problem earlier when provided with feedback from the judging model.
This indicates that, compared to simply providing canonical answers, feedback is more effective in
facilitating model learning and mastery of a task. For instance, in the logical reasoning task, 03-mini
sometimes fails to solve any problems in a sequence when using only demonstrations, but with
feedback learning, it can solve at least one problem in every sequence.

Beyond Py, We also analyze the average offset of the first learned correct solution Py, as
shown in Tabled]. On average, frontier LLMs attain their first learned success relatively late in a
sequence—typically around three to four additional positions after the first zero-shot miss, such as
Qwen?2.5-32b-Instruct, DeepSeek-R1, and DeepSeek-V3. By contrast, 03-mini tends to reach this
point earlier on average. Clear task effects emerge. Models generally learn earlier on classification
and extraction than on logical reasoning. For models such as GPT-40 and Qwen2.5-32b-Instruct,
the first learned correct solution typically appears earlier in classification and extraction, whereas
logical reasoning usually requires more steps. Summarization displays substantial variability across
models—early for 03-mini but much later for Doubao-1.5-Thinking-Pro and DeepSeek-R1.

The long chain-of-thought reasoning paradigm provides a slight efficiency gain within families. For
example, Claude-3.7-Sonnet-Thinking attains a lower average Py than Claude-3.7-Sonnet, and
Doubao-1.5-Thinking-Pro slightly improves over Doubao-1.5-Pro, while the DeepSeek pair is mixed.
Across families, the reasoning-focused o03-mini also tends to learn earlier than GPT-40. We find
that Pygrse¢ highlights systematic task effects and modest benefits from long-form reasoning, while
revealing substantial cross-model variability in true test-time learning efficiency. Consistent with P,
Phgrser varies widely across models and tasks and does not align with overall accuracy, underscoring
that EvalLearn captures a dynamic learning dimension that is distinct from static capability.

Overall, all metrics comprehensively assess the learning performance from multiple perspectives.
Eval_earn evaluates models in a more realistic and dynamic way, helping researchers better understand
the gap between models and humans, and driving the development of more powerful models.

4 Conclusion

We present EvalLearn, a novel benchmark that sequentially evaluates the learning capability and
efficiency of models within specific tasks. Evalearn is equipped with a suite of comprehensive
metrics, revealing significant performance differences among frontier models across diverse tasks,
including both thinking-based and non-thinking-based models. Moreover, we find that while some
models can effectively leverage teacher model feedback on previous solutions to enhance learning,
others struggle to benefit from such feedback. Eval.earn offers a new perspective on assessing the
potential of LLMs and serves as a pioneering step toward dynamic evaluation. The limitations and
future work of EvaLearn are discussed in Appendix [A] and related work is presented in Appendix [B]
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Justification: In this work, we propose a novel benchmark that does not include theoretical
assumptions or proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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Justification: We open-source all datasets, the automatic evaluation framework, and the
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results?
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material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All models were evaluated via their respective APIs, and their implementations
are provided in Appendix D.
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* The answer NA means that the paper does not include experiments.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In this work, we propose a novel benchmark that does not require training
models. We report the API costs in Appendix D.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both potential positive societal impacts and negative societal
impacts of the work in Appendix A.
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. All the data in Evalearn is used to measure the
learning capability of LLMs, which does not contain any biased information.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers that produced the datasets used in our paper.
We have included the version information and corresponding licenses in Appendix B. We
have included the licenses for our assets in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have included detailed descriptions and usage of the assets in the supple-
mentary materials.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: In our work, all annotation was performed by company staff with relevant
professional expertise, who were compensated with standard salaries.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only use LLM to help us polish our manuscript and make it more readable.
It does not impact the core methodology, scientific rigorousness, and originality of the
research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and Future Work

Evalearn is the first benchmark to quantitatively evaluate the rapid learning capabilities of LLMs
on a single task. We discuss its limitations, the new insights it offers for the community, and the
directions it opens for future research into the causes of learning differences between models and the
development of learning methods.

Towards including highly challenging open-ended problems. Eval.earn focuses on problems
that can be reliably evaluated with well-defined rubrics, ensuring trustworthy automated assessment.
However, during the annotation process, we found that some highly challenging open-ended prob-
lems—where systematic instance-level rubrics are difficult to construct—are not yet included, even
though such problems can be valuable for human learning and reasoning. In the future, we aim to
develop new evaluation strategies that can effectively assess model responses to open-ended tasks,
further expanding the task coverage of Eval.earn.

Towards benchmarking more open-source LL.Ms. We benchmark current frontier LLMs and reveal
significant differences in their task learning performance. While these advanced models substantially
outperform existing open-source models, there is still limited understanding of how open-source
models compare in terms of task learning ability. In future work, we plan to extend our evaluation to
a broader range of open-source models, aiming to better quantify this gap and foster progress within
the open-source LLM community.

Exploring the roots of learning capability and efficiency differences. Our analysis quantifies the
learning capability and efficiency of the models, and reveals that these are not strongly correlated
with the models’ static abilities. The fundamental factors driving differences in these aspects across
models warrant deeper investigation. In future work, we plan to conduct more detailed studies to
uncover the underlying causes of these disparities. We hope that Evalearn will inspire the community
to further explore and understand the mechanisms underlying LLM learning capability and efficiency.

Broadening the exploration of learning methods. Eval.earn has investigated the impact of two
learning methods on both learning capability and efficiency. However, LLMs may benefit from
a broader range of strategies, such as integration with retrieval-augmented generation (RAG) [23}
1015 160]. In future work, we will leverage EvalLearn to systematically analyze the effectiveness of
additional learning methods in task learning scenarios. We also hope that EvalLearn will encourage
the community to innovate and develop more effective approaches for rapid adaptation to new tasks.

B Related Work

Evaluation Perspective and Paradigm. Previous work on evaluating LLMs has mainly focused on
evaluating their static capabilities [10; 3951275 193]), such as factual knowledge [62;|29; 32} 97; 194; 80;
68]], reasoning [30; [18; [100; (78 137; 1445 [1035 1705 1505 142]], instruction following [96; [104; 1615 182 34
86:[16[], and code generation [[74; 13 |5]. Current evaluation paradigms can be broadly categorized
into two types: parallel evaluation and interactive evaluation [22}[73;169; 164} [17; 415 91]]. The vast
majority of existing benchmarks adopt a parallel evaluation approach. This evaluation method only
measures the static capabilities of models, providing little insight into their capability to learn or
adapt dynamically over time [93; [715 1435 [7; 475 1405 1335 1855 1465 99]]. On the other hand, interactive
evaluation is commonly used in multi-turn behavior assessments [[1025 1055 12598} 1315 87; 135]. This
paradigm emphasizes the dynamic evaluation of a model’s ability to engage in multi-turn interactions,
where tasks themselves remain i.i.d., but actions or states are temporally dependent. Interactive
evaluation more closely reflects real-world scenarios [48; [84; 154f [52]]. Our work also falls under
the category of dynamic evaluation. However, unlike these methods, Eval.earn requires models
to sequentially solve a series of problems within the same task, evaluating learning capability and
efficiency, providing a direct indication of the model’s learning potential. It fills a critical void in the
current evaluation landscape.

Learning Paradigms. We compare two learning paradigms—Iearning from demonstrations [18; 53}
21]] and learning from feedback [66]—in terms of their ability to stimulate model learning. Broadly,
the former enables models to learn output formats and problem-solving strategies from demonstrations
[49; [72; 245 115 1195 1675 1835 1925 [145 2], while the latter allows models to leverage experience gained
from previous problems to improve subsequent performance [[155 885815 189; 515 [11]. Both paradigms
can be incorporated into model training to enhance overall capability [59:;|63]]. In this paper, we apply
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both approaches at inference time, requiring models to sequentially solve a series of problems to
assess whether they can benefit from prior canonical solutions or experience when tackling additional
problems. Importantly, the evaluation metrics in Evalearn are decoupled from the choice of learning
method, ensuring the flexibility and general applicability.

C Broader Impact

In this work, we propose a pioneering benchmark, Eval.earn, which is designed to dynamically assess
the learning ability and efficiency of LLMs. We hope Evalearn provides a new evaluation perspective
for assessing LLM potential and promotes the development of deeper and more dynamic evaluation
approaches. All the data in Eval.earn is used to measure the learning capability of LLMs, which does
not contain any biased information. We do not see any negative societal impacts of this work.

D License For Artifacts and Data Consent

All models used in this work, whether open-source or closed-source, are permitted for academic
research. The licenses for DeepSeek-V3 and DeepSeek-R1 are MIT, while the license for Qwen?2.5-
32B-Instruct is Apache 2.0.

E Data Annotation Process

We adopt a hybrid approach combining human expertise and advanced LLMs for data annotation.
The annotation process consists of three main stages.

Problem Collection. We begin with a collection of questions sourced from our model API platform,
which are anonymized to remove any personally identifiable information or identification markers.
Four annotators independently and carefully review each question, identifying those for which
humans could potentially improve their performance through repeated practice on similar problems.
Only questions unanimously judged as "learnable" by all annotators are retained as seed problems.
These seed problems are then categorized into six task categories. Next, we use Claude-3.7 [4] to
analyze each problem, identifying the required skill dimensions and suggesting potential directions
for increasing problem complexity. With the aid of these model-generated strategies, nine annotators
write additional similar and challenging problems for each seed question, expanding datasets with
diverse variants.

Problem filtering and canonical answer annotation. To further increase the difficulty of the
dataset, we leverage advanced LLMs to screen the seed problems. Specifically, for each question, we
randomly select three LLMs from a model list (as shown in Table[3)) to generate candidate answers.
This approach helps avoid bias toward or against any specific model. Seven annotators then review
these answers to write the correct canonical answer for each question, and assess the correctness of
each model-generated response, providing explanations for their judgments. To ensure high data
quality, an additional three annotators double-check both the written canonical answers and the
explanations for the correctness judgments of the model responses. We retain only those challenging
questions for which all three models fail to provide a correct answer, thereby maintaining a high level
of difficulty among the seed problems.

All annotators involved in this work were fairly compensated in accordance with the labor standards
of their respective countries.

Instance-level rubric annotation and validation. Eight annotators are responsible for writing
rubrics for each retained challenging problem, which serve as criteria for evaluating the correctness
of model responses. Annotators first determine whether each problem has a unique correct answer.
For problems with a unique answer, the rubric is constructed as a concise summary of the canonical
answer. For problems with multiple valid answers, annotators write rubrics that comprehensively
cover all acceptable solutions, clearly specifying the required conditions for correctness. Overly
open-ended problems that are difficult to evaluate (e.g., brainstorming tasks) are excluded from the
dataset.

Each rubric is then validated by two annotators. Specifically, for every problem, three models are
randomly selected from the model list to generate three candidate answers. Annotators assess whether
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the rubric can accurately evaluate all responses and provide explanations. Rubrics that fail this
validation step are revised and re-evaluated. An additional three annotators conduct a final quality
check on all fields, including the canonical answers, the explanations for the correctness judgments
of the model responses, and the rubrics. Finally, we construct problem sequences from the retained
set of challenging problems. Each sequence consists of problems from the same task category, and
the order of problems within each sequence is randomized.

Table 3: The model list used for ensuring the difficulty of datasets and validating the effectiveness of
instance-level rubrics.

Model Published date
Claude-3.7-Sonnet [4] February 25, 2025
Claude-3.7-Sonnet-Thinking [4] February 25, 2025
Claude-3.5-Sonnet [3]] June 21, 2024
DeepSeek-V3 [45] December 26, 2024
DeepSeek-R1 [126]] January 15, 2025
Doubao-1.5-Pro-32k [9]] May 9, 2025
Doubao-1.5-Thinking-Pro [65]] April 17, 2025
Doubao-1.5-Pro-256k [9] May 9, 2025
Qwen2.5-7b-Instruct [90]] September 19, 2024
Qwen2.5-32b-Instruct [90]] September 19, 2024
QwQ-32b [75]] March 6, 2025
OpenAl-03-mini [57]] January 31, 2025
OpenAl-ol [S6] September 12, 2024
OpenAl-o4-mini [58] April 16, 2025

F List of Evaluation Models

In this work, we comprehensively evaluate the learning capability and efficiency of nine state-of-the-
art LLMs. These LLMs contain:

(1) Claude-3.7-Sonnet [4] is the most intelligent model released by Anthropic to date, particularly in
terms of coding capabilities, which is an upgraded version of Claude 3.5 Sonnet.

(2) Claude-3.7-Sonnet-Thinking [4]] is the extended thinking mode of Claude-3.7-Sonnet, which
performs self-reflection before answering in order to improve performance on tasks such as math,
physics, instruction-following, coding, and many others.

(3) DeepSeek-V3 [45] is a strong Mixture-of-Experts (MoE) language model with 671B total
parameters with 37B activated for each token.

(4) DeepSeek-R1 [26] is the first-generation reasoning model developed by DeepSeek Al, which
incorporates multi-stage training and cold-start data before reinforcement learning, enabling it to
demonstrate strong reasoning capabilities.

(5) Doubao-1.5-Pro [9] is a high-performance sparse MoE large language model that focuses on
achieving an optimal balance between inference performance and model capability developed by the
Doubao team.

(6) Doubao-1.5-Thinking-Pro [65] shares the same model base as Seed-Thinking-v1.5, which is an
advancing superb reasoning model with reinforcement learning. It is a MoE model with a relatively
small size, featuring 20B activated and 200B total parameters. It is capable of reasoning through
thinking before responding, resulting in improved performance on a wide range of benchmarks.

(7) Qwen2.5-32b-Instruct [90] is the instruction-tuned 32B version of the Qwen2.5 series, which is
an improved iteration based on the Qwen2 family.

(8) GPT-4o [55] is a state-of-the-art LLM developed by OpenAl, which demonstrates strong perfor-
mance across a wide range of tasks, including natural language understanding, complex reasoning,
instruction following, code generation, and problem solving. It achieves competitive results on
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Table 4: Results of Pg. Full task names for the abbreviations can be found in Section Blue-
colored cells indicate the best performance for each task category.

Model | Sum Cla Ex LR MR SR | Overall
Non-thinking-based

DeepSeek-V3 | 382 40 388 527 327 4.00 | 404
Claude-3.7-Sonnet | 408 3.08 371 569 324 194| 3.62
GPT-40 | 408 345 324 60 241 329 | 375
Doubao-1.5-Pro | 354 358 371 675 324 3.06| 3.98
Qwen2.5-32b-Instruct | 393 369 335 638 3.65 353 4.09
Thinking-based

OpenAl-03-mini | 26 342 371 293 34 362 328
Doubao-1.5-Thinking-Pro | 4.9 3.83 288 344 3.67 481 | 392
DeepSeek-R1 | 47 45 276 47 362 419 | 4.08
Claude-3.7-Sonnet-Thinking | 3.8  2.77 3.18 555 341 253 | 354
Gemini-2.5-Pro | 431 3.0 347 366 271 346 | 344
Gemini-2.5-Flash | 408 3.0 276 655 34 318 | 383

challenging benchmarks in mathematics, logic, and programming, and maintains high performance
across diverse evaluation settings.

(9) OpenAl-03-mini [57] is a cost-efficient model in the reasoning series, previewed in December
2024, which pushes the boundaries of what small models can achieve. It delivers exceptional STEM
capabilities—with particular strengths in science, math, and coding—while maintaining the low cost
and reduced latency of OpenAl-ol-mini.

All models are evaluated via their respective APIs. For non-thinking-based models, the temperature
is set to 0.2, while thinking-based models do not support temperature adjustment. Moreover, both
input and output lengths are set to the maximum supported by each model.

The total cost for running all experiments in our study was approximately $4,357.14, which includes
the evaluation of all models across all tasks and learning paradigms on the entire benchmark.

G Additional Experimental Results

G.1 Case Study: Do LLMs truly utilize prior judgments to solve problems?

Case Study 1: Comparison with Parallel Solving (Zero-shot) and Sequence Solving (Feedback
Learning)

Figure [4] illustrates how model performance differs between the parallel solving (zero-shot) and
sequence solving (feedback learning) paradigms in a sequential reasoning task involving maze
navigation. In the zero-shot setting (Response A), Claude-3.7-Sonnet makes a critical directional
error in the final segment, incorrectly assuming the direction after a turn and arriving at the wrong
coordinate (7,4). This highlights the challenge of maintaining spatial orientation without feedback.

In contrast, under the feedback learning paradigm (Response B), the same model correctly tracks all
movements and reaches the accurate exit coordinate (7, 12). The model explicitly defines directional
conventions at the outset ("Let me define directions first...") and methodically tracks orientation after
each turn, demonstrating clear evidence of learning from previous feedback on similar problems.

Case Study 2: Evidence of learning from prior experience

Figure 5| demonstrates how models utilize prior experience in sequential reasoning tasks. In this case,
DeepSeek-R1’s thinking process while solving a 4x4 sliding puzzle explicitly references knowledge
gained from previous problems.
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Table 5: Comparison of overall accuracy across four solving methods, including two parallel methods
(i.e., zero-shot and few-shot) and two sequential methods (i.e., demonstration learning and feedback
learning). Sum denotes the summarization task. Cla denotes the classification task. Ex denotes the
extraction task. LR denotes the logical reasoning task. MR denotes the mathematical reasoning task.
SR denotes the sequential reasoning task. All values are shown as %.

Model | Paradigm | Cla Ex LR MR SR Sum | Overall
Non-thinking-based

Zero-shot 70.8 45.0 103 61.7 41.7 717 31.3
Few-shot 60.0 351 84 544 316 632 25.7
Demonstration Learning | 71.4 437 88 639 286 714 29.0
Feedback Learning 68.1 429 108 714 36.1 714 31.2

Zero-shot 729 45.0 25.6 717 60.0 817 43.5
Few-shot 75.6 404 23.0 614 579 789 40.0
Demonstration Learning | 70.3 403 17.6 689 513 74.1 36.4
Feedback Learning 747 36.1 249 748 546 76.8 41.5

Zero-shot 646 483 81 483 333 76.7 28.4
Few-shot 80.0 456 104 56.1 439 70.2 31.1
Demonstration Learning | 64.8 429 108 613 43.7 75.0 31.1
Feedback Learning 758 462 155 639 49.6 75.0 35.6

Zero-shot 604 31.7 69 467 217 66.7 23.8
Few-shot 60.0 316 64 386 246 66.7 22.5
Demonstration Learning | 69.2 345 74 437 218 643 24.1
Feedback Learning 62.6 303 98 49.6 303 598 25.5

Zero-shot 70.8 45.0 15.6 433 31.7 817 32.6
Few-shot 778 404 154 544 404 702 329
Demonstration Learning | 71.4 353 85 563 345 75.0 28.3
Feedback Learning 73.6 48.7 129 613 322 78.6 32.7

Doubao-1.5-Pro

DeepSeek-V3

Claude-3.7-Sonnet

Qwen2.5-32b-Instruct

GPT-40

Thinking-based

Zero-shot 89.6 483 41.7 783 66.7 86.7 55.7

DeepSeck-R1 Few-shot 75.6 49.1 235 737 544 789 419
Demonstration Learning | 82.4 487 314 798 529 884 48.2

Feedback Learning 79.1 487 29.6 748 513 893 46.4

Zero-shot 66.7 433 125 467 31.7 86.7 31.2

Few-shot 60.0 421 134 439 439 772 30.6

Claude-3.7-Sonnet-Thinking | 1y o cration Leamning | 74.7 487 161 597 420 777 | 352

Feedback Learning 80.2 48.7 188 580 462 78.6 374

Zero-shot 64.6 483 458 733 733 65.0 54.3
Few-shot 80.0 509 50.7 754 842 737 60.0
Demonstration Learning | 73.6 51.3 53.1 782 739 679 60.0
Feedback Learning 73.6 47.1 599 80.7 782 1759 64.8

Zero-shot 79.2 55.0 425 850 733 850 57.1
Few-shot 822 49.1 389 719 649 737 514
Demonstration Learning | 73.6 52.1 42.0 773 64.7 839 54.3
Feedback Learning 70.3 529 394 773 555 821 51.6

OpenAl-03-mini

Doubao-1.5-Thinking-Pro
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The highlighted portions of the thinking process show: "After struggling, I think the correct sequence
should be similar to the user’s previous solution, involving multiple "Up’ moves followed by ’Right’

and "Down’." The model further reasons: "The correct answer might involve a series of "Up’ moves
to position "M’ at the top, then moving other numbers into place."

Ultimately, the model applies this learned pattern to formulate an 11-step solution: ["Up", "Up",
"Up", "Right", "Down", "Down", "Down", "Right", "Up", "Up", "Up"], well within the 12-move
limit.

This case illustrates how models can extract patterns from prior experience and apply them to new
related problems, demonstrating genuine experiential learning capability.

The case used for Case Study 1

Task Type: Sequential Reasoning

Model: Claude-3-7-sonnet-20250219

Question: You enter a 12 X 12 maze. The coordinates on this maze are represented by (z, y),
where z is horizontal (left and right directions) and y is vertical (up and down directions). The
bottom left square is at coordinates (1, 1) and the top right square is at coordinates (12, 12).
You enter the maze at coordinates (3, 1). Following are the movements you take to reach the
exit, where you will give the coordinates after each movement, as well as the coordinates of
the final exit point, which can be anywhere on any coordinate of the maze:

After entry, you take four steps forward, turn right and take two steps forward and another
right and 3 steps forward, where you hit a wall. After turning back around and taking a step,
you turn right again and take 3 steps forward, turn left and take 5 steps forward, left again
and 2 steps forward, where you hit a wall again. You take a step back, and turn right, and
take 4 steps forward to reach the exit.

Rubric: Student answers must meet requirements including but not limited to the following:
1. The answer must clearly state that the maze exit is at (7, 12), otherwise it receives a score
of 0;

2. Correctly understand the coordinate system: x represents the horizontal direction, y
represents the vertical direction, with the bottom left corner at (1, 1) and the top right corner
at (12,12);

3. Accurately identify the starting coordinates (3, 1);

4. Correctly track all movements and calculate coordinates after each movement:

- Coordinates after four steps forward from the entrance (3, 5);

- Coordinates after turning right and taking two steps (5, 5);

- Coordinates after turning right again and taking three steps (hitting a wall) (5, 2);

- Coordinates after turning around and taking one step back (5, 3);

- Coordinates after turning right and taking three steps (8, 3);

- Coordinates after turning left and taking five steps (8, 8);

- Coordinates after turning left again and taking two steps (hitting a wall again) (6, 8);

- Coordinates after taking one step back (7, 8);

- Final coordinates (exit) after turning right and taking four steps (7, 12);

5. Correctly interpret directional terms: forward, right turn, left turn, turn around, step back,
etc.;

6. Accurately handle wall situations: stop moving when hitting a wall, then change direction
as instructed; do not turn around without specific instructions to do so.

Response A [Parallel Soving, Zero-shot] (Incorrect):

Let me track your movements through the maze, step by step, starting at coordinates (3, 1).

Entry point: (3,1)

1. “Four steps forward” - I'll assume “forward” means moving upward (increasing y-
coordinate) (3,1) — (3,2) — (3,3) — (3,4) — (3, 5)Current position: (3,5)

2. “Turn right and take two steps forward” Right turn means moving east (increasing z-
coordinate) (3,5) — (4,5) — (5,5) Current position: (5, 5)

3. “Another right and 3 steps forward” Right turn means moving south (decreasing y-
coordinate) (5,5) — (5,4) — (5,3) — (5, 2) Current position: (5, 2)

4. “Hit a wall, turn back around and take a step” Turn around means moving north (increasing
y-coordinate) (5,2) — (5, 3) Current position: (5, 3)
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5. “Turn right again and take 3 steps forward” Right turn means moving east (increasing
x-coordinate) (5,3) — (6,3) — (7,3) — (8, 3) Current position: (8, 3)

6. “Turn left and take 5 steps forward” Left turn means moving north (increasing y-coordinate)
(8,3) = (8,4) — (8,5) — (8,6) — (8,7) — (8,8) Current position: (8, 8)

7. “Left again and 2 steps forward” Left turn means moving west (decreasing x-coordinate)
(8,8) — (7,8) — (6,8) Current position: (6, 8)

8. “Hit a wall, take a step back, and turn right” Step back means moving east (increasing
x-coordinate) (6,8) — (7, 8) Current position: (7, 8) Right turn means facing south

9. “Take 4 steps forward to reach the exit” Moving south (decreasing y-coordinate) (7,8) —
(7,7) = (7,6) = (7,5) — (7,4)

Therefore, the exit coordinates are (7,4).

Response B [Sequential Solving, Feedback Learning, Position in Sequence: 3](Correct):
To solve this maze navigation problem, I need to carefully track the coordinates after each
movement, starting from the entry point at (3, 1).

Let me define directions first:

- Initially, I’'ll assume we’re facing north (up on the y-axis)

- Forward means moving in the direction we’re facing

- Right means turning 90° clockwise

- Left means turning 90° counterclockwise

Starting at (3, 1) facing north:

1. Four steps forward: (3,1) — (3,2) — (3,3) — (3,4) — (3,5) - Now at (3, 5)

2. Turn right (now facing east) - Still at (3, 5)

3. Two steps forward: (3,5) — (4,5) — (5,5) - Now at (5, 5)

4. Turn right again (now facing south) - Still at (5, 5)

5. Three steps forward: (5,5) — (5,4) — (5,3) — (5,2) - Now at (5, 2)

6. Hit a wall, turn back around (now facing north) - Still at (5, 2)

7. Take a step: (5,2) — (5,3) - Now at (5, 3)

8. Turn right (now facing east) - Still at (5, 3)

. Three steps forward: (5,3) — (6,3) — (7,3) — (8,3) - Now at (8, 3)

10. Turn left (now facing north) - Still at (8, 3)

11. Five steps forward: (8,3) — (8,4) — (8,5) — (8,6) — (8,7) — (8,8) - Now at (8, 8)
12. Turn left again (now facing west) - Still at (8, 8)

13. Two steps forward: (8,8) — (7,8) — (6, 8) - Now at (6, 8)

14. Hit a wall, take a step back: (6,8) — (7,8) - Now at (7, 8)

15. Turn right (now facing north) - Still at (7, 8)

16. Four steps forward: (7,8) — (7,9) — (7,10) — (7,11) — (7,12) - Now at (7,12)
The final exit point coordinates are (7, 12).

Nel

\. J

Figure 4: The case used in Case Study 1 is designed for comparison between Parallel Solving
(Zero-shot) and Sequence Solving (Feedback Learning).
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The case used for Case Study 2

Task Type: Logical Reasoning

Model: Deepseek-R1

Question: You are a virtual expert in solving a 4x4 sliding puzzle problem. Please follow the
instructions and rules below to complete the solving. Your goal is to reach the goal state with
valid moves.

[The goal state]

% 1 j i
= 8 7 f
* F n Z
N M 0 t
[Instructions]

The puzzle consists of a 4x4 grid containing various symbols, with "M’ representing the
movable space. Only "M’ can be moved horizontally or vertically, and the objective is to
reach the goal state from a given initial state.
[Rules]
1. Only M’ can be moved horizontally or vertically.
2. Each move is chosen from the following set of options:
- "Left’: move "M’ to the left
- "Down’: move "M’ downward
- "Right’: move "M’ to the right
- ’Up’: move "M’ upward
3. The next move must be chosen from the valid move set depending on the position of M.
For example:
pl p2 p3 p4
pS p6 p7 p8
p9 pl0O pll pl2
pl3 pl4 pl5 pl6
- If "M is located at position "p1’, the valid move set is ["'Down’, *Right’].
- If "M’ is located at position *p2’, the valid move set is ['Down’, ’Left’, "Right’].
- If "M’ is located at position *p3’, the valid move set is ["'Down’, "Left’, ’Right’].
- If "M’ is located at position ’p4°, the valid move set is ' Down’, *Left’].
- If "M’ is located at position *p5°, the valid move set is ["Up’, 'Down’, Right’].
- If "M’ is located at position *p6°, the valid move set is ['Up’, 'Down’, "Left’, *Right’].
- If "M’ is located at position ’p7°, the valid move set is ['Up’, "Down’, ’Left’, ’Right’].
- If "M’ is located at position *p8’, the valid move set is ['Up’, 'Down’, "Left’].
- If "M’ is located at position 'p9’, the valid move set is ['Up’, "Down’, *Right’].
- If "M is located at position *p10’, the valid move set is ['Up’, ’Down’, "Left’, ’Right’].
- If "M’ is located at position "p11°, the valid move set is ['Up’, "Down’, ’Left’, ’Right’].
- If "M is located at position *p12’, the valid move set is [Up’, "Down’, "Left’].
- If "M’ is located at position *p13’, the valid move set is ['Up’, ’Right’].
- If "M is located at position "p14’, the valid move set is ['Up’, "Left’, ’Right’].
- If "M’ is located at position *p15°, the valid move set is ['Up’, *Left’, 'Right’].
- If "M’ is located at position 'p16’, the valid move set is ['Up’, "Left’].
4. Diagonal moves are not allowed.
5. The objective is to return the moves which can reach the goal state.
Please solve the following problem. Your answer should be in the format of a list of moves,
for example ['Left’, *Up’, *Up’].
This problem can be solved within 1 to 12 steps. The next move must be chosen from the
valid move set [’Left’, "Right’, *Up’, ’Down’]. The maximum step number you can take is
12. Try to reach the goal state using the least number of steps (<= 12). **DO NOT exceed
12 steps.**
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[Initial State;]:

= % j i
* 1 2?2 f
N M n Z
F 8 0 t

Thinking Process:
Okay, let’s tackle this new sliding puzzle problem. The goal state is given, and the movable
tile is ’M’. The initial state is:

= % j i
* 1 2?2 f
N M n Z
F 8 0 t

First, I need to compare the initial state with the goal state to identify the differences. The
goal state is:

% 1 j i
= 8 ? f
* F n Z
N M 0 t

Looking at the positions, let’s break it down row by row.

This seems complex. Let’s try to approach step by step.

After struggling, I think the correct sequence involves moving "M’ up to facilitate the
movement of ’8” and ’1°. The correct answer provided by the user for the previous problem
involved multiple *Up’ moves followed by ’Right’ and then 'Down’s. Maybe a similar pattern
applies here.

Perhaps the correct sequence is: ["Up", "Up", "Up", "Right", "Down", "Down", "Down",
"Right", "Up", "Up", "Up"]

But adjusted for this problem. However, I need to verify. ...

This approach is not working. Given the time I’ve spent and the complexity, I think the
correct answer might involve a series of *Up’ moves to position "M’ in the top rows, then
moving 8’ and ’1” into place. Considering the user’s previous correct answer had multiple
"Up’s followed by ’Right” and "Down’s, maybe a similar pattern applies here.

After careful consideration, the correct sequence is likely: ["Up", "Right", "Up", "Right",
"Up", "Left", "Down", "Left", "Up", "Right", "Down", "Left"]

But adjusted for this problem. However, without more time, I’1l settle on the following steps
based on moving M’ up to facilitate tile movements: ...

But this requires more steps. Given the maximum of 12 steps, the answer is likely: ["Up",
"Up", "Up", "Right", "Down", "Down", "Down", "Right", "Up", "Up", "Up"]

Response:

To solve the puzzle, I need to move the "M’ tile strategically to rearrange the other tiles into
their goal positions.

First, I'll analyze the initial and goal states:

Initial state:

= % j i
* ] ?7 f
N M n Z
F 8 0 t
Goal states
% 1 j i
= 8 ?2 f
* F n Z
N M 0 t

Starting with "M’ at position p10, I’ll execute the following sequence of moves:
1. Move Up: "M’ moves from p10 to p6, swapping with 1’ - New state: =% ji/*M ?f/N
InZ/F80t
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2. Move Up: "M’ moves from p6 to p2, swapping with "%’ - New state: =M ji/* % 7 /N
InZ/F80t

3. Move Up: Since p2 is in the top row, moving up would be invalid. However, I can move
left to p1, swapping with =" - New state: M % ji/*=?f/N1nZ/F80t

4. Move Right: "M’ moves from pl to p2, swapping with *%’ - New state: % M ji/*=?f/
N1nZ/F80t

5. Move Down: "M’ moves from p2 to p6, swapping with =" - New state: % 1ji/*M ?f/
N=nZ/F80t

6. Move Down: M’ moves from p6 to p10, swapping with =" - New state: % 1ji/*=?f/
NMnZ/F80t

7. Move Down: "M’ moves from p10 to p14, swapping with ’8’ - New state: % 1ji/*=7f/
N8nZ/FMOt

8. Move Right: "M’ moves from p14 to pl5, swapping with ’0’ - New state: % 1 ji/*=7?f/
N8nZ/FOMt

9. Move Up: "M’ moves from p15 to pl1, swapping with 'n’ - New state: % 1ji/*=?f/N
8MZ/FOnt

10. Move Up: "M’ moves from pl1 to p7, swapping with *?’ - New state: % 1 ji/*=Mf/
N8?Z/FOnt

11. Move Up: "M’ moves from p7 to p3, swapping with ’j’ - New state: % 1 Mi/*=7f/N
8jZ/FOnt

The optimal solution is: ["Up", "Up", "Up", "Right", "Down", "Down", "Down", "Right",
"Up”, "Up", "Up"]

This sequence of 11 moves successfully transforms the initial state into the goal state, staying
within the 12-move limit.

Figure 5: The case used in Case Study 2 provides evidence of learning from prior experience.
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G.2 Results of Overall sequence accuracy (Acc)

Figure[6] presents the overall accuracy results for four problem-solving methods: two parallel methods
(i.e., zero-shot and few-shot) and two sequential methods (i.e., demonstration learning and feedback
learning).

—e— Zero-shot Demonstration Learning
Few-shot Feedback Learning
Doubao-1.5-Pro DeepSeek-V3 DeepSeek-R1

Cla Cla y Cla

Qwen2.5-32b-Instruct
Cla Cla Cla

OpenAl-03-mini
Cla

Doubao-1.5-Thinking-Pro
Cla

Figure 6: Comparison of overall accuracy across four solving methods, including two parallel
methods (i.e., zero-shot and few-shot) and two sequential methods (i.e., demonstration learning and
feedback learning). Full task names for the abbreviations can be found in Section@
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G.3 Results of Slope of fitted accuracy curve k

Figures [7| and [8| present the slope (k) of the fitted position-wise accuracy curve for the feedback
learning and demonstration learning methods, respectively. Figure [9]further shows the difference
in slopes (Ag) between feedback learning and demonstration learning at corresponding positions.
This metric quantifies the model’s learning speed across all sequences by fitting a straight line to the
position-wise accuracy curve using least squares regression.

Heatmap of tasks vs models on k
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Logical Reasoning - 1.19 -0.18 0.60 0.07 1.44 -042 0.74 -0.88 1.75 -2
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Figure 7: Results of the fitted position-wise accuracy curve slope (k) for feedback learning, across all
models and tasks.

37



Heatmap of tasks vs models on k

Classification - 0.55 -1.10 -0.82 -0.00 3.02 3.57 1.10 0.55 0.55 -4

Extraction- -1.68 -1.89 0.63 4.62 1.89 2.31 210 1.05 -0.00
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Task

Sequential Reasoning - -2.94 -0.63 2.10 -3.15 -1.47 -1.47 0.63 -2.31 -0.84

Summarization- -2.46 2.68 2.90 -1.34 -2.46 0.45 -446 0.00 0.22

Average- -1.17 -0.66 1.52 0.62 1.03 0.76 -0.04 -0.16 0.11
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Figure 8: Results of the fitted position-wise accuracy curve slope (k) for demonstration learning,
across all models and tasks.
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Heatmap of tasks vs models on Ak

-4
Classification - 1.10 -0.00 2.20 4.12 -1.92 -1.10 2.20 3.85 1.37
-3
Extraction - 1.89 0.84 -1.47 1.05 1.47 -2.94 -0.21 -1.05 2.52
-2
Logical Reasoning - 0.63 1.61 0.07 -0.60 -0.60 -0.74 0.74 0.21 1.68
-1
V4
g Mathematical Reasoning - 1.47 3.15 -3.15 -1.47 -0.63 0.63 2.52 1.68 -0.63
|_
-0
Sequential Reasoning - -1.89 0.84 -2.10 2.52 3.36 1.97 0.21 0.00 -1.68
--1
Summarization - 1.56 0.67 -2.90 3.12 1.12 -0.67 2.01 0.45 -2.68
--2
Average - 0.79 1.19 -1.23 1.46 0.47 -0.47 1.24 0.86 0.10
--3
! ) ' ) ) ! ) ) !
© K¢l g & Y 0 & © Q
S ¢ ¥ & & & &S
S A P G SEES &
o &R R o & o & F
& ® & & o)’b ‘o"& )
Q o I°d Q N R
IS A &
& ¥ N
O O
& Q
[
Model

Figure 9: The difference in slopes (Aj) between feedback learning and demonstration learning at
corresponding positions, across all models and tasks.
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G.4 Results of Average Position of First Correct Solution (Py,t)

Figures [I0]and [TT] show the results of the average position of the first correct solution (Prys;) for
feedback learning and demonstration learning, respectively. This metric measures how quickly, on
average, the model achieves its first success in a sequence, thus indicating its initial learning speed.

Claude-3.7-Sonnet Claude-3.7-Sonnet-Thinking DeepSeek-R1
* -=-- Average -=- Average * -=-- Average
7 7
6 [ 6
Y5.54
@5 I k514 %5
a4 * aC 3 a4
3 2.88 @ L 3
""""""" 2.00 ¥2.06
2 Hre *162 ¢ Hiso K182 ® * 2
1 e & * * @ 1
Cia Ex Ssum LR MR SR LR MR SR
Task
DeepSeek-V3 Doubao-1.5-Pro Doubao-1.5-Thinking-Pro
* - ___ Average * seE=___ Average * ® Average
7 & 7 K6.67 7
6 6 6
g 5 ;4_57 g 5 g 5 #
a4 a4 a4 ®
3 3 3
2 2 2
1 1 1
GPT-40 OpenAl-03-mini Qwen?2.5-32b-Instruct
x
* - ___ Average -=-- Average == ___ Average
7 7
6.35
6 %5.83 6 *
g5 5
Qg 4 s
3 3 * L Bt e Y2.94
: PRIl v =
HeroT- oo Hi1og B ¢ %<y
1 1 e Lengy el 06
Cla Ex  Sum LR MR SR LR MR SR
Task Task

Figure 10: Results of the average position of the first correct solution Pg,« for feedback learning.
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Figure 11: Results of the average position of the first correct solution Pg,s; for demonstration learning.
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G.5 Results of Average Number of Consecutive Correct Solutions (N onsec)

Figures @ andﬂzlreport the results of the average number of consecutive correct solutions (N¢onsec)
for feedback learning and demonstration learning, respectively. This metric reflects the model’s
ability to leverage experience to consistently solve problems within a sequence, resulting in fewer
errors.

Claude-3.7-Sonnet Claude-3.7-Sonnet-Thinking DeepSeek-R1
7 -=- Average -=-- Average
6 6 6 H5.69
5

51 %469
4

-=-- Average

Neconsec

3
2
1
0
Cla Ex Sum LR MR SR Cla Ex Sum LR MR SR Cla
Task Task
DeepSeek-V3 Doubao-1.5-Pro Doubao-1.5-Thinking-Pro
7 -=-- Average 7 -=-- Average 7 -=-- Average
6 6 6
5 . 5 5
. H4.88
a 4
2z
23 3
2
1
0

GPT-40 OpenAl-03-mini . Qwen2.5-32b-Instruct

-=-- Average -=-- Average -=-- Average

Figure 12: Results of the average number of consecutive correct solutions (/N¢onsec) for feedback
learning.
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Figure 13: Results of the average number of consecutive correct solutions (N¢onsec) for demonstration
learning.
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G.6 Results of Post-Warmup Accuracy (Accpw—x)

Figures [T4]and [T5] show the results of post-warmup accuracy (Accp,-K) for feedback learning and
demonstration learning, respectively. This metric reflects model performance after an initial “warmup”
phase, i.e., after some experience has been accumulated.
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Figure 14: Results of post-warmup accuracy (Accpy-K) for feedback learning.
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Figure 15: Results of post-warmup accuracy (Accpw-K) for demonstration learning.
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G.7 Results of Position-wise Accuracy Curve

Figures [I6]and [I7] show the position-wise accuracy curves for feedback learning and demonstration
learning, respectively. These curves display the average accuracy at each position across all sequences.
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Figure 16: Position-wise Accuracy Curves for feedback learning.
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Figure 17: Position-wise Accuracy Curves for demonstration learning.
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H System Prompts

H.1 Evaluation Prompt for LLM-as-a-judge

Figure[I8]presents the evaluation prompt used in LLM-as-a-judge.

Evaluation prompt for LLM-as-a-judge

From now on, your role is a rigorous instruction-following grading teacher. Your task is to
grade the student’s answer strictly according to the standard answer. You need to follow the
steps below for grading. This is very important to me. Before you begin, please note the
following two points:

1. You have a two-level grading scale: O points and 1 point.0 points means the student’s
answer does not meet all the requirements in the standard answer. Each requirement
in the standard answer is equally important. If even one requirement is not met,
the score must be 0 points.1 point means the student’s answer fully meets all the
requirements in the standard answer.

2. When you’re ready to begin grading, remain calm and focused. Analyze and think
through the problem step by step, following these steps:

e Carefully read and understand each requirement in the standard answer.

* Analyze whether the student’s answer fully follows all the requirements in the
standard answer, comparing each part of the student’s answer with the standard
answer.

* Do not rush to a conclusion. Before finalizing your grading, perform a Self-
Reflection on the analysis: Ensure that your grading criteria take into account all
the requirements of the standard answer and that no requirement is overlooked
just because it seems "unimportant.” Verify that your grading criteria and the
score are logical and consistent. If there are any errors or omissions, correct
them on time.

* Once you’re confident your analysis is correct, assign the grade based on your
analysis and display it in the following "JSON" format. Be strict in adhering to
the output format requirements.

Output Format: Your output should follow this exact format:

[Grading Rationale]:

[Score]: x points

[JSON]: {"answer_score": score}

Example 1

<Standard Answer>: The student’s answer must include an emoji after the word "jump rope".
<Student’s Answer>: Jump rope is an effective aerobic exercise that can help you burn
calories. However, jump rope for weight loss requires consistent effort over time, and should
be combined with a proper diet and other forms of exercise. If you want to lose weight
through jump rope, it’s recommended to do it for at least 30 minutes per day and gradually
increase the difficulty and intensity. Also, watch your diet and avoid high-calorie, high-fat,
high-sugar foods.

[Grading Rationale]: The word "jump rope" is not followed by an emoji.

[Score]: 0 points

[JSON]: {"answer_score": 0}

Example 2

<Standard Answer>: The student’s answer must describe Beijing using a mix of Chinese and
Korean.

<Student’s Answer>: JUIEI, JbR 2R EOEE, Z£TERBIETO - UL -
EFRAREAF L - BHRAIHTHL  IERURESARI BAEE BSOS, E -
K3~ BIAES . SRR RFERZFF ROz —, WERSHIEE AR MeRL
o JERUR— D IEIHE D FIVLB AT, IG5 R B R A A ANTRRIRSY - 4
SJRITAE

[Grading Rationale]: The student’s answer uses only Chinese and does not include any
Korean as required.
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[Score]: 0 points

[JSON]: {"answer_score": 0}

Example 3

<Standard Answer>: The student’s answer must ask about the user’s needs.

<Student’s Answer>:Can you tell me what problem you’re facing? That way, I can answer
more accurately

[Grading Rationale]: The student asked about the user’s needs, meeting all the requirements
of the standard answer.

[Score]: 1 point

[JSON]:{"answer_score": 1}

Final Note: I hope you will be able to take on the role of a grading teacher effectively, as
this is very important to my work. If you perform well, I will reward you appropriately.
Otherwise, I may impose some penalties. Here is the official question:

Figure 18: The evaluation prompt used in LLM-as-a-judge.

H.2 System Prompts for Different Solving Methods

Prompt for Zero-shot

You are a student, you need to complete a question about {type} ability.
[Question]:{question}

Figure 19: System prompt for zero-shot (parallel solving).

Prompt for Few-shot

You are a student, you need to complete a question about {type} ability.
Before giving you the final question, I will provide some examples of other questions and
their standard answers.

[History 1 Start]

[Question Start]

{example_question_1}

[Question End]

[Standard Answer Start]

{example_answer_1}

[Standard Answer End]

[History 1 End]

All history records have ended, now please begin answering the final question.
[Question]:{question}

Figure 20: System prompt for few-shot (parallel solving).

Prompt for Demonstration Learning

You are a student, you need to complete a question about {type} ability.

Before giving you the final question, I will provide some examples of other questions and
their standard answers.

[History 1 Start]

[Question Start]

{previous_question_1}

[Question End]




[Standard Answer Start]
{previous_answer_1}
[Standard Answer End]
[History 1 End]

All history records have ended, now please begin answering the final question.
[Question]:{question}

Figure 21: System prompt for demonstration learning (sequential solving).

Prompt for Feedback Learning

You are a student, you need to complete a question about {type} ability.
Before giving you the final question, I will provide some examples of other questions and
their standard answers.

[History 1 Start]

[Question Start]

{example_question_1}

[Question End]

[Answer Evaluation Criteria Start]

{previous_rubric_1}

[Answer Evaluation Criteria End]

[Teacher’s Evaluation of Student’s Answer Start]

{previous_judge_1}

[Teacher’s Evaluation of Student’s Answer End]

[History 1 End]

.Xll history records have ended, now please begin answering the final question.
[Question]:{question}

Figure 22: System prompt for feedback learning (sequential solving).

I Instances

Figures 23] and [24] showcase two instances in the logical reasoning task of EvaLearn.

The instance in Figure 23]involves solving a 4 x 4 sliding puzzle. In this case, the puzzle consists
of 16 tiles, one of which is a blank space (denoted by “>’), while the remaining tiles are filled with
different symbols. By moving the blank space and swapping it with adjacent tiles, the goal is to
restore the puzzle from a given initial state to a target configuration through a series of logical moves.
This task is designed to assess the model’s logical reasoning ability, and all problems within this
sequence are centered around the sliding puzzles and logical reasoning.

Figure [24] presents another problem from the same sequence, which differs mainly in grid size,
the initial state of the puzzle, and symbol representation. These problems are interrelated and
collectively challenge the model’s logical reasoning skills. Humans are able to gain experience and
improve their performance by solving a series of such problems. By requiring models to solve these
problems sequentially within a sequence, Eval.earn evaluates whether models can similarly learn
from experience, thereby measuring their learning efficiency.

Instance 1 in the Logic Reasoning task

Problem Unique Id: 557
Task Type: Logical Reasoning
Prompt:
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You are a virtual expert in solving a 4 x 4 sliding puzzle problem. Please follow the instructions
and rules below to complete the solution. Your goal is to reach the goal state with valid
moves.

[The goal state]

{ D > -
qa 1 _ *
Z n N C
P S | E
[Instructions]

The puzzle consists of a 4 x 4 grid containing various symbols, with '>'representing the
movable space. Only ">'can be moved horizontally or vertically, and the objective is to reach
the goal state from a given initial state.

[Rules]
1. Only ">'can be moved horizontally or vertically.
2. Each move is chosen from the following set of options:

- 'Left": move ">'to the left;

- 'Down': move '>'downward;
- 'Right": move '>'to the right;
- 'Up": move ">'upward

3. The next move must be chosen from the valid move set depending on the position of >'.
For example:
pl p2 p3 p4
pS p6 p7 p8
p9 pl0O pll pl2
pl3 pl4 pl5 pl6
- If >'is located at position 'p1’', the valid move set is ['Down', 'Right'];
- If '>'is located at position 'p2', the valid move set is ['Down’, 'Left', 'Right'];
- If "> 'is located at position 'p3 ', the valid move set is ['Down ', Left ', 'Right '];
- If "> "is located at position 'p4 ', the valid move set is ['Down ', 'Left '];
- If "> 'is located at position 'pS ', the valid move set is ['Up ', 'Down ', Right '];
- If > "is located at position 'p6 ', the valid move set is ['Up ', 'Down ', 'Left ', 'Right '];
- If "> 'is located at position 'p7 ', the valid move set is ['Up ', 'Down ', Left ', 'Right '];
- If "> 'is located at position 'p8 ', the valid move set is ['Up ', 'Down ', Left '];
- If "> 'is located at position 'p9 ', the valid move set is ['Up ', 'Down ', 'Right '];
- If "> 'is located at position 'p10 ', the valid move set is ['Up ', 'Down ', 'Left ', 'Right ';
- If '> "is located at position 'p11 ', the valid move set is ['Up ', 'Down ', 'Left ', 'Right '];
- If "> 'is located at position 'p12 ', the valid move set is ['Up ', 'Down ', 'Left '];
- If '> "is located at position 'p13 ', the valid move set is ['Up ', 'Right '];
- If "> 'is located at position 'p14 ', the valid move set is ['Up ', 'Left ', 'Right '];
- If '> "is located at position 'p15 ', the valid move set is ['Up ', 'Left ', 'Right '];
- If "> 'is located at position 'p16 ', the valid move set is ['Up ', 'Left ']

4. Diagonal moves are not allowed.
5. The objective is to return the moves which can reach the goal state.

Please solve the following problem. Your answer should be in the format of a list of moves,
for example:['Left ', 'Up ', 'Up ']

This problem can be solved within 1 to 12 steps. The next move must be chosen from the
valid move set ['Left ', 'Right ', 'Up ', 'Down ']. The maximum step number you can take is 12.
Try to reach the goal state using the least number of steps (< 12) ). DO NOT exceed 12 steps.
[Initial State]
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Canonical Answer:

['Up','Up', 'Up', Right', 'Down ', 'Down ', 'Down ', 'Right ', 'Up "', 'Up ', 'Up ']

Rubric:

The student’s final answer must exactly match the content and order of the standard an-
swer.The reasoning process, letter case, extra spaces, and other formatting issues can be
ignored,but the final answer must contain all the correct elements of the standard answer.
Standard answer:

['Up',"Up', 'Up', Right', ' Down ', 'Down ', Down ', Right ', 'Up ', 'Up ', 'Up ']

If the student’s answer differs in content from the standard answer (after ignoring case and
formatting), the score is 0.

Sequence Id: 51

Position In Sequence: 1

Figure 23: Instance 1 in the logical reasoning task of Eval.earn.

Instance 2 in the Logic Reasoning task

Problem Unique Id: 557

Task Type: Logical Reasoning

Prompt:

You are a virtual expert in solving a 6 x 6 sliding puzzle problem. Please follow the instructions
and rules below to complete the solving. Your goal is to reach the goal state with valid moves.
[The goal state]

a 9 -~ } [ e
o 8 i E S -
' + w 1 P =
g B O 6 n F
7 < 3 $ K A
Y u & p 0 U
[Instructions]

The puzzle consists of a 6 x 6 grid containing various symbols, with 'B' representing the
movable space. Only 'B' can be moved horizontally or vertically, and the objective is to reach
the goal state from a given initial state.

[Rules]
1. Only 'B' can be moved horizontally or vertically.
2. Each move is chosen from the following set of options:

- 'Left': move 'B'to the left;

- 'Down": move 'B'downward;
- 'Right": move 'B'to the right;
- 'Up": move 'B'upward

3. The next move must be chosen from the valid move set depending on the position of 'B'.
For example:
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pl P2 p3 p4d p5 pb

p7 p8 p9 pl0 pll pl2

pl3 pl4 pl5 pl6 pl7 pl8

pl9 p20 p21 p22 p23 p24

p25 p26 p27 p28 p29 p30

p31 p32 p33 p34 p35 p36
- If ’B’ is located at position 'p1’, the valid move set is ' Down’, 'Right’];
- If °B’ is located at position *p2’, the valid move set is ["'Down’, "Left’, ’Right’];
- If B’ is located at position 'p3’, the valid move set is ['Down’, "Left’, ’Right’];
- If °B’ is located at position *p4’, the valid move set is ['Down’, "Left’, *Right’];
- If B’ is located at position ’p5’, the valid move set is ['Down’, "Left’, ’Right’];
- If °B’ is located at position 'p6’, the valid move set is ["'Down’, "Left’];
- If B’ is located at position 'p7’, the valid move set is [Up’, ’Down’, *Right’];
- If °B’ is located at position 'p8’, the valid move set is ['Up’, 'Down’, "Left’, 'Right’];
- If B’ is located at position 'p9’, the valid move set is ['Up’, ’'Down’, ’Left’, "Right’];
- If °B’ is located at position *p10°, the valid move set is ['Up’, "'Down’, ’Left’, ’Right’];
- If °B’ is located at position *p11°, the valid move set is [Up’, "'Down’, ’Left’, ’Right’];
- If B’ is located at position 'p12’, the valid move set is ['Up’, 'Down’, "Left’];
- If °B’ is located at position *p13’, the valid move set is ["Up’, 'Down’, Right’];
- If B’ is located at position 'p14’, the valid move set is ['Up’, 'Down’, "Left’, 'Right’];
- If °B’ is located at position *p15°, the valid move set is [’Up’, "'Down’, ’Left’, 'Right’];
- If B’ is located at position 'p16’, the valid move set is ['Up’, 'Down’, ’Left’, ’Right’
- If °B’ is located at position "p17°, the valid move set is ['Up’, "'Down’, ’Left’, ’Right’
- If B’ is located at position 'p18’, the valid move set is ['Up’, 'Down’, "Left’];
- If °B’ is located at position *p19°, the valid move set is [Up’, 'Down’, Right’];
- If B’ is located at position 'p20’, the valid move set is ['Up’, 'Down’, ’Left’, 'Right’];
- If °B’ is located at position *p21°, the valid move set is ['Up’, 'Down’, ’Left’, 'Right’];
- If °B’ is located at position *p22’, the valid move set is [Up’, "'Down’, ’Left’, ’Right’];
- If B’ is located at position 'p23’, the valid move set is ['Up’, 'Down’, "Left’, 'Right’];
- If °B’ is located at position *p24°, the valid move set is ['Up’, 'Down’, "Left’];
- If B’ is located at position 'p25’, the valid move set is ['Up’, ’Down’, 'Right’];
- If °B’ is located at position *p26°, the valid move set is [Up’, "'Down’, ’Left’, 'Right’];
- If B’ is located at position 'p27°, the valid move set is ['Up’, 'Down’, "Left’, 'Right’];
- If °B’ is located at position *p28’, the valid move set is ['Up’, "'Down’, ’Left’, 'Right’];
- If B’ is located at position 'p29’, the valid move set is ['Up’, 'Down’, ’Left’, 'Right’]
- If °B’ is located at position *p30°, the valid move set is ['Up’, 'Down’, "Left’];
- If °B’ is located at position *p31°, the valid move set is ['Up’, Right’];
- If °B’ is located at position *p32°, the valid move set is ['Up’, ’Left’, ’Right’];
- If °B’ is located at position *p33’, the valid move set is ['Up’, ’Left’, ’Right’];
- If B’ is located at position 'p34’, the valid move set is ['Up’, ’Left’, "Right’];
- If °B’ is located at position *p35°, the valid move set is ['Up’, ’Left’, ’Right’];
- If B’ is located at position 'p36’, the valid move set is ['Up’, ’Left’];

15
].

)

£}

4. Diagonal moves are not allowed.

5. The objective is to return the moves which can reach the goal state. Please solve the
following problem. Your answer should be in the format of a list of moves, for example:
[Left’, "Up’, "Up’].

This problem can be solved within 1 to 18 steps. The next move must be chosen from the
valid move set ['Left’, 'Right’, *Up’, ’Down’]. The maximum step number you can take is 18.
Try to reach the goal state using the least number of steps (< 18). DO NOT exceed 18 steps.
[Initial State]

o B -~ } [ e
' a i E S -
q 9 w 1 P =
7 8 0 6 =n F
Y + 3 $§ K A
u < & p 0 U
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Canonical Answer:

[’Down’, ’Down’, ’Down’, ’Down’, ’Down’, ’Left’, ’Up’, ’Up’, ’Up’,
>Up’, ’Up’, ’Right’, ’Down’, ’Down’, ’Down’]

Rubric: The student’s final answer must exactly match the content and order of the standard
answer. The reasoning process, letter case, extra spaces, and other formatting issues can be
ignored, but the final answer must contain all the correct elements of the standard answer.
Standard answer:

[’Down’, ’Down’, ’Down’, ’Down’, ’Down’, ’Left’, ’Up’, ’Up’, ’Up’,
>Up’, ’Up’, ’Right’, ’Down’, ’Down’, ’Down’]

If the student’s answer differs in content from the standard answer (after ignoring case and
formatting), the score is 0.

Sequence Id: 51

Position In Sequence: 6

Figure 24: Instance 2 in the logical reasoning task of Eval.earn. This instance and Figure [23|are from
the same sequence. The two problems differ primarily in grid size, the initial state of the puzzle, and
symbol representation.
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