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Abstract

Hyperdimensional computing (HDC), with its highly efficient computing paradigm,1

provides a parallel and fast-learning algorithm for artificial intelligence (AI), mak-2

ing it well-suited for resource constrained applications like edge intelligence. In-3

memory computing (IMC) systems based on memristive devices complement this4

by offering energy-efficient hardware solutions. To harness the advantages of both5

memristive IMC hardware and HDC algorithms, we propose a hardware-algorithm6

co-design approach for implementing HDC on a memristive System-on-Chip (SoC).7

On the hardware side, we utilize the inherent randomness of memristive crossbar8

arrays for encoding and employ analog IMC for classification. At the algorithm9

level, we develop hardware-aware encoding techniques that map data features10

into hyperdimensional vectors, optimizing the classification process within the11

memristive SoC. Experimental results in hardware demonstrate 90.71% accuracy12

in the language classification task, highlighting the potential of our approach for13

achieving energy-efficient AI deployments on edge devices.14

1 Introduction15

As artificial intelligence (AI) models continue to grow in complexity and scale, the energy consump-16

tion required for these models has been increasing dramatically Patterson et al. [2021]. The surge in17

energy demand has highlighted the energy efficiency in developing future AI systems, especially in18

scenarios where resources are limited, such as edge applications. Therefore, advancements at both19

hardware and algorithm levels are highly demanded for deploying AI models across a diverse range20

of applications and devices.21

At the hardware level, in-memory computing (IMC) hardware based on memristor devices offers22

a promising solution by enabling computing within where data is stored Huang et al. [2024]. This23

approach reduces the time and energy associated with data transfer between memory and processing24

units, a bottleneck in von Neumann architectures. Memristive IMC hardware leverages the inherent25

properties of memristor devices to implement parallel vector-matrix multiplication (VMM) by using26

physical laws, accelerating the inference of neural networks Li et al. [2018], Wan et al. [2022],27

Wen et al. [2024]. Advancements at the device level, such as the increased number of conductance28

states of memristor devices Rao et al. [2023], combined with progress at the circuit level, such as29

the integration of multiple memristor crossbar arrays into a single chip Gallo et al. [2023], Zhang30

et al. [2023], have enhanced the overall capability of IMC systems. In parallel, hardware-algorithm31

co-designs for memristive crossbar arrays, aimed at achieving arbitrary precision in weight matrix,32

have enabled high-precision analog IMC Song et al. [2024].33

At the algorithm level, hyperdimensional computing (HDC), inspired by biological brains, provides34

an energy-efficient and hardware-friendly approach by using hyperdimensional vector (HV) repre-35
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sentations of data Kanerva [1988], Chang et al. [2023]. In HDC, all computations are executed in36

high-dimensional space, facilitating fast training and parallel inference for the classification tasks at37

the edge. HDC typically includes two stages: the encoding stage, where original data is transformed38

into HVs that capture the key features, and the inference stage, where encoded HVs are compared39

with pre-trained HVs to produce final classification results. Various encoding methods, including40

low-power sparse encoding Imani et al. [2017a] and encoding based on Nyström method Zhao et al.41

[2023], have been explored to achieve efficient and diverse data representations. For the inference of42

HDC, adaptive training methods have been proposed for robust and efficient inference Hernandez-43

Cano et al. [2021]. Beyond the conventional similarity checks widely employed as classifiers, neural44

networks have also been used to enhance the voice recognition accuracy Imani et al. [2017b].45

To fully unleash the energy efficiency of IMC hardware and HDC algorithm, existing research has46

explored the implementation of HDC using IMC hardware based on different memristive devices.47

Early studies on resistive random-access memory (RRAM)-based IMC hardware for HDC focused on48

three-dimensional integration of memristor devices to increase device density, facilitating the storage49

and computation of HVs Li et al. [2016], Wu et al. [2018]. These works adhere to conventional50

HDC computing paradigm but improve the speed and energy efficiency of HDC by exploiting the51

parallelism inherent in IMC hardware and HDC algorithms. With the development of memristor52

devices, encoding and classifiers based on phase change memory (PCM) Karunaratne et al. [2020] and53

ferroelectric FET (FeFET) Huang et al. [2023] have been developed with tailored peripheral circuits54

to further enhance energy efficiency of HDC. Meanwhile, as the computing resources increase, there55

is a growing need in hardware-algorithm co-designs for HDC to fully harness the potential of IMC56

hardware. The results shown in Iwasaki and Shintani [2023], and Thomann et al. [2023] highlight the57

co-design approach to balance energy efficiency and classification accuracy. However, existing works58

primarily focus on utilizing limited number of conductance states of memristive devices to implement59

HDC with digital IMC. There has been no exploration of analog IMC hardware for HDC. Moreover,60

most HDC designs for IMC hardware have been validated primarily through simulations based on61

memristor models. While these simulations provide valuable insights, there is a lack of studies62

that demonstrate these designs using experimental hardware. Additionally, the energy efficiency of63

HDC algorithms using IMC hardware is compromised by the need for off-chip peripherals. These64

peripherals are required for data transfer and the processing of intermediate data, which detracts from65

the inherent parallelism of HDC based on IMC hardware.66

To address these issues and utilize analog IMC for HDC, we propose a hardware-algorithm co-design67

approach to improve HDC algorithm for our memristive System on Chip (SoC), which integrates ten68

memristive crossbar arrays to perform analog VMM. The major contributions of our work are:69

1. Utilizing the inherent randomness of memristor devices to map data features to HVs with a70

single-step VMM.71

2. Taking advantage of on-chip peripheral circuits to mitigate the impact of noise from hardware72

non-idealities on classification accuracy.73

3. Implementing both encoding and a one-layer memristive perceptron in hardware for classifi-74

cation by coordinating multiple memristive macros within one SoC, achieving experimental75

accuracy of 90.71 % in language classification.76

2 Hardware and Algorithm Co-Design for HDC with Analog IMC77

2.1 Memristive SoC and Analog VMM78

The analog IMC hardware used in this work is an evaluation kit with a memristive SoC. TetraMem79

[2024] As shown in Figure 1, the SoC includes ten macros, each integrating one memristive crossbar80

array and peripheral circuits, such as digital-to-analog converters (DACs) and analog-to-digital81

converters (ADCs). Each macro, named neural processing units (NPUs), contains a 256 × 25682

one-transistor-one-memristor (1T1R) crossbar array, which is used to perform analog VMM. In83

addition to the NPUs, the SoC incorporates a RISC-V CPU that manages data transfers between84

multiple NPUs and handles various peripheral functions, along with other digital circuits, such as85

on-chip memory for intermediate data storage and the interface for on-chip communications.86

To implement the analog VMM with memristive crossbar arrays, input vectors are converted to87

voltages by on-chip DACs and applied to the rows of the memristive crossbar arrays. These input88
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voltages are then multiplied by the matrix values, which are represented by the conductance of89

memristor devices. The output vectors are generated from the accumulated currents collected from90

the columns of the memristive crossbar array. On-chip transimpedance amplifiers (TIAs) convert the91

output currents to voltages, which are then digitized by ADCs for further processing.

CPU Memory

Interconnect

D
AC

ADCControl

NPU NPU…

Memristive SoC

Figure 1: The picture of MX100 evaluation kit TetraMem [2024] with memristive SoC and the SoC
architecture.

92

2.2 Hardware-Aware Encoding and Memristive Classifier93

From the computation perspective, conventional HDC using fully digital processing is not well-suited94

to fully leverage the parallel analog VMM capabilities of multiple NPUs. To take advantage of the95

energy efficiency of the memristive SoC, it is necessary to develop analog hardware-friendly encoding96

methods and classifiers for HDC. Furthermore, with limited hardware resources, specifically, the97

ten 256 × 256 NPUs for both encoding and classifiers, it is challenging to use vectors with high98

dimensions, such as the 10000 dimensions typically employed in conventional digital HDC, seen in99

studies by Hernandez-Cano et al. [2021], Rahimi et al. [2016]. Therefore, it is essential to balance100

energy efficiency and classification accuracy through HDC algorithm designs. To address these101

challenges, we propose hardware-aware encoding and a one-layer memristive perceptron as the102

classifier, enabling us to fully unleash the parallelism and efficiency of analog IMC and HDC.103

The workflow of conventional HDC and our co-design approach for a language classification task104

is illustrated in Figure 2. Initially, the letters in sentences from different languages are mapped to105

feature vectors, which are represented by voltages applied to the rows of memristive crossbar arrays106

in the hardware implementation. These feature vectors are then encoded into HVs using a single-step107

VMM with multiple NPUs within the SoC. After mapping the feature vectors to HVs, post-processing108

steps are performed to generate a set of HVs for each language, which are used for the training and109

inference of the classifier. To address the imperfections of analog VMM caused by hardware non-110

idealities, we apply the hardware-aware processing to the HVs before feeding them to the classifier.111

In conventional HDC, associative memory is often used as the classifier to achieve higher energy112

efficiency, though at the cost of lower accuracy. However, since implementing associative memory113

and one-layer perceptron using analog VMM requires the same amount of hardware resources, we use114

a one-layer perceptron implemented in memristive crossbar arrays for classification during inference.115

This approach provides a better balance of accuracy and energy efficiency.116

2.2.1 VMM-Based Transformation117

The first step in encoding for HDC is the transformation of data features into HVs. Unlike conventional118

HDC, which relies on random basis HVs generated in software and stored in memory, we utilize119

the inherent randomness of memristor devices to create a random matrix for the transformation. By120

employing the hardware-based random matrix, the transformation can be efficiently implemented121

using a single-step VMM on memristive crossbar arrays.122

In the language classification task, we first map each letter in text samples to a binary vector, where123

’1’ is represented by the high voltage and ’0’ by the low voltage. Each character feature is represented124
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Figure 2: Workflow of conventional HDC (top flow) and the hardware-algorithm co-design for HDC
based on Memristive SoC (bottom flow).

by a 27-dimensional vector for the 27 possible characters (including a whitespace character). We then125

combine every three consecutive letters to create ’trigram’ vectors, which serve as feature vectors126

for texts from different languages. An analog VMM with the 81-dimensional trigram vectors as127

inputs is used to transform these feature vectors into HVs. The random matrix in the analog VMM is128

represented by the random conductance of memristor devices in the crossbar array, which is generated129

by applying SET voltages to the array. Considering the number of on-chip NPUs, we utilize 81× 128130

subarrays from 4 NPUs to perform the VMM-based transformation, resulting in 512-dimensional HVs131

presented by currents to encode the features of every three consecutive letters. After transforming132

all trigram vectors in a text sample to HVs, we use the least significant bit of each ADC output to133

determine the sign of the corresponding entry of the HVs associated with each trigram vector. As a134

result, the HVs for each trigram vector produced by the VMM-based transformation are a set of HVs135

with values of either -1 or 1, which are used to generate the input HVs for the classifier.136

2.2.2 Noise-Tolerant Processing137

Different from encoding implemented in software, encoding based on analog hardware is subject138

to noise due to the non-idealities of memristor devices and peripheral circuits, such as TIAs and139

ADCs. In the VMM-based transformation, output currents fluctuate within a small range, leading140

to shifts in the ADC results we used to determine the HVs. Since the least significant bits of ADC141

results are highly sensitive to the fluctuations of output currents, the HVs from the ADC results142

propagate the noise to the classifiers, impacting classification accuracy. However, upon analyzing143

experimental VMM results from the memristive SoC, we observe that most outputs fluctuate within a144

small range of ±2.77mV , which only impacts the lower few bits of ADC results for the 8-bit on-chip145

ADCs. To mitigate the impact of these fluctuations on outputs from identical inputs, we choose146

another bit position of the ADC results to determine the sign of the corresponding entry in the HVs147

by analyzing the noise introduced by the memristive crossbar arrays used for encoding. For instance,148

using the third least significant bit of the ADC results ensures this bit remains consistent when the149

fluctuations only affect the least two bits of the ADC results. This approach can tolerate noise from150

the non-idealities of analog VMM on the memristive SoC while effectively distinguishing feature151

vectors from text samples in different languages.152

After determining the sign of the entries of the HVs, all HVs from one text sample are summed to153

generate an encoded HV that represents the features of the text sample. Since the HVs from each154

trigram vector contain both -1 and 1, the resulting encoded HVs range from negative to positive155
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values. In conventional HDC, these encoded HVs are binarized before being used as inputs to the156

classifier, as binary representation is more friendly to digital computing systems. However, our157

memristive SoC allows for multilevel voltage inputs to the classifier because there are 8-bit on-chip158

DACs connected to each row of the memristive crossbar arrays. Therefore, instead of binarizing the159

encoded HVs, we quantize their values to 8-bit for the classifier. These multilevel HVs preserves160

more feature information from each text sample, which compensated the relatively low dimensions of161

HVs used due to the limitation of hardware resources (512 dimensions instead of the typical 10000162

dimensions). The noise-tolerant processing to generate the encoded HVs can all be implemented in163

the on-chip CPU as illustrated in Figure 2.164

2.2.3 One-Layer Memristive Perceptron for Classification165

After encoding the text data features into HVs, language classification becomes a relatively simple166

task. In conventional HDC, associative memory is commonly used as the classifier due to its efficiency.167

However, a neural network trained with the stochastic gradient descent (SGD) algorithm can achieve168

higher classification accuracy, as demonstrated by Imani et al. [2017b]. Conventional HDC prioritizes169

energy efficiency over accuracy because neural networks typically consume more energy than170

associative memory. However, our approach utilizes memristive crossbar arrays to implement a171

one-layer perceptron in a single step using parallel analog VMM. This implementation leverages the172

same computational demand as associative memory and enables us to benefit from both the energy173

efficiency of the memristive hardware and the improved accuracy of a neural network-based classifier,174

compared to using associative memory approach for classification.175

In the language classification task, we use a perceptron with 512 input neurons and 21 output neurons176

as the classifier, corresponding to the 21 European languages to be classified. Instead of binary177

voltages used in the VMM-based transformation, the encoded HVs from the hardware-aware encoding178

are represented by analog voltages ranging from 0 - 0.141 V. These analog voltages serve as the179

inputs to the one-layer perceptron. The synaptic weights of the perceptron are initially trained offline180

and then mapped to the conductance values of the memristor devices. The weight conductance is181

programmed to the memristive crossbar arrays within the NPUs by applying SET/RESET voltages to182

the memristor devices before the inference. Since each NPU can accommodate a maximum of 256183

rows, less than the 512 input neurons, we can either distribute the weight conductance to subarrays184

within a single NPU or across multiple NPUs. During the inference, the encoded HVs are applied185

to the rows of the memristive crossbar arrays, and the maximum output current from the columns186

indicates the classification results.187

3 Experimental Results188

The dataset for the language classification task consists of short text samples from 21 European lan-189

guages, each includes 1000 text samples that are all transliterated into the Latin alphabet Hernandez-190

Cano et al. [2021]. We use 70 % of these samples for training while the remaining 30 % for evaluation.191

To evaluate the HDC algorithm design for our memristive SoC, we first simulate the encoding and192

classifier in software using the hardware-aware encoding method and one-layer perceptron. The193

average classification accuracy achieved is 96.71 %, as shown in Figure 3. This result demonstrates194

that our proposed hardware-aware encoding, combined with the one-layer perceptron, can achieve195

comparable classification accuracy, even with 512-dimensional HVs for encoding, much lower than196

10000 dimensions typically used in conventional HDC.197

After confirming the accuracy achieved by our proposed co-design method through simulations, we198

implement both the encoding and classifier separately on our memristive SoC to study the impact199

of non-idealites in memristor devices and peripheral circuits on classification accuracy. For the200

configuration with hardware encoding and software classifier, feature vectors are encoded using201

analog VMM by coordinating 4 NPUs within the SoC, while the training and inference of the202

one-layer perceptron are implemented in software. In contrast, for the setup with software encoding203

and hardware classifier, the encoding is simulated and the one-layer perceptron is trained offline on204

a host PC. The trained weights are then programmed to 3 subarrays within the SoC for hardware-205

based classification. For the fully hardware-based inference, encoded HVs are generated from the206

encoding implemented on 4 NPUs within the memristive SoC, while the hardware-aware encoding207

and one-layer perceptron are distributed across 3 NPUs and the on-chip CPU within the SoC.208
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Figure 3: Classification accuracies of the 21 European languages with different setups, encoding +
classifier implementations. (SW: Software implementation, HW: Hardware implementation)

We compare the results, shown in Figure 3, from pure software simulations, hardware implementations209

and these mixed setups. The configuration with a hardware-based classifier and software-based210

encoding achieves higher accuracy, closely matching the results of the pure software simulation,211

compared to the setup with hardware-based encoding and a software-based classifier. These results212

indicate that the memristive perceptron classifier is robust against noise introduced by hardware,213

whereas the encoding process is more sensitive to hardware non-idealities, which negatively impacts214

classification accuracy. The fully hardware implementation achieved an average overall classification215

accuracy of 90.71% , with the classification accuracy for each language presented in Figure 4. The216

experimental results, showing acceptable accuracies for most languages, demonstrate the effectiveness217

of our proposed hardware-algorithm co-design, even with limited hardware resources.218

Figure 4: Classification accuracy for each of the 21 European languages with fully-hardware encoding
and classifier.

4 Conclusion219

In conclusion, we propose a hardware-algorithm co-design approach to leverage analog IMC and HDC220

within a memristive SoC. By coordinating multiple NPUs within the SoC to implement hardware-221

aware encoding and one-layer perceptron, we demonstrate the effectiveness of the proposed co-design222

with a language classification task. The simulation results, achieving an average classification223

accuracy of 96.71% validate our modifications to the HDC algorithm, while the experimental224

results with an average classification accuracy of 90.71 % confirm the feasibility of our hardware225

implementations. The hardware-algorithm co-design paves the way to harness analog IMC for226

energy-efficient HDC in edge intelligent applications. Future work will focus on increasing the227

dimensions of HVs as hardware resource allows and applying this approach to other classification228

tasks involving more complicated data.229
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