

000 RÉNYI SHARPNESS: A NOVEL SHARPNESS THAT 001 002 STRONGLY CORRELATES WITH GENERALIZATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT

009
010
011 Sharpness (of the loss minima) is widely believed to be a good indicator of gen-
012 eralization of neural networks. Unfortunately, the correlation between existing
013 sharpness measures and the generalization is not that strong as expected, some-
014 times even contradiction occurs. To address this problem, a key observation in
015 this paper is: what really matters for the generalization is the *average spread* (or
016 unevenness) of the spectrum of loss Hessian \mathbf{H} . For this reason, the conventional
017 sharpness measures, such as the trace sharpness $\text{tr}(\mathbf{H})$, which cares about the *av-
018 erage value* of the spectrum, or the max-eigenvalue sharpness $\lambda_{\max}(\mathbf{H})$, which
019 concerns the *maximum spread* of the spectrum, are not sufficient to well predict the
020 generalization. To finely characterize the average spread of the Hessian spectrum,
021 we leverage the notion of *Rényi entropy* in information theory, which is capable
022 of capturing the unevenness of a probability vector and thus can be extended to
023 describe the unevenness for a general non-negative vector (which is the case for
024 the Hessian spectrum at the loss minima). In specific, in this paper we propose the
025 *Rényi sharpness*, which is defined as the negative of the Rényi entropy of loss Hes-
026 sian \mathbf{H} . Extensive experiments demonstrate that Rényi sharpness exhibit *strong*
027 and *consistent* correlation with generalization in various scenarios. Moreover, on
028 the theoretical side, two generalization bounds with respect to the Rényi sharpness
029 are established, by exploiting the desirable reparametrization invariance property
030 of Rényi sharpness. Finally, as an initial attempt to take advantage of the Rényi
031 sharpness for regularization, Rényi Sharpness Aware Minimization (RSAM) al-
032 gorithm is proposed where a variant of Rényi Sharpness is used as the regularizer.
033 It turns out this RSAM is competitive with the state-of-the-art SAM algorithms,
034 and far better than the conventional SAM algorithm based on the max-eigenvalue
035 sharpness.

036 1 INTRODUCTION

037
038 Understanding why stochastic optimization methods, such as stochastic gradient descent (SGD) can
039 achieve strong generalization performance even when the neural networks are overparameterized
040 remains a fundamental yet open challenge in deep learning (Zhang et al., 2016; Gunasekar et al.,
041 2017; Li et al., 2018; Soudry et al., 2018; Woodworth et al., 2020). Many empirical and theoretical
042 studies have observed that the generalization of neural networks is closely related to the flatness of
043 the loss landscape (Keskar et al., 2016; Neyshabur et al., 2017; Jiang et al., 2019; Petzka et al., 2019;
044 Kaddour et al., 2022; Tsuzuku et al., 2020; Jang et al., 2022; Dziugaite & Roy, 2017; Jastrzębski
045 et al., 2017; Wu et al., 2018; Blanc et al., 2020; Wei & Ma, 2019; Foret et al., 2020; Damian et al.,
046 2021; Li et al., 2021; Ma & Ying, 2021; Ding et al., 2024; Nacson et al., 2022; Lyu et al., 2022; Wu
047 & Su, 2023; Kwon et al., 2021; Zhou et al., 2024).

048 Intuitively speaking, local minima with flat (with low sharpness) neighborhood in the landscape
049 are expected to incur small loss change (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016).
050 The core question is therefore: how should we measure the flatness in a proper way? The flat-
051 ness or *sharpness* is normally quantified by functionals of the loss Hessian \mathbf{H} —e.g., $\text{tr}(\mathbf{H})$ and
052 $\lambda_{\max}(\mathbf{H})$ —or by loss increase with constrained weight perturbations, while the latter is normally

053 An anonymized repository is provided at this link.

054 closely related to the former. Despite the above intuition, recent empirical evidences indicate that
 055 existing sharpness measures usually correlate *weakly* with generalization (Andriushchenko et al.,
 056 2023), sometimes even contradicting phenomenon occurs (Dinh et al., 2017; Wen et al., 2023). To
 057 close the gap between the intuition and the reality, it is of crucial importance to develop a better
 058 sharpness measure.

059 To address this problem, a key observation of ours is: what really matters for characterizing the
 060 generalization lies in the *unevenness* or *average spread* of the spectrum of the Hessian. Intuitively
 061 speaking, an even spectrum (with almost identical eigenvalue) is very much desirable to ensure
 062 good generalization, since if there exists no particularly large eigen-direction, a small perturbation
 063 of data (which can be translated to weight perturbation) would just incur small loss change. More
 064 concretely, when characterizing the loss change resulting from the train-test data discrepancy, the
 065 unevenness or average spread of the the spectrum can reflect the influences from all categories of
 066 eigenvalues of loss Hessian (Sankar et al., 2021): 1) the *top eigenvalues*, which are very important
 067 for the loss change but are of quite small quantity; 2) the *middle eigenvalues*, which are less im-
 068 portant for the loss change individually but are of very big quantity; 3) the *tail eigenvalues*, which
 069 are normally located near zero and thus play a minor role regarding the loss change. In contrast,
 070 the conventional sharpness measures, such as the trace or maximum eigenvalue of the loss Hessian,
 071 they care about only part of the eigenvalues. For example, the trace sharpness $\text{tr}(\mathbf{H})$ actually cares
 072 about only middle eigenvalues, while the max-eigenvalue sharpness $\lambda_{\max}(\mathbf{H})$ concerns only top
 073 eigenvalues. Therefore, both of them might experience significant information loss when predicting
 074 the generalization performance.

075 To finely characterize the unevenness or average spread of the Hessian spectrum, we propose a
 076 novel sharpness measure, Rényi sharpness by leveraging the notion of Rényi entropy (Rényi, 1961)
 077 in information theory, which can well describe the unevenness of a probability vector \mathbf{p} by exploiting
 078 an appealing property, i.e. concavity in \mathbf{p} . Naturally, Rényi entropy can be employed to describe the
 079 unevenness of any general non-negative vector by normalization, i.e. by transforming the original
 080 vector to a virtual probability vector. Moreover, Rényi entropy enjoys extra advantages of flexibility
 081 (with one free parameter) compared against the classical Shannon entropy (c.f. Section 2). In
 082 addition, it is worth noting that to describe the average spread of a vector, the sample variance
 083 is an alternative which is easy to enter the mind. Unfortunately it is improper for characterizing
 084 the generalization, because the tail eigenvalues (near-zero) of the spectrum contribute a lot to the
 085 variance, while they play a very minor role for the generalization gap.

086 To rigorously establish the relationship between generalization and Rényi sharpness, we develop
 087 several generalization bounds in terms of Rényi sharpness, by taking advantage of the reparametriza-
 088 tion invariance property of Rényi sharpness, and the technique of translating data discrepancy to the
 089 multiplicative weight perturbation. Moreover, to verify the correlation between the Rényi sharpness
 090 and generalization, we provide a fast algorithm, which is based on the Stochastic Lanczos Quadra-
 091 ture (SLQ) method (Yao et al., 2020), to estimate the Rényi sharpness. Finally, we introduce Rényi
 092 Sharpness-Aware Minimization (RSAM) for network training, which basically employs the Rényi
 093 sharpness as a regularizer.

094 In summary, our contributions are stated as follows:

- 095 • We introduce a novel notion of sharpness – *Rényi sharpness*, which is motivated by the
 096 observation that generalization highly depends on the *average spread* of the spectrum of
 097 the loss Hessian, which can be captured by the Rényi entropy, an important functional in
 098 information theory.
- 099 • We present two *generalization bounds* with respect to the Rényi sharpness, thus establish-
 100 ing the link between them in a rigorous way. In developing these generalization bounds,
 101 it is important to leverage the reparametrization invariance of the Rényi sharpness and the
 102 technique of translating data perturbation to (multiplicative) weight perturbation.
- 103 • We demonstrate that there exists *strong correlation* between Rényi sharpness and general-
 104 ization. Meanwhile, a fast algorithm to estimate the Rényi sharpness, which leverages the
 105 Stochastic Lanczos Quadrature (SLQ) method, is proposed.
- 106 • A preliminary version of *Rényi Sharpness-Aware Minimization* (RSAM) is proposed,
 107 where a variant of Rényi Sharpness is employed as a regularizer during training. It turns out
 108 to be competitive with the state-of-the-art SAM algorithms and significantly outperform the
 109 conventional SAM method, such as that using max-eigenvalue sharpness.

108 1.1 RELATED WORKS
109

110 **Sharpness vs. Generalization:** The exploration of relationship between sharpness and generaliza-
111 tion dates back to Hochreiter & Schmidhuber (1994), which proposes an algorithm to achieve high
112 generalization capability by searching flat minima. Keskar et al. (2016) shows that the generalization
113 performance of large batch SGD is correlated with the sharpness of the minima. Neyshabur et al.
114 (2017) studies various generalization measures and highlights the promising correlation between
115 sharpness and generalization. Jiang et al. (2019) performs a large-scale empirical study and finds
116 that flatness-based measure is higher correlated with generalization than the concepts like weight
117 norms, margin-, and optimization-based measures. Petzka et al. (2021) studies a relative flatness of
118 a layer through a multiplicative perturbation setting and shows the correlation with generalization.
119 However, many recent studies point out that sharpness does not correlate well with generalization.
120 Dinh et al. (2017) focuses on deep networks with rectifier units and builds equivalent models whose
121 sharpness can be significantly changed. Andriushchenko et al. (2023) find that sharpness may not
122 have a strong correlation with generalization for a collection of modern architectures and settings.
123 Wen et al. (2023) shows that flatness provably implies generalization but there exist non-generalizing
124 flattest models. Kaur et al. (2023) shows that the maximum eigenvalue of the Hessian can not always
125 predict generalization even for models obtained via standard training methods. A central reason why
126 these works consider sharpness to be unreliable is that there exist sharp models with good general-
127 ization.

128 **Sharpness-Aware Minimization (SAM):** As early as 1994, Hochreiter & Schmidhuber (1994)
129 sought to achieve stronger generalization by identifying flat minima, many recent researches find
130 that sharpness is correlated with generalization. This investigation inspires multiple methods that
131 optimize for more flat minima. These algorithms impose penalties based on different criteria, such
132 as the trace in average case (Jia & Su, 2020) or the worst-case perturbation such as SAM (Foret et al.,
133 2020) and its variations (Kwon et al., 2021; Zhuang et al., 2022; Du et al., 2022; Kim et al., 2022;
134 Mi et al., 2022; Li & Giannakis, 2023; Li et al., 2024a). To enhance the generalization, Eigen-SAM
135 is proposed (Luo et al., 2024) which periodically estimates the top eigenvalue of the Hessian matrix
136 and incorporates its orthogonal component to the gradient into the perturbation, thereby achiev-
137 ing a more effective top eigenvalue regularization effect. To obtain parameter-invariant sharpness
138 measures, a universal class of sharpness is proposed in Tahmasebi et al. (2024).

139 2 PROBLEM FORMULATION, KEY NOTIONS AND PROPERTIES

140 **Model.** Let $f(\theta, \mathbf{x})$ be a model with L layers, where $\theta = \{\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_{L-1}, \mathbf{W}_L\}$, and \mathbf{W}_l
141 is the weights of the l -th layer, the vectorization of θ and \mathbf{W}_l is θ and $\mathbf{w}_l = \text{vec}(\mathbf{W}_l)$ corre-
142 spondingly. For a given training dataset $\mathcal{S} = \{\mathbf{x}_i, \mathbf{y}_i\}^n$, and a twice differentiable loss function
143 $l(f(\theta, \mathbf{x}), \mathbf{y})$, the empirical loss is given by $L(\mathcal{S}, \theta) = \frac{1}{n} \sum_{i=1}^n l(f(\theta, \mathbf{x}_i), \mathbf{y}_i)$. The training and
144 testing dataset is sampled from the real data distribution \mathcal{D} , and the population loss is given by
145 $L(\mathcal{D}, \theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} [l(f(\theta, \mathbf{x}), \mathbf{y})]$. The generalization gap is defined as the difference between the
146 population loss $L(\mathcal{D}, \theta)$ and the empirical loss $L(\mathcal{S}, \theta)$.

147 Having observed only \mathcal{S} , the model utilizes $L(\mathcal{S}, \theta)$ as an estimation of $L(\mathcal{D}, \theta)$, and solves
148 $\min_{\theta} L(\mathcal{S}, \theta)$ using an optimization procedure such as SGD or Adam.

149 **Rényi Entropy.** Rényi entropy is a generalization of the classical Shannon entropy, which enjoys the
150 advantage of increased flexibility by adding one parameter and reduced computational complexity.
151 The Rényi entropy of a probability vector $\mathbf{p} = [p_1, p_2, \dots, p_n]$ is defined as

$$153 \quad H_{\alpha}(\mathbf{p}) = \frac{1}{1-\alpha} \log \sum_{i=1}^n p_i^{\alpha} \quad (1)$$

155 for $0 < \alpha < \infty$ and $\alpha \neq 1$. The Shannon entropy can be seen as a special example when the order
156 $\alpha \rightarrow 1$.

158 Two notable properties of Rényi entropy are as follows: 1) **Concavity over \mathbf{p}** : Rényi entropy
159 is a concave function of the distribution \mathbf{p} . A direct implication of this property is that Rényi
160 entropy takes its maximum when \mathbf{p} is *uniformly* distributed. 2) **Monotonic decrease in α** : When α
161 increases, the penalty over the non-uniformity (or unevenness) gets more strict, thus more emphasis
162 would be on the high probability mass, and vice versa.

162 The Rényi entropy can be generalized to the matrix setting. In specific, for a positive definite matrix
 163 \mathbf{H} , we can define its Rényi entropy as the normal Rényi entropy of its normalized eigenvalues, i.e.,
 164

$$165 \quad H_\alpha(\mathbf{H}) = \frac{1}{1-\alpha} \log \sum_{i=1}^n \left(\frac{\lambda_i(\mathbf{H})}{\text{Tr}(\mathbf{H})} \right)^\alpha. \quad (2)$$

168 In theory, we typically analyze the Hessian at a (local) minima, and therefore assume the Hessian to
 169 be positive definite. In practice, however, due to imperfect convergence or numerical errors in the
 170 algorithm, some negative eigenvalues may appear. Since these eigenvalues usually have very small
 171 magnitudes, we commonly take their absolute values before performing subsequent computations.
 172

173 **Definition 2.1 (Rényi Sharpness)** *For a neural network, consider an arbitrary layer within the
 174 model, denote the Hessian matrix of the loss function w.r.t. the layer’s weight as \mathbf{H} . The Rényi
 175 sharpness is defined as the negative Rényi entropy of the normalized spectrum of \mathbf{H} , i.e., $-H_\alpha(\mathbf{H})$.*
 176

177 Rényi Sharpness has a valuable property, i.e., the reparametrization invariance when the activation
 178 functions are homogeneous or nearly homogeneous. This property turns out to play an important role
 179 in developing the generalization bounds in terms of Rényi Sharpness. A formal statement regarding
 180 this property is as follows:
 181

182 **Proposition 2.2 (Reparameterization (Scaling) Invariance of Rényi Sharpness)** *Consider a L -
 183 layer feedforward neural network with positively homogeneous activation function σ (i.e., $\sigma(c\mathbf{x}) =$
 184 $c\sigma(\mathbf{x})$ for all $c > 0$), and parameters $\{\mathbf{W}_1, \dots, \mathbf{W}_L\}$. Let the network output be $f(\mathbf{x}) =$
 185 $\mathbf{W}_L \cdot \sigma(\mathbf{W}_{L-1} \cdots \sigma(\mathbf{W}_1 \mathbf{x}))$, and let $\mathcal{L}(\theta)$ denote the loss function, where θ denotes the weights of
 186 arbitrary layer, i.e., \mathbf{W}_l . Define the loss Hessian as $\mathbf{H}_\theta = \nabla_\theta^2 \mathcal{L}(\theta)$. Consider a layer-wise scaling
 187 transformation defined by $\tilde{\mathbf{W}}_l = c_l \mathbf{W}_l$, $c_l > 0$, with $\prod_{l=1}^L c_l = 1$. Let $\tilde{\theta} = \tilde{\mathbf{W}}_l$ be the scaled
 188 parameters, and define $\mathbf{H}_{\tilde{\theta}}$ as the corresponding Hessian. Then the spectrum-normalized Rényi
 189 entropy of \mathbf{H} is invariant:*
 190

$$H_\alpha(\mathbf{H}_{\tilde{\theta}}) = H_\alpha(\mathbf{H}_\theta), \quad \forall \alpha > 0, \alpha \neq 1. \quad (3)$$

191 The detailed description about reparameterization invariance and the proof of Proposition 2.2 is
 192 provided in Appendix E. This invariance is valid for the positive homogeneity of the activation
 193 function. In Transformer architectures (e.g., ViTs), although GELU is not strictly homogeneous,
 194 one has $\text{GELU}(\alpha x)/\alpha \approx \text{GELU}(x)$ (Andriushchenko et al., 2023), and thus the Rényi sharpness is
 195 approximately invariant in this setting. **Note that when the order $\alpha \rightarrow 1$, the Rényi entropy reduces
 196 to the Shannon entropy, which is also invariant under the settings in Proposition 2.2.** We also remark
 197 that this invariance only holds for the layerwise sharpness, the connection between global sharpness
 198 and the layerwise one can be found in Appendix F.
 199

200 3 GENERALIZATIONS BOUNDS WITH RESPECT TO RÉNYI SHARPNESS

202 In this section, we will provide several generalization bounds in terms of Rényi sharpness, by taking
 203 advantage of the trick of translating the data discrepancy to multiplicative weight perturbation and
 204 the reparameterization invariance of Rényi sharpness.
 205

206 First of all, we’ll argue that the data perturbation can be translated to the multiplicative weight
 207 perturbation when characterizing the generalization.
 208

209 **Proposition 3.1 (informally)** *For any $\rho > 0$, and a training set \mathcal{S} draw from the distribution \mathcal{D} ,
 210 with high probability,*

$$211 \quad L(\mathcal{D}, \theta) \leq \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho), \theta)] + C \quad (4)$$

212 where $\mathcal{S}(\mathbf{A}, \rho) = \{(\mathbf{x} + \rho \mathbf{A} \mathbf{x}, \mathbf{y}) | (\mathbf{x}, \mathbf{y}) \in \mathcal{S}\}$ and \mathbf{A} is a orthogonal matrix sampled under Haar
 213 measure, i.e., uniform on $\mathcal{O}(d)$.
 214

215 The more detailed description and proof of Proposition 3.1 can be found in Appendix B. Intuitively,
 216 Theorem 3.1 uses $\mathcal{S}(\mathbf{A}, \rho)$ to approximate \mathcal{D} , treating the discrepancy between \mathcal{D} and \mathcal{S} as the
 217 perturbation to \mathcal{S} . This assumption is essentially akin to the data-separation assumption: data from

216 different classes are spatially separated with no inter-class overlap. Under this premise, one can
 217 perturb a sample within its class (i.e., move along the within-class manifold) without affecting other
 218 classes. Note that \mathcal{D} and \mathcal{S} can also be feature distributions, thus we can also bound the population
 219 loss using the perturbation in the feature space.

220 The key idea of the perturbation translation is that a multiplicative perturbation in input (feature)
 221 space can be transferred into parameter space. A neural network can be written as a composite
 222 function $f = g(\mathbf{W}h(\mathbf{x}))$, where \mathbf{W} is the weight at a given layer, $h(\mathbf{x})$ is the function consisting
 223 of the layers in front of \mathbf{W} all the way to the input, and g is the function behind the \mathbf{W} all the way
 224 to the output. Let $f = g(\mathbf{W}h(\mathbf{x}))$, if $h(\mathbf{x}) = \mathbf{x}$, then $\mathbf{W} = \mathbf{W}_1$, which is the weights of the first
 225 layer, and the perturbation to $h(\mathbf{x})$ happens in input space, other-wisely happens in feature space.
 226 Consequently,

$$g(\mathbf{W}(h(\mathbf{x}) + \rho \mathbf{A}h(\mathbf{x}))) = g(\mathbf{W}(\mathbf{I} + \rho \mathbf{A})h(\mathbf{x})) = g((\mathbf{W} + \rho \mathbf{W}\mathbf{A})h(\mathbf{x})) \quad (5)$$

227 i.e., the perturbation to the $h(\mathbf{x})$ is fully transferred to the parameter \mathbf{W} . Thus, the generalization
 228 gap is closely related to the sharpness of a single layer, therefore we can examine the generalization
 229 by studying the sharpness of only a single layer.

230 Based on the above translation result and motivated by the work of (Jia & Su, 2020), we have the
 231 first generalization bound based on Rényi sharpness as follows (informally stated):

232 **Theorem 3.2 (informally)** *Let $\theta^* \in \mathbb{R}^n$ be the parameter of one layer and be an isolated local
 233 minimum of a bounded loss function $L(\cdot, \cdot) \in [0, 1]$, and define a posterior \mathcal{Q} concentrated near θ^*
 234 via local loss deviations, i.e., \mathcal{Q} has a density $q(\theta) \propto e^{-|L_0 - L(\theta)|}$, where $L(\theta)$ is the loss function
 235 and L_0 is the minima loss obtained by the optimization algorithm. Then, for any $\delta \in (0, 1]$ and
 236 $\alpha > 0, \alpha \neq 1$, with probability at least $1 - \delta$ over a training set \mathcal{S} of size N , we have:*

$$\mathbb{E}_{\mathcal{Q}}[L(\mathcal{D}, \theta)] \leq \mathbb{E}_{\mathcal{Q}}[L(\mathcal{S}, \theta)] + 2\sqrt{\frac{2L_0 + CV^{2/n} \exp(-\frac{1}{n}[H_\alpha(\mathbf{H}) - A]) + \log \frac{2N}{\delta}}{N-1}}, \quad (6)$$

237 where V is the volume of the neighborhood $\mathcal{M}(\theta^*)$, and A, C are positive constants, $\mathbf{H} = \nabla_\theta^2 L(\mathcal{S}, \theta^*)$ is the Hessian at θ^* and $H_\alpha(\mathbf{H})$ is the Rényi entropy of order α of the normalized
 238 eigenvalues of \mathbf{H} .

239 To exhibit a more direct relationship between the population risk and the empirical risk, we provide
 240 another generalization bound as follows:

241 **Theorem 3.3 (informally)** *Given a loss function $L(\cdot, \cdot)$ and a layer-wise local minimum $\theta^* \in \mathbb{R}^n$.
 242 Let \mathbf{H} denote the Hessian of the loss w.r.t. θ^* . Take a prior uniform in a ball that contains the
 243 ellipsoid $E_{\mathbf{H}}(\rho) = \{\theta : (\theta - \theta^*)^\top \mathbf{H}(\theta - \theta^*) \leq \rho^2\}$, where ρ is sufficiently small and satisfy $\rho > 0$.
 244 Take a posterior uniform in $E_{\mathbf{H}}(\rho)$. For any $\delta \in (0, 1]$ and $\alpha > 0, \alpha \neq 1$, we have with probability
 245 at least $1 - \delta$ over a training set \mathcal{S} of size N , we have:*

$$L(\mathcal{D}, \theta^*) \leq L(\mathcal{S}, \theta^*) + \frac{n}{2(n+2)}\rho^2 + O(\varepsilon) + \sqrt{\frac{-\frac{1}{2}H_\alpha(\mathbf{H}) + \log \frac{2\sqrt{N}}{\delta} + C}{2(N-1)}}. \quad (7)$$

246 where C is a positive constant, $\mathbf{H} = \nabla_\theta^2 L(\mathcal{S}, \theta^*)$ is the Hessian at θ^* and $H_\alpha(\mathbf{H})$ is the Rényi
 247 entropy of order α of the normalized eigenvalues of \mathbf{H} .

248 The detailed version and proof of Theorem 3.2 and Theorem 3.3 can be found in Appendices C and
 249 D, respectively. Both Theorem 3.2 and Theorem 3.3 indicate that the generalization is bounded by
 250 the Rényi entropy of the Hessian matrix of the loss with respect to the weights.

251 4 RÉNYI SHARPNESS: ORDER SELECTION & FUNCTIONAL ESTIMATION

252 In this section, we will discuss the choice of the order parameter α in Rényi sharpness. Furthermore,
 253 we will provide a fast algorithm for estimating the Rényi sharpness.

254 4.1 ORDER SELECTION IN RÉNYI SHARPNESS

255 The heavy-tailed spectrum of the Hessian matrix is a ubiquitous feature in deep networks. In this
 256 section, we compute the Hessian spectrum of each layer by PyHessian (Yao et al., 2020), and find

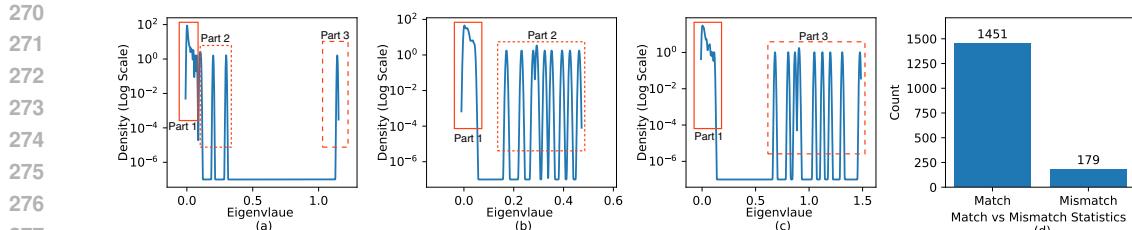


Figure 1: **Hessian spectra [a,b,c].** Two zero-dominant profiles are observed: (a) *multi-cluster* and (b,c) *uniform*. **Optimal α vs. Hessian spectral type [d].** Statistics summarizing whether the empirically optimal α matches the predicted choice under each Hessian spectral type.

that although all the spectra are heavy-tailed, the shapes of the spectrum can be divided into two categories, which correspond to different choices of α .

We summarize the shape of the spectrum into the following two categories: 1) Zero-dominant, multi-cluster spectrum and 2) Zero-dominant, uniform spectrum. We selected representative plots from ResNet18-CIFAR10 to illustrate these two categories, as shown in Fig. 1. The zero-dominant, multi-cluster spectrum (Fig. 1 (a)) consists of a large number of near zeros (Part 1) and some large eigenvalues (Part 3), and between these two eigenvalues, there are some eigenvalues (Part2) that cannot be ignored but are significantly smaller than the large eigenvalues. The zero-dominant, uniform spectrum (Fig. 1 (b,c)), on the other hand, contains only a large number of near zeros and some large eigenvalues. The detailed spectrum of each layer across different tasks is pushed to Appendix K.1, and a similar spectrum can also be found in Sankar et al. (2021).

To capture the multi-cluster nature (Fig. 1 (a)), we note that eigenvalues near zero (Part 1) contribute less to sharpness and generalization. Therefore, it is important to choose a suitable α that embodies the differences among the dominant (Part 3) eigenvalues and those small but non-negligible eigenvalues (Part 2). When $\alpha > 1$, the measure disproportionately amplifies large eigenvalues while ignoring smaller ones. To better capture the spectrum's subtle variations, especially on Part 2, it is preferable to use an order $\alpha \in (0, 1)$, which balances sensitivity across both large and small eigenvalues. In practice, we observe that setting $\alpha = 0.5$ typically yields the most stable and significant correlation between Rényi sharpness and generalization.

In the case of uniform spectrum (Fig. 1 (b,c)), one part of Part 2 and Part 3 vanish, leaving only a few dominant ones. Therefore, it becomes crucial to capture the differences among these dominant eigenvalues. When $\alpha \in (0, 1)$, the order tends to suppress these differences, which is undesirable in this context. Thus, choosing $\alpha \geq 1$ is more appropriate, as it captures the contribution of every eigenvalue and highlights their differences. However, as α approaches 1, practical numerical computation becomes unstable. Balancing theory and practice, $\alpha > 1$ will be better, and we find that $\alpha = 1.5$ performs well and exhibits a strong and robust correlation.

Overall, the key to choosing α is whether the eigenvalues that influence generalization form clusters whose inter-cluster separation exceeds the clusters' enlargement. If there is a single cluster, selecting $\alpha > 1$ suffices to examine inter-eigenvalue differences. When clusters are widely separated, we should choose $\alpha < 1$ to avoid over-emphasizing the larger eigenvalues when $\alpha > 1$. In practice, $\alpha = 0.5$ and $\alpha = 1.5$ tend to provide robust and consistent results across different datasets and models. The summary statistics of the average correlations for different values of α can be found in the Appendix K.4.

We conducted a statistical analysis of the experiments in Section 5, examining whether the value of α that yields the highest correlation between the layer-wise Rényi sharpness and generalization is consistent with our prior analysis. We then recorded the number of successful and unsuccessful matches in 60 models, with a total of 1630 cases: 1451 matches and 179 mismatches, as shown in Fig. 1 (d). Overall, the empirical findings agree well with our preceding intuitive analysis.

4.2 ESTIMATION OF RÉNYI SHARPNESS

To estimate the Rényi entropy of the Hessian matrix, it would be of prohibitive complexity if we directly calculate the spectrum of the Hessian matrix, due to the huge size of the matrix. To circumvent this difficulty, we will reformulate the Rényi entropy as a functional of the trace of matrix

functions and then leverage the stochastic trace estimator (also known as the Hutchinson method) and stochastic Lanczos quadrature method to greatly reduce the complexity.

Firstly, the Rényi entropy is reformulated as follows:

$$H_\alpha(\mathbf{H}) = \frac{1}{1-\alpha} \log \sum_{i=1}^n \left(\frac{\lambda_i}{\text{Tr}(\mathbf{H})} \right)^\alpha = \frac{1}{1-\alpha} \log \frac{\sum_{i=1}^n \lambda_i^\alpha}{\text{Tr}(\mathbf{H})^\alpha} = \frac{1}{1-\alpha} \log \frac{\text{Tr}(\mathbf{H}^\alpha)}{\text{Tr}(\mathbf{H})^\alpha}. \quad (8)$$

Thus the estimation task boils down to calculating the trace of matrix functions $\text{Tr}(\mathbf{H})$ and $\text{Tr}(\mathbf{H}^\alpha)$.

To estimate the trace of matrix functions $f(\mathbf{H})$, the stochastic trace estimator can be leveraged to greatly reduce the complexity:

$$\text{Tr}(f(\mathbf{H})) = \text{Tr}(f(\mathbf{H})\mathbf{I}) = \text{Tr}(f(\mathbf{H})\mathbb{E}[\mathbf{v}\mathbf{v}^\top]) = \mathbb{E}[\text{Tr}(f(\mathbf{H})\mathbf{v}\mathbf{v}^\top)] = \mathbb{E}[\mathbf{v}^\top f(\mathbf{H})\mathbf{v}], \quad (9)$$

where f is analytic inside a closed interval function, \mathbf{I} is the identity matrix, and \mathbf{v} is sampled from a Rademacher distribution.

To economically calculate the expectation of the quadratic form $\mathbf{v}^\top f(\mathbf{H})\mathbf{v}$, the Gaussian quadrature rule can be employed to transform the expectation to an integral. Further, the integral can be computed with the nodes and the weights of the quadrature rule given by the Lanczos algorithm, (Golub & Strakoš, 1994; Golub & Meurant, 2009; Bai & Golub, 1996; Bai et al., 1996; Golub & Van Loan, 2013; Ubaru et al., 2017) which basically generates an orthonormal basis for the Krylov subspace such that the matrix can be reduced to tri-diagonal one, hence greatly lower the computational burden. Combined all the above, it constitutes the framework of the stochastic Lanczos quadrature (SLQ) algorithm (Ubaru et al., 2017), which is exactly the basis of Algorithm 1.

The details for the estimation of Rényi entropy are shown in **Algorithm 1**.

Algorithm 1 Rényi Entropy Estimation via Stochastic Lanczos Quadrature

Input: Positive definite matrix \mathbf{H} of size $n \times n$, Lanczos iterations m , computation iterations l , order $\alpha > 0$ and $\alpha \neq 1$.

Output: Estimation of $H_\alpha(\mathbf{H})$.

for $k = 1, \dots, l$ **do**

 Draw two random vector \mathbf{v}_1 and \mathbf{g}_k of size $n \times 1$ from $\mathcal{N}(0,1)$ and normalize it, $\mathbf{w}'_1 = \mathbf{H}\mathbf{v}_1$,

$\alpha_1 = \mathbf{w}'_1^\top \mathbf{v}_1$, $\mathbf{w}_1 = \mathbf{w}'_1 - \alpha_1 \mathbf{v}_1$;

for $i = 2, \dots, m$ **do**

 1). $\beta_i = \|\mathbf{w}_{i-1}\|$;

 2). stop if $\beta_i = 0$ else $\mathbf{v}_i = \mathbf{w}_{i-1}/\beta_i$

 3). $\mathbf{w}'_i = \mathbf{H}\mathbf{v}_i$, $\alpha_i = \mathbf{w}'_i^\top \mathbf{v}_i$, $\mathbf{w}_i = \mathbf{w}'_i - \alpha_i \mathbf{v}_i - \beta_i \mathbf{v}_{i-1}$;

end for

 4). $\mathbf{T}_k(i, i) = \alpha_i$, $i = 1, \dots, m$, $\mathbf{T}_k(i, i+1) = \mathbf{T}_k(i+1, i) = \beta_i$, $i = 1, \dots, m-1$.

 5). $A_k = \mathbf{e}_1^\top \mathbf{T}_k^\alpha \mathbf{e}_1$, $B_k = \mathbf{g}_k^\top \mathbf{H} \mathbf{g}_k$;

end for

Return: $H_\alpha(\mathbf{H}) = \frac{1}{1-\alpha} \log \frac{\sum_{k=1}^l A_k}{(\sum_{k=1}^l B_k)^\alpha}$

5 CORRELATION BETWEEN RÉNYI SHARPNESS AND GENERALIZATION

In this section, we estimate the Rényi entropy via Algorithm 1, and validate that Rényi entropy is strongly correlated with generalization.

5.1 TASK

We evaluate the correlation between Rényi sharpness and generalization on: ResNet18/34 (He et al., 2016), and Simple Vision Transformer architecture from the `vit-pytorch` library on CIFAR10 (Krizhevsky & Hinton, 2009), ResNet18/34 on CIFAR100, and ResNet18 on TinyImageNet (Le & Yang, 2015). We vary the learning rate, optimization algorithm, and the weight decay strength to generate different local minima, and then estimate the layer-wise and global Rényi sharpness. More

details can be found in Appendix J. We compare with the classical Hessian-based flatness measures using the trace of the loss-Hessian, the Fisher-Rao norm(Liang et al., 2019), the PAC-Bayes flatness measure that performed best in the extensive study of Jiang et al. (2019), the Frobenius norm of the weights, and the sharpness defined in SAM (Foret et al., 2020) and ASAM (Kwon et al., 2021). Notably, the sharpness defined in ASAM (Kwon et al., 2021) has been empirically shown by Andriushchenko et al. (2023), on larger-scale datasets and models, to have little or no correlation with generalization performance. The definition and detailed implementation of those measures can be found in Appendix I, and the hyperparameter ρ in SAM and ASAM is searched over $\{10^{-6}, 3 \times 10^{-6}, 10^{-5}, 3 \times 10^{-5}, 10^{-4}, 3 \times 10^{-4}, 10^{-3}, 3 \times 10^{-3}, 10^{-2}, 3 \times 10^{-2}, 10^{-1}, 0.3, 1\}$.

To detect correlation, we follow the previous works by Dziugaite et al. (2020); Jiang et al. (2019); Kwon et al. (2021); Andriushchenko et al. (2023) and use the Kendall rank correlation coefficient:

$$\tau(\mathbf{x}, \mathbf{y}) = \frac{2}{N(N-1)} \sum_{i < j} \text{sign}(x_i - x_j) \text{sign}(y_i - y_j) \quad (10)$$

where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$ are vectors of generalization gap and sharpness values for N different models. We follow the approach of Andriushchenko et al. (2023) by comparing sharpness and generalization within the same model architecture. This contrasts with prior works such as Dziugaite et al. (2020) and Jiang et al. (2019), which focus on comparisons across models with varying width or depth. We always evaluate sharpness on the same training points taken without any data augmentations, while the data augmentation tools are allowed in training.

5.2 CORRELATION BETWEEN RÉNYI SHARPNESS AND GENERALIZATION

After training with a range of hyperparameters, we estimate Rényi sharpness and compute the Kendall rank correlation between Rényi entropy and the generalization gap (defined as the difference between training and test loss). We vary α and plot the sharpness that attains the highest correlation coefficient. Fig. 2 reports these correlations on CIFAR-10 with ResNet-18. The “layer 1” through “all layer” subplots correspond to Rényi sharpness; the remaining subplots show alternative metrics. As evident in Fig. 2, Rényi sharpness aligns closely with generalization performance and outperforms the other measures in capturing the generalization gap.

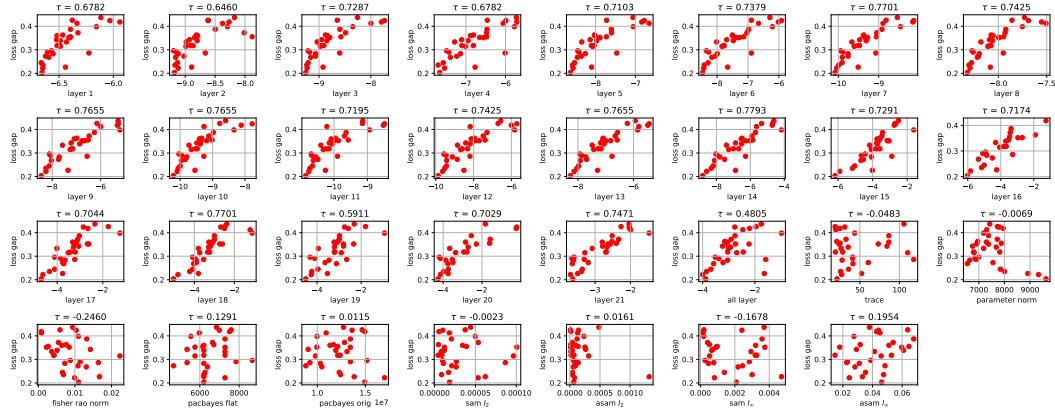


Figure 2: ResNet18 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness measure. Rényi sharpness is strongly correlated with generalization than the other measures.

Owing to page limits, we present the remaining tasks in a compact format that aggregates all statistics into a single panel (Fig. 3). As shown in Fig. 3, Rényi sharpness is strongly correlated with generalization. Full per-task figures in the style of Fig. 2 are provided in the Appendix K.2.

6 REGULARIZATION BY RÉNYI SHARPNESS

In this section, we propose to use Rényi sharpness as a regularizer during training, i.e. the Rényi Sharpness Aware Minimization algorithm. To reduce the complexity, in practice we will employ an approximation of the Rényi sharpness.

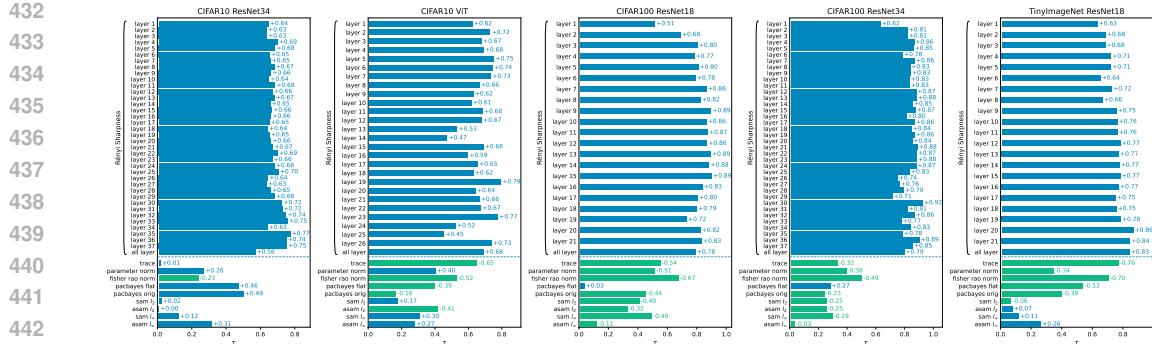


Figure 3: Kendall correlations on various tasks. Signed coefficients are mapped to 0–1 (blue = positive, green = negative). Rényi sharpness shows the strongest correlation with generalization than other sharpness measures.

6.1 RÉNYI REGULARIZATION AND RÉNYI SHARPNESS AWARE MINIMIZATION (RSAM)

If the original form Rényi sharpness was used for regularizer, it would require multiple cycles of gradient descent, thus increasing the computational complexity by dozens of times, as compared with the traditional training method. To reduce the computational burden, we will resort to the approximations of Rényi sharpness. In specific, following the work by Khan et al. (2018); Kim et al. (2022), we will employ the gradient magnitude as an approximation of the Hessian matrix:

$$\mathbf{H} \approx \mathbf{GM} = \left[\text{Diag} \left(\frac{1}{N} \sum_{i=1}^N \nabla_{\theta} l(\theta, \mathbf{x}_i, \mathbf{y}_i) \right) \right]^2 \quad (11)$$

Consequently, the Rényi sharpness can be approximated by

$$-H_\alpha(\mathbf{H}) \approx -H_\alpha(\mathbf{GM}) = -\frac{1}{1-\alpha} \log \frac{\sum_j |g_j|^{2\alpha}}{\left(\sum_j g_j^2 \right)^\alpha} \quad (12)$$

where \mathbf{g} is the gradient vector computed by the optimization algorithms, and $g_j = \frac{1}{N} \sum_{i=1}^N \nabla_{\theta_j} l(\theta, \mathbf{x}_i, \mathbf{y}_i)$ is the element in \mathbf{g} . Thus we can use $-\text{sign}(1-\alpha) \frac{\sum_j |g_j|^{2\alpha}}{\left(\sum_j g_j^2 \right)^\alpha}$ as the **Rényi regularizer**. To avoid the memory usage and compute cost caused by explicitly computing the gradient with computational graph preserved (e.g., `create_graph=True` in PyTorch), we consider minimizing the following objective instead:

$$L(\theta + \epsilon) = L(\theta - \rho \cdot \text{sign}(1-\alpha) \cdot \frac{\sum_j |g_j|^{2\alpha}}{\left(\sum_j g_j^2 \right)^{\alpha+1}} \mathbf{g}^\top) \quad (13)$$

Eq. 13 can be expanded as follows:

$$L(\theta + \epsilon) \approx L(\theta) - \rho \cdot \text{sign}(1-\alpha) \cdot \frac{\sum_j |g_j|^{2\alpha}}{\left(\sum_j g_j^2 \right)^{\alpha+1}} \mathbf{g}^\top \mathbf{g} = L(\theta) - \rho \cdot \text{sign}(1-\alpha) \cdot \frac{\sum_j |g_j|^{2\alpha}}{\left(\sum_j g_j^2 \right)^\alpha} \quad (14)$$

Thus, optimizing Eq. 13 is approximately optimizing the original loss with Rényi regularizer, namely, Rényi sharpness-aware minimization (RSAM, see Algorithm 2). We observe that penalizing a single layer (e.g., the final layer) typically requires extending training for more epochs to achieve strong generalization, unless multiple layers are optimized concurrently. Given the combinatorial cost of tuning layer-specific regularization strengths, we adopt a single global Rényi regularizer applied across all layers. Appendix F establishes that optimizing this global objective implies optimizing the layer-wise objectives as well.

Moreover, it is observed that incorporating the approximate Hessian matrix and penalizing Rényi sharpness at the early stages of training introduces substantial instability. To mitigate this effect, we first train with plain SGD and adapt the warm-up length based on validation accuracy. For easy tasks, five epochs suffice to attain high accuracy, so the SGD warm-up is capped at five epochs. For harder tasks such as TinyImageNet, we defer switching to RSAM until the validation Top-1 exceeds 30%, which typically occurs around epoch 20. [The discussion and comparison with other related SAM variants can be found in the Appendix H.](#)

486 6.2 COMPARISON BETWEEN RSAM AND OTHER SAM ALGORITHMS
487

488 We now apply our sharpness measure as a regularizer to train neural networks. We consider the
489 image classification tasks involving the CIFAR10/100 and TinyImageNet datasets. Various convolutional
490 neural networks such as ResNet, and WideResNet (Zagoruyko & Komodakis, 2016) are used
491 for CIFAR10/100 experiments. We also evaluated performance by fine-tuning a ViT-B-16 model
492 pre-trained on ImageNet for CIFAR-10 and CIFAR-100. We used the checkpoint provided by Py-
493 Torch’s official repository. For comparison, we consider the sharpness-aware minimization (SAM)
494 method, the adaptive SAM (ASAM) method, an extension of SAM to involve the scale-invariance,
495 the Eigen-SAM (Luo et al., 2024) method, which regularizes the top Hessian eigenvalue, the Fisher
496 SAM (Kim et al., 2022) method which minimize sharpness under the Riemannian metric, and the
497 Sparse SAM Mi et al. (2022) which mask the sharpness to speed up SAM algorithm. More details
498 are provided in Appendix J.3.2.

499 Table 1: Test accuracies (avg. \pm standard error) for SGD/SAM/ASAM/Eigen-SAM/FSAM/RSAM.

500 Dataset	501 Model	502 SGD(%)	503 SAM(%)	504 ASAM(%)	505 Eigen-SAM(%)	506 FSAM(%)	507 SSAM(%)	508 OURS(%)
501 CIFAR10	502 ResNet20	503 92.68 \pm 0.25	504 93.44 \pm 0.07	505 93.62 \pm 0.16	506 93.24 \pm 0.20	507 93.54 \pm 0.12	508 93.44 \pm 0.14	509 93.69 \pm 0.12
	502 ResNet56	503 94.24 \pm 0.23	504 94.96 \pm 0.19	505 95.12 \pm 0.08	506 94.96 \pm 0.10	507 95.17 \pm 0.05	508 95.15 \pm 0.12	509 95.26 \pm 0.12
	502 WideResNet-28-10	503 96.36 \pm 0.08	504 96.95 \pm 0.05	505 96.79 \pm 0.10	506 96.78 \pm 0.06	507 96.96 \pm 0.06	508 96.90 \pm 0.04	509 97.13 \pm 0.06
501 CIFAR100	502 ResNet20	503 69.12 \pm 0.17	504 70.53 \pm 0.30	505 70.73 \pm 0.14	506 70.51 \pm 0.20	507 70.57 \pm 0.32	508 70.14 \pm 0.16	509 70.91 \pm 0.25
	502 ResNet56	503 72.60 \pm 0.34	504 74.86 \pm 0.23	505 75.20 \pm 0.29	506 74.80 \pm 0.32	507 74.91 \pm 0.21	508 75.42 \pm 0.18	509 75.71 \pm 0.18
	502 WideResNet-28-10	503 81.47 \pm 0.18	504 83.55 \pm 0.14	505 83.56 \pm 0.11	506 82.81 \pm 0.08	507 83.48 \pm 0.14	508 83.47 \pm 0.09	509 83.67 \pm 0.09
TinyImageNet	ResNet50	59.62 \pm 1.51	60.70 \pm 0.70	62.56 \pm 0.25	-	61.21 \pm 0.64	-	63.33 \pm 0.27

507 Table 2: Test accuracy for fine-tuning ViT-B-16 pretrained on ImageNet-1K on CIFAR-10 and
508 CIFAR-100.

510 Dataset	511 Model	512 SGD(%)	513 SAM(%)	514 ASAM(%)	515 FSAM(%)	516 OURS(%)
CIFAR10	ViT-B-16	98.06 \pm 0.09	98.50 \pm 0.05	98.39 \pm 0.05	98.42 \pm 0.11	98.59 \pm 0.03
CIFAR100	ViT-B-16	88.27 \pm 0.15	89.38 \pm 0.04	88.78 \pm 0.33	89.41 \pm 0.11	89.58 \pm 0.07

514 We provide the averages and standard errors of the test accuracies obtained from five runs of each
515 method in Table 1 and Table 2. As can be seen from the table, one can confirm that the generalization
516 performance of SGD is significantly improved with our regularizer. Furthermore, our method out-
517 performs the SAM, ASAM, and Eigen-SAM methods. Although our method outperforms ASAM
518 overall, the margin is modest on certain tasks. We hypothesize this gap arises because we currently
519 employ an approximate surrogate of the Rényi sharpness, introduced for computational efficiency.
520 We expect further improvements if the exact Rényi sharpness can be used as the regularizer (or
521 if a tighter estimator becomes feasible), and we leave this as a promising direction for future work.
522 Since we first warm up with plain SGD before switching to RSAM, we did not adjust RSAM’s epoch
523 budget to equalize total compute across methods; instead, we fixed the total number of epochs. Con-
524sequently, given a fixed compute budget, RSAM would be allowed to run more epochs and thus
525 expected to improve further the performance.

526 7 CONCLUSION
527

528 In this work, we propose a novel measure of sharpness – Rényi sharpness, which is defined as
529 the negative Rényi entropy of the loss Hessian. By leveraging the reparameterization invariance of
530 Rényi sharpness and the fact that data perturbations can be absorbed into the weight perturbations,
531 we develop several generalization bounds based on the Rényi sharpness. Extensive experiments
532 demonstrate a strong correlation between the Rényi sharpness and generalization. Furthermore,
533 we propose the Rényi Sharpness-Aware Minimization (RSAM) algorithm, which penalizes Rényi
534 sharpness during training. Experimental results demonstrate that RSAM outperforms all existing
535 sharpness-aware minimization methods, across multiple tasks.

536 **Limitations.** The generalization bounds in our work relies on homogeneity of the activation func-
537 tion, which holds for ReLU networks and approximately holds for GELU networks. Extending the
538 analysis for other activations is a both interesting and important direction. Moreover, our proposed
539 RSAM algorithm uses an approximation to Rényi sharpness for simplicity, a tighter approximation
or surrogate may further improve generalization.

540 REFERENCES
541

542 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
543 marion. A modern look at the relationship between sharpness and generalization. *arXiv preprint*
544 *arXiv:2302.07011*, 2023.

545 Zhaojun Bai and Gene H Golub. Bounds for the trace of the inverse and the determinant of symmet-
546 ric positive definite matrices. *Annals of Numerical Mathematics*, 4:29–38, 1996.

547 Zhaojun Bai, Gark Fahey, and Gene Golub. Some large-scale matrix computation problems. *Journal*
548 *of Computational and Applied Mathematics*, 74(1-2):71–89, 1996.

549 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
550 structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

551 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
552 neural networks. In *Advances in Neural Information Processing Systems*, pp. 6240–6249, 2017.

553 Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
554 networks driven by an ornstein-uhlenbeck like process. In *Conference on learning theory*, pp.
555 483–513. PMLR, 2020.

556 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
557 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on*
558 *computer vision and pattern recognition workshops*, pp. 702–703, 2020.

559 Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global minimizers.
560 *Advances in Neural Information Processing Systems*, 34:27449–27461, 2021.

561 Lijun Ding, Dmitriy Drusvyatskiy, Maryam Fazel, and Zaid Harchaoui. Flat minima generalize for
562 low-rank matrix recovery. *Information and Inference: A Journal of the IMA*, 13(2):iaae009, 2024.

563 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
564 for deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.

565 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
566 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
567 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
568 *arXiv:2010.11929*, 2020.

569 Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
570 for free. *Advances in Neural Information Processing Systems*, 35:23439–23451, 2022.

571 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
572 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
573 *arXiv:1703.11008*, 2017.

574 Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Caballero,
575 Linbo Wang, Ioannis Mitliagkas, and Daniel M Roy. In search of robust measures of generaliza-
576 tion. *Advances in Neural Information Processing Systems*, 33:11723–11733, 2020.

577 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
578 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

579 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
580 neural networks. *arXiv preprint arXiv:1712.06541*, 2017.

581 Gene H Golub and Gérard Meurant. *Matrices, moments and quadrature with applications*. Princeton
582 University Press, 2009.

583 Gene H Golub and Zdeněk Strakoš. Estimates in quadratic formulas. *Numerical Algorithms*, 8(2):
584 241–268, 1994.

585 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

594 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
 595 drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
 596 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

597 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-
 598 bro. Implicit regularization in matrix factorization. *Advances in neural information processing*
 599 *systems*, 30, 2017.

600 Ryuichiro Hataya. homura. <https://github.com/moskomule/homura>, 2018.

601 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 602 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 603 770–778, 2016.

604 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
 605 *Advances in neural information processing systems*, 7, 1994.

606 Cheongjae Jang, Sungyoon Lee, Frank Park, and Yung-Kyun Noh. A reparametrization-invariant
 607 sharpness measure based on information geometry. *Advances in neural information processing*
 608 *systems*, 35:27893–27905, 2022.

609 Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
 610 Bengio, and Amos Storkey. Three factors influencing minima in sgd. *arXiv preprint*
 611 *arXiv:1711.04623*, 2017.

612 Zhiwei Jia and Hao Su. Information-theoretic local minima characterization and regularization. In
 613 *International Conference on Machine Learning*, pp. 4773–4783. PMLR, 2020.

614 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 615 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.

616 Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers
 617 work? *Advances in Neural Information Processing Systems*, 35:16577–16595, 2022.

618 Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
 619 generalization. In *Proceedings on*, pp. 51–65. PMLR, 2023.

620 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 621 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 622 *preprint arXiv:1609.04836*, 2016.

623 Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava. Fast
 624 and scalable bayesian deep learning by weight-perturbation in adam. In *International conference*
 625 *on machine learning*, pp. 2611–2620. PMLR, 2018.

626 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
 627 and sharpness aware minimisation. In *International Conference on Machine Learning*, pp. 11148–
 628 11161. PMLR, 2022.

629 A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. *Master’s*
 630 *thesis, Department of Computer Science, University of Toronto*, 2009.

631 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 632 aware minimization for scale-invariant learning of deep neural networks. In *International confer-
 633 ence on machine learning*, pp. 5905–5914. PMLR, 2021.

634 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

635 Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
 636 suppression. *Advances in Neural Information Processing Systems*, 36:70861–70879, 2023.

637 Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
 638 minimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
 639 nition*, pp. 5631–5640, 2024a.

648 Tian Li, Tianyi Zhou, and Jeffrey A Bilmes. Tilted sharpness-aware minimization. *arXiv preprint*
 649 *arXiv:2410.22656*, 2024b.

650

651 Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
 652 matrix sensing and neural networks with quadratic activations. In *Conference On Learning The-
 653 ory*, pp. 2–47. PMLR, 2018.

654 Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?—a math-
 655 ematical framework. *arXiv preprint arXiv:2110.06914*, 2021.

656

657 Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geome-
 658 try, and complexity of neural networks. *arXiv preprint arXiv:1711.01530*, 2017.

659 Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, ge-
 660 ometry, and complexity of neural networks. In *The 22nd international conference on artificial
 661 intelligence and statistics*, pp. 888–896. PMLR, 2019.

662 Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, and Trung Le. Explicit
 663 eigenvalue regularization improves sharpness-aware minimization. *Advances in Neural Infor-
 664 mation Processing Systems*, 37:4424–4453, 2024.

665

666 Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
 667 ization layers: Sharpness reduction. *Advances in Neural Information Processing Systems*, 35:
 668 34689–34708, 2022.

669 Chao Ma and Lexing Ying. On linear stability of sgd and input-smoothness of neural networks.
 670 *Advances in Neural Information Processing Systems*, 34:16805–16817, 2021.

671

672 David A McAllester. Pac-bayesian model averaging. In *Proceedings of the twelfth annual confer-
 673 ence on Computational learning theory*, pp. 164–170, 1999.

674 David A McAllester. Pac-bayesian stochastic model selection. *Machine Learning*, 51(1):5–21,
 675 2003.

676

677 Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
 678 sharpness-aware minimization stronger: A sparsified perturbation approach. *Advances in Neural
 679 Information Processing Systems*, 35:30950–30962, 2022.

680 Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
 681 step size in linear diagonal neural networks. In *International Conference on Machine Learning*,
 682 pp. 16270–16295. PMLR, 2022.

683 Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance from
 684 initialization. *arXiv preprint arXiv:1901.01672*, 2019.

685

686 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
 687 networks. In *Conference on Learning Theory*, pp. 1376–1401, 2015.

688 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
 689 ization in deep learning. *Advances in neural information processing systems*, 30, 2017.

690

691 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
 692 spectrally-normalized margin bounds for neural networks. *International Conference on Learning
 693 Representations*, 2018a.

694 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. To-
 695 wards understanding the role of over-parametrization in generalization of neural networks. *arXiv
 696 preprint arXiv:1805.12076*, 2018b.

697

698 Henning Petzka, Linara Adilova, Michael Kamp, and Cristian Sminchisescu. A reparameterization-
 699 invariant flatness measure for deep neural networks. *arXiv preprint arXiv:1912.00058*, 2019.

700

701 Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
 702 flatness and generalization. *Advances in neural information processing systems*, 34:18420–18432,
 2021.

702 Konstantinos Pitas, Mike Davies, and Pierre Vandergheynst. Pac-bayesian margin bounds for con-
 703 volutional neural networks. *arXiv preprint arXiv:1801.00171*, 2017.

704

705 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 706 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 707 models from natural language supervision. In *International conference on machine learning*, pp.
 708 8748–8763. PMLR, 2021.

709 Alfred Renyi. On measures of entropy and information. In *Proceedings of the fourth Berkeley
 710 symposium on mathematical statistics and probability, volume 1: contributions to the theory of
 711 statistics*, volume 4, pp. 547–562. University of California Press, 1961.

712 Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A deeper
 713 look at the hessian eigenspectrum of deep neural networks and its applications to regularization.
 714 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 9481–9488,
 715 2021.

716

717 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 718 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 719 1–57, 2018.

720

721 Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
 722 Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. *arXiv
 723 preprint arXiv:2106.10270*, 2021.

724

725 Behrooz Tahmasebi, Ashkan Soleymani, Dara Bahri, Stefanie Jegelka, and Patrick Jaillet. A univer-
 726 sal class of sharpness-aware minimization algorithms. In *Proceedings of the 41st International
 727 Conference on Machine Learning*, pp. 47418–47440, 2024.

728

729 Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale in-
 730 variant definition of flat minima for neural networks using pac-bayesian analysis. In *International
 731 Conference on Machine Learning*, pp. 9636–9647. PMLR, 2020.

732

733 Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of $\text{tr}(f(a))$ via stochastic lanczos
 734 quadrature. *SIAM Journal on Matrix Analysis and Applications*, 38(4):1075–1099, 2017.

735

736 Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via lipschitz
 737 augmentation. *Advances in neural information processing systems*, 32, 2019.

738

739 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
 740 sharpness to achieve better generalization. *Advances in Neural Information Processing Systems*,
 741 36:1024–1035, 2023.

742

743 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 744 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 745 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

746

747 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 748 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 749 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 750 inference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022.

751

752 Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
 753 descent. In *International Conference on Machine Learning*, pp. 37656–37684. PMLR, 2023.

754

755 Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
 756 dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.

757

758 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
 759 through the lens of the hessian. In *2020 IEEE international conference on big data (Big data)*,
 760 pp. 581–590. IEEE, 2020.

761

762 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint
 763 arXiv:1605.07146*, 2016.

756 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 757 deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.
 758

759 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 760 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

761 Zhanpeng Zhou, Mingze Wang, Yuchen Mao, Bingrui Li, and Junchi Yan. Sharpness-aware min-
 762 imization efficiently selects flatter minima late in training. *arXiv preprint arXiv:2410.10373*,
 763 2024.

764 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
 765 Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
 766 training. *arXiv preprint arXiv:2203.08065*, 2022.

769 A ORGANIZATION OF APPENDIX

770 The appendix is organized as follows:

- 773 • Sec. A: an overview of the organization of the appendix.
- 774 • Sec. B: detailed proof of the PAC Bayesian generalization bound under multiplicative
 775 perturbation (Theorem 3.1).
- 776 • Sec. C: detailed proof of the PAC Bayesian generalization bound for Rényi entropy moti-
 777 vated by (Jia & Su, 2020) (Theorem 3.2).
- 778 • Sec. D: detailed proof of the PAC Bayesian generalization bound for Rényi entropy (The-
 779 orem 3.3).
- 780 • Sec. E: detailed proof of the reparameterization invariance of Rényi entropy (Proposition
 781 2.2).
- 782 • Sec. F: detailed proof of optimizing global Rényi regularization implies optimizing layer-
 783 wise Rényi regularization.
- 784 • Sec. G: a proof of arbitrary trace rescaling under fixed normalized spectrum.
- 785 • Sec. H: detailed discussion and comparison with Rényi sharpness-aware minimization and
 786 some related sharpness-aware minimization variants.
- 787 • Sec. I: detailed description and definition of the baseline sharpness measures.
- 788 • Sec. J: detailed descriptions of the datasets, models, hyper-parameter choices used in our
 789 experiments, including correlation experiments and the sharpness-aware minimization ex-
 790 periments.
- 791 • Sec. K: This section presents the Hessian spectrum which determine the Rényi order choice
 792 and the correlation coefficient under different Rényi order α . The correlation comparison
 793 between the Rényi sharpness and other sharpness measures across multiple tasks is also
 794 included.
- 795 • Sec. L: limitations of our assumptions and theoretical results.
- 796 • Sec. M: broader impacts statement of this research.

797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **B PAC BAYESIAN GENERALIZATION BOUND UNDER MULTIPLICATIVE
811 PERTURBATION**

813 Below, we state a generalization bound based on multiplicative perturbation.

815 **Theorem B.1** *For any $\rho > 0$, and a training set \mathcal{S} draw from the distribution \mathcal{D} , we assumed
816 that $L(\mathcal{D}, \boldsymbol{\theta}) \leq L(\mathcal{D}, \boldsymbol{\theta} + \boldsymbol{\delta})$, where $\boldsymbol{\delta}$ is the perturbation to the weights, $\mathcal{S}(\mathbf{A}, \rho) = \{(\mathbf{x} +
817 \rho \mathbf{A} \mathbf{x}, \mathbf{y}) | (\mathbf{x}, \mathbf{y}) \in \mathcal{S}\}$ and \mathbf{A} is a orthogonal matrix sampled under Haar measure, i.e., uniform
818 on $\mathcal{O}(d)$. With probability $1 - \epsilon$,*

$$819 \quad L(\mathcal{D}, \boldsymbol{\theta}) \leq \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho), \boldsymbol{\theta})] + C \sqrt{\frac{\log \frac{1}{\epsilon}}{2n}}$$

823 The condition $L(\mathcal{D}, \boldsymbol{\theta}) \leq L(\mathcal{D}, \boldsymbol{\theta} + \boldsymbol{\delta})$ means that adding perturbation to weights should not decrease
824 the test error. This is expected to hold in practice for the final solution but does not necessarily hold
825 for any $\boldsymbol{\theta}$.

826 *Proof.* Based on the Hoeffding's inequality, which is stated as follows:

828 **Theorem B.2 (Hoeffding's inequality)** *Let U_1, \dots, U_n be independent random variables taking
829 values in an interval $[a, b]$. Then, for any $t \in \mathbb{R}$,*

$$831 \quad \mathbb{E} \left[e^{t \sum_{i=1}^n [\mathbb{E} U_i - U_i]} \right] \leq e^{\frac{nt^2(b-a)^2}{8}} \quad (15)$$

833 Let $U_i = \mathbb{E}_{\mathbf{A}}[l(f(\boldsymbol{\theta}, \mathbf{x}_i + \rho \mathbf{A} \mathbf{x}_i), \mathbf{y}_i)]$, thus $\mathbb{E} U_i = \mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))]$ and $\frac{1}{n} \sum_{i=1}^n U_i =
834 \quad \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))]$, where $\mathcal{D}(\mathbf{A}, \rho) = \{(\mathbf{x} + \rho \mathbf{A} \mathbf{x}, \mathbf{y}) | (\mathbf{x}, \mathbf{y}) \in \mathcal{D}\}$, $\mathcal{S}(\mathbf{A}, \rho) = \{(\mathbf{x} +
835 \quad \rho \mathbf{A} \mathbf{x}, \mathbf{y}) | (\mathbf{x}, \mathbf{y}) \in \mathcal{S}\}$ and \mathbf{A} is a orthogonal matrix sampled under Haar measure, i.e., uniform
836 on $\mathcal{O}(d)$. Consequently, we have

$$839 \quad \mathbb{E}_{\mathcal{S}} \left[e^{tn [\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] - \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))]]} \right] \leq e^{\frac{nt^2 C^2}{8}} \quad (16)$$

841 For any s ,

$$843 \quad \mathbb{P}_{\mathcal{S}} \left(\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] - \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))] > s \right) \quad (17)$$

$$846 \quad = \mathbb{P}_{\mathcal{S}} \left(e^{nt [\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] - \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))]]} > e^{nts} \right) \quad (18)$$

$$848 \quad \leq \frac{e^{nt [\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] - \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))]]}}{e^{nts}} \quad \text{Markov's inequality} \quad (19)$$

$$850 \quad \leq e^{\frac{nt^2 C^2}{8} - nts} \quad (20)$$

852 Consequently,

$$854 \quad \mathbb{P}_{\mathcal{S}} \left(\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] > \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))] + s \right) \leq e^{\frac{nt^2 C^2}{8} - nts} \quad (21)$$

856 when $t = 4s/C^2$, $nt^2 C^2/8 - nts$ is minimized, thus,

$$858 \quad \mathbb{P}_{\mathcal{S}} \left(\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] > \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))] + s \right) \leq e^{\frac{-2ns^2}{C^2}} \quad (22)$$

860 let $\epsilon = e^{\frac{-2ns^2}{C^2}}$, we have

$$863 \quad \mathbb{P}_{\mathcal{S}} \left(\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] > \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))] + C \sqrt{\frac{\log \frac{1}{\epsilon}}{2n}} \right) \leq \epsilon \quad (23)$$

864 consequently,

$$866 \quad \mathbb{P}_{\mathcal{S}} \left(\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] \leq \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))] + C \sqrt{\frac{\log \frac{1}{\epsilon}}{2n}} \right) > 1 - \epsilon \quad (24)$$

869 For any multiplicative perturbation, the perturbation in the input space can be fully transformed
 870 into weight space, which means $\mathbb{E}_{\mathbf{A}}[L(\mathcal{D}(\mathbf{A}, \rho))] = L(\mathcal{D}, \boldsymbol{\theta} + \boldsymbol{\delta})$, where $\boldsymbol{\delta}$ obeys some unknown
 871 distribution. Consider the assumption that $L(\mathcal{D}, \boldsymbol{\theta}) \leq L(\mathcal{D}, \boldsymbol{\theta} + \boldsymbol{\delta})$, we have

$$872 \quad \mathbb{P}_{\mathcal{S}} \left(L(\mathcal{D}, \boldsymbol{\theta}) \leq \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho))] + C \sqrt{\frac{\log \frac{1}{\epsilon}}{2n}} \right) \geq 1 - \epsilon \quad (25)$$

876 **Discussion:** The idea about multiplicative perturbation under haar measure is also reported in Petzka et al. (2021), whose sharpness is define by the Hessian matrix of the loss function w.r.t a full
 877 connect layer's weights, but their follow-up results need to split the Hessian matrix into multiple
 878 blocks and compute the corresponding traces individually, which proposes a huge computation bur-
 879 den when dealing with a big layer, thus they only compute the sharpness of last layer in small model.
 880 Contrary to deriving a bound via multiplicative perturbations like Petzka et al. (2021), this section
 881 aims to show that the dependency between the real and empirical data distributions can be trans-
 882 formed to a weight perturbation of an individual layer, enabling the application of Theorem 3.2 and
 883 3.3 to study the corresponding layer-wise spectrum. Unlike the global spectrum, the layer-wise spec-
 884 trum is more likely to be invariant under reparameterization. In Section 4, we prove the invariance
 885 of the Rényi entropy in Theorem 3.2 and 3.3. Since the invariance conditions for the normalized
 886 global spectrum are much more restrictive, Theorem 3.2 and 3.3 only apply to the layer-wise Rényi
 887 entropy. Nevertheless, in Section 5 we empirically observe that the Rényi entropy of the global
 888 spectrum is still correlated with generalization. We attribute this phenomenon to the fact that the
 889 global spectrum is composed of the layer-wise spectra; hence, when the layer-wise spectra exhibit
 890 strong correlations, the global spectrum also demonstrates significant correlations.

891 **Corollary B.3** *For any $\rho > 0$, and a training set \mathcal{S} draw from the distribution \mathcal{D} , we as-
 892 sumed that $L(\mathcal{D}, \boldsymbol{\theta}) \leq L(\mathcal{D}, \boldsymbol{\theta} + \boldsymbol{\delta})$, where $\boldsymbol{\theta}$ is the perturbation to the weights, $\mathcal{S}(\mathbf{A}, \rho) =$
 893 $\{(\mathbf{x} + \rho \mathbf{A} \mathbf{x}, \mathbf{y}) | (\mathbf{x}, \mathbf{y}) \in \mathcal{S}\}$ and \mathbf{A} is a orthogonal matrix sampled under Haar measure, i.e.,
 894 uniform on $\mathcal{O}(d)$. With probability $1 - \epsilon$, we have*

$$896 \quad L(\mathcal{D}, \boldsymbol{\theta}) \leq \mathbb{E}_{\mathbf{A}}[L(\mathcal{S}(\mathbf{A}, \rho), \boldsymbol{\theta})] + C \sqrt{\frac{\log \frac{1}{\epsilon}}{2n}}$$

897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **C PAC BAYESIAN GENERALIZATION BOUND FOR RÉNYI ENTROPY**
 919 **MOTIVATED BY (JIA & SU, 2020)**
 920

921 In this section, we will propose a generalization bound based on the Rényi entropy of the Hessian
 922 spectrum of the loss function with respect to the weights.
 923

924 **Proposition C.1** *Given a training set \mathcal{S} with size N draw from the data distribution \mathcal{D} and a loss
 925 function $L(\cdot, \cdot) \in [0, 1]$, a layer-wise local minimum $\theta^* \in \mathbb{R}^n$ is isolated and unique in its neighbor-
 926 hood $\mathcal{M}(\theta^*)$ whose volume V is sufficiently small, pick a uniform prior \mathcal{P} over $\theta \in \mathcal{M}(\theta^*)$ and
 927 pick the posterior \mathcal{Q} of density $q(\theta) \propto e^{-|L_0 - L(\mathcal{S}, \theta)|}$ with $L_0 = L(\mathcal{S}, \theta^*)$. For any $\delta \in (0, 1]$ and
 928 $\alpha > 0, \alpha \neq 1$, we have with probability at least $1 - \delta$ that:*

$$929 \mathbb{E}_{\mathcal{Q}}[L(\mathcal{D}, \theta)] \leq \mathbb{E}_{\mathcal{Q}}[L(\mathcal{S}, \theta)] + 2\sqrt{\frac{2L_0 + 2\mathcal{A} + \log \frac{2N}{\delta}}{N-1}} \quad (26)$$

932 where $\mathcal{A} = \frac{1}{4\pi e} n V^{\frac{2}{n}} \pi^{\frac{1}{n}} \exp\left\{-\frac{H_\alpha(\mathbf{H}) + A}{n}\right\}$, and $A > 0$ is the constant item. \mathbf{H} is the Hessian matrix
 933 of loss function w.r.t. θ^* .
 934

935 *Proof.* Using PAC-Bayesian generalization bound proved by (Jia & Su, 2020):

936 **Theorem C.2** *Given a training set \mathcal{S} with size N draw from the data distribution \mathcal{D} and a loss
 937 function $L(\cdot, \cdot) \in [0, 1]$, a local minimum $\theta^* \in \mathbb{R}^n$ is isolated and unique in its neighborhood
 938 $\mathcal{M}(\theta^*)$ whose volume V is sufficiently small, pick a uniform prior \mathcal{P} over $\theta \in \mathcal{M}(\theta^*)$ and pick the
 939 posterior \mathcal{Q} of density $q(\theta) \propto e^{-|L_0 - L(\mathcal{S}, \theta)|}$ with $L_0 = L(\mathcal{S}, \theta^*)$. For any $\delta \in (0, 1]$, we have with
 940 probability at least $1 - \delta$ that:*

$$942 \mathbb{E}_{\mathcal{Q}}[L(\mathcal{D}, \theta)] \leq \mathbb{E}_{\mathcal{Q}}[L(\mathcal{S}, \theta)] + 2\sqrt{\frac{2L_0 + 2\mathcal{A} + \log \frac{2N}{\delta}}{N-1}} \quad (27)$$

945 where $\mathcal{A} = \frac{1}{4\pi e} n V^{\frac{2}{n}} \pi^{\frac{1}{n}} \exp\left\{\frac{\log|\mathbf{H}|}{n}\right\}$, and \mathbf{H} is the Hessian matrix of loss function w.r.t. θ^* .
 946

947 Next, we will utilize the Rényi entropy to bound the $\log|\mathbf{H}|$ term.

$$948 \log|\mathbf{H}| = \sum_{i=1}^n \log \lambda_i \quad (28)$$

$$951 = \sum_{i=1}^n \log(\text{Tr}(\mathbf{H}) \frac{\lambda_i}{\text{Tr}(\mathbf{H})}) \quad (29)$$

$$954 = n \log \text{Tr}(\mathbf{H}) + \sum_{i=1}^n \log \frac{\lambda_i}{\text{Tr}(\mathbf{H})} \quad (30)$$

956 let $p_i = \frac{\lambda_i}{\text{Tr}(\mathbf{H})}$, we have for $\alpha > 1$

$$959 \sum_{i=1}^n \log p_i \leq \sum_{i=1}^n p_i \log p_i \quad (31)$$

$$961 = -H_1(\mathbf{p}) \quad (32)$$

$$962 \leq -H_\alpha(\mathbf{p}) \quad \text{monotonicity of Rényi entropy} \quad (33)$$

964 consequently,

$$965 \sum_{i=1}^n \log \frac{\lambda_i}{\text{Tr}(\mathbf{H})} \leq -H_\alpha(\mathbf{H}) \quad (34)$$

967 Thus for $\alpha > 1, 1 - \alpha < 0$, larger entropy means a smaller $\sum_{i=1}^n \log \frac{\lambda_i}{\text{Tr}(\mathbf{H})}$.
 968

969 When $0 < \alpha < 1$, considering Jensen's inequality, we have

$$970 \frac{1}{n} \sum_{i=1}^n p_i^\alpha \leq \left(\frac{1}{n} \sum_{i=1}^n p_i\right)^\alpha = \left(\frac{1}{n}\right)^\alpha, \quad (35)$$

972 Thus,

973
974
$$\sum_{i=1}^n p_i^\alpha \leq n^{1-\alpha}. \quad (36)$$

975

976 Using the AM-GM inequality, we will get
977

978
$$\left(\prod_{i=1}^n p_i \right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^n p_i = \frac{1}{n} \quad (37)$$

979
980

981 consequently,

982
$$\prod_{i=1}^n p_i \leq n^{-n}. \quad (38)$$

983

984 Combining equation 36 and equation 38, we have
985

986
$$\left(\prod_{i=1}^n p_i \right) \left(\sum_{i=1}^n p_i^\alpha \right)^{1/(1-\alpha)} \leq n^{-n} (n^{1-\alpha})^{1/(1-\alpha)} = n^{1-n} \leq 1. \quad (39)$$

987
988

989 Thus we have

990
$$\sum_{i=1}^n \log p_i + \frac{1}{1-\alpha} \log \left(\sum_{i=1}^n p_i^\alpha \right) \leq 0 \iff \sum_{i=1}^n \log p_i \leq -H_\alpha(p). \quad (40)$$

991
992

993 consequently,

994
$$\sum_{i=1}^n \log \frac{\lambda_i}{\text{Tr}(\mathbf{H})} \leq -H_\alpha(\mathbf{H}) \quad (41)$$

995
996

997 Combine Eq.41, Eq.34, we have for all $\alpha > 0, \alpha \neq 1$,

998
$$\sum_{i=1}^n \log \frac{\lambda_i}{\text{Tr}(\mathbf{H})} \leq -H_\alpha(\mathbf{H}) \quad (42)$$

999
1000

1001 Now we apply Eq.42 to Eq.30 and Eq.27:

1002
$$\mathbb{E}_{\mathcal{Q}}[L(\mathcal{D}, \theta)] \leq \mathbb{E}_{\mathcal{Q}}[L(\mathcal{S}, \theta)] + 2\sqrt{\frac{2L_0 + 2\mathcal{A} + \log \frac{2N}{\delta}}{N-1}} \quad (43)$$

1003
1004

1005 where $\mathcal{A} = \frac{1}{4\pi e} n V^{\frac{2}{n}} \pi^{\frac{1}{n}} \exp\left\{\frac{n \log \text{Tr}(\mathbf{H}) - H_\alpha(\mathbf{H})}{n}\right\}$, and \mathbf{H} is the Hessian matrix of loss function w.r.t.
1006 θ^* .
1007

1008 We decompose the bound as

1009
$$\text{Gen}(f_\theta) \leq g(A(\theta) + B(\theta) + C), \quad A(\theta) = \text{Tr}(\mathbf{H}_\theta), \quad (44)$$

1010

1011 where $A(\theta)$ is parameterization-dependent while $B(\theta)$ is reparameterization-invariant and C is the
1012 constant. Let $[\theta] = \{S\theta : S \in \mathcal{G}\}$ denote the reparameterization equivalence class that leaves
1013 the predictor f_θ unchanged (e.g., reparameterization induced by homogeneous activation function).
1014 Since $A(\theta)$ is not invariant and can be arbitrarily altered within $[\theta]$, thus it is not an identifiable
1015 property of f_θ .1016 To remove this ambiguity, we define a canonical projection $\Pi : [\theta] \rightarrow [\theta]$ that selects, for every θ , a
1017 representative $\theta^* = \Pi(\theta) \in [\theta]$ satisfying

1018
$$A(\theta^*) = A_0, \quad (45)$$

1019 where A_0 is a constant independent of the underlying function f . Because B is invariant under
1020 reparameterization, we have $B(\theta^*) = B(\theta) =: B(f)$. Therefore, for every function f ,

1021
$$\text{Gen}(f) = \text{Gen}(f_{\theta^*}) \leq g(A(\theta^*) + B(\theta^*)) = g(A_0 + B(f)). \quad (46)$$

1022

1023 Hence, up to an additive constant A_0 determined by the canonical projection, generalization is
1024 governed by the reparameterization-invariant term B . Accordingly, we absorb the trace term into
1025 the constant A , and obtain $\mathcal{A} = \frac{1}{4\pi e} n V^{\frac{2}{n}} \pi^{\frac{1}{n}} \exp\left\{\frac{-H_\alpha(\mathbf{H}) + A}{n}\right\}$. The reparameterization invariance
1026 of the Rényi entropy is proved in Appendix E.

1026 **Corollary C.3** *Given a training set \mathcal{S} with size N draw from the data distribution \mathcal{D} and a loss*
 1027 *function $L(\cdot, \cdot) \in [0, 1]$, a layer-wise local minimum $\theta^* \in \mathbb{R}^n$ is isolated and unique in its neigh-*
 1028 *borhood $\mathcal{M}(\theta^*)$ whose volume V is sufficiently small, pick a uniform prior \mathcal{P} over $\theta \in \mathcal{M}(\theta^*)$ and*
 1029 *pick the posterior \mathcal{Q} of density $q(\theta) \propto e^{-|L_0 - L(\mathcal{S}, \theta)|}$ with $L_0 = L(\mathcal{S}, \theta^*)$. For any $\delta \in (0, 1]$ and*
 1030 *$\alpha > 0, \alpha \neq 1$, we have with probability at least $1 - \delta$ that:*

$$\mathbb{E}_{\mathcal{Q}}[L(\mathcal{D}, \theta)] \leq \mathbb{E}_{\mathcal{Q}}[L(\mathcal{S}, \theta)] + 2\sqrt{\frac{2L_0 + 2\mathcal{A} + \log \frac{2N}{\delta}}{N - 1}} \quad (47)$$

1031
 1032 *where $\mathcal{A} = \frac{1}{4\pi e} nV^{\frac{2}{n}} \pi^{\frac{1}{n}} \exp\left\{-\frac{H_\alpha(\mathbf{H}) + A}{n}\right\}$, and $A > 0$ is the constant item. \mathbf{H} is the Hessian matrix*
 1033 *of loss function w.r.t. θ^* .*

1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 D PAC BAYESIAN GENERALIZATION BOUND FOR RÉNYI ENTROPY
1081

1082 **Theorem D.1** *Given a training set \mathcal{S} with N samples draw from the data distribution \mathcal{D} and a loss
1083 function $L(\cdot, \cdot)$, a layer-wise local minimum $\theta^* \in \mathbb{R}^n$. We assumed that $L(\mathcal{D}, \theta^*) \leq L(\mathcal{D}, \theta^* + \epsilon)$,
1084 where ϵ is the perturbation to the weights. Consider a prior uniform in a ball which contains the
1085 ellipsoid that satisfy $\{ \theta : (\theta - \theta^*)^\top \mathbf{H}(\theta - \theta^*) \leq \rho^2 \}$. Take the posterior uniform on this ellipsoid.
1086 For any $\delta \in (0, 1]$ and $\alpha > 0, \alpha \neq 1$, we have with probability at least $1 - \delta$ that:*

$$1088 L(\mathcal{D}, \theta^*) \leq L(\mathcal{S}, \theta^*) + \frac{n}{2(n+2)} \rho^2 + O(\epsilon) + \sqrt{\frac{-\frac{1}{2} H_\alpha(\mathbf{H}) + \log \frac{2\sqrt{N}}{\delta} + C}{2(N-1)}}. \quad (48)$$

1091 Where $A > 0$ is the constant term. The condition $L(\mathcal{D}, \theta^*) \leq L(\mathcal{D}, \theta^* + \epsilon)$ means that adding
1092 perturbation to weights should not decrease the test error. This is expected to hold in practice for the
1093 final solution but does not necessarily hold for any θ .

1094 *Proof.*

1095 We recall the standard PAC-Bayes bound (e.g. McAllester (2003)): for any prior P independent of
1096 the data, with probability at least $1 - \delta$ over the draw of the sample S of size N , for any posterior Q
1097 we have

$$1099 \mathbb{E}_{\theta \sim Q}[L(\theta)] \leq \mathbb{E}_{\theta \sim Q}[\hat{L}_S(\theta)] + \sqrt{\frac{D_{\text{KL}}(Q \| P) + \log \frac{2\sqrt{N}}{\delta}}{2(N-1)}}. \quad (49)$$

1102 Suppose θ^* is a local minimum and in a sufficiently small neighborhood we have the quadratic
1103 approximation

$$1104 \hat{L}_S(\theta) = \hat{L}_0 + \frac{1}{2}(\theta - \theta^*)^\top \mathbf{H}(\theta - \theta^*) + R_3(\theta), \quad |R_3(\theta)| \leq \epsilon, \quad (50)$$

1106 with Hessian $\mathbf{H} \succ 0$. We now consider two different posterior distributions Q , both paired with a
1107 uniform prior P .

1108 Fix $\rho > 0$ independent of \mathbf{H} . Define the ellipsoid

$$1110 E_{\mathbf{H}}(\rho) = \{ \theta : (\theta - \theta^*)^\top \mathbf{H}(\theta - \theta^*) \leq \rho^2 \}.$$

1112 We take $Q = \text{Unif}(E_{\mathbf{H}}(\rho))$ and the prior $P = \text{Unif}(B_R)$, the uniform distribution over a large
1113 Euclidean ball B_R containing all such ellipsoids.

1114 **Step 1. Empirical risk under Q .** With the change of variables $y = \mathbf{H}^{1/2}(\theta - \theta^*)$, Q becomes
1115 uniform on the ball $B_n(\rho)$. Then

$$1117 \mathbb{E}_{\theta \sim Q}[(\theta - \theta^*)^\top \mathbf{H}(\theta - \theta^*)] = \mathbb{E}\|y\|^2 = \int_0^\rho r^2 f_R(r) dr = \int_0^\rho r^2 \cdot \frac{n r^{n-1}}{\rho^n} dr = \frac{n}{n+2} \rho^2.$$

1120 Thus

$$1121 \mathbb{E}_{\theta \sim Q}[\hat{L}_S(\theta)] = \hat{L}_0 + \frac{1}{2} \frac{n}{n+2} \rho^2 + O(\epsilon),$$

1122 which is a constant independent of \mathbf{H} .

1124 **Step 2. KL divergence.** The KL between uniform distributions is a log-volume ratio:

$$1126 D_{\text{KL}}(Q \| P) = \log \frac{\text{Vol}(B_R)}{\text{Vol}(E_{\mathbf{H}}(\rho))}.$$

1128 The ellipsoid volume is

$$1130 \text{Vol}(E_{\mathbf{H}}(\rho)) = \text{Vol}(B_n(1)) \rho^n (\det \mathbf{H})^{-1/2}.$$

1132 Hence

$$1133 D_{\text{KL}}(Q \| P) = \underbrace{\log \text{Vol}(B_R) - \log \text{Vol}(B_n(1)) - n \log \rho}_{\text{constant}} + \frac{1}{2} \log \det \mathbf{H}.$$

1134 **Step 3. Bound.** Plugging into equation 49 gives
 1135

1136
$$\mathbb{E}_{\theta \sim Q}[L(\theta)] \leq \hat{L}_0 + \frac{n}{2(n+2)}\rho^2 + O(\varepsilon) + \sqrt{\frac{\frac{1}{2} \log \det \mathbf{H} + \log \frac{2\sqrt{N}}{\delta} + \text{constant}}{2(N-1)}}.$$

 1137

1138 Thus the only dependence on \mathbf{H} is through $\frac{1}{2} \log \det H$.
 1139

1140 The PAC-Bayes upper bound under quadratic approximation has the form
 1141

1142
$$\mathbb{E}_{\theta \sim Q}[L(\theta)] \leq \text{constant} + f\left(\frac{1}{2} \log \det H\right)$$

 1143

1144 where $f(\cdot)$ is the complexity term of the chosen PAC-Bayes bound. Thus the only dependence
 1145 on the curvature H comes from $\log \det H$; all trace-type terms are absorbed into constants. Take
 1146 Taylor expansion at θ^* , we assume that $L(\mathcal{D}, \theta) \leq L(\mathcal{D}, \theta + \delta)$, which means adding perturbation
 1147 to weights should not decrease the test error, thus we have
 1148

1149
$$L(\theta) \leq \hat{L}_S(\theta) + \text{constant} + f\left(\frac{1}{2} \log \det H\right)$$

 1150

1151 Recall Eq.30, Eq. 42, and that Rényi entropy is reparameterization invariant, follow the poof in
 1152 Appendix C, we have
 1153

1154
$$L(\theta) \leq \hat{L}_S(\theta) + \text{constant} 1 + f(\text{constant} 2 - H_\alpha(\mathbf{H}))$$

 1155

1156 **Corollary D.2** *Given a training set \mathcal{S} with N samples draw from the data distribution \mathcal{D} and a loss
 1157 function $L(\cdot, \cdot)$, a layer-wise local minimum $\theta^* \in \mathbb{R}^n$. We assumed that $L(\mathcal{D}, \theta^*) \leq L(\mathcal{D}, \theta^* + \epsilon)$,
 1158 where ϵ is the perturbation to the weights. Consider a prior uniform in a ball which contains the
 1159 ellipsoid that satisfy $\{\theta : (\theta - \theta^*)^\top \mathbf{H}(\theta - \theta^*) \leq \rho^2\}$. Take the posterior uniform on this ellipsoid.
 1160 For any $\delta \in (0, 1]$ and $\alpha > 0$, $\alpha \neq 1$, we have with probability at least $1 - \delta$ that:*

1161
$$L(\mathcal{D}, \theta^*) \leq L(\mathcal{S}, \theta^*) + \frac{n}{2(n+2)}\rho^2 + O(\varepsilon) + \sqrt{\frac{-\frac{1}{2}H_\alpha(\mathbf{H}) + \log \frac{2\sqrt{N}}{\delta} + C}{2(N-1)}}. \quad (51)$$

 1162

1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 E REPARAMETERIZATION (SCALING) INVARIANCE OF RÉNYI ENTROPY 1189

1190 Neural networks that use activation functions like ReLU or leaky ReLU exhibit **reparametrization-**
1191 **invariant properties**. Specifically, when scaling each layer's weights by a positive constant, the
1192 overall function computed by the network remains unchanged as long as the *product of all scaling*
1193 *factors equals one*.

1194 For example, consider a network defined as
1195

$$1196 f(\mathbf{x}; \{\mathbf{W}_1, \dots, \mathbf{W}_L\}) = \mathbf{W}_L \cdot \text{ReLU}(\mathbf{W}_{L-1} \cdots \text{ReLU}(\mathbf{W}_1 \mathbf{x})),$$

1197 where $\mathbf{W}_l \in \mathbb{R}^{d_l \times d_{l-1}}$. If each weight matrix \mathbf{W}_l is scaled by a positive constant $s_l > 0$, and the
1198 scaling factors satisfy $\prod_{l=1}^L s_l = 1$, then the output of the network remains unchanged for any input
1199 \mathbf{x} . The sharpness defined by Rényi entropy is invariant under this scaling trick:
1200

1201 **Proposition E.1** Consider a L -layer feedforward neural network with positively homogeneous ac-
1202 tivation function σ (i.e., $\sigma(c\mathbf{x}) = c\sigma(\mathbf{x})$ for all $c > 0$), and parameters $\{\mathbf{W}_1, \dots, \mathbf{W}_L\}$. Let the
1203 network output be $f(\mathbf{x}) = \mathbf{W}_L \cdot \sigma(\mathbf{W}_{L-1} \cdots \sigma(\mathbf{W}_1 \mathbf{x}))$, and let $\mathcal{L}(\boldsymbol{\theta})$ denote the loss function, where
1204 $\boldsymbol{\theta}$ denotes the weights of arbitrary layer, i.e., \mathbf{W}_l . Define the loss Hessian as $\mathbf{H}_{\boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}(\boldsymbol{\theta})$. Con-
1205 sider a layer-wise scaling transformation defined by $\tilde{\mathbf{W}}_l = c_l \mathbf{W}_l$, $c_l > 0$, with $\prod_{l=1}^L c_l = 1$.
1206 Let $\tilde{\boldsymbol{\theta}} = \tilde{\mathbf{W}}_l$ be the scaled parameters, and define $\mathbf{H}_{\tilde{\boldsymbol{\theta}}}$ as the corresponding Hessian. Then the
1207 spectrum-normalized Rényi entropy of \mathbf{H} is invariant:
1208

$$1209 H_{\alpha}(\mathbf{H}_{\tilde{\boldsymbol{\theta}}}) = H_{\alpha}(\mathbf{H}_{\boldsymbol{\theta}}), \quad \forall \alpha > 0, \alpha \neq 1. \quad (52)$$

1210 *Proof.*
1211

1212 The network function $f(x)$ remains unchanged under the layer-wise scaling due to the positive
1213 homogeneity of the activation since $\prod c_l = 1$. Consequently, the loss $\mathcal{L}(\boldsymbol{\theta})$ is invariant:
1214

$$1215 \mathcal{L}(\tilde{\boldsymbol{\theta}}) = \mathcal{L}(\boldsymbol{\theta}). \quad (53)$$

1216 Thus, the spectrum of $\mathbf{H}(\tilde{\boldsymbol{\theta}})$ will undergo a scaling transformation:
1217

$$1218 \mathbf{H}_{\tilde{\boldsymbol{\theta}}} = c_l^2 \cdot \mathbf{H}_{\boldsymbol{\theta}}, \quad (54)$$

1220 This implies that the eigenvalues $\{\tilde{\lambda}_i\}$ of $\mathbf{H}_{\tilde{\boldsymbol{\theta}}}$ satisfy:
1221

$$1222 \tilde{\lambda}_i = \frac{1}{c_l^2} \lambda_i \quad (55)$$

1224 Then the normalized spectrum satisfies:
1225

$$1226 \tilde{p}_i = \frac{\tilde{\lambda}_i}{\sum_j \tilde{\lambda}_j} = \frac{\frac{1}{c_l^2} \lambda_i}{\frac{1}{c_l^2} \sum_j \lambda_j} = \frac{\lambda_i}{\sum_j \lambda_j} = p_i, \quad (56)$$

1229 so the Rényi entropy remains unchanged:
1230

$$1231 H_{\alpha}(\mathbf{H}_{\tilde{\boldsymbol{\theta}}}) = \frac{1}{1-\alpha} \log \left(\sum_i \tilde{p}_i^{\alpha} \right) = \frac{1}{1-\alpha} \log \left(\sum_i p_i^{\alpha} \right) = H_{\alpha}(\mathbf{H}_{\boldsymbol{\theta}}). \quad (57)$$

1234 **Corollary E.2** Consider a L -layer feedforward neural network with positively homogeneous ac-
1235 tivation function σ (i.e., $\sigma(c\mathbf{x}) = c\sigma(\mathbf{x})$ for all $c > 0$), and parameters $\{\mathbf{W}_1, \dots, \mathbf{W}_L\}$. Let the
1236 network output be $f(\mathbf{x}) = \mathbf{W}_L \cdot \sigma(\mathbf{W}_{L-1} \cdots \sigma(\mathbf{W}_1 \mathbf{x}))$, and let $\mathcal{L}(\boldsymbol{\theta})$ denote the loss function, where
1237 $\boldsymbol{\theta}$ denotes the weights of arbitrary layer, i.e., \mathbf{W}_l . Define the loss Hessian as $\mathbf{H}_{\boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}(\boldsymbol{\theta})$. Con-
1238 sider a layer-wise scaling transformation defined by $\tilde{\mathbf{W}}_l = c_l \mathbf{W}_l$, $c_l > 0$, with $\prod_{l=1}^L c_l = 1$.
1239 Let $\tilde{\boldsymbol{\theta}} = \tilde{\mathbf{W}}_l$ be the scaled parameters, and define $\mathbf{H}_{\tilde{\boldsymbol{\theta}}}$ as the corresponding Hessian. Then the
1240 spectrum-normalized Rényi entropy of \mathbf{H} is invariant:
1241

$$1242 H_{\alpha}(\mathbf{H}_{\tilde{\boldsymbol{\theta}}}) = H_{\alpha}(\mathbf{H}_{\boldsymbol{\theta}}), \quad \forall \alpha > 0, \alpha \neq 1. \quad (58)$$

1242 **Discussion** The reparameterization invariance is indeed a scale invariance, as the Rényi entropy
1243 of the Hessian matrix is not invariant under non-linear reparameterization. We regard repara-
1244 meterization invariance as a necessary, but not sufficient, requirement for studying correlations with
1245 generalization. For a given minimum, there typically exists a large family of functionally equivalent
1246 parameterizations (obtained via reparameterization), and optimization may converge to any element
1247 of this family. To obtain a stable and comparable metric, it is therefore natural to seek quantities
1248 that are invariant within this equivalence class, which motivates the necessity of reparameterization
1249 invariance.

1250 However, reparameterization invariance by itself does not guarantee a strong correlation with gen-
1251 eralization. There are many possible invariant candidates, and they differ substantially in how sen-
1252 sitively they capture spectral structure. As a result, their empirical association with generalization
1253 can vary, even though they all satisfy the same invariance requirement.

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **F CONNECTION BETWEEN GLOBAL AND LOCAL RÉNYI SHARPNESS**
 1297 **REGULARIZATION**
 1298

1299 **Proposition F.1** *Minimizing the global negative Rényi entropy with order $\alpha > 1$ is equivalent, in the
 1300 block-diagonal case, to making each layer's spectrum uniform and balancing trace per dimension
 1301 across layers. This configuration simultaneously minimizes the layerwise negative Rényi entropy for
 1302 all orders $\alpha > 0$, including $\alpha < 1$. With small cross-layer couplings, the same conclusion holds
 1303 up to a perturbation of order $\|\mathbf{E}\|_F/T$, where T is the trace of the global Hessian matrix, and \mathbf{E} is
 1304 the difference between the Hessian matrix and the diagonal Hessian matrix. Considering that layer-
 1305 wise trace can be adjusted without performance degradation, thus balancing trace per dimension
 1306 across layers doesn't change the loss. Consequently, optimizing the global negative Rényi entropy
 1307 is indeed optimizing the layer-wise negative Rényi entropy, i.e. layer-wise Rényi sharpness.*

1308 *Proof.*

1309 **Setup.** Let $\mathbf{H} \in \mathbb{R}^{d \times d}$ be the (symmetric) Hessian at a candidate minimizer; we first treat $H \succeq 0$
 1310 and discuss standard relaxations in Remark F.7. Denote the eigenvalues by
 1311

$$1313 \lambda_1(\mathbf{H}) \geq \dots \geq \lambda_d(\mathbf{H}) \geq 0, \quad T := \text{Tr}(\mathbf{H}) > 0.$$

1314 Define the *normalized spectrum* $p_i(\mathbf{H}) := \lambda_i(\mathbf{H})/T$ so that $\sum_{i=1}^d p_i(\mathbf{H}) = 1$. For $\alpha > 1$ define
 1315

$$1316 \tilde{\mathcal{R}}_\alpha(\mathbf{H}) := \sum_{i=1}^d (p_i(\mathbf{H}))^\alpha, \quad -H_\alpha(\mathbf{H}) := \frac{1}{\alpha-1} \log \tilde{\mathcal{R}}_\alpha(\mathbf{H}). \quad (59)$$

1319 Since $x \mapsto \log x$ is strictly increasing, minimizing $-H_\alpha(\mathbf{H})$ is equivalent to minimizing $\tilde{\mathcal{R}}_\alpha(\mathbf{H})$ for
 1320 any fixed $\alpha \neq 1$ (monotone transform).

1322 Assume the network parameters are partitioned into L layers with dimensions d_1, \dots, d_L (so
 1323 $\sum_\ell d_\ell = d$). Let $\mathbf{H}_{\ell\ell} \in \mathbb{R}^{d_\ell \times d_\ell}$ be the principal block associated with layer ℓ , with eigenvalues
 1324 $\lambda_1(\mathbf{H}_{\ell\ell}) \geq \dots \geq \lambda_{d_\ell}(\mathbf{H}_{\ell\ell}) \geq 0$ and trace $T_\ell := \text{Tr}(\mathbf{H})_{\ell\ell} > 0$. Write

$$1325 w_\ell := \frac{T_\ell}{T} \in (0, 1), \quad \sum_{\ell=1}^L w_\ell = 1, \quad \sigma_\alpha(\mathbf{H}_{\ell\ell}) := \sum_{i=1}^{d_\ell} \left(\frac{\lambda_i(\mathbf{H}_{\ell\ell})}{T_\ell} \right)^\alpha.$$

1329 EXACT FACTORIZATION UNDER BLOCK-DIAGONALITY

1331 **Lemma F.2 (Exact decomposition)** *If \mathbf{H} is block diagonal with blocks $\mathbf{H}_{11}, \dots, \mathbf{H}_{LL}$, then for
 1332 any $\alpha > 0$,*

$$1333 \tilde{\mathcal{R}}_\alpha(\mathbf{H}) = \sum_{\ell=1}^L w_\ell^\alpha \sigma_\alpha(\mathbf{H}_{\ell\ell}). \quad (60)$$

1336 *proof.* The spectrum of a block-diagonal matrix is the disjoint union of the spectra of its blocks.
 1337 Since $p_i(\mathbf{H}) = \lambda_i(\mathbf{H})/T$ and $T = \sum_\ell T_\ell$, we compute
 1338

$$1339 \sum_{i=1}^d \left(\frac{\lambda_i(\mathbf{H})}{T} \right)^\alpha = \sum_{\ell=1}^L \sum_{i=1}^{d_\ell} \left(\frac{\lambda_i(\mathbf{H}_{\ell\ell})}{T_\ell} \right)^\alpha = \sum_{\ell=1}^L \left(\frac{T_\ell}{T} \right)^\alpha \sum_{i=1}^{d_\ell} \left(\frac{\lambda_i(\mathbf{H}_{\ell\ell})}{T_\ell} \right)^\alpha.$$

1342 **Lemma F.3 (Power-sum bounds within a layer)** *Fix ℓ and set $x_i := \lambda_i(\mathbf{H}_{\ell\ell})/T_\ell$ so that $x_i \geq 0$
 1343 and $\sum_{i=1}^{d_\ell} x_i = 1$. Then:*

- 1346 1. *If $\alpha > 1$ (convex power), $\sigma_\alpha(\mathbf{H}_{\ell\ell}) = \sum_i x_i^\alpha \geq d_\ell^{1-\alpha}$, with equality iff $x_i \equiv 1/d_\ell$
 1347 (uniform spectrum inside the block).*
- 1349 2. *If $0 < \beta < 1$ (concave power), $\sum_i x_i^\beta \leq d_\ell^{1-\beta}$, with equality iff $x_i \equiv 1/d_\ell$.*

1350 Both follow from Jensen's inequality (or Karamata's inequality) under the linear constraint $\sum_i x_i = 1$.
 1351
 1352

1353 **Theorem F.4 (Global optimum under block-diagonality for $\alpha > 1$)** Assume $\mathbf{H} = \text{blk_diag}(\mathbf{H}_{11}, \dots, \mathbf{H}_{LL})$ and $\alpha > 1$. Then
 1354

$$1355 \quad 1356 \quad \tilde{\mathcal{R}}_\alpha(\mathbf{H}) = \sum_{\ell=1}^L w_\ell^\alpha \sigma_\alpha(\mathbf{H}_{\ell\ell}) \geq \sum_{\ell=1}^L w_\ell^\alpha d_\ell^{1-\alpha} \geq d^{1-\alpha}, \quad (61)$$

1358 and the following are equivalent:
 1359

- 1360 1. $\tilde{\mathcal{R}}_\alpha(\mathbf{H})$ attains its global minimum $d^{1-\alpha}$.
- 1361 2. (Layerwise uniformity) For each ℓ , the normalized spectrum inside $\mathbf{H}_{\ell\ell}$ is uniform:
 1362 $\lambda_i(\mathbf{H}_{\ell\ell})/T_\ell \equiv 1/d_\ell$.
- 1364 3. (Trace-per-dimension balancing) The layer traces satisfy $w_\ell = \frac{d_\ell}{d}$, i.e. $\frac{T_\ell}{d_\ell}$ is constant across
 1365 layers (equal average curvature per parameter).

1367 *proof.* The first inequality in equation 61 follows from Lemma F.3(1) applied to each $\sigma_\alpha(\mathbf{H}_{\ell\ell})$.
 1368 Hence

$$1369 \quad 1370 \quad \tilde{\mathcal{R}}_\alpha(\mathbf{H}) \geq \sum_{\ell=1}^L a_\ell w_\ell^\alpha, \quad a_\ell := d_\ell^{1-\alpha} > 0.$$

1371 For fixed positive coefficients a_ℓ and $\alpha > 1$, the function $f(\mathbf{w}) := \sum_\ell a_\ell w_\ell^\alpha$ is strictly convex on the
 1372 simplex $\{\mathbf{w} \geq 0, \sum_\ell w_\ell = 1\}$ and has a unique minimizer characterized by the KKT conditions:
 1373

$$1374 \quad \alpha a_\ell w_\ell^{\alpha-1} = \lambda \Rightarrow w_\ell \propto a_\ell^{-1/(\alpha-1)} = (d_\ell^{1-\alpha})^{-1/(\alpha-1)} = d_\ell.$$

1375 Normalizing gives $w_\ell = d_\ell/d$. Substituting this and the layerwise lower bounds $\sigma_\alpha(\mathbf{H}_{\ell\ell}) \geq d_\ell^{1-\alpha}$
 1376 into equation 60 yields
 1377

$$1378 \quad 1379 \quad \tilde{\mathcal{R}}_\alpha(\mathbf{H}) \geq \sum_{\ell=1}^L \left(\frac{d_\ell}{d}\right)^\alpha d_\ell^{1-\alpha} = \frac{1}{d^\alpha} \sum_{\ell=1}^L d_\ell = d^{1-\alpha}.$$

1381 Equality throughout holds iff (i) each $\sigma_\alpha(\mathbf{H}_{\ell\ell})$ attains its lower bound, i.e. the layer spectra are
 1382 uniform, and (ii) $w_\ell = d_\ell/d$. This proves both necessity and sufficiency and the equivalences
 1383 claimed.

1384 **Corollary F.5 (Simultaneous layerwise optimality for all orders $\beta > 0, \beta \neq 1$)** Under the con-
 1385 ditions of Theorem F.4, if the global minimum is attained (equivalently: each block has uniform
 1386 normalized spectrum and $w_\ell = d_\ell/d$), then for every order $\beta > 0$,
 1387

1388 the quantity $-H_\beta(\mathbf{H}_{\ell\ell}) = \frac{1}{\beta-1} \log \sum_{i=1}^{d_\ell} \left(\frac{\lambda_i(\mathbf{H}_{\ell\ell})}{T_\ell}\right)^\beta$ is minimized (for all ℓ).
 1389

1390 In particular, the same configuration minimizes the layerwise negative Rényi entropy for $\beta > 1$ and
 1391 for $0 < \beta < 1$.
 1392

1393 *proof.* For $\beta > 1$, Lemma F.3(1) shows that the uniform layer spectrum uniquely minimizes $\sum_i x_i^\beta$
 1394 subject to $\sum_i x_i = 1$; since the logarithm and the factor $(\beta-1)^{-1} > 0$ are monotone, it also
 1395 minimizes $-H_\beta$. For $0 < \beta < 1$, Lemma F.3(2) shows that the uniform layer spectrum uniquely
 1396 maximizes $\sum_i x_i^\beta$; because $(\beta-1)^{-1} < 0$, this again minimizes $-H_\beta$. The claim holds for each
 1397 layer ℓ .
 1398

1399 STABILITY UNDER CROSS-LAYER COUPLINGS

1400 Real Hessians may not be exactly block diagonal. Write

$$1401 \quad \mathbf{B} := \text{blk_diag}(\mathbf{H}_{11}, \dots, \mathbf{H}_{LL}), \quad \mathbf{E} := \mathbf{H} - \mathbf{B}.$$

1402 Note that $\text{Tr}(\mathbf{E}) = 0$ (off-diagonal blocks contribute zero trace), hence $\text{Tr}(\mathbf{H}) = \text{Tr}(\mathbf{B}) = T$.
 1403

1404
 1405 **Proposition F.6 (Perturbation bound for $\alpha > 1$)** *Let $\alpha > 1$ and set $\Lambda_* :=$*
 1406 *$\max\{\lambda_{\max}(\mathbf{H}), \lambda_{\max}(\mathbf{B})\}$. Then*

1407
$$|\tilde{\mathcal{R}}_\alpha(\mathbf{H}) - \tilde{\mathcal{R}}_\alpha(\mathbf{B})| \leq \alpha \left(\frac{\Lambda_*}{T}\right)^{\alpha-1} \frac{\sqrt{d} \|\mathbf{E}\|_F}{T}. \quad (62)$$

 1408

1409 *Consequently, if $\|\mathbf{E}\|_F/T$ is small, minimizing $\tilde{\mathcal{R}}_\alpha(\mathbf{H})$ is optimization-equivalent up to $O(\|\mathbf{E}\|_F/T)$*
 1410 *to minimizing $\tilde{\mathcal{R}}_\alpha(\mathbf{B})$, which by Theorem F.4 drives each layer toward its uniform spectrum (and*
 1411 *hence decreases all layerwise $-H_\beta$, $\beta > 0$, simultaneously).*

1413 *proof.* Let $\{\lambda_i\}$ and $\{\mu_i\}$ be the eigenvalues of \mathbf{H} and \mathbf{B} sorted in nonincreasing order. By the
 1414 Hoffman–Wielandt inequality, $\sum_{i=1}^d (\lambda_i - \mu_i)^2 \leq \|\mathbf{E}\|_F^2$. For $\alpha > 1$, the function $\phi(x) = x^\alpha$ has
 1415 derivative bounded on $[0, \Lambda_*]$ by $\alpha \Lambda_*^{\alpha-1}$. Hence by the mean value theorem and Cauchy–Schwarz,
 1416

1417
$$\left| \sum_i \lambda_i^\alpha - \sum_i \mu_i^\alpha \right| \leq \alpha \Lambda_*^{\alpha-1} \sum_i |\lambda_i - \mu_i| \leq \alpha \Lambda_*^{\alpha-1} \sqrt{d} \|\mathbf{E}\|_F.$$

 1418

1419 Since $\text{Tr}(\mathbf{H}) = \text{Tr}(\mathbf{B}) = T$, dividing both sides by T^α yields equation 62.

1421 **REMARK (ORDER-ROBUSTNESS FOR $0 < \alpha < 1$)**

1423 Recall the decomposition $\tilde{\mathcal{R}}_\alpha(\mathbf{H}) = \sum_{\ell=1}^L w_\ell^\alpha \sigma_\alpha(\mathbf{H}_{\ell\ell})$. Passing from $\alpha > 1$ to $0 < \alpha < 1$
 1424 only changes the curvature of $\tilde{\mathcal{R}}_\alpha(\mathbf{H})$ and $\sigma_\alpha(\mathbf{H}_{\ell\ell})$ (from convex to concave) and flips the outer
 1425 optimization direction (since $\frac{1}{1-\alpha}$ changes sign), but it does *not* change the location of the optimizer.
 1426

1427 Consequently, in the block-diagonal setting, minimizing the *global* negative Rényi entropy $-H_\alpha(\mathbf{H})$
 1428 for any order $\alpha > 0$, $\alpha \neq 1$ is equivalent to making each layer’s spectrum uniform and
 1429 balancing trace per dimension across layers; this configuration simultaneously minimizes the *layer-
 1430 wise* negative Rényi entropy for all $\beta > 0$ (including $\beta < 1$). With small cross-layer couplings
 1431 $\mathbf{H} = \text{blk_diag}(\mathbf{H}_{11}, \dots, \mathbf{H}_{LL}) + \mathbf{E}$, the same conclusion holds up to a perturbation of order
 1432 $O(\|\mathbf{E}\|_F/\text{Tr}(\mathbf{H}))$ by continuity of H_α in total variation.

1433 **Remark F.7 (PSD reduction and alternatives)** *If H is indefinite, one may work with $|H|$ (absolute
 1434 value via spectral decomposition), with a Gauss–Newton/Fisher approximation, or with a shifted
 1435 PSD proxy (e.g. $\mathbf{H} + \gamma \mathbf{I}$ with $\gamma > 0$), apply the above results verbatim to the PSD object, and then
 1436 track the dependence on the chosen proxy. The normalized formulation equation 59 is unchanged
 1437 as long as the trace $T > 0$.*

1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 **G ARBITRARY TRACE RESCALING UNDER FIXED NORMALIZED SPECTRUM**
1459

1460 In this appendix, we study how the Hessian trace behaves under linear reparameterizations, and
1461 in particular under those that preserve the *spectral shape* (normalized eigenvalue distribution) of
1462 the Hessian. We show that, for each individual model, such reparameterizations give a continuous
1463 family of possible scalings of the Hessian trace. For a finite collection of models, this leads to an
1464 explicit infinite feasibility condition under which all Hessian traces can be aligned to a common
1465 value while preserving spectral shape.

1466 Let $w \in \mathbb{R}^n$ denote the parameter vector of a given (layer of a) model, and let $H \in \mathbb{R}^{n \times n}$ be
1467 the corresponding Hessian at a local minimum. Throughout this subsection, we assume that H is
1468 symmetric positive definite.

1469 We consider linear reparameterizations of the form

$$1471 \quad w = A\theta, \quad A \in \mathbb{R}^{n \times n} \text{ invertible}, \quad (63)$$

1472 and define the reparameterized loss by $L(\theta) := L(A\theta)$. By the chain rule, the Hessian in θ –
1473 coordinates is

$$1474 \quad H_\theta := \nabla_\theta^2 L(\theta) = A^\top H A. \quad (64)$$

1475 The corresponding parameter vector is

$$1477 \quad \theta = A^{-1}w. \quad (65)$$

1478 We are particularly interested in reparameterizations that preserve the *spectral shape* of the Hessian,
1479 i.e. that only rescale all eigenvalues by a common positive factor.

1481 **Lemma G.1 (Spectral-shape-preserving reparameterizations)** *Let $H \succ 0$. For any scalar $d > 0$
1482 and any orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ ($Q^\top Q = I$), define*

$$1484 \quad A(d, Q) := H^{-1/2} (dQ) H^{1/2}. \quad (66)$$

1485 *Then the corresponding reparameterized Hessian $H_\theta = A(d, Q)^\top H A(d, Q)$ satisfies*

$$1487 \quad H_\theta = d^2 H. \quad (67)$$

1488 *In particular, the eigenvalues of H_θ are $\{d^2 \lambda_i(H)\}_i$, so the normalized spectrum
1489 $\{\lambda_i(H_\theta)/\text{Tr}(H_\theta)\}_i$ coincides with that of H .*

1491 *Proof.* A direct computation yields

$$\begin{aligned} 1493 \quad H_\theta &= A(d, Q)^\top H A(d, Q) \\ 1494 &= (H^{1/2} Q^\top d H^{-1/2}) H (H^{-1/2} d Q H^{1/2}) \\ 1495 &= d^2 H^{1/2} Q^\top H^{-1/2} H H^{-1/2} Q H^{1/2} \\ 1496 &= d^2 H^{1/2} Q^\top Q H^{1/2} = d^2 H. \end{aligned}$$

1499 Thus all eigenvalues are scaled by d^2 , and the normalized eigenvalue distribution is unchanged.

1500 We next study the effect of equation 66 on the parameter norm. Let

$$1502 \quad u := H^{1/2}w, \quad r := \|u\|_2 > 0. \quad (68)$$

1503 For $A = A(d, Q)$ as in Lemma G.1, we have

$$\begin{aligned} 1505 \quad \theta &= A^{-1}w = (H^{-1/2}(dQ)H^{1/2})^{-1}w = \frac{1}{d} H^{-1/2} Q^\top H^{1/2} w \\ 1506 \\ 1507 &= \frac{1}{d} H^{-1/2} Q^\top u. \end{aligned} \quad (69)$$

1510 Let $\text{Tr}(H)$ denote the original trace. Under the reparameterization with factor d^2 we have

$$1511 \quad \text{Tr}(H_\theta) = d^2 \text{Tr}(H). \quad (70)$$

1512 As $d \in \mathbb{R}$, we can adjust the trace of the Hessian matrix to an arbitrarily prescribed value while
1513 keeping the normalized eigenvalue spectrum completely unchanged.

1514
1515 Since our sharpness measure is defined in terms of the normalized spectrum (e.g. via the Rényi en-
1516 tropy of $\{\lambda_i(H)/\text{Tr}(H)\}_i$), the global scale of the trace is factored out by design. Combining this
1517 observation with the reparameterization freedom described above, we conclude that scale-dependent
1518 quantities such as the raw trace $\text{Tr}(H)$ do not carry reparameterization-robust geometric informa-
1519 tion. What remains intrinsic is precisely the *shape* of the Hessian spectrum, which we quantify via
1520 its Rényi entropy.

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566 H ON THE DISCUSSION OF SAM VARIANTS

1568 In this section, we discuss several sharpness-aware minimization variants and compare them with
 1569 Rényi sharpness-aware minimization (RSAM). We focus on closely related methods, including the
 1570 original SAM (Foret et al., 2020), Sparse SAM (Mi et al., 2022), Eigen SAM (Luo et al., 2024),
 1571 Tilted SAM (Li et al., 2024b), Frobenius SAM (Tahmasebi et al., 2024), and Fisher SAM (Kim
 1572 et al., 2022).

1573 Vanilla SAM has been shown to implicitly minimize the largest eigenvalue of the training loss Hes-
 1574 sian (Wen et al., 2023), and Sparse SAM, which accelerates SAM by explicitly masking part of the
 1575 updates, essentially targets the same quantity. Eigen SAM directly penalizes the largest eigenvalue
 1576 in its minimization step. Tilted SAM samples noise in multiple directions to perturb the weights
 1577 and penalizes the sum of the exponentiated perturbed losses over these noise samples. Intuitively,
 1578 the exponential transform amplifies the sharpest directions of the loss landscape, so it imposes a
 1579 stronger penalty along these directions. From this perspective, Tilted SAM can be viewed as ef-
 1580 fectively penalizing the largest (or relatively large) eigenvalues of the Hessian. Frobenius SAM
 1581 penalizes the Frobenius norm of the Hessian matrix; if we normalize this norm by the squared trace,
 1582 the resulting quantity becomes essentially a monotone function of the order-2 Rényi entropy. Fisher
 1583 SAM minimizes the same type of robust objective as SAM, but with the neighborhood defined by
 1584 a Riemannian metric induced by the Fisher information; this is equivalent to penalizing the largest
 1585 eigenvalue of the Hessian with respect to the Fisher metric.

1586 Overall, these methods regularize some spectral function of the Hessian eigenvalues. Whether one
 1587 penalizes the largest eigenvalue or minimizes the Frobenius norm of the Hessian, the implicit goal
 1588 is to encourage the eigenvalues to move closer to each other; for example, reducing the largest
 1589 eigenvalue typically decreases the overall spread of the spectrum.

1590 In contrast, Rényi sharpness explicitly focuses on the dispersion of the normalized eigenvalues.
 1591 Modern deep models usually enjoy certain reparameterization invariances, so we can rescale the
 1592 overall magnitude of the Hessian without changing the model’s behavior. Consequently, if the regu-
 1593 larizer depends only on the unnormalized eigenvalues (such as the spectral norm or a generic spec-
 1594 tral function), then shrinking the global scale of the Hessian will always reduce the regularization
 1595 term, even when the model performance and the relative shape of the spectrum remain unchanged.
 1596 Therefore, minimizing such penalties alone does not guarantee that the eigenvalues become more
 1597 uniformly distributed.

1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 I SHARPNESS MEASURES

1622 In this section, we give a detailed introduction to the sharpness measure we use. The content of this
 1623 section refers to Jiang et al. (2019) and the original works corresponding to these measures.

1625 I.1 NORM BASED MEASURES

1627 Several generalization bounds have been proved for neural networks using margin and norm no-
 1628 tions. In this section, we go over several such measures. For fully connected networks, Bartlett &
 1629 Mendelson (2002) have shown a bound based on product of $\ell_{1,\infty}$ norm of the layer weights times
 1630 a 2^d factor where $\ell_{1,\infty}$ is the maximum over hidden units of the ℓ_2 norm of the incoming weights
 1631 to the hidden unit. Neyshabur et al. (2015) proved a bound based on product of Frobenius norms of
 1632 the layer weights times a 2^d factor and Golowich et al. (2017) was able to improve the factor to \sqrt{d} .
 1633 Bartlett et al. (2017) proved a bound based on product of spectral norm of the layer weights times
 1634 sum over layers of ratio of Frobenius norm to spectral norm of the layer weights and Neyshabur et al.
 1635 (2018a) showed a similar bound can be achieved in a simpler way using PAC-bayesian framework.

1637 **Spectral Norm** Unfortunately, none of the above bounds are directly applicable to convolutional
 1638 networks. Pitas et al. (2017) built on Neyshabur et al. (2018a) and extended the bound on the spectral
 1639 norm to convolutional networks. The bound is very similar to the one for fully connected networks
 1640 by Bartlett et al. (2017). We next restate their generalization bound for convolutional networks
 1641 including the constants.

1642 **Theorem I.1 (Pitas et al. (2017))** *Let B an upper bound on the ℓ_2 norm of any point in the input
 1643 domain. For any $B, \gamma, \delta > 0$, the following bound holds with probability $1 - \delta$ over the training set:*

$$1646 L \leq \hat{L}_\gamma + \sqrt{\frac{\left(84B \sum_{i=1}^d k_i \sqrt{c_i} + \sqrt{\ln(4n^2d)}\right)^2 \prod_{i=1}^d \|\mathbf{W}_i\|_2^2 \sum_{j=1}^d \frac{\|\mathbf{W}_j - \mathbf{W}_j^0\|_F^2}{\|\mathbf{W}_j\|_2^2} + \ln(\frac{m}{\delta})}{\gamma^2 m}} \quad (71)$$

1649 **Parameter Norm** Given recent evidence on the importance of distance to initialization (Dziu-
 1650 gaite & Roy, 2017; Nagarajan & Kolter, 2019; Neyshabur et al., 2018b), we calculate the following
 1651 measures:

$$1653 \mu_{\text{frobenius-distance}}(f_{\mathbf{w}}) = \sum_{i=1}^d \|\mathbf{W}_i - \mathbf{W}_i^0\|_F^2 \quad (72)$$

1657 In the case when the reference matrix $\mathbf{W}_i^0 = \mathbf{0}$ for all weights, Eq (72) the Frobenius norm of the
 1658 parameters, which also corresponds to the distance from the origin:

$$1660 \mu_{\text{param-norm}}(f_{\mathbf{w}}) = \sum_{i=1}^d \|\mathbf{W}_i\|_F^2 \quad (73)$$

1663 **Fisher-Rao Norm** Fisher-Rao metric was introduced in Liang et al. (2017) as a complexity mea-
 1664 sure for neural networks. Liang et al. (2017) showed that Fisher-Rao norm is a lower bound on the
 1665 path-norm and it correlates in some cases. We define a measure based on the Fisher-Rao metric of
 1666 the network:

$$1668 \mu_{\text{Fisher-Rao}}(f_{\mathbf{w}}) = \frac{(d+1)^2}{m} \sum_{i=1}^m \langle \mathbf{w} \nabla_{\mathbf{w}} \ell(f_{\mathbf{w}}(\mathbf{X}_i)), y_i \rangle^2 \quad (74)$$

1670 where ℓ is the cross-entropy loss.

1672 **Trace** Trace measure is defined as the trace of the Hessian matrix of the loss function on the
 1673 training dataset with respect to the weights, i.e., $\text{Tr}(\mathbf{H})$, where $\mathbf{H} = \nabla_{\mathbf{w}}^2 L(\mathcal{S}, \mathbf{w})$.

1674 I.2 FLATNESS-BASED MEASURES
1675

1676 PAC-Bayesian framework (McAllester, 1999) allows us to study flatness of a solution and connect
1677 it to generalization. Given a prior P is chosen before observing the training set and a posterior
1678 Q which is a distribution on the solutions of the learning algorithm (and hence depends on the
1679 training set), we can bound the expected generalization error of solutions generated from Q with
1680 high probability based on the D_{KL} divergence of P and Q . The next theorem states a simplified
1681 version of PAC-Bayesian bounds.

1682 **Theorem I.2** *For any $\delta > 0$, distribution D , prior P , with probability $1 - \delta$ over the training set,
1683 for any posterior Q the following bound holds:*

$$1685 \mathbb{E}_{\mathbf{v} \sim Q} [L(f_{\mathbf{v}})] \leq \mathbb{E}_{\mathbf{w} \sim Q} [\hat{L}(f_{\mathbf{v}})] + \sqrt{\frac{D_{\text{KL}}(Q||P) + \log(\frac{m}{\delta})}{2(m-1)}} \quad (75)$$

1688 If P and Q are Gaussian distributions with $P = \mathcal{N}(\mu_P, \Sigma_P)$ and $Q = \mathcal{N}(\mu_Q, \Sigma_Q)$, then the
1689 D_{KL} -term can be written as follows:

$$1691 D_{\text{KL}}(\mathcal{N}(\mu_Q, \Sigma_Q) || \mathcal{N}(\mu_P, \Sigma_P)) = \frac{1}{2} \left[\text{tr}(\Sigma_P^{-1} \Sigma_Q) + (\mu_Q - \mu_P)^\top \Sigma_P^{-1} (\mu_Q - \mu_P) - k + \ln(\frac{\det \Sigma_P}{\det \Sigma_Q}) \right].$$

1693 Setting $Q = \mathcal{N}(\mathbf{w}, \sigma^2 I)$ and $P = \mathcal{N}(\mathbf{w}^0, \sigma^2 I)$ similar to Neyshabur et al. (2017), the D_{KL} term will
1694 be simply $\frac{\|\mathbf{w} - \mathbf{w}^0\|_2^2}{2\sigma^2}$. However, since σ belongs to prior, if we search to find a value for σ , we need
1695 to adjust the bound to reflect that. Since we search over less than 20000 predefined values of σ in our
1696 experiments, we can use the union bound which changes the logarithmic term to $\log(20000m/\delta)$
1697 and we get the following bound:

$$1699 \mathbb{E}_{\mathbf{u} \sim \mathcal{N}(u, \sigma^2 I)} [L(f_{\mathbf{w}+\mathbf{u}})] \leq \mathbb{E}_{\mathbf{u} \sim \mathcal{N}(u, \sigma^2 I)} [\hat{L}(f_{\mathbf{w}+\mathbf{u}})] + \sqrt{\frac{\frac{\|\mathbf{w} - \mathbf{w}^0\|_2^2}{4\sigma^2} + \log(\frac{m}{\sigma}) + 10}{m-1}} \quad (76)$$

1702 Based on the above bound, we define the following measures using the origin as reference tensors:

$$1704 \mu_{\text{pac-bayes-orig}}(f_{\mathbf{w}}) = \frac{\|\mathbf{w}\|_2^2}{4\sigma^2} + \log(\frac{m}{\delta}) + 10 \quad (77)$$

1706 where σ is chosen to be the largest number such that $\mathbb{E}_{\mathbf{u} \sim \mathcal{N}(u, \sigma^2 I)} [\hat{L}(f_{\mathbf{w}+\mathbf{u}})] \leq 0.1$.

1708 To understand the importance of the flatness parameters σ , we also define the following measure:

$$1710 \mu_{\text{pac-bayes-flatness}}(f_{\mathbf{w}}) = \frac{1}{\sigma^2} \quad (78)$$

1712 where σ is computed as explained above.

1713 I.3 SHARPNESS-BASED MEASURES
1714

1715 **SAM** Foret et al. (2020) proposed a generalization bound under weight perturbation:

1717 **Theorem I.3** *For any $\rho > 0$ and any distribution D , with probability $1 - \delta$ over the choice of the
1718 training set $\mathcal{S} \sim D$,*

$$1720 L_D(\mathbf{w}) \leq \max_{\|\boldsymbol{\epsilon}\|_2 \leq \rho} L_{\mathcal{S}}(\mathbf{w} + \boldsymbol{\epsilon}) + \sqrt{\frac{k \log \left(1 + \frac{\|\mathbf{w}\|_2^2}{\rho^2} \left(1 + \sqrt{\frac{\log(n)}{k}} \right)^2 \right) + 4 \log \frac{n}{\delta} + \tilde{O}(1)}{n-1}} \quad (79)$$

1724 where $n = |\mathcal{S}|$, k is the number of parameters and we assumed $L_D(\mathbf{w}) \leq \mathbb{E}_{\boldsymbol{\epsilon}_i \sim \mathcal{N}(0, \rho)} [L_D(\mathbf{w} + \boldsymbol{\epsilon})]$.

1726 Thus, the sharpness of SAM is defined as

$$1727 \max_{\|\boldsymbol{\epsilon}\|_p \leq \rho} L_{\mathcal{S}}(\mathbf{w} + \boldsymbol{\epsilon}) - L_{\mathcal{S}}(\mathbf{w}) \quad (80)$$

1728 if we minimize $\max_{\|\epsilon\|_p \leq \rho} L_S(\mathbf{w} + \epsilon)$, the solution via a first-order approximation will be
 1729

$$\epsilon(\mathbf{w}) = \rho \frac{\text{sign}(\mathbf{g}) \odot |\mathbf{g}|^{q-1}}{\|\mathbf{g}\|_q^{q-1}}, \quad \mathbf{g} = \nabla L_S(\mathbf{w}), \quad \frac{1}{p} + \frac{1}{q} = 1 \quad (81)$$

1730 Especially, if $p = 2$
 1731

$$\epsilon(\mathbf{w}) = \rho \frac{\mathbf{g}}{\|\mathbf{g}\|_2}, \quad \mathbf{g} = \nabla L_S(\mathbf{w}). \quad (82)$$

1732 and if $p = \infty$
 1733

$$\epsilon(\mathbf{w}) = \rho \text{sign}(\mathbf{g}), \quad \mathbf{g} = \nabla L_S(\mathbf{w}). \quad (83)$$

1734 **ASAM** Kwon et al. (2021) proposed a new adaptive sharpness which is reparameterization invariant with a normalization operator:
 1735

1736 **Definition I.4 (Normalization operator)** Let $\{T_{\mathbf{w}}, \mathbf{w} \in \mathbb{R}^k\}$ be a family of invertible linear operators on \mathbb{R}^k . Given a weight \mathbf{w} , if $T_{\mathbf{w}}^{-1} A = T_{\mathbf{w}}^{-1}$ for any invertible scaling operator A on \mathbb{R}^k which does not change the loss function, we say $T_{\mathbf{w}}^{-1}$ is a normalization operator of \mathbf{w} .
 1737

1738 Using the normalization operator, we define adaptive sharpness as follows.
 1739

1740 **Definition I.5 (Adaptive sharpness)** If $T_{\mathbf{w}}^{-1}$ is the normalization operator of \mathbf{w} in Definition I.4,
 1741 adaptive sharpness of \mathbf{w} is defined by
 1742

$$\max_{\|T_{\mathbf{w}}^{-1}\epsilon\|_p \leq \rho} L_S(\mathbf{w} + \epsilon) - L_S(\mathbf{w}) \quad (84)$$

1743 where $1 \leq p \leq \infty$.
 1744

1745 They also demonstrated a generalization bound for adaptive sharpness:
 1746

1747 **Theorem I.6** Let $T_{\mathbf{w}}^{-1}$ be the normalization operator on \mathbb{R}^k . If $L_D(\mathbf{w}) \leq E_{\epsilon_i \sim \mathcal{N}(0, \sigma^2)}[L_D(\mathbf{w} + \epsilon)]$ for some $\sigma > 0$, then with probability $1 - \delta$,
 1748

$$L_D(\mathbf{w}) \leq \max_{\|T_{\mathbf{w}}^{-1}\epsilon\|_2 \leq \rho} L_S(\mathbf{w} + \epsilon) + h\left(\frac{\|\mathbf{w}\|_2^2}{\eta^2 \rho^2}\right) \quad (85)$$

1749 where $h : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a strictly increasing function, $n = |S|$ and $\rho = \sqrt{k}\sigma(1 + \sqrt{\log n/k})/\eta$.
 1750

1751 For a minimax problem
 1752

$$\min_{\mathbf{w}} \max_{\|T_{\mathbf{w}}^{-1}\epsilon\|_p \leq \rho} L_S(\mathbf{w} + \epsilon) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2. \quad (86)$$

1753 The solution under a first-order approximation for adaptive sharpness is
 1754

$$\epsilon = \rho T_{\mathbf{w}} \text{sign}(\nabla L_S(\mathbf{w})) \frac{|T_{\mathbf{w}} \nabla L_S(\mathbf{w})|^{q-1}}{\|T_{\mathbf{w}} \nabla L_S(\mathbf{w})\|_q^{q-1}} \quad (87)$$

1755 Especially, if $p = 2$,
 1756

$$\epsilon = \rho \frac{T_{\mathbf{w}}^2 \nabla L_S(\mathbf{w})}{\|T_{\mathbf{w}} \nabla L_S(\mathbf{w})\|_2} \quad (88)$$

1757 and if $p = \infty$,
 1758

$$\epsilon = \rho T_{\mathbf{w}} \text{sign}(\nabla L_S(\mathbf{w})). \quad (89)$$

1759 I.4 IMPLEMENTATION

1760 The measures, including Fisher-Rao norm (Eq. 74), Parameter norm (Eq. 73), Trace of the Hessian
 1761 matrix, Pac-Bayes from origin (Eq. 77), and the Pac-Bayes flatness (Eq. 78) are computed through
 1762 the repository by Dziugaite et al. (2020).
 1763

1764 The measures, including L_2 sharpness (Eq. 82), L_∞ sharpness (Eq. 83), L_2 adaptive sharpness (Eq.
 1765 88), and L_∞ sharpness (Eq. 83) compute the corresponding sharpness directly from the solution of
 1766 the minimax problem.
 1767

1768 For the SAM(ASAM) sharpness, we conducted a grid search over $\rho \in \{10^{-6}, 3 \times 10^{-6}, 10^{-5}, 3 \times$
 1769 $10^{-5}, 10^{-4}, 3 \times 10^{-4}, 10^{-3}, 3 \times 10^{-3}, 10^{-2}, 3 \times 10^{-2}, 10^{-1}, 0.3, 1\}$ and select the ρ with highest
 1770 correlation coefficient for each task.
 1771

1782 **J EXPERIMENTAL DETAILS**
17831784 In this section, we describe the datasets, models, hyperparameter choices, and eigenspectrum adjust-
1785 ment used in our experiments. All of our experiments are run using PyTorch on Nvidia GTX1080ti,
1786 RTX3090s, RTX4090s, and RTX5090s.
17871788 **J.1 DATASET**
17891790 **CIFAR-10.** CIFAR-10 consists of 60,000 color images, with each image belonging to one of ten
1791 different classes with size 32×32 . The classes include common objects such as airplanes, automo-
1792 biles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The CIFAR-10 dataset is divided into
1793 two subsets: a training set and a test set. The training set contains 50,000 images, while the test set
1794 contains 10,000 images (Krizhevsky & Hinton, 2009). For data processing, we follow the standard
1795 augmentation: normalize channel-wise, randomly horizontally flip, and random cropping.
17961797 **CIFAR-100.** The CIFAR-100 dataset consists of 60,000 color images, with each image belong-
1798 ing to one of 100 different fine-grained classes (Krizhevsky & Hinton, 2009). These classes are
1799 organized into 20 superclasses, each containing 5 fine-grained classes. Similar to CIFAR-10, the
1800 CIFAR-100 dataset is split into a training set and a test set. The training set contains 50,000 images,
1801 and the test set contains 10,000 images. Each image is of size 32x32 pixels and is labeled with its
1802 corresponding fine-grained class. Augmentation includes normalize channel-wise, randomly hori-
1803 zontally flip, and random cropping.
18041804 **TinyImageNet.** TinyImageNet comprises 100,000 images distributed across 200 classes, with
1805 each class consisting of 500 images (Le & Yang, 2015). These images have been resized to 64
1806 \times 64 pixels and are in full color. Each class encompasses 500 training images, 50 validation images,
1807 and 50 test images. Data augmentation techniques encompass normalization, random rotation, and
1808 random flipping. The dataset includes distinct train, validation, and test sets for experimentation.
18091810 **J.2 MODEL**
18111812 In all experiments, the neural networks are initialized by the default initialization provided by Py-
1813 torch.
18141814 **ResNet18, ResNet20, ResNet34 and ResNet50 (He et al., 2016).** We use the standard ResNet
1815 architecture for TinyImageNet and tune it for the CIFAR dataset on the correlation validation
1816 tasks. The detailed network architecture parameters are shown in Table 3 and Table 4. ResNet18,
1817 ResNet20, ResNet34, and ResNet56 are trained on CIFAR-100. The standard ResNet18 is trained
1818 on TinyImageNet for efficient computing and tuned ResNet18 is trained on TinyImageNet for
1819 sharpness-aware minimization.
18201821 **WideResNet (Zagoruyko & Komodakis, 2016).** The Wide ResNet implementation uses the
1822 wrn28_10 model from the *horuma* (Hataya, 2018) library. Architecture details can be found in
1823 Table 4.
18241825 **Vision Transformer.** We use the SimpleViT architecture from the *vit-pytorch* library, which
1826 is a modification of the standard ViT (Dosovitskiy et al., 2020) with a fixed positional embedding
1827 and global average pooling instead of the CLS embedding.
18281829 **J.3 TRAINING HYPER-PARAMETERS SETUP**
18301831 **J.3.1 CORRELATION EXPERIMENTS**
18321832 We train models for 200 epochs, and cosine learning rate decay is adopted after a linear warm-up for
1833 the first 10 epochs. For the task on CIFAR10/CIFAR100, we vary the initial learning rate {0.001,
1834 0.03, 0.1}, batch size {128, 384, 1280}, and weight decay {0.00001, 0.00005, 0.0001, 0.0003,
1835 0.0005} for SGD with momentum and the initial learning rate {0.00001, 0.0003, 0.001}, batch size
{128, 384, 1280}, and weight decay {0.00001, 0.00005, 0.0001, 0.0003, 0.0005} for Adam. For
1836

Table 3: ResNet architecture used in correlation experiments.

Layer	ResNet18 _{CIFAR}	ResNet34	ResNet18 _{TinyImageNet}
Conv 1	$3 \times 3, 64$ padding 1 stride 1	$3 \times 3, 64$ padding 1 stride 1	$7 \times 7, 64$ padding 3 stride 2 Max Pool, ks 3, str 2, pad 1
Layer stack 1	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$
Layer stack 2	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$
Layer stack 3	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$
Layer stack 4	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2$
FC	Adaptive Avg Pool, output size (1, 1)		
	512 \times N_CLASSES	512 \times N_CLASSES	512 \times N_CLASSES

Table 4: ResNet architecture used in sharpness-aware minimization experiments.

Layer	ResNet-20	ResNet-56	ResNet-50	WideResNet-28-10
Conv 1	$3 \times 3, 16$ padding 1 stride 1	$3 \times 3, 16$ padding 1 stride 1	$3 \times 3, 64$ padding 1 stride 1	$3 \times 3, 16$ padding 1 stride 1
Layer stack 1	$\begin{bmatrix} 3 \times 3, 16 \\ 3 \times 3, 16 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 16 \\ 3 \times 3, 16 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 160 \\ 3 \times 3, 160 \end{bmatrix} \times 4$
Layer stack 2	$\begin{bmatrix} 3 \times 3, 32 \\ 3 \times 3, 32 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 32 \\ 3 \times 3, 32 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 3 \times 3, 320 \\ 3 \times 3, 320 \end{bmatrix} \times 4$
Layer stack 3	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3, 640 \\ 3 \times 3, 640 \end{bmatrix} \times 4$
Layer stack 4	-		$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	-
FC	Avg Pool, kernel size 8 64 \times N_CLASSES	Avg Pool, kernel size 8 64 \times N_CLASSES	Adaptive Avg Pool, output size (1, 1) 2048 \times N_CLASSES	Avg Pool, kernel size 8 640 \times N_CLASSES

the task on TinyImageNet, we vary the initial learning rate {0.001, 0.03, 0.1}, batch size {128, 384, 1280}, and weight decay {0.000003, 0.00001, 0.00003, 0.00005, 0.0001, 0.0003} for SGD with momentum and the initial learning rate {0.00001, 0.0003, 0.001}, batch size {128, 384, 1280}, and weight decay {0.000003, 0.00001, 0.00003, 0.00005, 0.0001, 0.0003} for Adam.

Different from Jiang et al. (2019), we pick the data augmentation in the training scheme, which is a common setting in modern deep learning, but we still compute the sharpness measure without data augmentation, as from a theoretical perspective, data augmentation is also challenging to analyze since the training samples generated from the procedure are no longer identical and independently distributed.

To investigate the relationship between sharpness and generalization under common training strategies, we pick the stopping criterion based on the number of iterations or the number of epochs. To avoid differences in optimization speed across hyperparameter settings, we follow the linear scaling rule recommended by Goyal et al. (2017) and scale the learning rate and batch size in tandem, which yields comparable convergence after the same number of epochs.

1890 J.3.2 SHARPNESS-AWARE MINIMIZATION EXPERIMENTS
18911892 Firstly, we will introduce the Rényi Sharpness-Aware Minimization algorithm as follows:
18931894 **Algorithm 2** Rényi Sharpness-Aware Minimization (RSAM) Algorithm
1895

1895 **Input:** Loss function ℓ , training dataset $S := \bigcup_{i=1}^n \{(\mathbf{x}_i, \mathbf{y}_i)\}$, mini-batch size b , radius ρ , Rényi
1896 order α , plain SGD epoch e_1 , RSAM epoch e_2 , weight decay coefficient λ , scheduled learning
1897 rate β , initial weight \mathbf{w}_0 .
1898 **Output:** Trained weight \mathbf{w} . Initialize weight $\mathbf{w} \leftarrow \mathbf{w}_0$
1899 **for** $i = 1, \dots, e_1$ **do**
1900 1). Sample a mini-batch B of size b from S
1901 2). $\mathbf{w} \leftarrow \mathbf{w} - \beta(\nabla L_B(\mathbf{w}) + \lambda \mathbf{w})$
1902 **end for**
1903 **for** $j = 1, \dots, e_2$ **do**
1904 4). Sample a mini-batch B of size b from S
1905 5). $\epsilon \leftarrow \rho \cdot \text{sign}(1 - \alpha) \cdot \frac{\sum_j |\nabla L_B(\mathbf{w})_j|^{2\alpha}}{(\sum_j \nabla L_B(\mathbf{w})_j^2)^{\alpha+1}} \nabla L_B(\mathbf{w})^\top$
1906 6). $\mathbf{w} \leftarrow \mathbf{w} - \beta(\nabla L_B(\mathbf{w} + \epsilon) + \lambda \mathbf{w})$
1907 **end for**
1908 **Return:** \mathbf{w}

1910 We first train the neural network with vanilla SGD for e_1 epochs, without applying the Rényi regularizer.
1911 The intuition is that the gradient-magnitude approximation underlying our method becomes
1912 more accurate only after the model has achieved a reasonable training loss/accuracy, so penalizing
1913 the Rényi term at the very beginning of training is unnecessary and may even be harmful. Once the
1914 model reaches this warm-up stage, we activate the Rényi regularizer. For each mini-batch B , we
1915 compute the loss $L_B(\mathbf{w})$ and its gradient $\nabla L_B(\mathbf{w})$. We then construct the perturbation ϵ according
1916 to Eq. 13 and form the perturbed parameters $\mathbf{w} + \epsilon$. Next, we evaluate the gradient at the perturbed
1917 point, $\nabla L_B(\mathbf{w} + \epsilon)$, and perform a gradient-descent step on the original parameters \mathbf{w} using this
1918 gradient. This procedure is structurally identical to SAM (Foret et al., 2020) and ASAM (Kwon
1919 et al., 2021); the only difference lies in how the perturbation ϵ is computed, which in our case is
1920 defined by the Rényi sharpness objective in Eq. 13.

1921 We set ρ for SAM and Eigen-SAM as 0.05 for CIFAR10 and 0.1 for CIFAR100, and ρ for ASAM as
1922 0.5 for CIFAR10 and 1.0 for CIFAR100. η for ASAM is set to 0.01. ρ and α for RSAM is described
1923 in Table. 5 and Table. 6. The mini-batch size is set to 128. The number of epochs is set to 200 for
1924 SGD, SAM, ASAM, Eigen-SAM, and RSAM. Although prior work recommends training SGD
1925 for 400 epochs to assess improvements under a matched compute budget, RSAM introduces the
1926 regularizer only after a warm-up period, so compute parity no longer holds. Moreover, those studies
1927 have already shown performance superior to 400-epoch SGD. Consequently, our experiments are not
1928 strictly designed under equal-compute conditions. Momentum and weight decay coefficient are set
1929 to 0.9 and 0.0005, respectively. Cosine learning rate decay is adopted with an initial learning rate
1930 of 0.1. Also, random cropping, padding by four pixels, normalization and random horizontal flip are
1931 applied for data augmentation. As label smoothing is not adopted in Eigen-SAM, all experiments
1932 are conducted without label smoothing.

1933 For the evaluations at a larger scale, we compare the performance of SGD, SAM, ASAM, Eigen-
1934 SAM, and RSAM on TinyImageNet. We apply $\rho = 0.05$ for SAM and Eigen-SAM and $\rho = 1.0$ for
1935 ASAM. ρ for RSAM is set to . The number of training epochs are all set to 100. We use a mini-
1936 batch size of 128, an initial learning rate of 0.2, and SGD optimizer with weight decay coefficient
1937 of 0.0001. Other hyperparameters are the same as those of CIFAR-10/100 tests.

1938 All the hyper-parameters are summarized in Table 5, Table 6, and Table 7.

1939 J.4 RÉNYI ENTROPY COMPUTATION SETUP
1940

1941 The Rényi entropy is computed on the subset of the training dataset. For the CIFAR10 and CI-
1942 FAR100 datasets, we randomly sample 2000 samples to compute Rényi entropy (1000 for ViT on
1943 CIFAR10), and for the TinyImageNet dataset, we randomly sample 1000 samples. Batch size is set
1944 to 128. $l = 100$ and $m = 15$ are set for the Rényi entropy estimation algorithm. The Rényi order is

Table 5: Hyper-parameters of Sharpness-aware Minimization on CIFAR10

Algorithm	Model	Momen-tum	LR	SGD Epochs	SAM Epochs	Batch Size	Weight Decay	ρ	η	α
SGD	ResNet20	0.9	0.1	200	0	128	0.0005	0	0	0
	ResNet56	0.9	0.1	200	0	128	0.0005	0	0	0
	WideResNet-28-10	0.9	0.1	200	0	128	0.0005	0	0	0
SAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.05	0	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.05	0	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.05	0	0
ASAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.5	0.01	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.5	0.01	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.5	0.01	0
Eigen-SAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.05	0	0.2
	ResNet56	0.9	0.1	0	200	128	0.0005	0.05	0	0.2
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.05	0	0.2
FSAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.1	1.0	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.1	1.0	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.1	1.0	0
SSAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.2	0.0	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.2	0.0	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.1	0.0	0
RSAM	ResNet20	0.9	0.1	5	195	128	0.0005	0.65	0	1.2
	ResNet56	0.9	0.1	5	195	128	0.0005	0.8	0	1.2
	WideResNet-28-10	0.9	0.1	5	195	128	0.0005	0.3	0	1.05

Table 6: Hyper-parameters of Sharpness-aware Minimization on CIFAR100

Algorithm	Model	Momen-tum	LR	SGD Epochs	SAM Epochs	Batch Size	Weight Decay	ρ	η	α
SGD	ResNet20	0.9	0.1	200	0	128	0.0005	0	0	0
	ResNet56	0.9	0.1	200	0	128	0.0005	0	0	0
	WideResNet-28-10	0.9	0.1	200	0	128	0.0005	0	0	0
SAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.1	0	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.1	0	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.1	0	0
ASAM	ResNet20	0.9	0.1	0	200	128	0.0005	1.0	0.01	0
	ResNet56	0.9	0.1	0	200	128	0.0005	1.0	0.01	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	1.0	0.01	0
Eigen-SAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.1	0	0.2
	ResNet56	0.9	0.1	0	200	128	0.0005	0.1	0	0.2
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.1	0	0.2
FSAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.1	1.0	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.1	1.0	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.1	1.0	0
SSAM	ResNet20	0.9	0.1	0	200	128	0.0005	0.5	0.0	0
	ResNet56	0.9	0.1	0	200	128	0.0005	0.5	0.0	0
	WideResNet-28-10	0.9	0.1	0	200	128	0.0005	0.2	0.0	0
RSAM	ResNet20	0.9	0.1	5	195	128	0.0005	0.76	0	1.1
	ResNet56	0.9	0.1	5	195	128	0.0005	0.9	0	1.1
	WideResNet-28-10	0.9	0.1	5	195	128	0.0005	0.7	0	1.05

chosen from $\{0.0001, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 1.001, 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3\}$. Due to the fact that training cannot guarantee convergence exactly to a strict local minimum, negative eigenvalues are inevitable, which can cause numerical pathologies for the Rényi entropy as $\alpha \rightarrow 1$. Therefore, when assessing how α affects the correlation between Rényi entropy and generalization, we restrict α to $(0, 0.9)$ and $(1.2, 3.0]$. Within these ranges, computing the Rényi entropy is stable and free of anomalies. During our analysis of the sharpness-generalization correlation, we vary α and plot the sharpness that attains the highest correlation coefficient.

1998
1999
2000
2001
2002
2003
2004

2005
2006

Table 7: Hyper-parameters of Sharpness-aware Minimization on TinyImageNet

Algorithm	Model	Momen-tum	LR	SGD Epochs	SAM Epochs	Batch Size	Weight Decay	ρ	η	α
SGD	ResNet50	0.9	0.2	100	0	128	0.0001	0	0	0
SAM	ResNet50	0.9	0.2	0	100	128	0.0001	0.05	0	0
ASAM	ResNet50	0.9	0.2	0	100	128	0.0001	1.0	0.01	0
FSAM	ResNet50	0.9	0.2	0	100	128	0.0001	0.5	0.1	0
RSAM	ResNet50	0.9	0.2	20	80	128	0.0001	1.25	0	1.1

Note. In practice, we train with SGD until the validation Top-1 accuracy exceeds 30%, then switch to RSAM; this typically occurs around epoch 20.

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032

Table 8: Hyper-parameters of Sharpness-aware Minimization on ViT-B/16 Finetuning

Algorithm	Dataset	Momen-tum	LR	SGD Epochs	SAM Epochs	Batch Size	Weight Decay	ρ	η	α
SGD	CIFAR10	0.9	0.01	20	0	128	0.0005	0	0	0
	CIFAR100	0.9	0.01	20	0	128	0.0005	0	0	0
SAM	CIFAR10	0.9	0.01	0	20	128	0.0005	0.05	0	0
	CIFAR100	0.9	0.01	0	20	128	0.0005	0.1	0	0
ASAM	CIFAR10	0.9	0.01	0	20	128	0.0005	0.5	0.01	0
	CIFAR100	0.9	0.01	0	20	128	0.0005	1.0	0.01	0
FSAM	CIFAR10	0.9	0.01	0	20	128	0.0005	0.1	1.0	0
	CIFAR100	0.9	0.01	0	20	128	0.0005	0.1	1.0	0
RSAM	CIFAR10	0.9	0.01	2	18	128	0.0005	0.8	0	1.3
	CIFAR100	0.9	0.01	2	18	128	0.0005	0.6	0	1.1

2046
2047
2048
2049
2050
2051

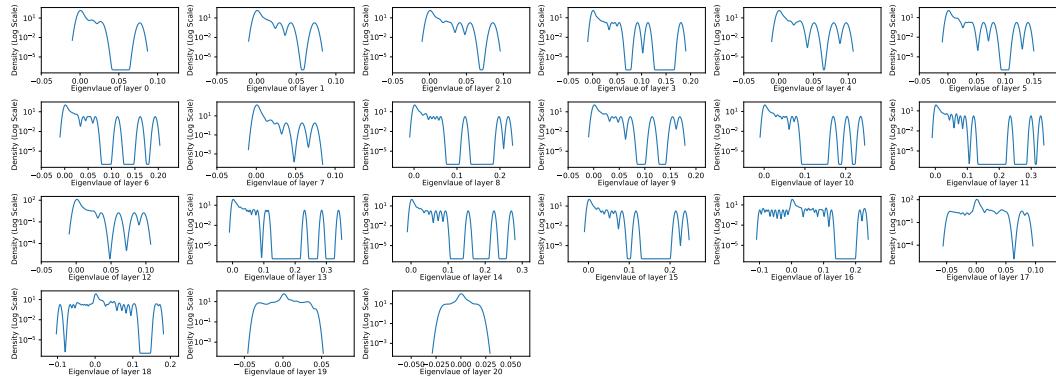
2052 K FULL RESULTS

2053

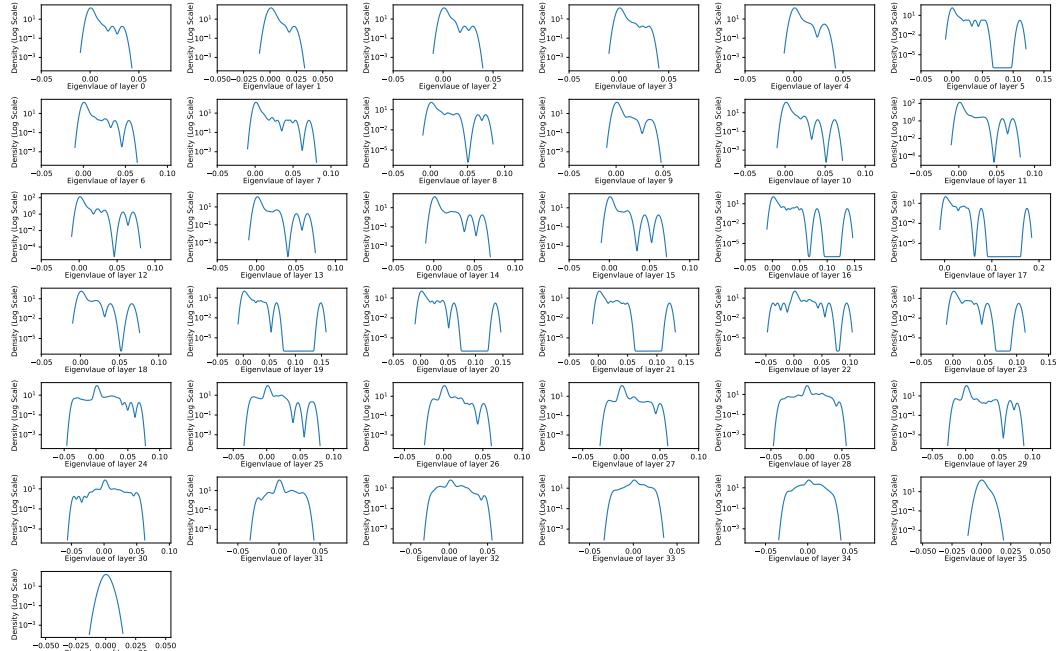
2054 In this section, we report all the results of the tasks in the main body.

2055 K.1 HESSIAN SPECTRUM

2056 In this section, we provide some spectra of the trained models in the correlation validation experiments, including ResNet18 and ResNet34 on CIFAR10 and ResNet18 and ResNet34 on CIFAR100.



2057 Figure 4: Spectrum of ResNet18 on CIFAR10.



2058 Figure 5: Spectrum of ResNet34 on CIFAR10.

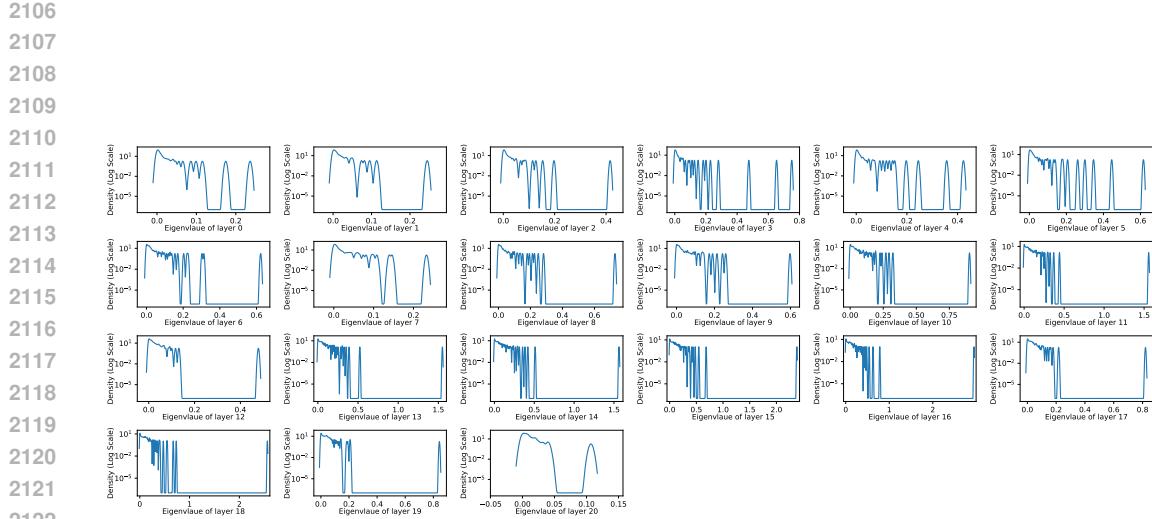


Figure 6: Spectrum of ResNet18 on CIFAR100.

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

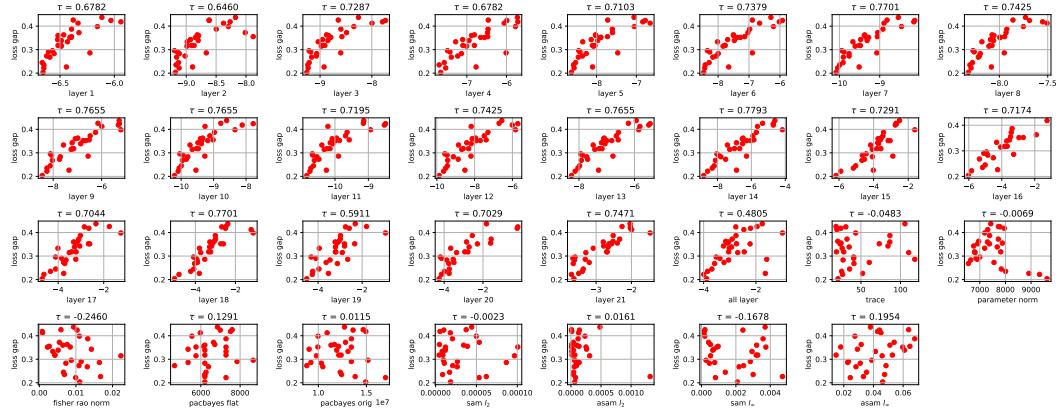
2158

2159

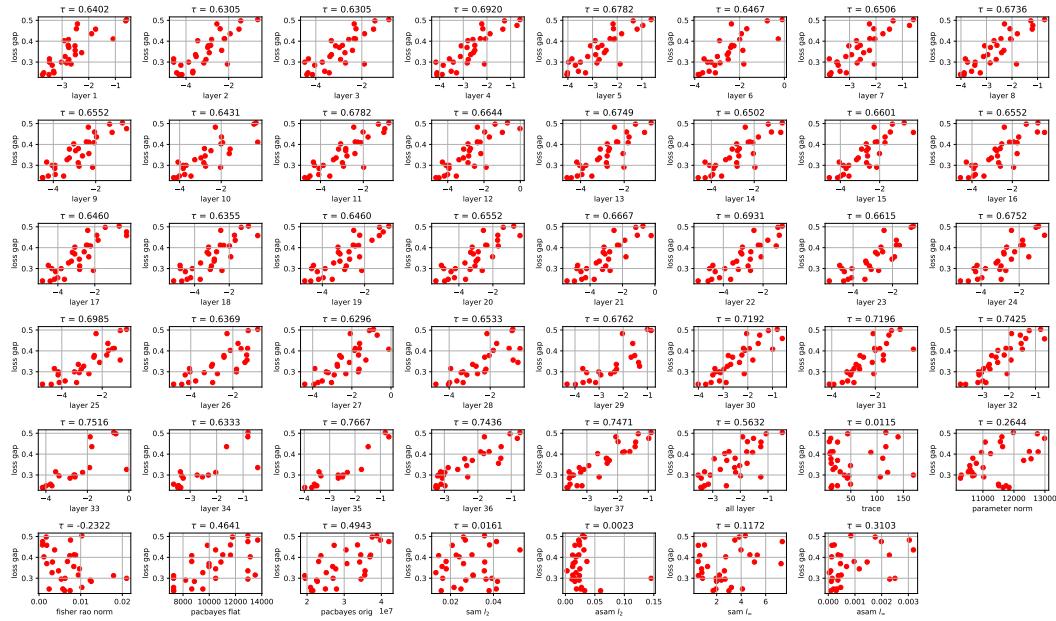
Figure 7: Spectrum of ResNet34 on CIFAR100.

2160 K.2 CORRELATION BETWEEN RÉNYI SHARPNESS AND GENERALIZATION
2161

2162 In this section, we provide the figures about the correlation between generalization and multiple
2163 sharpness measures. We can find that Rényi sharpness is strongly correlated with generalization
2164 than the other measures.



2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
Figure 8: ResNet18 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness measure.



2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
Figure 9: ResNet34 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness measure.

Task	CIFAR10/ResNet18	CIFAR10/ResNet34	CIFAR10/ViT	CIFAR100/ResNet18	CIFAR100/ResNet34	TinyImageNet/ResNet18
Correlation coefficient	-0.2092	-0.2966	-0.1954	-0.3149	-0.5310	-0.6063

2208
2209
2210
2211
2212
2213
Table 9: Correlation coefficient between $\log \det \mathbf{H}$ and generalization gap across tasks. \mathbf{H} is the
Hessian matrix of the training loss with respect to the whole weights in the model.

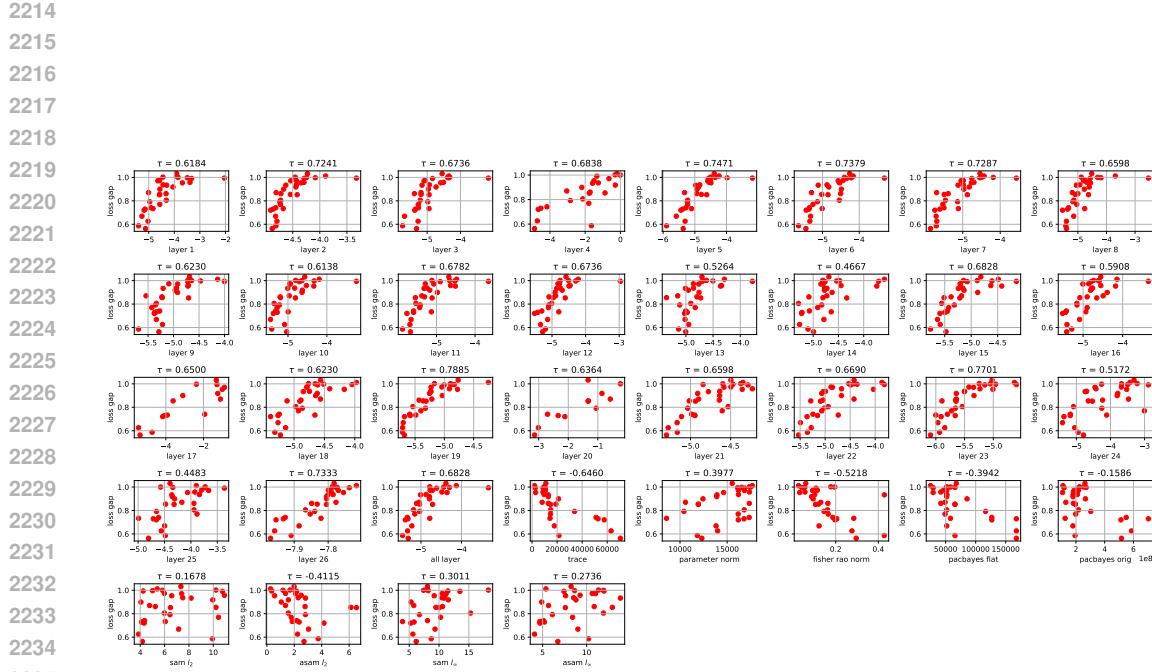


Figure 10: ViT on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness measure.

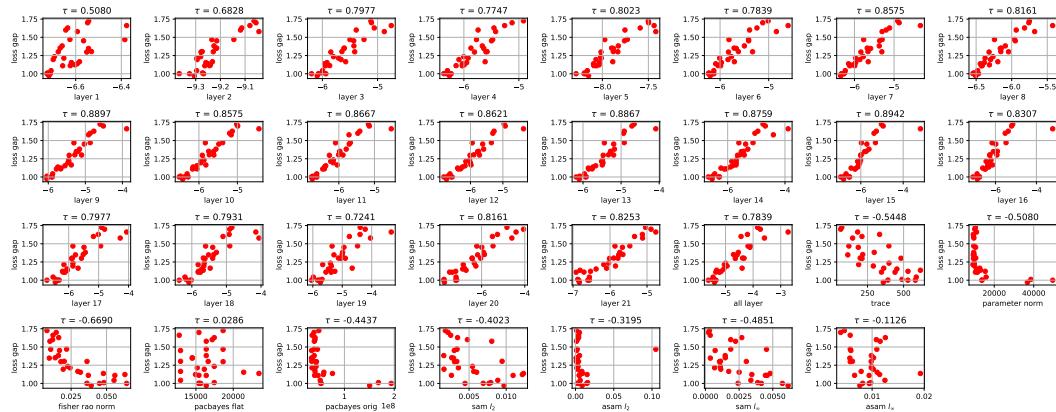
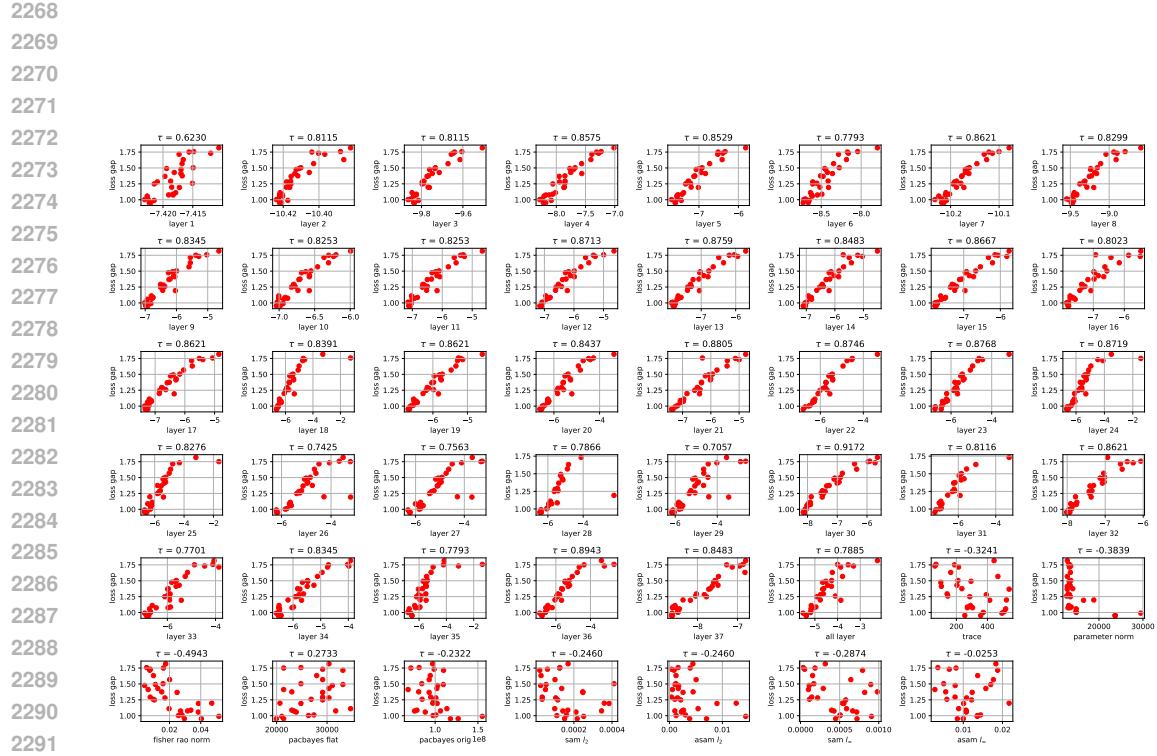
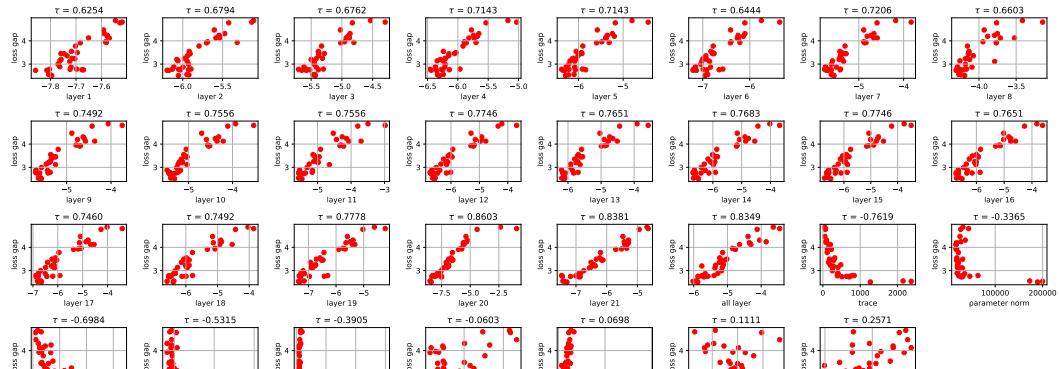


Figure 11: ResNet18 on CIFAR100, The layer 1 to all layer subplots correspond to the Rényi sharpness measure.



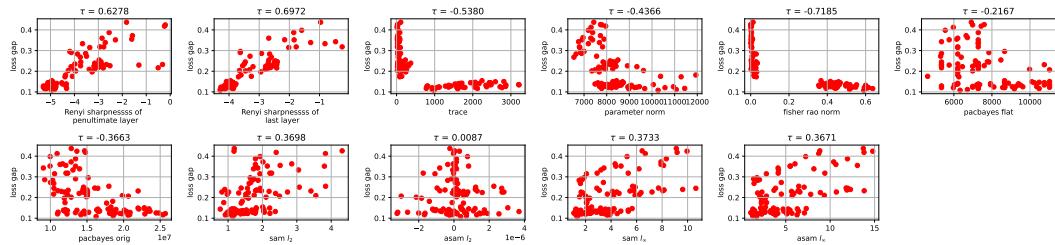
2292 Figure 12: ResNet34 on CIFAR100, The layer 1 to all layer subplots correspond to the Rényi sharp-
2293 ness measure.



2316 Figure 13: ResNet18 on TinyImageNet, The layer 1 to all layer subplots correspond to the Rényi
2317 sharpness measure.

2322 K.3 MORE RESULTS FOLLOWING ANDRIUSHCHENKO ET AL. (2023)
23232324 K.3.1 MORE TRAINING RECIPE FOR RESNET18 ON CIFAR10
2325

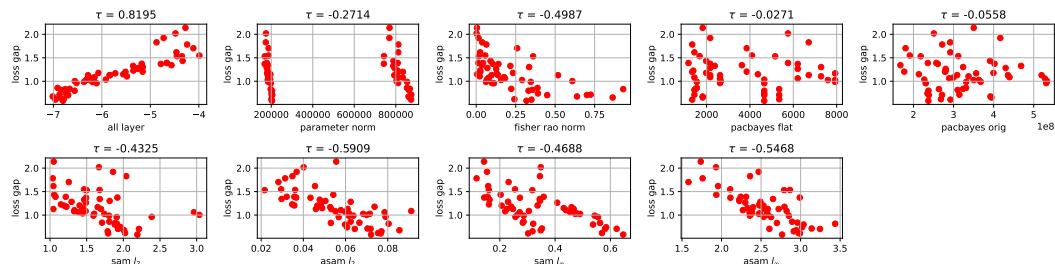
2326 In previous work, Andriushchenko et al. (2023) showed that their sharpness measure correlates
2327 strongly with generalization only within certain hyperparameter subsets or sub-groups. To perform
2328 a similar test, we extend our standard ResNet-18/CIFAR-10 setup by introducing two additional
2329 hyperparameter dimensions: with/without mixup ($\alpha = 0.5$) (Zhang et al., 2017) and with/without
2330 standard augmentations combined with RandAugment (Cubuk et al., 2020). We then compute the
2331 Rényi sharpness of the last two layers and compare it with other sharpness measures. The results
2332 in Fig. 14 indicate that, even under these richer hyperparameter combinations, Rényi sharpness still
2333 exhibits a strong and consistent correlation with generalization.



2342 Figure 14: ResNet18 on CIFAR10 with more training configurations. The learning rate, batch size,
2343 optimizer, and weight decay are varied following standard ResNet-18-on-CIFAR-10 setups, and we
2344 further introduce variants with mixup ($\alpha = 0.5$) (Zhang et al., 2017) and standard augmentations
2345 combined with RandAugment (Cubuk et al., 2020), resulting in four times as many models as in the
2346 standard setting.

2348 K.3.2 PRETRAINING ViT-B/16 ON IMAGENET-1K
2349

2350 Following Andriushchenko et al. (2023), we evaluate ViT models from Steiner et al. (2021), using
2351 ViT-B/16-224 weights. Those were trained from scratch on ImageNet-1k for 300 epochs with
2352 different hyperparameter settings, and subsequently fine tuned on the same dataset for 20.000 steps
2353 with 2 different learning rates. The different hyperparameters include augmentations, weight decay,
2354 and stochastic depth / dropout, leading to a rich pool of 56 models. As shown in Figure 15, Rényi
2355 sharpness still exhibits a strong and consistent correlation with generalization, while others not.



2366 Figure 15: ViT-B/16 trained from scratch on ImageNet-1k. We show for 56 models from Steiner
2367 et al. (2021) the generalization gap vs. various sharpness measures. Overall, Rényi sharpness is still
2368 strongly correlated with generalization than the other measures.

2370 K.3.3 FINE-TUNING ON IMAGENET-1K FROM CLIP
2371

2372 We also follow the experiments that investigate fine-tuning from CLIP Radford et al. (2021). We
2373 study the pool of classifiers obtained by Wortsman et al. (2022), who fine-tuned a CLIP ViT-B/32
2374 model on ImageNet multiple times by randomly selecting training hyperparameters, including learning
2375 rate, number of epochs, weight decay, label smoothing, and augmentations. We compute the
Rényi sharpness of the last layer within the ViT-B/32 model, and compare it with other sharpness

measures. One can confirm from Fig. 16 that Rényi sharpness still exhibits a strong and consistent correlation with generalization, compared to the other measures.

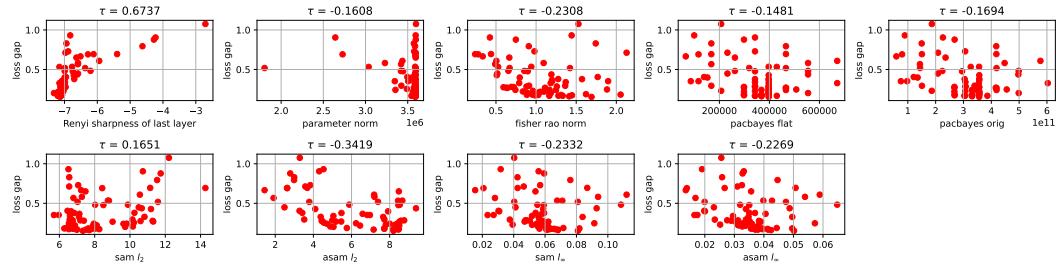
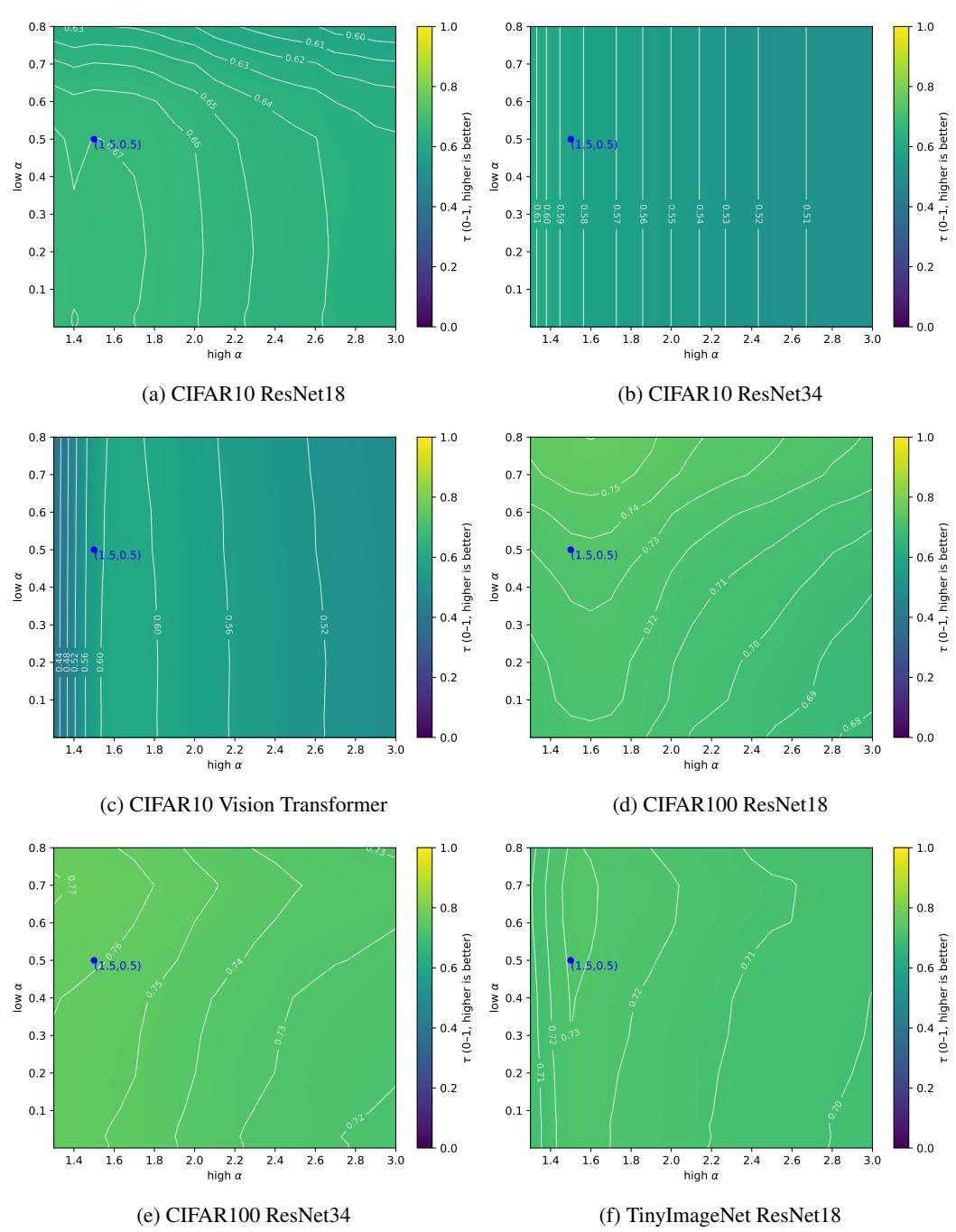


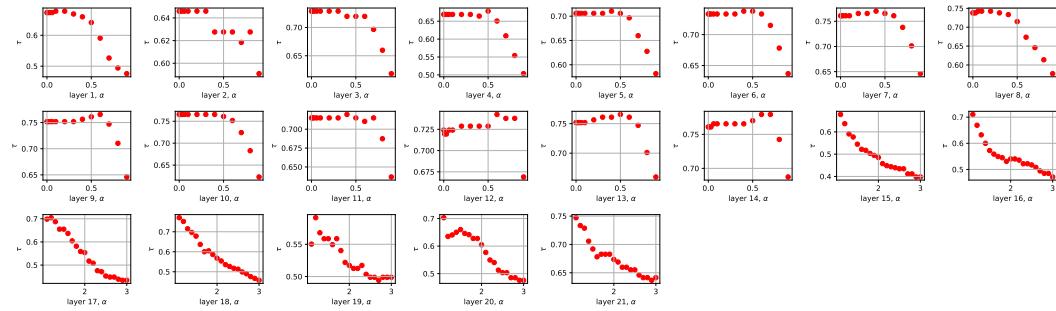
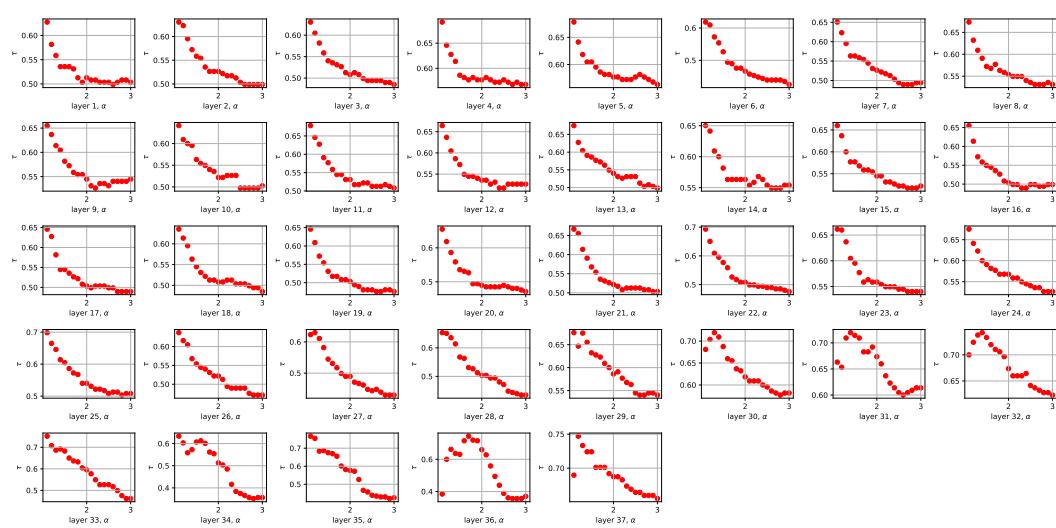
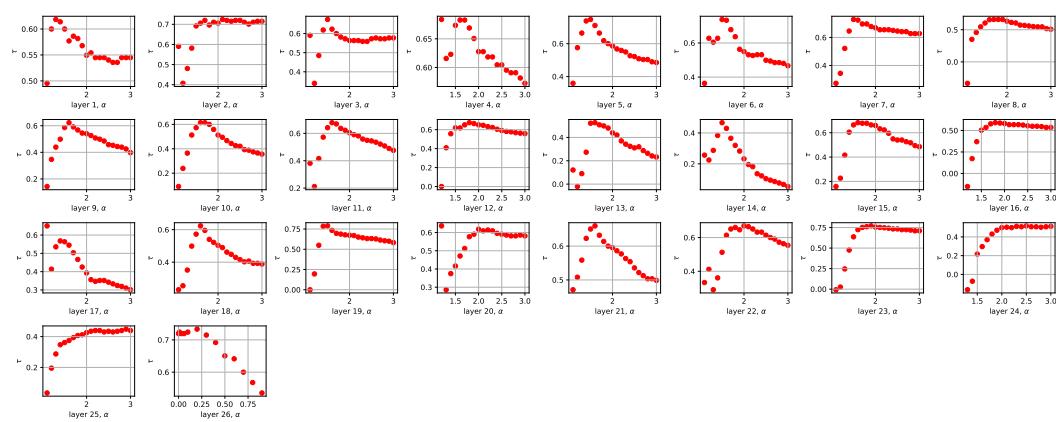
Figure 16: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show for 72 models from Wortsman et al. (2022) the generalization gap on ImageNet vs multiple sharpness measures.

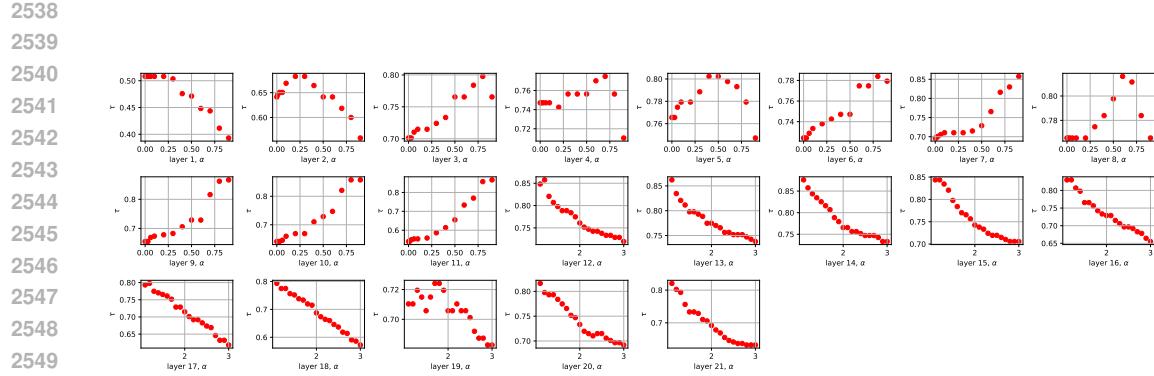
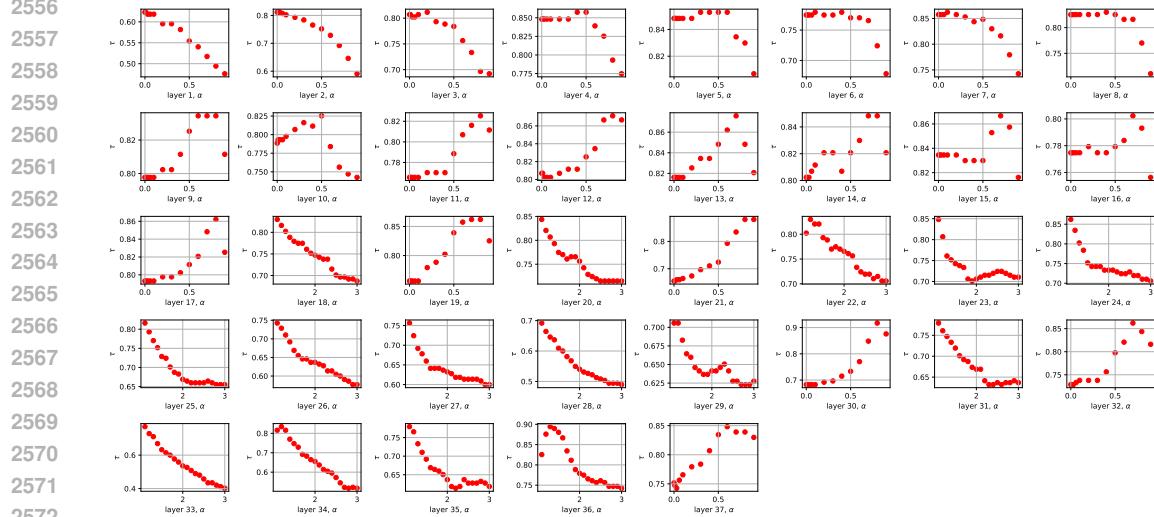
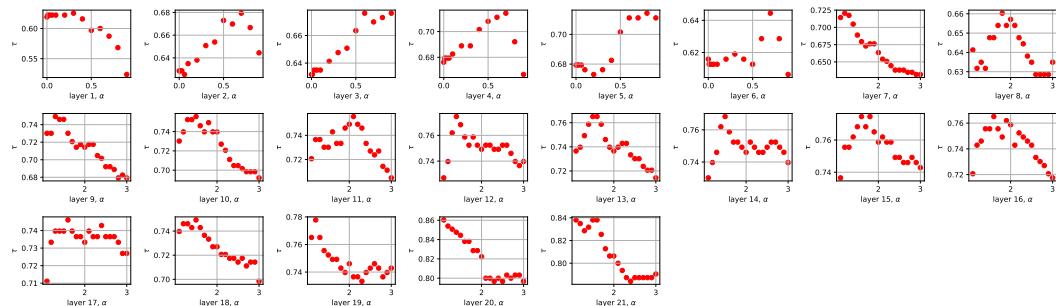
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2430
2431K.4 CORRELATION COEFFICIENT AND RÉNYI ORDER α 2432
2433
2434
2435

In this section, we report statistics of Kendall’s τ under different Rényi orders. The order α is varied following the guidelines in Section 4.1. We compute Kendall’s τ for each layer and report the average correlation of all layers. The heatmap in Fig. 17 shows that $\alpha = 0.5$ for $0 < \alpha < 1$ and $\alpha = 1.5$ for $\alpha > 1$ are consistently robust across tasks.

2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
24482478
2479
2480
2481
2482
2483Figure 17: Correlation Coefficient and Rényi Order α

2484
2485 K.5 SCATTER PLOT OF CORRELATION COEFFICIENT AND RÉNYI ORDER α 2486 In this section, we provide all the correlation coefficient τ under different α across multiple tasks:2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499 Figure 18: ResNet18 on CIFAR10, we plot the correlation coefficient τ vs Rényi order α .2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537 Figure 19: ResNet34 on CIFAR10, we plot the correlation coefficient τ vs Rényi order α .2534
2535
2536
2537 Figure 20: ViT on CIFAR10, we plot the correlation coefficient τ vs Rényi order α .

Figure 21: ResNet18 on CIFAR100, we plot the correlation coefficient τ vs Rényi order α .Figure 22: ResNet34 on CIFAR100, we plot the correlation coefficient τ vs Rényi order α .Figure 23: ResNet18 on TinyImageNet, we plot the correlation coefficient τ vs Rényi order α .

2592 **L LIMITATION**
25932594 • The generalization bounds in our work relies on homogeneity of the activation function,
2595 which holds for ReLU networks and approximately holds for GELU networks. Extending
2596 the analysis for other activations is a both interesting and important direction.
2597 • Our proposed RSAM algorithm uses an approximation to Rényi sharpness for simplicity, a
2598 tighter approximation or surrogate may further improve generalization.
25992600 **M BROADER IMPACTS**
26012602 Our work aims to advance the theoretical understanding of network generalization, with the anticipa-
2603 tion that theoretical insights can guide future designs of network optimization methods. There are
2604 no ethically related issues or negative societal consequences in our work.
26052606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645