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ABSTRACT

Sharpness (of the loss minima) is widely believed to be a good indicator of gen-
eralization of neural networks. Unfortunately, the correlation between existing
sharpness measures and the generalization is not that strong as expected, some-
times even contradiction occurs. To address this problem, a key observation in
this paper is: what really matters for the generalization is the average spread (or
unevenness) of the spectrum of loss Hessian H. For this reason, the conventional
sharpness measures, such as the trace sharpness tr(H), which cares about the av-
erage value of the spectrum, or the max-eigenvalue sharpness λmax(H)), which
concerns the maximum spread of the spectrum, are not sufficient to well predict the
generalization. To finely characterize the average spread of the Hessian spectrum,
we leverage the notion of Rényi entropy in information theory, which is capable
of capturing the unevenness of a probability vector and thus can be extended to
describe the unevenness for a general non-negative vector (which is the case for
the Hessian spectrum at the loss minima). In specific, in this paper we propose the
Rényi sharpness, which is defined as the negative of the Rényi entropy of loss Hes-
sian H. Extensive experiments demonstrate that Rényi sharpness exhibit strong
and consistent correlation with generalization in various scenarios. Moreover, on
the theoretical side, two generalization bounds with respect to the Rényi sharpness
are established, by exploiting the desirable reparametrization invariance property
of Rényi sharpness. Finally, as an initial attempt to take advantage of the Rényi
sharpness for regularization, Rényi Sharpness Aware Minimization (RSAM) al-
gorithm is proposed where a variant of Rényi Sharpness is used as the regularizer.
It turns out this RSAM is competitive with the state-of-the-art SAM algorithms,
and far better than the conventional SAM algorithm based on the max-eigenvalue
sharpness.

1 INTRODUCTION

Understanding why stochastic optimization methods, such as stochastic gradient descent (SGD) can
achieve strong generalization performance even when the neural networks are overparameterized
remains a fundamental yet open challenge in deep learning (Zhang et al., 2016; Gunasekar et al.,
2017; Li et al., 2018; Soudry et al., 2018; Woodworth et al., 2020). Many empirical and theoretical
studies have observed that the generalization of neural networks is closely related to the flatness of
the loss landscape (Keskar et al., 2016; Neyshabur et al., 2017; Jiang et al., 2019; Petzka et al., 2019;
Kaddour et al., 2022; Tsuzuku et al., 2020; Jang et al., 2022; Dziugaite & Roy, 2017; Jastrzębski
et al., 2017; Wu et al., 2018; Blanc et al., 2020; Wei & Ma, 2019; Foret et al., 2020; Damian et al.,
2021; Li et al., 2021; Ma & Ying, 2021; Ding et al., 2024; Nacson et al., 2022; Lyu et al., 2022; Wu
& Su, 2023; Kwon et al., 2021; Zhou et al., 2024).

Intuitively speaking, local minima with flat (with low sharpness) neighborhood in the landscape
are expected to incur small loss change (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016).
The core question is therefore: how should we measure the flatness in a proper way? The flat-
ness or sharpness is normally quantified by functionals of the loss Hessian H—e.g., tr(H) and
λmax(H)—or by loss increase with constrained weight perturbations, while the latter is normally
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closely related to the former. Despite the above intuition, recent empirical evidences indicate that
existing sharpness measures usually correlate weakly with generalization (Andriushchenko et al.,
2023), sometimes even contradicting phenomenon occurs (Dinh et al., 2017; Wen et al., 2023). To
close the gap between the intuition and the reality, it is of crucial importance to develop a better
sharpness measure.

To address this problem, a key observation of ours is: what really matters for characterizing the
generalization lies in the unevenness or average spread of the spectrum of the Hessian. Intuitively
speaking, an even spectrum (with almost identical eigenvalue) is very much desirable to ensure
good generalization, since if there exists no particularly large eigen-direction, a small perturbation
of data (which can be translated to weight perturbation) would just incur small loss change. More
concretely, when characterizing the loss change resulting from the train-test data discrepancy, the
unevenness or average spread of the the spectrum can reflect the influences from all categories of
eigenvalues of loss Hessian (Sankar et al., 2021): 1) the top eigenvalues, which are very important
for the loss change but are of quite small quantity; 2) the middle eigenvalues, which are less im-
portant for the loss change individually but are of very big quantity; 3) the tail eigenvalues, which
are normally located near zero and thus play a minor role regarding the loss change. In contrast,
the conventional sharpness measures, such as the trace or maximum eigenvalue of the loss Hessian,
they care about only part of the eigenvalues. For example, the trace sharpness tr(H) actually cares
about only middle eigenvalues, while the max-eigenvalue sharpness λmax(H) concerns only top
eigenvalues. Therefore, both of them might experience significant information loss when predicting
the generalization performance.

To finely characterize the unevenness or average spread of the Hessian spectrum, we propose a
novel sharpness measure, Rényi sharpness by leveraging the notion of Rényi entropy (Rényi, 1961)
in information theory, which can well describe the unevenness of a probability vector p by exploiting
an appealing property, i.e. concavity in p. Naturally, Rényi entropy can be employed to describe the
unevenness of any general non-negative vector by normalization, i.e. by transforming the original
vector to a virtual probability vector. Moreover, Rényi entropy enjoys extra advantages of flexibility
(with one free parameter) compared against the classical Shannon entropy (c.f. Section 2). In
addition, it is worth noting that to describe the average spread of a vector, the sample variance
is an alternative which is easy to enter the mind. Unfortunately it is improper for characterizing
the generalization, because the tail eigenvalues (near-zero) of the spectrum contribute a lot to the
variance, while they play a very minor role for the generalization gap.

To rigorously establish the relationship between generalization and Rényi sharpness, we develop
several generalization bounds in terms of Rényi sharpness, by taking advantage of the reparametriza-
tion invariance property of Rényi sharpness, and the technique of translating data discrepancy to the
multiplicative weight perturbation. Moreover, to verify the correlation between the Rényi sharpness
and generalization, we provide a fast algorithm, which is based on the Stochastic Lanczos Quadra-
ture (SLQ) method (Yao et al., 2020), to estimate the Rényi sharpness. Finally, we introduce Rényi
Sharpness-Aware Minimization (RSAM) for network training, which basically employs the Rényi
sharpness as a regularizer.

In summary, our contributions are stated as follows:

• We introduce a novel notion of sharpness – Rényi sharpness, which is motivated by the
observation that generalization highly depends on the average spread of the spectrum of
the loss Hessian, which can be captured by the Rényi entropy, an important functional in
information theory.

• We present two generalization bounds with respect to the Rényi sharpness, thus establish-
ing the link between them in a rigorous way. In developing these generalization bounds,
it is important to leverage the reparametrization invariance of the Rényi sharpness and the
technique of translating data perturbation to (multiplicative) weight perturbation.

• We demonstrate that there exists strong correlation between Rényi sharpness and general-
ization. Meanwhile, a fast algorithm to estimate the Rényi sharpness, which leverages the
Stochastic Lanczos Quadrature (SLQ) method, is proposed.

• A preliminary version of Rényi Sharpness-Aware Minimization (RSAM) is proposed,
where a variant of Rényi Sharpness is employed as a regularizer during training. It turns out
to be competitive with the state-of-the-art SAM algorithms and significantly outperform the
conventional SAM method, such as that using max-eigenvalue sharpness.
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1.1 RELATED WORKS

Sharpness vs. Generalization: The exploration of relationship between sharpness and generaliza-
tion dates back to Hochreiter & Schmidhuber (1994), which proposes an algorithm to achieve high
generalization capability by searching flat minima. Keskar et al. (2016) shows that the generalization
performance of large batch SGD is correlated with the sharpness of the minima. Neyshabur et al.
(2017) studies various generalization measures and highlights the promising correlation between
sharpness and generalization. Jiang et al. (2019) performs a large-scale empirical study and finds
that flatness-based measure is higher correlated with generalization than the concepts like weight
norms, margin-, and optimization-based measures. Petzka et al. (2021) studies a relative flatness of
a layer through a multiplicative perturbation setting and shows the correlation with generalization.
However, many recent studies point out that sharpness does not correlate well with generalization.
Dinh et al. (2017) focuses on deep networks with rectifier units and builds equivalent models whose
sharpness can be significantly changed. Andriushchenko et al. (2023) find that sharpness may not
have a strong correlation with generalization for a collection of modern architectures and settings.
Wen et al. (2023) shows that flatness provably implies generalization but there exist non-generalizing
flattest models. Kaur et al. (2023) shows that the maximum eigenvalue of the Hessian can not always
predict generalization even for models obtained via standard training methods. A central reason why
these works consider sharpness to be unreliable is that there exist sharp models with good general-
ization.

Sharpness-Aware Minimization (SAM): As early as 1994, Hochreiter & Schmidhuber (1994)
sought to achieve stronger generalization by identifying flat minima, many recent researches find
that sharpness is correlated with generalization. This investigation inspires multiple methods that
optimize for more flat minima. These algorithms impose penalties based on different criteria, such
as the trace in average case (Jia & Su, 2020) or the worst-case perturbation such as SAM (Foret et al.,
2020) and its variations (Kwon et al., 2021; Zhuang et al., 2022; Du et al., 2022; Kim et al., 2022;
Mi et al., 2022; Li & Giannakis, 2023; Li et al., 2024a). To enhance the generalization, Eigen-SAM
is proposed (Luo et al., 2024) which periodically estimates the top eigenvalue of the Hessian matrix
and incorporates its orthogonal component to the gradient into the perturbation, thereby achiev-
ing a more effective top eigenvalue regularization effect. To obtain parameter-invariant sharpness
measures, a universal class of sharpness is proposed in Tahmasebi et al. (2024).

2 PROBLEM FORMULATION, KEY NOTIONS AND PROPERTIES

Model. Let f(θ,x) be a model with L layers, where θ = {W1,W2, . . . ,WL−1,WL}, and Wl

is the weights of the l-th layer, the vectorization of θ and Wl is θ and wl = vec(Wl) corre-
spondingly. For a given training dataset S = {xi,yi}n, and a twice differentiable loss function
l(f(θ,x),y), the empirical loss is given by L(S,θ) = 1

n

∑n
i=1 l(f(θ,xi),yi). The training and

testing dataset is sampled from the real data distribution D, and the population loss is given by
L(D,θ) = E(x,y)∼D[l(f(θ,x),y)]. The generalization gap is defined as the difference between the
population loss L(D,θ) and the empirical loss L(S,θ).
Having observed only S, the model utilizes L(S,θ) as an estimation of L(D,θ), and solves
minθL(S,θ) using an optimization procedure such as SGD or Adam.

Rényi Entropy. Rényi entropy is a generalization of the classical Shannon entropy, which enjoys the
advantage of increased flexibility by adding one parameter and reduced computational complexity.
The Rényi entropy of a probability vector p = [p1, p2, . . . , pn] is defined as

Hα(p) =
1

1− α
log

n∑
i=1

pαi (1)

for 0 < α < ∞ and α ̸= 1. The Shannon entropy can be seen as a special example when the order
α→ 1.

Two notable properties of Rényi entropy are as follows: 1) Concavity over p : Rényi entropy
is a concave function of the distribution p. A direct implication of this property is that Rényi
entropy takes its maximum when p is uniformly distributed. 2) Monotonic decrease in α : When α
increases, the penalty over the non-uniformity (or unevenness) gets more strict, thus more emphasis
would be on the high probability mass, and vice versa.
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The Rényi entropy can be generalized to the matrix setting. In specific, for a positive definite matrix
H, we can define its Rényi entropy as the normal Rényi entropy of its normalized eigenvalues, i.e.,

Hα(H) =
1

1− α
log

n∑
i=1

(
λi(H)

Tr(H)
)α. (2)

In theory, we typically analyze the Hessian at a (local) minima, and therefore assume the Hessian to
be positive definite. In practice, however, due to imperfect convergence or numerical errors in the
algorithm, some negative eigenvalues may appear. Since these eigenvalues usually have very small
magnitudes, we commonly take their absolute values before performing subsequent computations.

Definition 2.1 (Rényi Sharpness) For a neural network, consider an arbitrary layer within the
model, denote the Hessian matrix of the loss function w.r.t. the layer’s weight as H. The Rényi
sharpness is defined as the negative Rényi entropy of the normalized spectrum of H, i.e., −Hα(H).

Rényi Sharpness has a valuable property, i.e., the reparametrization invariance when the activation
functions are homogeneous or nearly homogeneous. This property turns out to play an important role
in developing the generalization bounds in terms of Rényi Sharpness. A formal statement regarding
this property is as follows:

Proposition 2.2 (Reparameterizaiton (Scaling) Invariance of Rényi Sharpness) Consider a L-
layer feedforward neural network with positively homogeneous activation function σ (i.e., σ(cx) =
cσ(x) for all c > 0), and parameters {W1, . . . ,WL}. Let the network output be f(x) =
WL · σ(WL−1 · · ·σ(W1x)), and let L(θ) denote the loss function, where θ denotes the weights of
arbitrary layer, i.e., Wl. Define the loss Hessian as Hθ = ∇2

θL(θ). Consider a layer-wise scaling
transformation defined by W̃l = clWl, cl > 0, with

∏L
l=1 cl = 1. Let θ̃ = W̃l be the scaled

parameters, and define Hθ̃ as the corresponding Hessian. Then the spectrum-normalized Rényi
entropy of H is invariant:

Hα(Hθ̃) = Hα(Hθ), ∀α > 0, α ̸= 1. (3)

The detailed description about reparameterization invariance and the proof of Proposition 2.2 is
provided in Appendix E. This invariance is valid for the positive homogeneity of the activation
function. In Transformer architectures (e.g., ViTs), although GELU is not strictly homogeneous,
one has GELU(αx)/α ≈ GELU(x) (Andriushchenko et al., 2023), and thus the Rényi sharpness is
approximately invariant in this setting. Note that when the order α→ 1, the Rényi entropy reduces
to the Shannon entropy, which is also invariant under the settings in Proposition 2.2. We also remark
that this invariance only holds for the layerwise sharpness, the connection between global sharpness
and the layerwise one can be found in Appendix F.

3 GENERALIZATIONS BOUNDS WITH RESPECT TO RÉNYI SHARPNESS

In this section, we will provide several generalization bounds in terms of Rényi sharpness, by taking
advantage of the trick of translating the data discrepancy to multiplicative weight perturbation and
the reparameterization invariance of Rényi sharpness.

First of all, we’ll argue that the data perturbation can be translated to the multiplicative weight
perturbation when characterizing the generalization.

Proposition 3.1 (informally) For any ρ > 0, and a training set S draw from the distribution D,
with high probability,

L(D,θ) ≤ EA[L(S(A, ρ),θ)] + C (4)
where S(A, ρ) = {(x + ρAx,y)|(x,y) ∈ S} and A is a orthogonal matrix sampled under Haar
measure, i.e., uniform on O(d).

The more detailed description and proof of Proposition 3.1 can be found in Appendix B. Intuitively,
Theorem 3.1 uses S(A, ρ) to approximate D, treating the discrepancy between D and S as the
perturbation to S. This assumption is essentially akin to the data-separation assumption: data from
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different classes are spatially separated with no inter-class overlap. Under this premise, one can
perturb a sample within its class (i.e., move along the within-class manifold) without affecting other
classes. Note that D and S can also be feature distributions, thus we can also bound the population
loss using the perturbation in the feature space.

The key idea of the perturbation translation is that a multiplicative perturbation in input (feature)
space can be transferred into parameter space. A neural network can be written as a composite
function f = g(Wh(x)), where W is the weight at a given layer, h(x) is the function consisting
of the layers in front of W all the way to the input, and g is the function behind the W all the way
to the output. Let f = g(Wh(x)), if h(x) = x, then W = W1, which is the weights of the first
layer, and the perturbation to h(x) happens in input space, other-wisely happens in feature space.
Consequently,

g(W(h(x) + ρAh(x))) = g(W(I+ ρA)h(x)) = g((W + ρWA)h(x)) (5)

i.e., the perturbation to the h(x) is fully transferred to the parameter W. Thus, the generalization
gap is closely related to the sharpness of a single layer, therefore we can examine the generalization
by studying the sharpness of only a single layer.

Based on the above translation result and motivated by the work of (Jia & Su, 2020), we have the
first generalization bound based on Rényi sharpness as follows (informally stated):

Theorem 3.2 (informally) Let θ∗ ∈ Rn be the parameter of one layer and be an isolated local
minimum of a bounded loss function L(·, ·) ∈ [0, 1], and define a posterior Q concentrated near θ∗

via local loss deviations,i.e., Q has a density q(θ) ∝ e−|L0−L(θ)|, where L(θ) is the loss function
and L0 is the minima loss obtained by the optimization algorithm. Then, for any δ ∈ (0, 1] and
α > 0, α ̸= 1, with probability at least 1− δ over a training set S of size N , we have:

EQ[L(D, θ)] ≤ EQ[L(S, θ)] + 2

√
2L0 + C V 2/n exp

(
− 1

n

[
Hα(H)−A

])
+ log 2N

δ

N − 1
, (6)

where V is the volume of the neighborhood M(θ∗), and A, C are positive constants, H =
∇2

θL(S, θ∗) is the Hessian at θ∗ and Hα(H) is the Rényi entropy of order α of the normalized
eigenvalues of H.

To exhibit a more direct relationship between the population risk and the empirical risk, we provide
another generalization bound as follows:

Theorem 3.3 (informally) Given a loss function L(·, ·) and a layer-wise local minimum θ∗ ∈ Rn.
Let H denote the Hessian of the loss w.r.t. θ∗. Take a prior uniform in a ball that contains the
ellipsoid EH(ρ) = { θ : (θ− θ∗)⊤H(θ− θ∗) ≤ ρ2 }, where ρ is sufficiently small and satisfy ρ > 0.
Take a posterior uniform in EH(ρ). For any δ ∈ (0, 1] and α > 0, α ̸= 1, we have with probability
at least 1− δ over a training set S of size N , we have:

L(D, θ∗) ≤ L(S, θ∗) + n
2(n+2)ρ

2 +O(ε) +

√
− 1

2Hα(H) + log 2
√
N

δ + C

2(N − 1)
. (7)

where C is a positive constant, H = ∇2
θL(S, θ∗) is the Hessian at θ∗ and Hα(H) is the Rényi

entropy of order α of the normalized eigenvalues of H.

The detailed version and proof of Theorem 3.2 and Theorem 3.3 can be found in Appendices C and
D, respectively. Both Theorem 3.2 and Theorem 3.3 indicate that the generalization is bounded by
the Rényi entropy of the Hessian matrix of the loss with respect to the weights.

4 RÉNYI SHARPNESS: ORDER SELECTION & FUNCTIONAL ESTIMATION

In this section, we will discuss the choice of the order parameter α in Rényi sharpness. Furthermore,
we will provide a fast algorithm for estimating the Rényi sharpness.

4.1 ORDER SELECTION IN RÉNYI SHARPNESS

The heavy-tailed spectrum of the Hessian matrix is a ubiquitous feature in deep networks. In this
section, we compute the Hessian spectrum of each layer by PyHessian (Yao et al., 2020), and find
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Figure 1: Hessian spectra [a,b,c]. Two zero-dominant profiles are observed: (a) multi-cluster
and (b,c) uniform. Optimal α vs. Hessian spectral type [d]. Statistics summarizing whether the
empirically optimal α matches the predicted choice under each Hessian spectral type.

that although all the spectra are heavy-tailed, the shapes of the spectrum can be divided into two
categories, which correspond to different choices of α.

We summarize the shape of the spectrum into the following two categories: 1) Zero-dominant,
multi-cluster spectrum and 2) Zero-dominant, uniform spectrum. We selected representative plots
from ResNet18-CIFAR10 to illustrate these two categories, as shown in Fig. 1. The zero-dominant,
multi-cluster spectrum (Fig. 1 (a)) consists of a large number of near zeros (Part 1) and some
large eigenvalues (Part 3), and between these two eigenvalues, there are some eigenvalues (Part2)
that cannot be ignored but are significantly smaller than the large eigenvalues. The zero-dominant,
uniform spectrum (Fig. 1 (b,c)), on the other hand, contains only a large number of near zeros
and some large eigenvalues. The detailed spectrum of each layer across different tasks is pushed to
Appendix K.1, and a similar spectrum can also be found in Sankar et al. (2021).

To capture the multi-cluster nature (Fig. 1 (a)), we note that eigenvalues near zero (Part 1) contribute
less to sharpness and generalization. Therefore, it is important to choose a suitable α that embodies
the differences among the dominant (Part 3) eigenvalues and those small but non-negligible eigen-
values (Part 2). When α > 1, the measure disproportionately amplifies large eigenvalues while
ignoring smaller ones. To better capture the spectrum’s subtle variations, especially on Part 2, it is
preferable to use an order α ∈ (0, 1), which balances sensitivity across both large and small eigen-
values. In practice, we observe that setting α = 0.5 typically yields the most stable and significant
correlation between Rényi sharpness and generalization.

In the case of uniform spectrum (Fig. 1 (b,c)), one part of Part 2 and Part 3 vanish, leaving only a
few dominant ones. Therefore, it becomes crucial to capture the differences among these dominant
eigenvalues. When α ∈ (0, 1), the order tends to suppress these differences, which is undesirable
in this context. Thus, choosing α ≥ 1 is more appropriate, as it captures the contribution of every
eigenvalue and highlights their differences. However, as α approaches 1, practical numerical com-
putation becomes unstable. Balancing theory and practice, α > 1 will be better, and we find that
α = 1.5 performs well and exhibits a strong and robust correlation.

Overall, the key to choosing α is whether the eigenvalues that influence generalization form clusters
whose inter-cluster separation exceeds the clusters’ enlargement. If there is a single cluster, selecting
α > 1 suffices to examine inter-eigenvalue differences. When clusters are widely separated, we
should choose α < 1 to avoid over-emphasizing the larger eigenvalues when α > 1. In practice,
α = 0.5 and α = 1.5 tend to provide robust and consistent results across different datasets and
models. The summary statistics of the average correlations for different values of α can be found in
the Appendix K.4.

We conducted a statistical analysis of the experiments in Section 5, examining whether the value
of α that yields the highest correlation between the layer-wise Rényi sharpness and generalization
is consistent with our prior analysis. We then recorded the number of successful and unsuccessful
matches in 60 models, with a total of 1630 cases: 1451 matches and 179 mismatches, as shown in
Fig. 1 (d). Overall, the empirical findings agree well with our preceding intuitive analysis.

4.2 ESTIMATION OF RÉNYI SHARPNESS

To estimate the Rényi entropy of the Hessian matrix, it would be of prohibitive complexity if we
directly calculate the spectrum of the Hessian matrix, due to the huge size of the matrix. To cir-
cumvent this difficulty, we will reformulate the Rényi entropy as a functional of the trace of matrix

6
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functions and then leverage the stochastic trace estimator (also known as the Hutchinson method)
and stochastic Lanczos quadrature method to greatly reduce the complexity.

Firstly, the Rényi entropy is reformulated as follows:

Hα(H) =
1

1− α
log

n∑
i=1

(
λi

Tr(H)
)α =

1

1− α
log

∑n
i=1 λ

α
i

Tr(H)
α =

1

1− α
log

Tr(Hα)

Tr(H)
α . (8)

Thus the estimation task boils down to calculating the trace of matrix functions Tr(H) and Tr(Hα).

To estimate the trace of matrix functions f(H), the stochastic trace estimator can be leveraged to
greatly reduce the complexity:

Tr(f(H)) = Tr(f(H)I) = Tr(f(H)E[vv⊤]) = E[Tr(f(H)vv⊤)] = E[v⊤f(H)v], (9)

where f is analytic inside a closed interval function, I is the identity matrix, and v is sampled from
a Rademacher distribution.

To economically calculate the expectation of the quadratic form v⊤f(H)v, the Gaussian quadrature
rule can be employed to transform the expectation to an integral. Further, the integral can be com-
puted with the nodes and the weights of the quadrature rule given by the Lanczos algorithm, (Golub
& Strakoš, 1994; Golub & Meurant, 2009; Bai & Golub, 1996; Bai et al., 1996; Golub & Van Loan,
2013; Ubaru et al., 2017) which basically generates an orthonormal basis for the Krylov subspace
such that the matrix can be reduced to tri-diagonal one, hence greatly lower the computational bur-
den. Combined all the above, it constitutes the framework of the stochastic Lanczos quadrature
(SLQ) algorithm (Ubaru et al., 2017), which is exactly the basis of Algorithm 1.

The details for the estimation of Rényi entropy are shown in Algorithm 1.

Algorithm 1 Rényi Entropy Estimation via Stochastic Lanczos Quadrature

Input: Positive definite matrix H of size n × n, Lanczos iterations m, computation iterations l,
order α > 0 and α ̸= 1.
Output: Estimation of Hα(H).
for k = 1, ..., l do

Draw two random vector v1 and gk of size n × 1 from N (0,1) and normalize it, w
′

1 = Hv1,
α1 = w

′⊤
1 v1, w1 = w

′

1 − α1v1;
for i = 2, ...,m do

1). βi = ∥wj−1∥;
2). stop if βi = 0 else vi = wi−1/βj

3). w
′

i = Hvi, αi = w
′⊤
i vi, wi = w

′

i − αivi − βjvi−1;
end for
4). Tk(i, i) = αi, i = 1, . . . ,m, Tk(i, i+ 1) = Tk(i+ 1, i) = βi, i = 1, . . . ,m− 1.
5). Ak = e⊤1 T

α
ke1, Bk = g⊤

k Hgk;
end for
Return: Hα(H) = 1

1−α log
∑l

k=1 Ak

(
∑l

k=1 Bk)α

5 CORRELATION BETWEEN RÉNYI SHARPNESS AND GENERALIZATION

In this section, we estimate the Rényi entropy via Algorithm 1, and validate that Rényi entropy is
strongly correlated with generalization.

5.1 TASK

We evaluate the correlation between Rényi sharpness and generalization on: ResNet18/34 (He et al.,
2016), and Simple Vision Transformer architecture from the vit-pytorch library on CIFAR10
(Krizhevsky & Hinton, 2009), ResNet18/34 on CIFAR100, and ResNet18 on TinyImageNet (Le &
Yang, 2015). We vary the learning rate, optimization algorithm, and the weight decay strength to
generate different local minima, and then estimate the layer-wise and global Rényi sharpness. More
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details can be found in Appendix J. We compare with the classical Hessian-based flatness mea-
sures using the trace of the loss-Hessian, the Fisher-Rao norm(Liang et al., 2019), the PAC-Bayes
flatness measure that performed best in the extensive study of Jiang et al. (2019), the Frobenius
norm of the weights, and the sharpness defined in SAM (Foret et al., 2020) and ASAM (Kwon
et al., 2021). Notably, the sharpness defined in ASAM (Kwon et al., 2021) has been empirically
shown by Andriushchenko et al. (2023), on larger-scale datasets and models, to have little or no
correlation with generalization performance. The definition and detailed implementation of those
measures can be found in Appendix I, and the hyperparameter ρ in SAM and ASAM is searched over
{10−6, 3×10−6, 10−5, 3×10−5, 10−4, 3×10−4, 10−3, 3×10−3, 10−2, 3×10−2, 10−1, 0.3, 1}.
To detect correlation, we follow the previous works by Dziugaite et al. (2020); Jiang et al. (2019);
Kwon et al. (2021); Andriushchenko et al. (2023) and use the Kendall rank correlation coefficient:

τ(x,y) =
2

N(N − 1)

∑
i<j

sign(xi − xj)sign(yi − yj) (10)

where x,y ∈ RN are vectors of generalization gap and sharpness values for N different models.
We follow the approach of Andriushchenko et al. (2023) by comparing sharpness and generalization
within the same model architecture. This contrasts with prior works such as Dziugaite et al. (2020)
and Jiang et al. (2019), which focus on comparisons across models with varying width or depth. We
always evaluate sharpness on the same training points taken without any data augmentations, while
the data augmentation tools are allowed in training.

5.2 CORRELATION BETWEEN RÉNYI SHARPNESS AND GENERALIZATION

After training with a range of hyperparameters, we estimate Rényi sharpness and compute the
Kendall rank correlation between Rényi entropy and the generalization gap (defined as the difference
between training and test loss). We vary α and plot the sharpness that attains the highest correla-
tion coefficient. Fig. 2 reports these correlations on CIFAR-10 with ResNet-18. The “layer 1”
through “all layer” subplots correspond to Rényi sharpness; the remaining subplots show alternative
metrics. As evident in Fig. 2, Rényi sharpness aligns closely with generalization performance and
outperforms the other measures in capturing the generalization gap.
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Figure 2: ResNet18 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure. Rényi sharpness is strongly correlated with generalization than the other measures.

Owing to page limits, we present the remaining tasks in a compact format that aggregates all statis-
tics into a single panel (Fig. 3). As shown in Fig. 3, Rényi sharpness is strongly correlated with
generalization. Full per-task figures in the style of Fig. 2 are provided in the Appendix K.2.

6 REGULARIZATION BY RÉNYI SHARPNESS

In this section, we propose to use Rényi sharpness as a regularizer during training, i.e. the Rényi
Sharpness Aware Minimization algorithm. To reduce the complexity, in practice we will employ an
approximation of the Rényi sharpness.
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Figure 3: Kendall correlations on various tasks. Signed coefficients are mapped to 0–1 (blue =
positive, green = negative). Rényi sharpness shows the strongest correlation with generalization
than other sharpness measures.

6.1 RÉNYI REGULARIZATION AND RÉNYI SHARPNESS AWARE MINIMIZATION (RSAM)

If the original form Rényi sharpness was used for regularizer, it would require multiple cycles of
gradient descent, thus increasing the computational complexity by dozens of times, as compared
with the traditional training method. To reduce the computational burden, we will resort to the
approximations of Rényi sharpness. In specific, following the work by Khan et al. (2018); Kim et al.
(2022), we will employ the gradient magnitude as an approximation of the Hessian matrix:

H ≈ GM =
[
Diag(

1

N

N∑
i=1

∇θl(θ,xi,yi))
]2

(11)

Consequently, the Rényi sharpness can be approximated by

−Hα(H) ≈ −Hα(GM) = − 1

1− α
log

∑
j |gj |2α

(
∑

j g
2
j )

α
(12)

where g is the gradient vector computed by the optimization algorithms, and gj =
1
N

∑N
i=1∇θj l(θ,xi,yi) is the element in g. Thus we can use −sign(1− α)

∑
j |gj |2α

(
∑

j g2
j )

α as the Rényi
regularizer. To avoid the memory usage and compute cost caused by explicitly computing the gra-
dient with computational graph preserved (e.g., create_graph=True in PyTorch), we consider
minimizing the following objective instead:

L(θ + ϵ) = L(θ − ρ · sign(1− α) ·
∑

j |gj |2α

(
∑

j g
2
j )

α+1
g⊤) (13)

Eq. 13 can be expanded as follows:

L(θ+ ϵ) ≈ L(θ)− ρ · sign(1−α) ·
∑

j |gj |2α

(
∑

j g
2
j )

α+1
g⊤g = L(θ)− ρ · sign(1−α) ·

∑
j |gj |2α

(
∑

j g
2
j )

α
(14)

Thus, optimizing Eq. 13 is approximately optimizing the original loss with Rényi regularizer,
namely, Rényi sharpness-aware minimization (RSAM, see Algorithm 2). We observe that penal-
izing a single layer (e.g., the final layer) typically requires extending training for more epochs to
achieve strong generalization, unless multiple layers are optimized concurrently. Given the combi-
natorial cost of tuning layer-specific regularization strengths, we adopt a single global Rényi regu-
larizer applied across all layers. Appendix F establishes that optimizing this global objective implies
optimizing the layer-wise objectives as well.

Moreover, it is observed that incorporating the approximate Hessian matrix and penalizing Rényi
sharpness at the early stages of training introduces substantial instability. To mitigate this effect,
we first train with plain SGD and adapt the warm-up length based on validation accuracy. For easy
tasks, five epochs suffice to attain high accuracy, so the SGD warm-up is capped at five epochs. For
harder tasks such as TinyImageNet, we defer switching to RSAM until the validation Top-1 exceeds
30%, which typically occurs around epoch 20. The discussion and comparison with other related
SAM variants can be found in the Appendix H.
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6.2 COMPARISON BETWEEN RSAM AND OTHER SAM ALGORITHMS

We now apply our sharpness measure as a regularizer to train neural networks. We consider the
image classification tasks involving the CIFAR10/100 and TinyImageNet datasets. Various convolu-
tional neural networks such as ResNet, and WideResNet (Zagoruyko & Komodakis, 2016) are used
for CIFAR10/100 experiments. We also evaluated performance by fine-tuning a ViT-B-16 model
pre-trained on ImageNet for CIFAR-10 and CIFAR-100. We used the checkpoint provided by Py-
Torch’s official repository. For comparison, we consider the sharpness-aware minimization (SAM)
method, the adaptive SAM (ASAM) method, an extension of SAM to involve the scale-invariance,
the Eigen-SAM (Luo et al., 2024) method, which regularizes the top Hessian eigenvalue, the Fisher
SAM (Kim et al., 2022) method which minimize sharpness under the Riemannian metric, and the
Sparse SAM Mi et al. (2022) which mask the sharpness to speed up SAM algorithm. More details
are provided in Appendix J.3.2.
Table 1: Test accuracies (avg. ± standard error) for SGD/SAM/ASAM/Eigen-SAM/FSAM/RSAM.

Dataset Model SGD(%) SAM(%) ASAM(%) Eigen-SAM(%) FSAM(%) SSAM(%) OURS(%)

CIFAR10
ResNet20 92.68±0.25 93.44±0.07 93.62±0.16 93.24±0.20 93.54±0.12 93.44±0.14 93.69±0.12

ResNet56 94.24±0.23 94.96±0.19 95.12±0.08 94.96±0.10 95.17±0.05 95.15±0.12 95.26±0.12

WideResNet-28-10 96.36±0.08 96.95±0.05 96.79±0.10 96.78±0.06 96.96±0.06 96.96±0.04 97.13±0.06

CIFAR100
ResNet20 69.12±0.17 70.53±0.30 70.73±0.14 70.51±0.20 70.57±0.32 70.14±0.16 70.91±0.25

ResNet56 72.60±0.34 74.86±0.23 75.20±0.29 74.80±0.32 74.91±0.21 75.42±0.18 75.71±0.18

WideResNet-28-10 81.47±0.18 83.55±0.14 83.56±0.11 82.81±0.08 83.48±0.14 83.47±0.09 83.67±0.09

TinyImageNet ResNet50 59.62±1.51 60.70±0.70 62.56±0.25 - 61.21±0.64 - 63.33±0.27

Table 2: Test accuracy for fine-tuning ViT-B-16 pretrained on ImageNet-1K on CIFAR-10 and
CIFAR-100.

Dataset Model SGD(%) SAM(%) ASAM(%) FSAM(%) OURS(%)

CIFAR10 ViT-B-16 98.06±0.09 98.50±0.05 98.39±0.05 98.42±0.11 98.59±0.03

CIFAR100 ViT-B-16 88.27±0.15 89.38±0.04 88.78±0.33 89.41±0.11 89.58±0.07

We provide the averages and standard errors of the test accuracies obtained from five runs of each
method in Table 1 and Table 2. As can be seen from the table, one can confirm that the generalization
performance of SGD is significantly improved with our regularizer. Furthermore, our method out-
performs the SAM, ASAM, and Eigen-SAM methods. Although our method outperforms ASAM
overall, the margin is modest on certain tasks. We hypothesize this gap arises because we currently
employ an approximate surrogate of the Rényi sharpness, introduced for computational efficiency.
We expect further improvements if the exact Rényi sharpness can be used as the regularizer (or
if a tighter estimator becomes feasible), and we leave this as a promising direction for future work.
Since we first warm up with plain SGD before switching to RSAM, we did not adjust RSAM’s epoch
budget to equalize total compute across methods; instead, we fixed the total number of epochs. Con-
sequently, given a fixed compute budget, RSAM would be allowed to run more epochs and thus
expected to improve further the performance.

7 CONCLUSION

In this work, we propose a novel measure of sharpness – Rényi sharpness, which is defined as
the negative Rényi entropy of the loss Hessian. By leveraging the reparameterization invariance of
Rényi sharpness and the fact that data perturbations can be absorbed into the weight perturbations,
we develop several generalization bounds based on the Rényi sharpness. Extensive experiments
demonstrate a strong correlation between the Rényi sharpness and generalization. Furthermore,
we propose the Rényi Sharpness-Aware Minimization (RSAM) algorithm, which penalizes Rényi
sharpness during training. Experimental results demonstrate that RSAM outperforms all existing
sharpness-aware minimization methods, across multiple tasks.

Limitations. The generalization bounds in our work relies on homogeneity of the activation func-
tion, which holds for ReLU networks and approximately holds for GELU networks. Extending the
analysis for other activations is a both interesting and important direction. Moreover, our proposed
RSAM algorithm uses an approximation to Rényi sharpness for simplicity, a tighter approximation
or surrogate may further improve generalization.
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A ORGANIZATION OF APPENDIX

The appendix is organized as follows:

• Sec. A: an overview of the organization of the appendix.
• Sec. B: detailed proof of the PAC Bayesian generalization bound under multiplicative

perturbation (Theorem 3.1).
• Sec. C: detailed proof of the PAC Bayesian generalization bound for Rényi entropy moti-

vated by (Jia & Su, 2020) (Theorem 3.2).
• Sec. D: detailed proof of the PAC Bayesian generalization bound for Rényi entropy (The-

orem 3.3).
• Sec. E: detailed proof of the reparameterization invaricance of Rényi entropy (Proposition

2.2).
• Sec. F: detailed proof of optimizing global Rényi regularization implies optimizing layer-

wise Rényi regularization.
• Sec. G: a proof of arbitrary trace rescaling under fixed normalized spectrum.
• Sec. H: detailed discussion and comparison with Rényi sharpness-aware minimization and

some related sharpness-aware minimization variants.
• Sec. I: detailed description and definition of the baseline sharpness measures.
• Sec. J: detailed descriptions of the datasets, models, hyper-parameter choices used in our

experiments, including correlation experiments and the sharpness-aware minimization ex-
periments.

• Sec. K: This section presents the Hessian spectrum which determine the Rényi order choice
and the correlation coefficient under different Rényi order α. The correlation comparison
between the Rényi sharpness and other sharpness measures across multiple tasks is also
included.

• Sec. L: limitations of our assumptions and theoretical results.
• Sec. M: broader impacts statement of this research.
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B PAC BAYESIAN GENERALIZATION BOUND UNDER MULTIPLICATIVE
PERTURBATION

Below, we state a generalization bound based on multiplicative perturbation.

Theorem B.1 For any ρ > 0, and a training set S draw from the distribution D, we assumed
that L(D,θ) ≤ L(D,θ + δ), where δ is the pertubation to the weights, S(A, ρ) = {(x +
ρAx,y)|(x,y) ∈ S} and A is a orthogonal matrix sampled under Haar measure, i.e., uniform
on O(d). With probability 1− ϵ,

L(D,θ) ≤ EA[L(S(A, ρ),θ)] + C

√
log 1

ϵ

2n

The condition L(D,θ) ≤ L(D,θ+δ) means that adding perturbation to weights should not decrease
the test error. This is expected to hold in practice for the final solution but does not necessarily hold
for any θ.

Proof . Based on the Hoeffding’s inequaliy, which is stated as follows:

Theorem B.2 (Hoeffding’s inequaliy) Let U1, . . . , Un beindependent random variables taking
values in an interval [a, b]. Then, for any t ∈ R,

E
[
et

∑n
i=1[EUi−Ui]

]
≤ e

nt2(b−a)2

8 (15)

Let Ui = EA

[
l(f(θ,xi + ρAxi), yi)

]
, thus EUi = EA[L(D(A, ρ))] and 1

n

∑n
i=1 Ui =

EA[L(S(A, ρ))], where D(A, ρ) = {(x + ρAx,y)|(x,y) ∈ D}, S(A, ρ) = {(x +
ρAx,y)|(x,y) ∈ S} and A is a orthogonal matrix sampled under Haar measure, i.e., uniform
on O(d). Consequently, we have

ES

[
etn
[
EA[L(D(A,ρ))]−EA[L(S(A,ρ))]

]]
≤ e

nt2C2

8 (16)

For any s,

PS

(
EA[L(D(A, ρ))]− EA[L(S(A, ρ))] > s

)
(17)

= PS

(
ent
[
EA[L(D(A,ρ))]−EA[L(S(A,ρ))] > ents

)
(18)

≤ ent
[
EA[L(D(A,ρ))]−EA[L(S(A,ρ))]

]
ents

Markov’s inequality (19)

≤ e
nt2C2

8 −nts (20)

Consequently,

PS

(
EA[L(D(A, ρ))] > EA[L(S(A, ρ))] + s

)
≤ e

nt2C2

8 −nts (21)

when t = 4s/C2, nt2C2/8− nts is minimized, thus,

PS

(
EA[L(D(A, ρ))] > EA[L(S(A, ρ))] + s

)
≤ e

−2ns2

C2 (22)

let ϵ = e
−2ns2

C2 , we have

PS

(
EA[L(D(A, ρ))] > EA[L(S(A, ρ))] + C

√
log 1

ϵ

2n

)
≤ ϵ (23)
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consequently,

PS

(
EA[L(D(A, ρ))] ≤ EA[L(S(A, ρ))] + C

√
log 1

ϵ

2n

)
> 1− ϵ (24)

For any multiplicative perturbation, the perturbation in the input space can be fully transformed
into weight space, which means EA[L(D(A, ρ))] = L(D,θ + δ), where δ obeys some unknown
distribution. Consider the assumption that L(D,θ) ≤ L(D,θ + δ), we have

PS

(
L(D,θ) ≤ EA[L(S(A, ρ))] + C

√
log 1

ϵ

2n

)
≥ 1− ϵ (25)

Discussion: The idea about multiplicative perturbation under haar measure is also reported in Pet-
zka et al. (2021), whose sharpness is define by the Hessian matrix of the loss function w.r.t a full
connect layer’s weights, but their follow-up results need to split the Hessian matrix into multiple
blocks and compute the corresponding traces individually, which proposes a huge computation bur-
den when dealing with a big layer, thus they only compute the sharpness of last layer in small model.
Contrary to deriving a bound via multiplicative perturbations like Petzka et al. (2021), this section
aims to show that the dependency between the real and empirical data distributions can be trans-
formed to a weight perturbation of an individual layer, enabling the application of Theorem 3.2 and
3.3 to study the corresponding layer-wise spectrum. Unlike the global spectrum, the layer-wise spec-
trum is more likely to be invariant under reparameterization. In Section 4, we prove the invariance
of the Rényi entropy in Theorem 3.2 and 3.3. Since the invariance conditions for the normalized
global spectrum are much more restrictive, Theorem 3.2 and 3.3 only apply to the layer-wise Rényi
entropy. Nevertheless, in Section 5 we empirically observe that the Rényi entropy of the global
spectrum is still correlated with generalization. We attribute this phenomenon to the fact that the
global spectrum is composed of the layer-wise spectra; hence, when the layer-wise spectra exhibit
strong correlations, the global spectrum also demonstrates significant correlations.

Corollary B.3 For any ρ > 0, and a training set S draw from the distribution D, we as-
sumed that L(D,θ) ≤ L(D,θ + δ), where θ is the pertubation to the weights, S(A, ρ) =
{(x + ρAx,y)|(x,y) ∈ S} and A is a orthogonal matrix sampled under Haar measure, i.e.,
uniform on O(d). With probability 1− ϵ, we have

L(D,θ) ≤ EA[L(S(A, ρ),θ)] + C

√
log 1

ϵ

2n
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C PAC BAYESIAN GENERALIZATION BOUND FOR RÉNYI ENTROPY
MOTIVATED BY (JIA & SU, 2020)

In this section, we will propose a generalization bound based on the Rényi entropy of the Hessian
spectrum of the loss function with respect to the weights.

Proposition C.1 Given a training set S with size N draw from the data distribution D and a loss
function L(·, ·) ∈ [0, 1], a layer-wise local minimum θ∗ ∈ Rn is isolated and unique in its neigh-
borhoodM(θ∗) whose volume V is sufficiently small, pick a uniform prior P over θ ∈ M(θ∗) and
pick the posterior Q of density q(θ) ∝ e−|L0−L(S,θ)| with L0 = L(S, θ∗). For any δ ∈ (0, 1] and
α > 0, α ̸= 1, we have with probability at least 1− δ that:

EQ[L(D, θ)] ≤ EQ[L(S, θ)] + 2

√
2L0 + 2A+ log 2N

δ

N − 1
(26)

whereA = 1
4πenV

2
nπ

1
n exp{−Hα(H)+A

n }, and A > 0 is the constant item. H is the Hessian matrix
of loss function w.r.t. θ∗.

Proof . Using PAC-Bayesian generalization bound proved by (Jia & Su, 2020):

Theorem C.2 Given a training set S with size N draw from the data distribution D and a loss
function L(·, ·) ∈ [0, 1], a local minimum θ∗ ∈ Rn is isolated and unique in its neighborhood
M(θ∗) whose volume V is sufficiently small, pick a uniform prior P over θ ∈ M(θ∗) and pick the
posterior Q of density q(θ) ∝ e−|L0−L(S,θ)| with L0 = L(S, θ∗). For any δ ∈ (0, 1], we have with
probability at least 1− δ that:

EQ[L(D, θ)] ≤ EQ[L(S, θ)] + 2

√
2L0 + 2A+ log 2N

δ

N − 1
(27)

where A = 1
4πenV

2
nπ

1
n exp{ log|H|

n }, and H is the Hessian matrix of loss function w.r.t. θ∗.

Next, we will utilize the Rényi entropy to bound the log|H| term.

log|H| =
n∑

i=1

logλi (28)

=

n∑
i=1

log(Tr(H)
λi

Tr(H)
) (29)

= nlogTr(H) +

n∑
i=1

log
λi

Tr(H)
(30)

let pi = λi

Tr(H) , we have for α > 1

n∑
i=1

logpi ≤
n∑

i=1

pilogpi (31)

= −H1(p) (32)
≤ −Hα(p) monotonicity of Rényi entropy (33)

consequently,
n∑

i=1

log
λi

Tr(H)
≤ −Hα(H) (34)

Thus for α > 1, 1− α < 0, larger entropy means a smaller
∑n

i=1 log
λi

Tr(H) .

When 0 < α < 1, considering Jensen’s inequality, we have

1

n

n∑
i=1

pαi ≤
( 1
n

n∑
i=1

pi

)α
=
( 1
n

)α
, (35)
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Thus,
n∑

i=1

pαi ≤ n 1−α. (36)

Using the AM-GM inequality, we will get( n∏
i=1

pi

)1/n
≤ 1

n

n∑
i=1

pi =
1

n
(37)

consequently,
n∏

i=1

pi ≤ n−n. (38)

Combining equation 36 and equation 38, we have( n∏
i=1

pi

)( n∑
i=1

pαi

)1/(1−α)

≤ n−n
(
n 1−α

)1/(1−α)
= n 1−n ≤ 1. (39)

Thus we have
n∑

i=1

log pi +
1

1− α
log
( n∑

i=1

pαi

)
≤ 0 ⇐⇒

n∑
i=1

log pi ≤ −Hα(p). (40)

consequently,
n∑

i=1

log
λi

Tr(H)
≤ −Hα(H) (41)

Combine Eq.41, Eq.34, we have for all α > 0, α ̸= 1,
n∑

i=1

log
λi

Tr(H)
≤ −Hα(H) (42)

Now we apply Eq.42 to Eq.30 and Eq.27:

EQ[L(D, θ)] ≤ EQ[L(S, θ)] + 2

√
2L0 + 2A+ log 2N

δ

N − 1
(43)

where A = 1
4πenV

2
nπ

1
n exp{nlogTr(H)−Hα(H)

n }, and H is the Hessian matrix of loss function w.r.t.
θ∗.

We decompose the bound as

Gen(fθ) ≤ g(A(θ) +B(θ) + C), A(θ) = Tr
(
Hθ

)
, (44)

where A(θ) is parameterization-dependent while B(θ) is reparameterization-invariant and C is the
constant. Let [θ] = {Sθ : S ∈ G} denote the reparameterization equivalence class that leaves
the predictor fθ unchanged (e.g., reparameterization induced by homogeneous activation function).
Since A(θ) is not invariant and can be arbitrarily altered within [θ], thus it is not an identifiable
property of fθ.

To remove this ambiguity, we define a canonical projection Π : [θ]→ [θ] that selects, for every θ, a
representative θ⋆ = Π(θ) ∈ [θ] satisfying

A(θ⋆) = A0, (45)

where A0 is a constant independent of the underlying function f . Because B is invariant under
reparameterization, we have B(θ⋆) = B(θ) =: B(f). Therefore, for every function f ,

Gen(f) = Gen
(
fθ⋆

)
≤ g(A(θ⋆) +B(θ⋆)) = g(A0 +B(f)). (46)

Hence, up to an additive constant A0 determined by the canonical projection, generalization is
governed by the reparameterization-invariant term B. Accordingly, we absorb the trace term into
the constant A, and obtain A = 1

4πenV
2
nπ

1
n exp{−Hα(H)+A

n }. The reparameterization invariance
of the Rényi entropy is proved in Appendix E.
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Corollary C.3 Given a training set S with size N draw from the data distribution D and a loss
function L(·, ·) ∈ [0, 1], a layer-wise local minimum θ∗ ∈ Rn is isolated and unique in its neigh-
borhoodM(θ∗) whose volume V is sufficiently small, pick a uniform prior P over θ ∈ M(θ∗) and
pick the posterior Q of density q(θ) ∝ e−|L0−L(S,θ)| with L0 = L(S, θ∗). For any δ ∈ (0, 1] and
α > 0, α ̸= 1, we have with probability at least 1− δ that:

EQ[L(D, θ)] ≤ EQ[L(S, θ)] + 2

√
2L0 + 2A+ log 2N

δ

N − 1
(47)

whereA = 1
4πenV

2
nπ

1
n exp{−Hα(H)+A

n }, and A > 0 is the constant item. H is the Hessian matrix
of loss function w.r.t. θ∗.
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D PAC BAYESIAN GENERALIZATION BOUND FOR RÉNYI ENTROPY

Theorem D.1 Given a training set S with N samples draw from the data distribution D and a loss
function L(·, ·), a layer-wise local minimum θ∗ ∈ Rn. We assumed that L(D, θ∗) ≤ L(D, θ∗ + ϵ),
where ϵ is the pertubation to the weights. Consider a prior uniform in a ball which contains the
ellipsoid that satisfy { θ : (θ − θ∗)⊤H(θ − θ∗) ≤ ρ2 }. Take the posterior uniform on this ellipsoid.
For any δ ∈ (0, 1] and α > 0, α ̸= 1, we have with probability at least 1− δ that:

L(D, θ∗) ≤ L(S, θ∗) + n
2(n+2)ρ

2 +O(ε) +

√
− 1

2Hα(H) + log 2
√
N

δ + C

2(N − 1)
. (48)

Where A > 0 is the constant term. The condition L(D, θ∗) ≤ L(D, θ∗ + ϵ) means that adding
perturbation to weights should not decrease the test error. This is expected to hold in practice for the
final solution but does not necessarily hold for any θ.

Proof.

We recall the standard PAC-Bayes bound (e.g. McAllester (2003)): for any prior P independent of
the data, with probability at least 1− δ over the draw of the sample S of size N , for any posterior Q
we have

Eθ∼Q[L(θ)] ≤ Eθ∼Q[L̂S(θ)] +

√
DKL(Q∥P ) + log 2

√
N

δ

2(N − 1)
. (49)

Suppose θ∗ is a local minimum and in a sufficiently small neighborhood we have the quadratic
approximation

L̂S(θ) = L̂0 +
1
2 (θ − θ∗)⊤H(θ − θ∗) +R3(θ), |R3(θ)| ≤ ε, (50)

with Hessian H ≻ 0. We now consider two different posterior distributions Q, both paired with a
uniform prior P .

Fix ρ > 0 independent of H. Define the ellipsoid

EH(ρ) = { θ : (θ − θ∗)⊤H(θ − θ∗) ≤ ρ2 }.

We take Q = Unif(EH(ρ)) and the prior P = Unif(BR), the uniform distribution over a large
Euclidean ball BR containing all such ellipsoids.

Step 1. Empirical risk under Q. With the change of variables y = H1/2(θ − θ∗), Q becomes
uniform on the ball Bn(ρ). Then

Eθ∼Q[(θ − θ∗)⊤H(θ − θ∗)] = E∥y∥2 =

∫ ρ

0

r2fR(r) dr =

∫ ρ

0

r2 · n rn−1

ρn
dr =

n

n+ 2
ρ2.

Thus
Eθ∼Q[L̂S(θ)] = L̂0 +

1
2

n
n+2ρ

2 +O(ε),

which is a constant independent of H.

Step 2. KL divergence. The KL between uniform distributions is a log-volume ratio:

DKL(Q∥P ) = log
Vol(BR)

Vol(EH(ρ))
.

The ellipsoid volume is

Vol(EH(ρ)) = Vol(Bn(1)) ρ
n (detH)−1/2.

Hence
DKL(Q∥P ) = logVol(BR)− log Vol(Bn(1))− n log ρ︸ ︷︷ ︸

constant

+ 1
2 log detH.
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Step 3. Bound. Plugging into equation 49 gives

Eθ∼Q[L(θ)] ≤ L̂0 +
n

2(n+2)ρ
2 +O(ε) +

√
1
2 log detH+ log 2

√
N

δ + constant
2(N − 1)

.

Thus the only dependence on H is through 1
2 log detH .

The PAC-Bayes upper bound under quadratic approximation has the form

Eθ∼Q[L(θ)] ≤ constant + f
(
1
2 log detH

)
where f(·) is the complexity term of the chosen PAC-Bayes bound. Thus the only dependence
on the curvature H comes from log detH; all trace-type terms are absorbed into constants. Take
Taylor expansion at θ∗, we assume that L(D,θ) ≤ L(D,θ + δ), which means adding perturbation
to weights should not decrease the test error, thus we have

L(θ) ≤ L̂S(θ) + constant + f
(
1
2 log detH

)
Recall Eq.30, Eq. 42, and that Rényi entropy is reparameterization invariant, follow the poof in
Appendix C, we have

L(θ) ≤ L̂S(θ) + constant 1 + f(constant 2−Hα(H))

Corollary D.2 Given a training set S with N samples draw from the data distribution D and a loss
function L(·, ·), a layer-wise local minimum θ∗ ∈ Rn. We assumed that L(D, θ∗) ≤ L(D, θ∗ + ϵ),
where ϵ is the pertubation to the weights. Consider a prior uniform in a ball which contains the
ellipsoid that satisfy { θ : (θ − θ∗)⊤H(θ − θ∗) ≤ ρ2 }. Take the posterior uniform on this ellipsoid.
For any δ ∈ (0, 1] and α > 0, α ̸= 1, we have with probability at least 1− δ that:

L(D, θ∗) ≤ L(S, θ∗) + n
2(n+2)ρ

2 +O(ε) +

√
− 1

2Hα(H) + log 2
√
N

δ + C

2(N − 1)
. (51)
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E REPARAMETERIZATION (SCALING) INVARIANCE OF RÉNYI ENTROPY

Neural networks that use activation functions like ReLU or leaky ReLU exhibit reparametrization-
invariant properties. Specifically, when scaling each layer’s weights by a positive constant, the
overall function computed by the network remains unchanged as long as the product of all scaling
factors equals one.

For example, consider a network defined as

f(x; {W1, . . . ,WL}) = WL · ReLU(WL−1 · · ·ReLU(W1x)),

where Wl ∈ Rdl×dl−1 . If each weight matrix Wl is scaled by a positive constant sl > 0, and the
scaling factors satisfy

∏L
l=1 sl = 1, then the output of the network remains unchanged for any input

x. The sharpness defined by Rényi entropy is invariant under this scaling trick:

Proposition E.1 Consider a L-layer feedforward neural network with positively homogeneous ac-
tivation function σ (i.e., σ(cx) = cσ(x) for all c > 0), and parameters {W1, . . . ,WL}. Let the
network output be f(x) = WL·σ(WL−1 · · ·σ(W1x)), and letL(θ) denote the loss function, where
θ denotes the weights of arbitrary layer, i.e., Wl. Define the loss Hessian as Hθ = ∇2

θL(θ). Con-
sider a layer-wise scaling transformation defined by W̃l = clWl, cl > 0, with

∏L
l=1 cl = 1.

Let θ̃ = W̃l be the scaled parameters, and define Hθ̃ as the corresponding Hessian. Then the
spectrum-normalized Rényi entropy of H is invariant:

Hα(Hθ̃) = Hα(Hθ), ∀α > 0, α ̸= 1. (52)

Proof.

The network function f(x) remains unchanged under the layer-wise scaling due to the positive
homogeneity of the activation since

∏
cl = 1. Consequently, the loss L(θ) is invariant:

L(θ̃) = L(θ). (53)

Thus, the spectrum of H(θ̃) will undergo a scaling transformation:

Hθ̃ = c2l ·Hθ, (54)

This implies that the eigenvalues {λ̃i} of Hθ̃ satisfy:

λ̃i =
1

c2l
λi (55)

Then the normalized spectrum satisfies:

p̃i =
λ̃i∑
j λ̃j

=

1
c2l
λi

1
c2l

∑
j λj

=
λi∑
j λj

= pi, (56)

so the Rényi entropy remains unchanged:

Hα(Hθ̃) =
1

1− α
log

(∑
i

p̃αi

)
=

1

1− α
log

(∑
i

pαi

)
= Hα(Hθ). (57)

Corollary E.2 Consider a L-layer feedforward neural network with positively homogeneous ac-
tivation function σ (i.e., σ(cx) = cσ(x) for all c > 0), and parameters {W1, . . . ,WL}. Let the
network output be f(x) = WL·σ(WL−1 · · ·σ(W1x)), and letL(θ) denote the loss function, where
θ denotes the weights of arbitrary layer, i.e., Wl. Define the loss Hessian as Hθ = ∇2

θL(θ). Con-
sider a layer-wise scaling transformation defined by W̃l = clWl, cl > 0, with

∏L
l=1 cl = 1.

Let θ̃ = W̃l be the scaled parameters, and define Hθ̃ as the corresponding Hessian. Then the
spectrum-normalized Rényi entropy of H is invariant:

Hα(Hθ̃) = Hα(Hθ), ∀α > 0, α ̸= 1. (58)
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Discussion The reparameterization invariance is indeed a scale invariance, as the Rényi entropy
of the Hessian matrix is not invariant under non-linear reparameterization. We regard reparame-
terization invariance as a necessary, but not sufficient, requirement for studying correlations with
generalization. For a given minimum, there typically exists a large family of functionally equivalent
parameterizations (obtained via reparameterization), and optimization may converge to any element
of this family. To obtain a stable and comparable metric, it is therefore natural to seek quantities
that are invariant within this equivalence class, which motivates the necessity of reparameterization
invariance.

However, reparameterization invariance by itself does not guarantee a strong correlation with gen-
eralization. There are many possible invariant candidates, and they differ substantially in how sen-
sitively they capture spectral structure. As a result, their empirical association with generalization
can vary, even though they all satisfy the same invariance requirement.
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F CONNECTION BETWEEN GLOBAL AND LOCAL RÉNYI SHARPNESS
REGULARIZATION

Proposition F.1 Minimizing the global negative Rényi entropy with order α > 1 is equivalent, in the
block-diagonal case, to making each layer’s spectrum uniform and balancing trace per dimension
across layers. This configuration simultaneously minimizes the layerwise negative Rényi entropy for
all orders α > 0, including α < 1. With small cross-layer couplings, the same conclusion holds
up to a perturbation of order ∥E∥F /T , where T is the trace of the global Hessian matrix, and E is
the difference between the Hessian matrix and the diagonal Hessian matrix. Considering that layer-
wise trace can be adjusted without performance degradation, thus balancing trace per dimension
across layers doesn’t change the loss. Consequently, optimizing the global negative Rényi entropy
is indeed optimizing the layer-wise negative Rényi entropy, i.e. layer-wise Rényi sharpness.

Proof.

Setup. Let H ∈ Rd×d be the (symmetric) Hessian at a candidate minimizer; we first treat H ⪰ 0
and discuss standard relaxations in Remark F.7. Denote the eigenvalues by

λ1(H) ≥ · · · ≥ λd(H) ≥ 0, T := Tr(H) > 0.

Define the normalized spectrum pi(H) := λi(H)/T so that
∑d

i=1 pi(H) = 1. For α > 1 define

R̃α(H) :=

d∑
i=1

(
pi(H)

)α
, −Hα(H) :=

1

α− 1
log R̃α(H). (59)

Since x 7→ log x is strictly increasing, minimizing−Hα(H) is equivalent to minimizing R̃α(H) for
any fixed α ̸= 1 (monotone transform).

Assume the network parameters are partitioned into L layers with dimensions d1, . . . , dL (so∑
ℓ dℓ = d). Let Hℓℓ ∈ Rdℓ×dℓ be the principal block associated with layer ℓ, with eigenvalues

λ1(Hℓℓ) ≥ · · · ≥ λdℓ
(Hℓℓ) ≥ 0 and trace Tℓ := Tr(H)ℓℓ > 0. Write

wℓ :=
Tℓ

T
∈ (0, 1),

L∑
ℓ=1

wℓ = 1, σα(Hℓℓ) :=

dℓ∑
i=1

(λi(Hℓℓ)

Tℓ

)α
.

EXACT FACTORIZATION UNDER BLOCK-DIAGONALITY

Lemma F.2 (Exact decomposition) If H is block diagonal with blocks H11, . . . ,HLL, then for
any α > 0,

R̃α(H) =

L∑
ℓ=1

wα
ℓ σα(Hℓℓ). (60)

proof. The spectrum of a block-diagonal matrix is the disjoint union of the spectra of its blocks.
Since pi(H) = λi(H)/T and T =

∑
ℓ Tℓ, we compute

d∑
i=1

(λi(H)

T

)α
=

L∑
ℓ=1

dℓ∑
i=1

(λi(Hℓℓ)

T

)α
=

L∑
ℓ=1

(Tℓ

T

)α dℓ∑
i=1

(λi(Hℓℓ)

Tℓ

)α
.

Lemma F.3 (Power-sum bounds within a layer) Fix ℓ and set xi := λi(Hℓℓ)/Tℓ so that xi ≥ 0

and
∑dℓ

i=1 xi = 1. Then:

1. If α > 1 (convex power), σα(Hℓℓ) =
∑
i

xα
i ≥ d 1−α

ℓ , with equality iff xi ≡ 1/dℓ

(uniform spectrum inside the block).

2. If 0 < β < 1 (concave power),
∑
i

xβ
i ≤ d 1−β

ℓ , with equality iff xi ≡ 1/dℓ.
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Both follow from Jensen’s inequality (or Karamata’s inequality) under the linear constraint
∑

i xi =
1.

Theorem F.4 (Global optimum under block-diagonality for α > 1) Assume H =
blk_diag(H11, . . . ,HLL) and α > 1. Then

R̃α(H) =

L∑
ℓ=1

wα
ℓ σα(Hℓℓ) ≥

L∑
ℓ=1

wα
ℓ d 1−α

ℓ ≥ d 1−α, (61)

and the following are equivalent:

1. R̃α(H) attains its global minimum d 1−α.

2. (Layerwise uniformity) For each ℓ, the normalized spectrum inside Hℓℓ is uniform:
λi(Hℓℓ)/Tℓ ≡ 1/dℓ.

3. (Trace-per-dimension balancing) The layer traces satisfy wℓ =
dℓ

d , i.e. Tℓ

dℓ
is constant across

layers (equal average curvature per parameter).

proof. The first inequality in equation 61 follows from Lemma F.3(1) applied to each σα(Hℓℓ).
Hence

R̃α(H) ≥
L∑

ℓ=1

aℓ w
α
ℓ , aℓ := d 1−α

ℓ > 0.

For fixed positive coefficients aℓ and α > 1, the function f(w) :=
∑

ℓ aℓw
α
ℓ is strictly convex on the

simplex {w ≥ 0,
∑

ℓ wℓ = 1} and has a unique minimizer characterized by the KKT conditions:

αaℓw
α−1
ℓ = λ ⇒ wℓ ∝ a

−1/(α−1)
ℓ = (d 1−α

ℓ )−1/(α−1) = dℓ.

Normalizing gives wℓ = dℓ/d. Substituting this and the layerwise lower bounds σα(Hℓℓ) ≥ d1−α
ℓ

into equation 60 yields

R̃α(H) ≥
L∑

ℓ=1

(dℓ
d

)α
d 1−α
ℓ =

1

dα

L∑
ℓ=1

dℓ = d 1−α.

Equality throughout holds iff (i) each σα(Hℓℓ) attains its lower bound, i.e. the layer spectra are
uniform, and (ii) wℓ = dℓ/d. This proves both necessity and sufficiency and the equivalences
claimed.

Corollary F.5 (Simultaneous layerwise optimality for all orders β > 0, β ̸= 1) Under the con-
ditions of Theorem F.4, if the global minimum is attained (equivalently: each block has uniform
normalized spectrum and wℓ = dℓ/d), then for every order β > 0,

the quantity −Hβ(Hℓℓ) =
1

β − 1
log

dℓ∑
i=1

(λi(Hℓℓ)

Tℓ

)β
is minimized (for all ℓ).

In particular, the same configuration minimizes the layerwise negative Rényi entropy for β > 1 and
for 0 < β < 1.

proof. For β > 1, Lemma F.3(1) shows that the uniform layer spectrum uniquely minimizes
∑

i x
β
i

subject to
∑

i xi = 1; since the logarithm and the factor (β − 1)−1 > 0 are monotone, it also
minimizes −Hβ . For 0 < β < 1, Lemma F.3(2) shows that the uniform layer spectrum uniquely
maximizes

∑
i x

β
i ; because (β − 1)−1 < 0, this again minimizes −Hβ . The claim holds for each

layer ℓ.

STABILITY UNDER CROSS-LAYER COUPLINGS

Real Hessians may not be exactly block diagonal. Write

B := blk_diag(H11, . . . ,HLL), E := H−B.

Note that Tr(E) = 0 (off-diagonal blocks contribute zero trace), hence Tr(H) = Tr(B) = T .
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Proposition F.6 (Perturbation bound for α > 1) Let α > 1 and set Λ∗ :=
max{λmax(H), λmax(B)}. Then∣∣R̃α(H)− R̃α(B)

∣∣ ≤ α
(Λ∗

T

)α−1
√
d ∥E∥F
T

. (62)

Consequently, if ∥E∥F /T is small, minimizing R̃α(H) is optimization-equivalent up to O(∥E∥F /T )
to minimizing R̃α(B), which by Theorem F.4 drives each layer toward its uniform spectrum (and
hence decreases all layerwise −Hβ , β > 0, simultaneously).

proof. Let {λi} and {µi} be the eigenvalues of H and B sorted in nonincreasing order. By the
Hoffman–Wielandt inequality,

∑d
i=1(λi − µi)

2 ≤ ∥E∥2F . For α > 1, the function ϕ(x) = xα has
derivative bounded on [0,Λ∗] by αΛα−1

∗ . Hence by the mean value theorem and Cauchy–Schwarz,∣∣∣∑
i

λα
i −

∑
i

µα
i

∣∣∣ ≤ αΛα−1
∗

∑
i

|λi − µi| ≤ αΛα−1
∗
√
d ∥E∥F .

Since Tr(H) = Tr(B) = T , dividing both sides by Tα yields equation 62.

REMARK (ORDER-ROBUSTNESS FOR 0 < α < 1).

Recall the decomposition R̃α(H) =
∑L

ℓ=1 w
α
ℓ σα(Hℓℓ). Passing from α > 1 to 0 < α < 1

only changes the curvature of R̃α(H) and σα(Hℓℓ) (from convex to concave) and flips the outer
optimization direction (since 1

1−α changes sign), but it does not change the location of the optimizer.

Consequently, in the block-diagonal setting, minimizing the global negative Rényi entropy−Hα(H)
for any order α > 0, α ̸= 1 is equivalent to making each layer’s spectrum uniform and bal-
ancing trace per dimension across layers; this configuration simultaneously minimizes the layer-
wise negative Rényi entropy for all β > 0 (including β < 1). With small cross-layer couplings
H = blk_diag(H11, . . . ,HLL) + E, the same conclusion holds up to a perturbation of order
O(∥E∥F /Tr(H)) by continuity of Hα in total variation.

Remark F.7 (PSD reduction and alternatives) If H is indefinite, one may work with |H| (absolute
value via spectral decomposition), with a Gauss–Newton/Fisher approximation, or with a shifted
PSD proxy (e.g. H + γI with γ > 0), apply the above results verbatim to the PSD object, and then
track the dependence on the chosen proxy. The normalized formulation equation 59 is unchanged
as long as the trace T > 0.
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G ARBITRARY TRACE RESCALING UNDER FIXED NORMALIZED SPECTRUM

In this appendix, we study how the Hessian trace behaves under linear reparameterizations, and
in particular under those that preserve the spectral shape (normalized eigenvalue distribution) of
the Hessian. We show that, for each individual model, such reparameterizations give a continuous
family of possible scalings of the Hessian trace. For a finite collection of models, this leads to an
explicit infinite feasibility condition under which all Hessian traces can be aligned to a common
value while preserving spectral shape.

Let w ∈ Rn denote the parameter vector of a given (layer of a) model, and let H ∈ Rn×n be
the corresponding Hessian at a local minimum. Throughout this subsection, we assume that H is
symmetric positive definite.

We consider linear reparameterizations of the form

w = Aθ, A ∈ Rn×n invertible, (63)

and define the reparameterized loss by L(θ) := L(Aθ). By the chain rule, the Hessian in θ–
coordinates is

Hθ := ∇2
θL(θ) = A⊤HA. (64)

The corresponding parameter vector is
θ = A−1w. (65)

We are particularly interested in reparameterizations that preserve the spectral shape of the Hessian,
i.e. that only rescale all eigenvalues by a common positive factor.

Lemma G.1 (Spectral-shape–preserving reparameterizations) Let H ≻ 0. For any scalar d > 0
and any orthogonal matrix Q ∈ Rn×n (Q⊤Q = I), define

A(d,Q) := H−1/2 (dQ)H1/2. (66)

Then the corresponding reparameterized Hessian Hθ = A(d,Q)⊤HA(d,Q) satisfies

Hθ = d2H. (67)

In particular, the eigenvalues of Hθ are {d2λi(H)}i, so the normalized spectrum
{λi(Hθ)/Tr(Hθ)}i coincides with that of H .

Proof. A direct computation yields

Hθ = A(d,Q)⊤HA(d,Q)

=
(
H1/2Q⊤dH−1/2

)
H
(
H−1/2dQH1/2

)
= d2 H1/2Q⊤H−1/2HH−1/2QH1/2

= d2 H1/2Q⊤QH1/2 = d2H.

Thus all eigenvalues are scaled by d2, and the normalized eigenvalue distribution is unchanged.

We next study the effect of equation 66 on the parameter norm. Let

u := H1/2w, r := ∥u∥2 > 0. (68)

For A = A(d,Q) as in Lemma G.1, we have

θ = A−1w =
(
H−1/2(dQ)H1/2

)−1
w =

1

d
H−1/2Q⊤H1/2w

=
1

d
H−1/2Q⊤u. (69)

Let Tr(H) denote the original trace. Under the reparameterization with factor d2 we have

Tr(Hθ) = d2Tr(H). (70)
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As d ∈ R, we can adjust the trace of the Hessian matrix to an arbitrarily prescribed value while
keeping the normalized eigenvalue spectrum completely unchanged.

Since our sharpness measure is defined in terms of the normalized spectrum (e.g. via the Rényi en-
tropy of {λi(H)/Tr(H)}i), the global scale of the trace is factored out by design. Combining this
observation with the reparameterization freedom described above, we conclude that scale-dependent
quantities such as the raw trace Tr(H) do not carry reparameterization-robust geometric informa-
tion. What remains intrinsic is precisely the shape of the Hessian spectrum, which we quantify via
its Rényi entropy.
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H ON THE DISCUSSION OF SAM VARIANTS

In this section, we discuss several sharpness-aware minimization variants and compare them with
Rényi sharpness-aware minimization (RSAM). We focus on closely related methods, including the
original SAM (Foret et al., 2020), Sparse SAM (Mi et al., 2022), Eigen SAM (Luo et al., 2024),
Tilted SAM (Li et al., 2024b), Frobenius SAM (Tahmasebi et al., 2024), and Fisher SAM (Kim
et al., 2022).

Vanilla SAM has been shown to implicitly minimize the largest eigenvalue of the training loss Hes-
sian (Wen et al., 2023), and Sparse SAM, which accelerates SAM by explicitly masking part of the
updates, essentially targets the same quantity. Eigen SAM directly penalizes the largest eigenvalue
in its minimization step. Tilted SAM samples noise in multiple directions to perturb the weights
and penalizes the sum of the exponentiated perturbed losses over these noise samples. Intuitively,
the exponential transform amplifies the sharpest directions of the loss landscape, so it imposes a
stronger penalty along these directions. From this perspective, Tilted SAM can be viewed as ef-
fectively penalizing the largest (or relatively large) eigenvalues of the Hessian. Frobenius SAM
penalizes the Frobenius norm of the Hessian matrix; if we normalize this norm by the squared trace,
the resulting quantity becomes essentially a monotone function of the order-2 Rényi entropy. Fisher
SAM minimizes the same type of robust objective as SAM, but with the neighborhood defined by
a Riemannian metric induced by the Fisher information; this is equivalent to penalizing the largest
eigenvalue of the Hessian with respect to the Fisher metric.

Overall, these methods regularize some spectral function of the Hessian eigenvalues. Whether one
penalizes the largest eigenvalue or minimizes the Frobenius norm of the Hessian, the implicit goal
is to encourage the eigenvalues to move closer to each other; for example, reducing the largest
eigenvalue typically decreases the overall spread of the spectrum.

In contrast, Rényi sharpness explicitly focuses on the dispersion of the normalized eigenvalues.
Modern deep models usually enjoy certain reparameterization invariances, so we can rescale the
overall magnitude of the Hessian without changing the model’s behavior. Consequently, if the regu-
larizer depends only on the unnormalized eigenvalues (such as the spectral norm or a generic spec-
tral function), then shrinking the global scale of the Hessian will always reduce the regularization
term, even when the model performance and the relative shape of the spectrum remain unchanged.
Therefore, minimizing such penalties alone does not guarantee that the eigenvalues become more
uniformly distributed.
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I SHARPNESS MEASURES

In this section, we give a detailed introduction to the sharpness measure we use. The content of this
section refers to Jiang et al. (2019) and the original works corresponding to these measures.

I.1 NORM BASED MEASURES

Several generalization bounds have been proved for neural networks using margin and norm no-
tions. In this section, we go over several such measures. For fully connected networks, Bartlett &
Mendelson (2002) have shown a bound based on product of ℓ1,∞ norm of the layer weights times
a 2d factor where ℓ1,∞ is the maximum over hidden units of the ℓ2 norm of the incoming weights
to the hidden unit. Neyshabur et al. (2015) proved a bound based on product of Frobenius norms of
the layer weights times a 2d factor and Golowich et al. (2017) was able to improve the factor to

√
d.

Bartlett et al. (2017) proved a bound based on product of spectral norm of the layer weights times
sum over layers of ratio of Frobenius norm to spectral norm of the layer weights and Neyshabur et al.
(2018a) showed a similar bound can be achieved in a simpler way using PAC-bayesian framework.

Spectral Norm Unfortunately, none of the above founds are directly applicable to convolutional
networks. Pitas et al. (2017) built on Neyshabur et al. (2018a) and extended the bound on the spectral
norm to convolutional networks. The bound is very similar to the one for fully connected networks
by Bartlett et al. (2017). We next restate their generalization bound for convolutional networks
including the constants.

Theorem I.1 (Pitas et al. (2017)) Let B an upper bound on the ℓ2 norm of any point in the input
domain. For any B, γ, δ > 0, the following bound holds with probability 1− δ over the training set:

L ≤ L̂γ+

√√√√(84B∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ∥Wi∥22

∑d
j=1

∥Wj−W0
j∥2

F

∥Wj∥2
2

+ ln(mδ )

γ2m
(71)

Parameter Norm Given recent evidence on the importance of distance to initialization (Dziu-
gaite & Roy, 2017; Nagarajan & Kolter, 2019; Neyshabur et al., 2018b), we calculate the following
measures:

µfrobenius-distance(fw) =

d∑
i=1

∥Wi −W0
i ∥2F (72)

In the case when the reference matrix W0
i = 0 for all weights, Eq (72) the Frobenius norm of the

parameters, which also corresponds to the distance from the origin:

µparam-norm(fw) =

d∑
i=1

∥Wi∥2F (73)

Fisher-Rao Norm Fisher-Rao metric was introduced in Liang et al. (2017) as a complexity mea-
sure for neural networks. Liang et al. (2017) showed that Fisher-Rao norm is a lower bound on the
path-norm and it correlates in some cases. We define a measure based on the Fisher-Rao metric of
the network:

µFisher-Rao(fw) =
(d+ 1)2

m

m∑
i=1

⟨w∇wℓ(fw(Xi)), yi⟩2 (74)

where ℓ is the cross-entropy loss.

Trace Trace measure is defined as the trace of the Hessian matrix of the loss function on the
training dataset with respect to the weights, i.e., Tr(H), where H = ∇2

wL(S,w).
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I.2 FLATNESS-BASED MEASURES

PAC-Bayesian framework (McAllester, 1999) allows us to study flatness of a solution and connect
it to generalization. Given a prior P is is chosen before observing the training set and a posterior
Q which is a distribution on the solutions of the learning algorithm (and hence depends on the
training set), we can bound the expected generalization error of solutions generated from Q with
high probability based on the DKL divergence of P and Q. The next theorem states a simplified
version of PAC-Bayesian bounds.

Theorem I.2 For any δ > 0, distribution D, prior P , with probability 1 − δ over the training set,
for any posterior Q the following bound holds:

Ev∼Q [L(fv)] ≤ Ew∼Q

[
L̂(fv)

]
+

√
DKL(Q||P ) + log

(
m
δ

)
2(m− 1)

(75)

If P and Q are Gaussian distributions with P = N (µP ,ΣP ) amd Q = N (µQ,ΣQ), then the
DKL-term can be written as follows:

DKL(N (µQ,ΣQ)||N (µP ,ΣP )) =
1

2

[
tr
(
Σ−1

P ΣQ

)
+ (µQ − µP )

⊤
Σ−1

P (µQ − µP )− k + ln(
detΣP

detΣQ
)

]
.

Setting Q = N (w, σ2I) and P = N (w0, σ2I) similar to Neyshabur et al. (2017), the DKL term will
be simply ∥w−w0||22

2σ2 . However, since σ belongs to prior, if we search to find a value for σ, we need
to adjust the bound to reflect that. Since we search over less than 20000 predefined values of σ in our
experiments, we can use the union bound which changes the logarithmic term to log(20000m/δ)
and we get the following bound:

Eu∼N (u,σ2I) [L(fw+u)] ≤ Eu∼N (u,σ2I)

[
L̂(fw+u)

]
+

√
∥w−w0∥2

2

4σ2 + log(mσ ) + 10

m− 1
(76)

Based on the above bound, we define the following measures using the origin as reference tensors:

µpac-bayes-orig(fw) =
∥w∥22
4σ2

+ log(
m

δ
) + 10 (77)

where σ is chosen to be the largest number such that Eu∼N (u,σ2I)

[
L̂(fw+u)

]
≤ 0.1.

To understand the importance of the flatness parameters σ, we also define the following measure:

µpac-bayes-flatness(fw) =
1

σ2
(78)

where σ is computed as explained above.

I.3 SHARPNESS-BASED MEASURES

SAM Foret et al. (2020) proposed a generalization bound under weight perturbation:

Theorem I.3 For any ρ > 0 and any distribution D, with probability 1 − δ over the choice of the
training set S ∼ D,

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ) +

√√√√√√k log

(
1 +

∥w∥2
2

ρ2

(
1 +

√
log(n)

k

)2
)

+ 4 log n
δ + Õ(1)

n− 1
(79)

where n = |S|, k is the number of parameters and we assumed LD(w) ≤ Eϵi∼N (0,ρ)[LD(w + ϵ)].

Thus, the sharpness of SAM is defined as

max
||ϵ||p≤ρ

LS(w + ϵ)− LS(w) (80)
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if we minimize max||ϵ||p≤ρ LS(w + ϵ), the solution via a first-order approximation will be

ϵ(w) = ρ
sign(g)⊙ |g| q−1

∥g∥ q−1
q

, g = ∇LS(w),
1

p
+

1

q
= 1 (81)

Especially, if p = 2

ϵ(w) = ρ
g

∥g∥2
, g = ∇LS(w). (82)

and if p =∞
ϵ(w) = ρ sign(g), g = ∇LS(w). (83)

ASAM Kwon et al. (2021) proposed a new adaptive sharpness which is reparameterization invari-
ant with a normalization operator:

Definition I.4 (Normalization operator) Let {Tw,w ∈ Rk} be a family of invertible linear oper-
ators on Rk. Given a weight w, if T−1

AwA = T−1
w for any invertible scaling operator A on Rk which

does not change the loss function, we say T−1
w is a normalization operator of w.

Using the normalization operator, we define adaptive sharpness as follows.

Definition I.5 (Adaptive sharpness) If T−1
w is the normalization operator of w in Definition I.4,

adaptive sharpness of w is defined by
max

∥T−1
w ϵ∥p≤ρ

LS(w + ϵ)− LS(w) (84)

where 1 ≤ p ≤ ∞.

They also demonstrated a generalization bound for adaptive sharpness:

Theorem I.6 Let T−1
w be the normalization operator on Rk. If LD(w) ≤ Eϵi∼N (0,σ2)[LD(w+ϵ)]

for some σ > 0, then with probability 1− δ,

LD(w) ≤ max
∥T−1

w ϵ∥2≤ρ
LS(w + ϵ) + h

(
∥w∥22
η2ρ2

)
(85)

where h : R+ → R+ is a strictly increasing function, n = |S| and ρ =
√
kσ(1 +

√
log n/k)/η.

For a minimax problem

min
w

max
∥T−1

w ϵ∥p≤ρ
LS(w + ϵ) +

λ

2
∥w∥22. (86)

The solution under a first-order approximation for adaptive sharpness is

ϵ = ρTw sign(∇LS(w))
|Tw∇LS(w)|q−1

∥Tw∇LS(w)∥q−1
q

(87)

Especially, if p = 2,

ϵ = ρ
T 2
w∇LS(w)

∥Tw∇LS(w)∥2
(88)

and if p =∞,
ϵ = ρTw sign(∇LS(w)). (89)

I.4 IMPLEMENTATION

The measures, including Fisher-Rao norm (Eq. 74), Parameter norm (Eq. 73), Trace of the Hessian
matrix, Pac-Bayes from origin (Eq.77), and the Pac-Bayes flatness (Eq. 78) are computed through
the repository by Dziugaite et al. (2020).

The measures, including L2 sharpness (Eq. 82), L∞ sharpness (Eq. 83), L2 adaptive sharpness (Eq.
88), and L∞ sharpness (Eq. 83) compute the corresponding sharpness directly from the solution of
the minimax problem.

For the SAM(ASAM) sharpness, we conducted a grid search over ρ ∈ {10−6, 3× 10−6, 10−5, 3×
10−5, 10−4, 3×10−4, 10−3, 3×10−3, 10−2, 3×10−2, 10−1, 0.3, 1} and select the ρ with highest
correlation coefficient for each task.
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J EXPERIMENTAL DETAILS

In this section, we describe the datasets, models, hyperparameter choices, and eigenspectrum adjust-
ment used in our experiments. All of our experiments are run using PyTorch on Nvidia GTX1080ti,
RTX3090s, RTX4090s, and RTX5090s.

J.1 DATASET

CIFAR-10. CIFAR-10 consists of 60,000 color images, with each image belonging to one of ten
different classes with size 32× 32. The classes include common objects such as airplanes, automo-
biles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The CIFAR-10 dataset is divided into
two subsets: a training set and a test set. The training set contains 50,000 images, while the test set
contains 10,000 images (Krizhevsky & Hinton, 2009). For data processing, we follow the standard
augmentation: normalize channel-wise, randomly horizontally flip, and random cropping.

CIFAR-100. The CIFAR-100 dataset consists of 60,000 color images, with each image belong-
ing to one of 100 different fine-grained classes (Krizhevsky & Hinton, 2009). These classes are
organized into 20 superclasses, each containing 5 fine-grained classes. Similar to CIFAR-10, the
CIFAR-100 dataset is split into a training set and a test set. The training set contains 50,000 images,
and the test set contains 10,000 images. Each image is of size 32x32 pixels and is labeled with its
corresponding fine-grained class. Augmentation includes normalize channel-wise, randomly hori-
zontally flip, and random cropping.

TinyImageNet. TinyImageNet comprises 100,000 images distributed across 200 classes, with
each class consisting of 500 images (Le & Yang, 2015). These images have been resized to 64
× 64 pixels and are in full color. Each class encompasses 500 training images, 50 validation images,
and 50 test images. Data augmentation techniques encompass normalization, random rotation, and
random flipping. The dataset includes distinct train, validation, and test sets for experimentation.

J.2 MODEL

In all experiments, the neural networks are initialized by the default initialization provided by Py-
torch.

ResNet18, ResNet20, ResNet34 and ResNet50 (He et al., 2016). We use the standard ResNet
architecture for TinyImageNet and tune it for the CIFAR dataset on the correlation validation
tasks. The detailed network architecture parameters are shown in Table 3 and Table 4. ResNet18,
ResNet20, ResNet34, and ResNet56 are trained on CIFAR-100 . The standard ResNet18 is trained
on TinyImageNet for efficient computing and tuned ResNet18 is trained on TinyImageNet for
sharpness-aware minimization.

WideResNet (Zagoruyko & Komodakis, 2016). The Wide ResNet implementation uses the
wrn28_10 model from the horuma (Hataya, 2018) library. Architecture details can be found in
Table 4.

Vision Transformer. We use the SimpleViT architecture from the vit-pytorch library, which
is a modification of the standard ViT (Dosovitskiy et al., 2020) with a fixed positional embedding
and global average pooling instead of the CLS embedding.

J.3 TRAINING HYPER-PARAMETERS SETUP

J.3.1 CORRELATION EXPERIMENTS

We train models for 200 epochs, and cosine learning rate decay is adopted after a linear warm-up for
the first 10 epochs. For the task on CIFAR10/CIFAR100, we vary the initial learning rate {0.001,
0.03, 0.1}, batch size {128, 384, 1280}, and weight decay {0.00001, 0.00005, 0.0001, 0.0003,
0.0005} for SGD with momentum and the initial learning rate {0.00001, 0.0003, 0.001}, batch size
{128, 384, 1280}, and weight decay {0.00001, 0.00005, 0.0001, 0.0003, 0.0005} for Adam. For
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Table 3: ResNet architecture used in correlation experiments.

Layer ResNet18CIFAR ResNet34 ResNet18TinyImageNet

Conv 1
3×3, 64 3×3, 64 7×7, 64

padding 1 padding 1 padding 3
stride 1 stride 1 stride 2

Max Pool, ks 3, str 2, pad 1

Layer
stack 1

[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

[
3×3, 64
3×3, 64

]
×2

Layer
stack 2

[
3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

[
3×3, 128
3×3, 128

]
×2

Layer
stack 3

[
3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

[
3×3, 256
3×3, 256

]
×2

Layer
stack 4

[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

[
3×3, 512
3×3, 512

]
×2

FC Adaptive Avg Pool, output size (1, 1)
512× N_CLASSES 512× N_CLASSES 512× N_CLASSES

Table 4: ResNet architecture used in sharpness-aware minimization experiments.

Layer ResNet-20 ResNet-56 ResNet-50 WideResNet-28-10

Conv 1
3×3, 16 3×3, 16 3×3, 64 3×3, 16

padding 1 padding 1 padding 1 padding 1
stride 1 stride 1 stride 1 stride 1

Layer
stack 1

[
3×3, 16
3×3, 16

]
×3

[
3×3, 16
3×3, 16

]
×9

[
1×1, 64
3×3, 64

1×1, 256

]
×3

[
3×3, 160
3×3, 160

]
×4

Layer
stack 2

[
3×3, 32
3×3, 32

]
×3

[
3×3, 32
3×3, 32

]
×9

[
1×1, 128
3×3, 128
1×1, 512

]
×4

[
3×3, 320
3×3, 320

]
×4

Layer
stack 3

[
3×3, 64
3×3, 64

]
×3

[
3×3, 64
3×3, 64

]
×9

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

[
3×3, 640
3×3, 640

]
×4

Layer
stack 4

[
1×1, 512
3×3, 512
1×1, 2048

]
×3- -

FC Avg Pool, kernel size 8 Avg Pool, kernel size 8 Adaptive Avg Pool, output size (1, 1) Avg Pool, kernel size 8
64× N_CLASSES 64× N_CLASSES 2048× N_CLASSES 640× N_CLASSES

the task on TinyImageNet, we vary the initial learning rate {0.001, 0.03, 0.1}, batch size {128, 384,
1280}, and weight decay {0.000003, 0.00001, 0.00003, 0.00005, 0.0001, 0.0003} for SGD with
momentum and the initial learning rate {0.00001, 0.0003, 0.001}, batch size {128, 384, 1280}, and
weight decay {0.000003, 0.00001, 0.00003, 0.00005, 0.0001, 0.0003} for Adam.

Different from Jiang et al. (2019), we pick the data augmentation in the training scheme, which is a
common setting in modern deep learning, but we still compute the sharpness measure without data
augmentation, as from a theoretical perspective, data augmentation is also challenging to analyze
since the training samples generated from the procedure are no longer identical and independently
distributed.

To investigate the relationship between sharpness and generalization under common training strate-
gies, we pick the stopping criterion based on the number of iterations or the number of epochs. To
avoid differences in optimization speed across hyperparameter settings, we follow the linear scaling
rule recommendated by Goyal et al. (2017) and scale the learning rate and batch size in tandem,
which yields comparable convergence after the same number of epochs.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

J.3.2 SHARPNESS-AWARE MINIMIZATION EXPERIMENTS

Firstly, we will introduce the Rényi Sharpness-Aware Minimization algorithm as follows:

Algorithm 2 Rényi Sharpness-Aware Minimization (RSAM) Algorithm

Input: Loss function ℓ, training dataset S :=
⋃n

i=1{(xi,yi)}, mini-batch size b, radius ρ, Rényi
order α, plain SGD epoch e1, RSAM epoch e2, weight decay coefficient λ, scheduled learning
rate β, initial weight w0.
Output: Trained weight w. Initialize weight w← w0

for i = 1, ..., e1 do
1). Sample a mini-batch B of size b from S
2). w← w − β

(
∇LB(w) + λw

)
end for
for j = 1, ..., e2 do

4). Sample a mini-batch B of size b from S

5). ϵ← ρ · sign(1− α) ·
∑

j |∇LB(w)j |
2α

(
∑

j ∇LB(w)2j )
α+1∇LB(w)

⊤

6). w← w − β
(
∇LB(w + ϵ) + λw

)
end for
Return: w

We first train the neural network with vanilla SGD for e1 epochs, without applying the Rényi regu-
larizer. The intuition is that the gradient-magnitude approximation underlying our method becomes
more accurate only after the model has achieved a reasonable training loss/accuracy, so penalizing
the Rényi term at the very beginning of training is unnecessary and may even be harmful. Once the
model reaches this warm-up stage, we activate the Rényi regularizer. For each mini-batch B, we
compute the loss LB(w) and its gradient∇LB(w). We then construct the perturbation ϵ according
to Eq. 13 and form the perturbed parameters w + ϵ. Next, we evaluate the gradient at the perturbed
point, ∇LB(w + ϵ), and perform a gradient-descent step on the original parameters w using this
gradient. This procedure is structurally identical to SAM (Foret et al., 2020) and ASAM (Kwon
et al., 2021); the only difference lies in how the perturbation ϵ is computed, which in our case is
defined by the Rényi sharpness objective in Eq. 13.

We set ρ for SAM and Eigen-SAM as 0.05 for CIFAR10 and 0.1 for CIFAR100, and ρ for ASAM as
0.5 for CIFAR10 and 1.0 for CIFAR100. η for ASAM is set to 0.01. ρ and α for RSAM is describled
in Table. 5 and Table. 6. The mini-batch size is set to 128. The number of epochs is set to 200 for
SGD, SAM, ASAM, Eigen-SAM, and RSAM. Although prior work recommends training SGD
for 400 epochs to assess improvements under a matched compute budget, RSAM introduces the
regularizer only after a warm-up period, so compute parity no longer holds. Moreover, those studies
have already shown performance superior to 400-epoch SGD. Consequently, our experiments are not
strictly designed under equal-compute conditions. Momentum and weight decay coefficient are set
to 0.9 and 0.0005, respectively. Cosine learning rate decay is s adopted with an initial learning rate
of 0.1. Also, random cropping, padding by four pixels, normalization and random horizontal flip are
applied for data augmentation. As label smoothing is not adopted in Eigen-SAM, all experiments
are conducted without label smoothing.

For the evaluations at a larger scale, we compare the performance of SGD, SAM, ASAM, Eigen-
SAM, and RSAM on TinyImageNet. We apply ρ = 0.05 for SAM and Eigen-SAM and ρ = 1.0 for
ASAM. ρ for RSAM is set to . The number of training epochs are all set to 100. We use a mini-
batch size of 128, an initial learning rate of 0.2, and SGD optimizer with weight decay coefficient
of 0.0001. Other hyperparameters are the same as those of CIFAR-10/100 tests.

All the hyper-parameters are summarized in Table 5, Table 6, and Table 7.

J.4 RÉNYI ENTROPY COMPUTATION SETUP

The Rényi entropy is computed on the subset of the training dataset. For the CIFAR10 and CI-
FAR100 datasets, we randomly sample 2000 samples to compute Rényi entropy (1000 for ViT on
CIFAR10), and for the TinyImageNet dataset, we randomly sample 1000 samples. Batch size is set
to 128. l = 100 and m = 15 are set for the Rényi entropy estimation algorithm. The Rényi order is
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Table 5: Hyper-parameters of Sharpness-aware Minimization on CIFAR10

Algorithm Model Momen
-tum LR SGD

Epochs
SAM

Epochs
Batch
Size

Weight
Decay ρ η α

SGD
ResNet20 0.9 0.1 200 0 128 0.0005 0 0 0
ResNet56 0.9 0.1 200 0 128 0.0005 0 0 0

WideResNet-28-10 0.9 0.1 200 0 128 0.0005 0 0 0

SAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.05 0 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.05 0 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.05 0 0

ASAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.5 0.01 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.5 0.01 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.5 0.01 0

Eigen-SAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.05 0 0.2
ResNet56 0.9 0.1 0 200 128 0.0005 0.05 0 0.2

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.05 0 0.2

FSAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.1 1.0 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 1.0 0

SSAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.2 0.0 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.2 0.0 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 0.0 0

RSAM
ResNet20 0.9 0.1 5 195 128 0.0005 0.65 0 1.2
ResNet56 0.9 0.1 5 195 128 0.0005 0.8 0 1.2

WideResNet-28-10 0.9 0.1 5 195 128 0.0005 0.3 0 1.05

Table 6: Hyper-parameters of Sharpness-aware Minimization on CIFAR100

Algorithm Model Momen
-tum LR SGD

Epochs
SAM

Epochs
Batch
Size

Weight
Decay ρ η α

SGD
ResNet20 0.9 0.1 200 0 128 0.0005 0 0 0
ResNet56 0.9 0.1 200 0 128 0.0005 0 0 0

WideResNet-28-10 0.9 0.1 200 0 128 0.0005 0 0 0

SAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 0 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.1 0 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 0 0

ASAM
ResNet20 0.9 0.1 0 200 128 0.0005 1.0 0.01 0
ResNet56 0.9 0.1 0 200 128 0.0005 1.0 0.01 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 1.0 0.01 0

Eigen-SAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 0 0.2
ResNet56 0.9 0.1 0 200 128 0.0005 0.1 0 0.2

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 0 0.2

FSAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.1 1.0 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 1.0 0

SSAM
ResNet20 0.9 0.1 0 200 128 0.0005 0.5 0.0 0
ResNet56 0.9 0.1 0 200 128 0.0005 0.5 0.0 0

WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.2 0.0 0

RSAM
ResNet20 0.9 0.1 5 195 128 0.0005 0.76 0 1.1
ResNet56 0.9 0.1 5 195 128 0.0005 0.9 0 1.1

WideResNet-28-10 0.9 0.1 5 195 128 0.0005 0.7 0 1.05

chosen from {0.0001, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 1.001,
1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3}. Due
to the fact that training cannot guarantee convergence exactly to a strict local minimum, negative
eigenvalues are inevitable, which can cause numerical pathologies for the Rényi entropy as α → 1.
Therefore, when assessing how α affects the correlation between Rényi entropy and generalization,
we restrict α to (0, 0.9) and (1.2, 3.0]. Within these ranges, computing the Rényi entropy is stable
and free of anomalies. During our analysis of the sharpness–generalization correlation, we vary α
and plot the sharpness that attains the highest correlation coefficient.
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Table 7: Hyper-parameters of Sharpness-aware Minimization on TinyImageNet

Algorithm Model Momen
-tum LR SGD

Epochs
SAM

Epochs
Batch
Size

Weight
Decay ρ η α

SGD ResNet50 0.9 0.2 100 0 128 0.0001 0 0 0

SAM ResNet50 0.9 0.2 0 100 128 0.0001 0.05 0 0

ASAM ResNet50 0.9 0.2 0 100 128 0.0001 1.0 0.01 0

FSAM ResNet50 0.9 0.2 0 100 128 0.0001 0.5 0.1 0

RSAM ResNet50 0.9 0.2 20 80 128 0.0001 1.25 0 1.1

Note. In practice, we train with SGD until the validation Top-1 accuracy exceeds 30%, then switch to RSAM; this
typically occurs around epoch 20.

Table 8: Hyper-parameters of Sharpness-aware Minimization on ViT-B/16 Finetuning

Algorithm Dataset Momen
-tum LR SGD

Epochs
SAM

Epochs
Batch
Size

Weight
Decay ρ η α

SGD CIFAR10 0.9 0.01 20 0 128 0.0005 0 0 0
CIFAR100 0.9 0.01 20 0 128 0.0005 0 0 0

SAM CIFAR10 0.9 0.01 0 20 128 0.0005 0.05 0 0
CIFAR100 0.9 0.01 0 20 128 0.0005 0.1 0 0

ASAM CIFAR10 0.9 0.01 0 20 128 0.0005 0.5 0.01 0
CIFAR100 0.9 0.01 0 20 128 0.0005 1.0 0.01 0

FSAM CIFAR10 0.9 0.01 0 20 128 0.0005 0.1 1.0 0
CIFAR100 0.9 0.01 0 20 128 0.0005 0.1 1.0 0

RSAM CIFAR10 0.9 0.01 2 18 128 0.0005 0.8 0 1.3
CIFAR100 0.9 0.01 2 18 128 0.0005 0.6 0 1.1
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K FULL RESULTS

In this section, we report all the results of the tasks in the main body.

K.1 HESSIAN SPECTRUM

In this section, we provide some spectra of the trained models in the correlation validation experi-
ments, including ResNet18 and ResNet34 on CIFAR10 and ResNet18 and ResNet34 on CIFAR100.
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Figure 4: Spectrum of ResNet18 on CIFAR10.

0.05 0.00 0.05
Eigenvlaue of layer 0

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.050 0.025 0.000 0.025 0.050
Eigenvlaue of layer 1

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 2

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 3

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 4

10 3

10 1

101
De

ns
ity

 (L
og

 S
ca

le
)

0.05 0.00 0.05 0.10 0.15
Eigenvlaue of layer 5

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 6

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 7

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 8

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 9

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 10

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 11

10 4

10 2

100

102

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 12

10 4

10 2

100

102

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 13

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 14

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 15

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10 0.15
Eigenvlaue of layer 16

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.0 0.1 0.2
Eigenvlaue of layer 17

10 5

10 2

101
De

ns
ity

 (L
og

 S
ca

le
)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 18

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10 0.15
Eigenvlaue of layer 19

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10 0.15
Eigenvlaue of layer 20

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10 0.15
Eigenvlaue of layer 21

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 22

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10 0.15
Eigenvlaue of layer 23

10 5

10 2

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 24

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 25

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 26

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 27

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 28

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 29

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05 0.10
Eigenvlaue of layer 30

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 31

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 32

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 33

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.05 0.00 0.05
Eigenvlaue of layer 34

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.050 0.025 0.000 0.025 0.050
Eigenvlaue of layer 35

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

0.050 0.025 0.000 0.025 0.050
Eigenvlaue of layer 36

10 3

10 1

101

De
ns

ity
 (L

og
 S

ca
le

)

Figure 5: Spectrum of ResNet34 on CIFAR10.
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Figure 6: Spectrum of ResNet18 on CIFAR100.
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Figure 7: Spectrum of ResNet34 on CIFAR100.
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K.2 CORRELATION BETWEEN RÉNYI SHARPNESS AND GENERALIZATION

In this section, we provide the figures about the correlation between generalization and multiple
sharpness measures. We can find that Rényi sharpness is strongly correlated with generalization
than the other measures.
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Figure 8: ResNet18 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure.
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Figure 9: ResNet34 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure.

Task CIFAR10/ResNet18 CIFAR10/ResNet34 CIFAR10/ViT CIFAR100/ResNet18 CIFAR100/ResNet34 TinyImageNet/ResNet18
Correlation coefficient -0.2092 -0.2966 -0.1954 -0.3149 -0.5310 -0.6063

Table 9: Correlation coefficient between log detH and generalization gap across tasks. H is the
Hessian matrix of the training loss with respect to the whole weights in the model.
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Figure 10: ViT on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure.

6.6 6.4
layer 1

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.5080

9.3 9.2 9.1
layer 2

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.6828

6 5
layer 3

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7977

6 5
layer 4

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7747

8.0 7.5
layer 5

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8023

6 5
layer 6

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7839

6 5
layer 7

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8575

6.5 6.0 5.5
layer 8

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8161

6 5 4
layer 9

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8897

6 5
layer 10

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8575

6 5
layer 11

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8667

6 5
layer 12

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8621

6 5 4
layer 13

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8867

6 4
layer 14

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8759

6 4
layer 15

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8942

6 4
layer 16

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8307

6 5 4
layer 17

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7977

6 5 4
layer 18

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7931

6 5 4
layer 19

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7241

6 4
layer 20

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8161

7 6 5
layer 21

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.8253

5 4 3
all layer

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.7839

250 500
trace

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.5448

20000 40000
parameter norm

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.5080

0.025 0.050
fisher rao norm

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.6690

15000 20000
pacbayes flat

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = 0.0286

1 2
pacbayes orig 1e8

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.4437

0.005 0.010
sam l2

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.4023

0.00 0.05 0.10
asam l2

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.3195

0.0000 0.0025 0.0050
sam l

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.4851

0.01 0.02
asam l

1.00

1.25

1.50

1.75

lo
ss

 g
ap

 = -0.1126

Figure 11: ResNet18 on CIFAR100, The layer 1 to all layer subplots correspond to the Rényi sharp-
ness measure.
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Figure 12: ResNet34 on CIFAR100, The layer 1 to all layer subplots correspond to the Rényi sharp-
ness measure.
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Figure 13: ResNet18 on TinyImageNet, The layer 1 to all layer subplots correspond to the Rényi
sharpness measure.
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K.3 MORE RESULTS FOLLOWING ANDRIUSHCHENKO ET AL. (2023)

K.3.1 MORE TRAINING RECIPE FOR RESNET18 ON CIFAR10

In previous work, Andriushchenko et al. (2023) showed that their sharpness measure correlates
strongly with generalization only within certain hyperparameter subsets or sub-groups. To perform
a similar test, we extend our standard ResNet-18/CIFAR-10 setup by introducing two additional
hyperparameter dimensions: with/without mixup (α = 0.5) (Zhang et al., 2017) and with/without
standard augmentations combined with RandAugment (Cubuk et al., 2020). We then compute the
Rényi sharpness of the last two layers and compare it with other sharpness measures. The results
in Fig. 14 indicate that, even under these richer hyperparameter combinations, Rényi sharpness still
exhibits a strong and consistent correlation with generalization.
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Figure 14: ResNet18 on CIFAR10 with more training configurations. The learning rate, batch size,
optimizer, and weight decay are varied following standard ResNet-18-on-CIFAR-10 setups, and we
further introduce variants with mixup (α = 0.5) (Zhang et al., 2017) and standard augmentations
combined with RandAugment (Cubuk et al., 2020), resulting in four times as many models as in the
standard setting.

K.3.2 PRETRAINING VIT-B/16 ON IMAGENET-1K

Following Andriushchenko et al. (2023), we evaluate ViT models from Steiner et al. (2021), using
ViT-B/16-224 weights. Those were trained from scratch on ImageNet-1k for 300 epochs with dif-
ferent hyperparameter settings, and subsequently fine tuned on the same dataset for 20.000 steps
with 2 different learning rates. The different hyperparameters include augmentations, weight decay,
and stochastic depth / dropout, leading to a rich pool of 56 models. As shown in Figure 15, Rényi
sharpness still exhibits a strong and consistent correlation with generalization, while others not.
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Figure 15: ViT-B/16 trained from scratch on ImageNet-1k. We show for 56 models from Steiner
et al. (2021) the generalization gap vs. various sharpness measures. Overall, Rényi sharpness is still
strongly correlated with generalization than the other measures.

K.3.3 FINE-TUNING ON IMAGENET-1K FROM CLIP

We also follow the experiments that investigate fine-tuning from CLIP Radford et al. (2021). We
study the pool of classifiers obtained by Wortsman et al. (2022), who fine-tuned a CLIP ViT-B/32
model on ImageNet multiple times by randomly selecting training hyperparameters, including learn-
ing rate, number of epochs, weight decay, label smoothing, and augmentations. We compute the
Rényi sharpness of the last layer within the ViT-B/32 model, and compare it with other sharpness
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measures. One can confirm from Fig. 16 that Rényi sharpness still exhibits a strong and consistent
correlation with generalization, compared to the other measures.
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Figure 16: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show for 72 models from Wortsman
et al. (2022) the generalization gap on ImageNet vs multiple sharpness measures.
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K.4 CORRELATION COEFFICIENT AND RÉNYI ORDER α

In this section, we report statistics of Kendall’s τ under different Rényi orders. The order α is
varied following the guidelines in Section 4.1. We compute Kendall’s τ for each layer and report
the average correlation of all layers. The heatmap in Fig. 17 shows that α = 0.5 for 0 < α < 1 and
α = 1.5 for α > 1 are consistently robust across tasks.
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Figure 17: Correlation Coefficient and Rényi Order α
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K.5 SCATTER PLOT OF CORRELATION COEFFICIENT AND RÉNYI ORDER α

In this section, we provide all the correlation coefficient τ under different α across multiple tasks:
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Figure 18: ResNet18 on CIFAR10, we plot the correlation coefficient τ vs Rényi order α.
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Figure 19: ResNet34 on CIFAR10, we plot the correlation coefficient τ vs Rényi order α.
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Figure 20: ViT on CIFAR10, we plot the correlation coefficient τ vs Rényi order α.
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Figure 21: ResNet18 on CIFAR100, we plot the correlation coefficient τ vs Rényi order α.
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Figure 22: ResNet34 on CIFAR100, we plot the correlation coefficient τ vs Rényi order α.
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Figure 23: ResNet18 on TinyImageNet, we plot the correlation coefficient τ vs Rényi order α.
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L LIMITATION

• The generalization bounds in our work relies on homogeneity of the activation function,
which holds for ReLU networks and approximately holds for GELU networks. Extending
the analysis for other activations is a both interesting and important direction.

• Our proposed RSAM algorithm uses an approximation to Rényi sharpness for simplicity, a
tighter approximation or surrogate may further improve generalization.

M BROADER IMPACTS

Our work aims to advance the theoretical understanding of network generalization, with the antici-
pation that theoretical insights can guide future designs of network optimization methods. There are
no ethically related issues or negative societal consequences in our work.
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