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ABSTRACT

Sharpness (of the loss minima) is widely believed to be a good indicator of gen-
eralization of neural networks. Unfortunately, the correlation between existing
sharpness measures and the generalization is not that strong as expected, some-
times even contradiction occurs. To address this problem, a key observation in
this paper is: what really matters for the generalization is the average spread (or
unevenness) of the spectrum of loss Hessian H. For this reason, the conventional
sharpness measures, such as the trace sharpness tr(H), which cares about the av-
erage value of the spectrum, or the max-eigenvalue sharpness Ay (H)), which
concerns the maximum spread of the spectrum, are not sufficient to well predict the
generalization. To finely characterize the average spread of the Hessian spectrum,
we leverage the notion of Rényi entropy in information theory, which is capable
of capturing the unevenness of a probability vector and thus can be extended to
describe the unevenness for a general non-negative vector (which is the case for
the Hessian spectrum at the loss minima). In specific, in this paper we propose the
Rényi sharpness, which is defined as the negative of the Rényi entropy of loss Hes-
sian H. Extensive experiments demonstrate that Rényi sharpness exhibit strong
and consistent correlation with generalization in various scenarios. Moreover, on
the theoretical side, two generalization bounds with respect to the Rényi sharpness
are established, by exploiting the desirable reparametrization invariance property
of Rényi sharpness. Finally, as an initial attempt to take advantage of the Rényi
sharpness for regularization, Rényi Sharpness Aware Minimization (RSAM) al-
gorithm is proposed where a variant of Rényi Sharpness is used as the regularizer.
It turns out this RSAM is competitive with the state-of-the-art SAM algorithms,
and far better than the conventional SAM algorithm based on the max-eigenvalue
sharpness.

1 INTRODUCTION

Understanding why stochastic optimization methods, such as stochastic gradient descent (SGD) can
achieve strong generalization performance even when the neural networks are overparameterized
remains a fundamental yet open challenge in deep learning (Zhang et al.| |2016; |Gunasekar et al.|
2017; [Li et al.l 2018} [Soudry et al.| [2018; [Woodworth et al.,2020). Many empirical and theoretical
studies have observed that the generalization of neural networks is closely related to the flatness of
the loss landscape (Keskar et al.,[2016; Neyshabur et al.,[2017} Jiang et al., 2019; |Petzka et al.,2019;
Kaddour et al., 2022 [Tsuzuku et al., 2020; Jang et al., |2022; |Dziugaite & Royl 2017} Jastrzebski
et al., 2017; 'Wu et al., [2018; [Blanc et al., 2020; [We1 & Mal, 2019; [Foret et al., [2020; [Damian et al.,
20215 L1 et al.} | 2021; | Ma & Ying, [2021}|Ding et al., [2024; Nacson et al.,2022; Lyu et al., 2022; Wu
& Sul, 2023; [Kwon et al., [2021; [Zhou et al . [2024).

Intuitively speaking, local minima with flat (with low sharpness) neighborhood in the landscape
are expected to incur small loss change (Hochreiter & Schmidhuber, 1994} [Keskar et al., [2016).
The core question is therefore: how should we measure the flatness in a proper way? The flat-
ness or sharpness is normally quantified by functionals of the loss Hessian H—e.g., tr(H) and
Amax (H)—or by loss increase with constrained weight perturbations, while the latter is normally

An anonymized repository is provided at this link,


https://anonymous.4open.science/r/RSAM-D0D7

Under review as a conference paper at ICLR 2026

closely related to the former. Despite the above intuition, recent empirical evidences indicate that
existing sharpness measures usually correlate weakly with generalization (Andriushchenko et al.
2023)), sometimes even contradicting phenomenon occurs (Dinh et al., | 2017; Wen et al., 2023). To
close the gap between the intuition and the reality, it is of crucial importance to develop a better
sharpness measure.

To address this problem, a key observation of ours is: what really matters for characterizing the
generalization lies in the unevenness or average spread of the spectrum of the Hessian. Intuitively
speaking, an even spectrum (with almost identical eigenvalue) is very much desirable to ensure
good generalization, since if there exists no particularly large eigen-direction, a small perturbation
of data (which can be translated to weight perturbation) would just incur small loss change. More
concretely, when characterizing the loss change resulting from the train-test data discrepancy, the
unevenness or average spread of the the spectrum can reflect the influences from all categories of
eigenvalues of loss Hessian (Sankar et al.| 2021): 1) the top eigenvalues, which are very important
for the loss change but are of quite small quantity; 2) the middle eigenvalues, which are less im-
portant for the loss change individually but are of very big quantity; 3) the tail eigenvalues, which
are normally located near zero and thus play a minor role regarding the loss change. In contrast,
the conventional sharpness measures, such as the trace or maximum eigenvalue of the loss Hessian,
they care about only part of the eigenvalues. For example, the trace sharpness tr(H) actually cares
about only middle eigenvalues, while the max-eigenvalue sharpness A, .. (H) concerns only top
eigenvalues. Therefore, both of them might experience significant information loss when predicting
the generalization performance.

To finely characterize the unevenness or average spread of the Hessian spectrum, we propose a
novel sharpness measure, Rényi sharpness by leveraging the notion of Rényi entropy (Rényi, |1961)
in information theory, which can well describe the unevenness of a probability vector p by exploiting
an appealing property, i.e. concavity in p. Naturally, Rényi entropy can be employed to describe the
unevenness of any general non-negative vector by normalization, i.e. by transforming the original
vector to a virtual probability vector. Moreover, Rényi entropy enjoys extra advantages of flexibility
(with one free parameter) compared against the classical Shannon entropy (c.f. Section [Z). In
addition, it is worth noting that to describe the average spread of a vector, the sample variance
is an alternative which is easy to enter the mind. Unfortunately it is improper for characterizing
the generalization, because the tail eigenvalues (near-zero) of the spectrum contribute a lot to the
variance, while they play a very minor role for the generalization gap.

To rigorously establish the relationship between generalization and Rényi sharpness, we develop
several generalization bounds in terms of Rényi sharpness, by taking advantage of the reparametriza-
tion invariance property of Rényi sharpness, and the technique of translating data discrepancy to the
multiplicative weight perturbation. Moreover, to verify the correlation between the Rényi sharpness
and generalization, we provide a fast algorithm, which is based on the Stochastic Lanczos Quadra-
ture (SLQ) method (Yao et al.l 2020), to estimate the Rényi sharpness. Finally, we introduce Rényi
Sharpness-Aware Minimization (RSAM) for network training, which basically employs the Rényi
sharpness as a regularizer.

In summary, our contributions are stated as follows:

* We introduce a novel notion of sharpness — Rényi sharpness, which is motivated by the
observation that generalization highly depends on the average spread of the spectrum of
the loss Hessian, which can be captured by the Rényi entropy, an important functional in
information theory.

* We present two generalization bounds with respect to the Rényi sharpness, thus establish-
ing the link between them in a rigorous way. In developing these generalization bounds,
it is important to leverage the reparametrization invariance of the Rényi sharpness and the
technique of translating data perturbation to (multiplicative) weight perturbation.

* We demonstrate that there exists strong correlation between Rényi sharpness and general-
ization. Meanwhile, a fast algorithm to estimate the Rényi sharpness, which leverages the
Stochastic Lanczos Quadrature (SLQ) method, is proposed.

* A preliminary version of Rényi Sharpness-Aware Minimization (RSAM) is proposed,
where a variant of Rényi Sharpness is employed as a regularizer during training. It turns out
to be competitive with the state-of-the-art SAM algorithms and significantly outperform the
conventional SAM method, such as that using max-eigenvalue sharpness.
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1.1 RELATED WORKS

Sharpness vs. Generalization: The exploration of relationship between sharpness and generaliza-
tion dates back to [Hochreiter & Schmidhuber| (1994)), which proposes an algorithm to achieve high
generalization capability by searching flat minima. [Keskar et al.|(2016)) shows that the generalization
performance of large batch SGD is correlated with the sharpness of the minima. |Neyshabur et al.
(2017) studies various generalization measures and highlights the promising correlation between
sharpness and generalization. Jiang et al.| (2019) performs a large-scale empirical study and finds
that flatness-based measure is higher correlated with generalization than the concepts like weight
norms, margin-, and optimization-based measures. [Petzka et al.|(2021)) studies a relative flatness of
a layer through a multiplicative perturbation setting and shows the correlation with generalization.
However, many recent studies point out that sharpness does not correlate well with generalization.
Dinh et al.[(2017) focuses on deep networks with rectifier units and builds equivalent models whose
sharpness can be significantly changed. |[Andriushchenko et al.| (2023)) find that sharpness may not
have a strong correlation with generalization for a collection of modern architectures and settings.
Wen et al.|(2023) shows that flatness provably implies generalization but there exist non-generalizing
flattest models. |[Kaur et al.| (2023)) shows that the maximum eigenvalue of the Hessian can not always
predict generalization even for models obtained via standard training methods. A central reason why
these works consider sharpness to be unreliable is that there exist sharp models with good general-
1zation.

Sharpness-Aware Minimization (SAM): As early as 1994, [Hochreiter & Schmidhuber (1994)
sought to achieve stronger generalization by identifying flat minima, many recent researches find
that sharpness is correlated with generalization. This investigation inspires multiple methods that
optimize for more flat minima. These algorithms impose penalties based on different criteria, such
as the trace in average case (Jia & Su},2020) or the worst-case perturbation such as SAM (Foret et al.,
2020) and its variations (Kwon et al., [2021; Zhuang et al., 2022; Du et al., 2022; Kim et al., 2022}
Mi et al.} 2022; [Li & Giannakis) 2023} [Li et al., [2024a)). To enhance the generalization, Eigen-SAM
is proposed (Luo et al.|[2024) which periodically estimates the top eigenvalue of the Hessian matrix
and incorporates its orthogonal component to the gradient into the perturbation, thereby achiev-
ing a more effective top eigenvalue regularization effect. To obtain parameter-invariant sharpness
measures, a universal class of sharpness is proposed in Tahmasebi et al.| (2024).

2 PROBLEM FORMULATION, KEY NOTIONS AND PROPERTIES

Model. Let f(0,x) be a model with L layers, where § = {W;, Wy, ..., W;_;, W}, and W,
is the weights of the I-th layer, the vectorization of @ and W, is 6 and w; = vec(W;) corre-
spondingly. For a given training dataset S = {x;,y;}", and a twice differentiable loss function
1(f(0,x),y), the empirical loss is given by L(S,0) = L 3" I(f(6,%;),y;). The training and
testing dataset is sampled from the real data distribution D, and the population loss is given by
L(D,0) = Ex,y)~p[l(f(8,%),y)]. The generalization gap is defined as the difference between the
population loss L(D, 0) and the empirical loss L(S, 0).

Having observed only S, the model utilizes L(S,0) as an estimation of L(D, ), and solves
ming L(S, 0) using an optimization procedure such as SGD or Adam.

Rényi Entropy. Rényi entropy is a generalization of the classical Shannon entropy, which enjoys the
advantage of increased flexibility by adding one parameter and reduced computational complexity.
The Rényi entropy of a probability vector p = [p1, 2, . .., pn] is defined as

1 L
Ho(p) = 1_alog;pi )
for 0 < a < oo and « # 1. The Shannon entropy can be seen as a special example when the order
a— 1.

Two notable properties of Rényi entropy are as follows: 1) Concavity over p : Rényi entropy
is a concave function of the distribution p. A direct implication of this property is that Rényi
entropy takes its maximum when p is uniformly distributed. 2) Monotonic decrease in o : When «
increases, the penalty over the non-uniformity (or unevenness) gets more strict, thus more emphasis
would be on the high probability mass, and vice versa.
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The Rényi entropy can be generalized to the matrix setting. In specific, for a positive definite matrix
H, we can define its Rényi entropy as the normal Rényi entropy of its normalized eigenvalues, i.e.,

i S

i=1

In theory, we typically analyze the Hessian at a (local) minima, and therefore assume the Hessian to
be positive definite. In practice, however, due to imperfect convergence or numerical errors in the
algorithm, some negative eigenvalues may appear. Since these eigenvalues usually have very small
magnitudes, we commonly take their absolute values before performing subsequent computations.

Definition 2.1 (Rényi Sharpness) For a neural network, consider an arbitrary layer within the
model, denote the Hessian matrix of the loss function w.r.t. the layer’s weight as H. The Rényi
sharpness is defined as the negative Rényi entropy of the normalized spectrum of H, i.e., —H,(H).

Rényi Sharpness has a valuable property, i.e., the reparametrization invariance when the activation
functions are homogeneous or nearly homogeneous. This property turns out to play an important role
in developing the generalization bounds in terms of Rényi Sharpness. A formal statement regarding
this property is as follows:

Proposition 2.2 (Reparameterizaiton (Scaling) Invariance of Rényi Sharpness) Consider a L-
layer feedforward neural network with positively homogeneous activation function o (i.e., o(cx) =
co(x) for all ¢ > 0), and parameters {W1,...,Wr}. Let the network output be f(x) =
Wy -o(Wp_1---0(Wiz)), and let L(0) denote the loss function, where 0 denotes the weights of
arbitrary layer, i.e., W . Define the loss Hessian as Hg = V3L(0). Consider a layer-wise scaling
transformation defined by W; = Wy, ¢; > 0, with H1L:1 c; = 1. Let @ = W be the scaled
parameters, and define Hg as the corresponding Hessian. Then the spectrum-normalized Rényi
entropy of H is invariant:

H,(Hy) = Hy(Hp), Va >0, a#1. 3)

The detailed description about reparameterization invariance and the proof of Proposition [2.2] is
provided in Appendix [E] This invariance is valid for the positive homogeneity of the activation
function. In Transformer architectures (e.g., ViTs), although GELU is not strictly homogeneous,
one has GELU(ax)/a ~ GELU(x) (Andriushchenko et al., 2023)), and thus the Rényi sharpness is
approximately invariant in this setting. Note that when the order v — 1, the Rényi entropy reduces
to the Shannon entropy, which is also invariant under the settings in Proposition[2.2] We also remark
that this invariance only holds for the layerwise sharpness, the connection between global sharpness
and the layerwise one can be found in Appendix [F]

3 GENERALIZATIONS BOUNDS WITH RESPECT TO RENYI SHARPNESS

In this section, we will provide several generalization bounds in terms of Rényi sharpness, by taking
advantage of the trick of translating the data discrepancy to multiplicative weight perturbation and
the reparameterization invariance of Rényi sharpness.

First of all, we’ll argue that the data perturbation can be translated to the multiplicative weight
perturbation when characterizing the generalization.

Proposition 3.1 (informally) For any p > 0, and a training set S draw from the distribution D,
with high probability,

where S(A, p) = {(x + pAx,y)|(x,y) € S} and A is a orthogonal matrix sampled under Haar
measure, i.e., uniform on O(d).

The more detailed description and proof of Proposition 3.1 can be found in Appendix [B] Intuitively,
Theorem uses S(A, p) to approximate D, treating the discrepancy between D and S as the
perturbation to S. This assumption is essentially akin to the data-separation assumption: data from



Under review as a conference paper at ICLR 2026

different classes are spatially separated with no inter-class overlap. Under this premise, one can
perturb a sample within its class (i.e., move along the within-class manifold) without affecting other
classes. Note that D and S can also be feature distributions, thus we can also bound the population
loss using the perturbation in the feature space.

The key idea of the perturbation translation is that a multiplicative perturbation in input (feature)
space can be transferred into parameter space. A neural network can be written as a composite
function f = g(Wh(x)), where W is the weight at a given layer, h(x) is the function consisting
of the layers in front of W all the way to the input, and g is the function behind the W all the way
to the output. Let f = g(Wh(x)), if h(x) = x, then W = W, which is the weights of the first
layer, and the perturbation to h(x) happens in input space, other-wisely happens in feature space.
Consequently,

g(W(h(x) + pAh(x))) = g(W(I + pA)h(x)) = g(W + pWA)h(x)) (5)
i.e., the perturbation to the h(x) is fully transferred to the parameter W. Thus, the generalization

gap is closely related to the sharpness of a single layer, therefore we can examine the generalization
by studying the sharpness of only a single layer.

Based on the above translation result and motivated by the work of (Jia & Su, 2020)), we have the
first generalization bound based on Rényi sharpness as follows (informally stated):

Theorem 3.2 (informally) Let 0 € R"™ be the parameter of one layer and be an isolated local
minimum of a bounded loss function L(-,-) € [0, 1], and define a posterior Q concentrated near 6*
via local loss deviations,i.e., Q has a density q(0) o< e~ 1Fo=LOl swhere L(0) is the loss function
and Ly is the minima loss obtained by the optimization algorithm. Then, for any 6 € (0, 1] and
a > 0,a # 1, with probability at least 1 — § over a training set S of size N, we have:

2Ly + CV2/™ exp( — 1 [Ha(H) — A]) + log 2¥
N-—-1 ’

Eo[L(D,0)] < Eg[L(S,0)] + 2\/ (6)
where V' is the volume of the neighborhood M(6*), and A, C are positive constants, H =
V2L(S,0%) is the Hessian at 0* and H.(H) is the Rényi entropy of order « of the normalized
eigenvalues of H.

To exhibit a more direct relationship between the population risk and the empirical risk, we provide
another generalization bound as follows:

Theorem 3.3 (informally) Given a loss function L(-,-) and a layer-wise local minimum 6* € R™.
Let H denote the Hessian of the loss w.rt. 0*. Take a prior uniform in a ball that contains the
ellipsoid Exz(p) = {0 : (0 —0*)TH(0 — 0*) < p? }, where p is sufficiently small and satisfy p > 0.
Take a posterior uniform in Ex(p). For any § € (0,1] and o > 0, @ # 1, we have with probability
at least 1 — 0 over a training set S of size N, we have:

-1 (H)+10gM+C
* * n 2 27T« )
L(D.07) < L(S,0") + g +O(€)+\/ 2N - 1) '

where C'is a positive constant, H = VZL(S,0*) is the Hessian at 6* and H, (H) is the Rényi
entropy of order o of the normalized eigenvalues of H.
The detailed version and proof of Theorem 3.2]and Theorem [3.3|can be found in Appendices [Cland

D] respectively. Both Theorem [3.2] and Theorem [3.3]indicate that the generalization is bounded by
the Rényi entropy of the Hessian matrix of the loss with respect to the weights.

(7

4 RENYI SHARPNESS: ORDER SELECTION & FUNCTIONAL ESTIMATION

In this section, we will discuss the choice of the order parameter o in Rényi sharpness. Furthermore,
we will provide a fast algorithm for estimating the Rényi sharpness.

4.1 ORDER SELECTION IN RENYI SHARPNESS

The heavy-tailed spectrum of the Hessian matrix is a ubiquitous feature in deep networks. In this
section, we compute the Hessian spectrum of each layer by PyHessian (Yao et al., |2020), and find
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Figure 1: Hessian spectra [a,b,c]. Two zero-dominant profiles are observed: (a) multi-cluster
and (b,c) uniform. Optimal « vs. Hessian spectral type [d]. Statistics summarizing whether the
empirically optimal o matches the predicted choice under each Hessian spectral type.

that although all the spectra are heavy-tailed, the shapes of the spectrum can be divided into two
categories, which correspond to different choices of .

We summarize the shape of the spectrum into the following two categories: 1) Zero-dominant,
multi-cluster spectrum and 2) Zero-dominant, uniform spectrum. We selected representative plots
from ResNet18-CIFAR1O0 to illustrate these two categories, as shown in Fig. m The zero-dominant,
multi-cluster spectrum (Fig. |I| (a)) consists of a large number of near zeros (Part 1) and some
large eigenvalues (Part 3), and between these two eigenvalues, there are some eigenvalues (Part2)
that cannot be ignored but are significantly smaller than the large eigenvalues. The zero-dominant,
uniform spectrum (Fig. [T] (b,c)), on the other hand, contains only a large number of near zeros
and some large eigenvalues. The detailed spectrum of each layer across different tasks is pushed to
Appendix [KT] and a similar spectrum can also be found in[Sankar et al (2021).

To capture the multi-cluster nature (Fig. |I|(a)), we note that eigenvalues near zero (Part 1) contribute
less to sharpness and generalization. Therefore, it is important to choose a suitable « that embodies
the differences among the dominant (Part 3) eigenvalues and those small but non-negligible eigen-
values (Part 2). When a > 1, the measure disproportionately amplifies large eigenvalues while
ignoring smaller ones. To better capture the spectrum’s subtle variations, especially on Part 2, it is
preferable to use an order « € (0, 1), which balances sensitivity across both large and small eigen-
values. In practice, we observe that setting o = 0.5 typically yields the most stable and significant
correlation between Rényi sharpness and generalization.

In the case of uniform spectrum (Fig. [I] (b,c)), one part of Part 2 and Part 3 vanish, leaving only a
few dominant ones. Therefore, it becomes crucial to capture the differences among these dominant
eigenvalues. When « € (0, 1), the order tends to suppress these differences, which is undesirable
in this context. Thus, choosing o > 1 is more appropriate, as it captures the contribution of every
eigenvalue and highlights their differences. However, as a: approaches 1, practical numerical com-
putation becomes unstable. Balancing theory and practice, v > 1 will be better, and we find that
a = 1.5 performs well and exhibits a strong and robust correlation.

Overall, the key to choosing « is whether the eigenvalues that influence generalization form clusters
whose inter-cluster separation exceeds the clusters’ enlargement. If there is a single cluster, selecting
a > 1 suffices to examine inter-eigenvalue differences. When clusters are widely separated, we
should choose a¢ < 1 to avoid over-emphasizing the larger eigenvalues when v > 1. In practice,
o = 0.5 and a« = 1.5 tend to provide robust and consistent results across different datasets and
models. The summary statistics of the average correlations for different values of « can be found in

the Appendix [K:4]

We conducted a statistical analysis of the experiments in Section [5] examining whether the value
of « that yields the highest correlation between the layer-wise Rényi sharpness and generalization
is consistent with our prior analysis. We then recorded the number of successful and unsuccessful
matches in 60 models, with a total of 1630 cases: 1451 matches and 179 mismatches, as shown in
Fig.[I](d). Overall, the empirical findings agree well with our preceding intuitive analysis.

4.2 ESTIMATION OF RENYI SHARPNESS

To estimate the Rényi entropy of the Hessian matrix, it would be of prohibitive complexity if we
directly calculate the spectrum of the Hessian matrix, due to the huge size of the matrix. To cir-
cumvent this difficulty, we will reformulate the Rényi entropy as a functional of the trace of matrix
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functions and then leverage the stochastic trace estimator (also known as the Hutchinson method)
and stochastic Lanczos quadrature method to greatly reduce the complexity.

Firstly, the Rényi entropy is reformulated as follows:

1 N . 1 S 1 Tr(H®)
Ho(H) = 1= alOg;(Tr(H)) TN 1 T O

Thus the estimation task boils down to calculating the trace of matrix functions Tr(H) and Tr(H®).

To estimate the trace of matrix functions f(H), the stochastic trace estimator can be leveraged to
greatly reduce the complexity:

Te(f(H)) = Tr(f(H)I) = Te(f(H)E[vv ']) = E[Te(f(H)vv )] =E[v " f(H)V], )

where f is analytic inside a closed interval function, I is the identity matrix, and v is sampled from
a Rademacher distribution.

To economically calculate the expectation of the quadratic form v " f(H)v, the Gaussian quadrature
rule can be employed to transform the expectation to an integral. Further, the integral can be com-
puted with the nodes and the weights of the quadrature rule given by the Lanczos algorithm, (Golub
& Strakos), [1994; |(Golub & Meurant, 2009} Bai & Golub, [1996; [Bai et al.,|1996;|Golub & Van Loan,
2013} [Ubaru et al., 2017) which basically generates an orthonormal basis for the Krylov subspace
such that the matrix can be reduced to tri-diagonal one, hence greatly lower the computational bur-
den. Combined all the above, it constitutes the framework of the stochastic Lanczos quadrature
(SLQ) algorithm (Ubaru et al.}2017), which is exactly the basis of Algorithmm

The details for the estimation of Rényi entropy are shown in Algorithm T}

Algorithm 1 Rényi Entropy Estimation via Stochastic Lanczos Quadrature

Input: Positive definite matrix H of size n x n, Lanczos iterations m, computation iterations [,
order « > 0 and o # 1.
Output: Estimation of H, (H).
fork=1,...,1do
Draw two random vector v and g, of size n x 1 from A(0,1) and normalize it, Wl1 = Hv,,
a1 = wllTvl, Wi = Wll — (1V1y,
fori =2,...mdo
D. Bi = [[wj-1]s
2). stop if §; = O else v; = w;_1/0;
3). w; =Hv,;, a; = W;TVZ', w; = w; — ;v — BjVi_1;
end for
4). Tp(i,9) =, i=1,...,m, Tp(i,i+ 1) =Te(i+ 1,4) =p;,i=1,...,m— 1.
5). A = e]—Tgel, By, = g,;ngk;
end for

LA
Return: H,(H) = 5 log ity

5 CORRELATION BETWEEN RENYI SHARPNESS AND GENERALIZATION

In this section, we estimate the Rényi entropy via Algorithm [I] and validate that Rényi entropy is
strongly correlated with generalization.

5.1 TASK

We evaluate the correlation between Rényi sharpness and generalization on: ResNet18/34 (He et al.|
2016)), and Simple Vision Transformer architecture from the vit-pytorch library on CIFAR10
(Krizhevsky & Hintonl 2009), ResNet18/34 on CIFAR100, and ResNet18 on TinyImageNet (Le &
Yang|, 2015). We vary the learning rate, optimization algorithm, and the weight decay strength to
generate different local minima, and then estimate the layer-wise and global Rényi sharpness. More
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details can be found in Appendix [J] We compare with the classical Hessian-based flatness mea-
sures using the trace of the loss-Hessian, the Fisher-Rao norm(Liang et al.| |2019)), the PAC-Bayes
flatness measure that performed best in the extensive study of Jiang et al.|(2019), the Frobenius
norm of the weights, and the sharpness defined in SAM (Foret et al., [2020) and ASAM (Kwon
et al., 2021). Notably, the sharpness defined in ASAM (Kwon et al., [2021) has been empirically
shown by |Andriushchenko et al.| (2023)), on larger-scale datasets and models, to have little or no
correlation with generalization performance. The definition and detailed implementation of those
measures can be found in Appendix[l] and the hyperparameter p in SAM and ASAM is searched over
{107%,3x1075, 1075, 3x107°, 1074, 3x10~*, 1073, 3x1072, 1072, 3x1072, 107}, 0.3, 1}.

To detect correlation, we follow the previous works by |Dziugaite et al.| (2020); Jiang et al|(2019);
Kwon et al.| (2021)); |]Andriushchenko et al.|(2023) and use the Kendall rank correlation coefficient:

2
T(X,y) = NN-T Z sign(z; — x;)sign(y; — y;) (10)

where x,y € R are vectors of generalization gap and sharpness values for N different models.
We follow the approach of /Andriushchenko et al.[(2023) by comparing sharpness and generalization
within the same model architecture. This contrasts with prior works such as |Dziugaite et al.| (2020)
and/Jiang et al.[(2019), which focus on comparisons across models with varying width or depth. We
always evaluate sharpness on the same training points taken without any data augmentations, while
the data augmentation tools are allowed in training.

5.2 CORRELATION BETWEEN RENYI SHARPNESS AND GENERALIZATION

After training with a range of hyperparameters, we estimate Rényi sharpness and compute the
Kendall rank correlation between Rényi entropy and the generalization gap (defined as the difference
between training and test loss). We vary « and plot the sharpness that attains the highest correla-
tion coefficient. Fig. [ reports these correlations on CIFAR-10 with ResNet-18. The “layer 17
through “all layer” subplots correspond to Rényi sharpness; the remaining subplots show alternative
metrics. As evident in Fig. 2] Rényi sharpness aligns closely with generalization performance and
outperforms the other measures in capturing the generalization gap.
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Figure 2: ResNet18 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure. Rényi sharpness is strongly correlated with generalization than the other measures.

Owing to page limits, we present the remaining tasks in a compact format that aggregates all statis-
tics into a single panel (Fig. [B). As shown in Fig. 3] Rényi sharpness is strongly correlated with
generalization. Full per-task figures in the style of Fig. 2]are provided in the Appendix [K:2]

6 REGULARIZATION BY RENYI SHARPNESS

In this section, we propose to use Rényi sharpness as a regularizer during training, i.e. the Rényi
Sharpness Aware Minimization algorithm. To reduce the complexity, in practice we will employ an
approximation of the Rényi sharpness.
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Figure 3: Kendall correlations on various tasks. Signed coefficients are mapped to 0-1 (blue =
positive, green = negative). Rényi sharpness shows the strongest correlation with generalization
than other sharpness measures.

6.1 RENYI REGULARIZATION AND RENYI SHARPNESS AWARE MINIMIZATION (RSAM)

If the original form Rényi sharpness was used for regularizer, it would require multiple cycles of
gradient descent, thus increasing the computational complexity by dozens of times, as compared
with the traditional training method. To reduce the computational burden, we will resort to the
approximations of Rényi sharpness. In specific, following the work by Khan et al.|(2018)); Kim et al.
(2022), we will employ the gradient magnitude as an approximation of the Hessian matrix:

N

. 1 2
H ~ GM = [Diag(; EVgl(B,Xi,yi))] (11)
Consequently, the Rényi sharpness can be approximated by )
1 19517
—H,(H) ~ —H,(GM) = — log 22219 (12)

g

T B (a0

where g is the gradient vector computed by the optimization algorithms, and g; =
2

+ ZZJ\; Vo,1(6,%;,y:) is the element in g. Thus we can use —sign(1 — a)% as the Rényi
regularizer. To avoid the memory usage and compute cost caused by explicitly Jco]mputing the gra-
dient with computational graph preserved (e.g., create_graph=True in PyTorch), we consider
minimizing the following objective instead:

L0 +€) = L(O - p-sign(l —a) - %gT) (13)
(Z]’ gj)a
Eq. [T3]can be expanded as follows:
> lgil* > g
L@+e)~L(O)—p-sign(l—a)  =L——g'g=L(O) - p-sign(l — ) - ZL"— (14)
(Ej gjz)a—H (Zj g?)a

Thus, optimizing Eq. [I3]is approximately optimizing the original loss with Rényi regularizer,
namely, Rényi sharpness-aware minimization (RSAM, see Algorithm [2). We observe that penal-
izing a single layer (e.g., the final layer) typically requires extending training for more epochs to
achieve strong generalization, unless multiple layers are optimized concurrently. Given the combi-
natorial cost of tuning layer-specific regularization strengths, we adopt a single global Rényi regu-
larizer applied across all layers. Appendix [Flestablishes that optimizing this global objective implies
optimizing the layer-wise objectives as well.

Moreover, it is observed that incorporating the approximate Hessian matrix and penalizing Rényi
sharpness at the early stages of training introduces substantial instability. To mitigate this effect,
we first train with plain SGD and adapt the warm-up length based on validation accuracy. For easy
tasks, five epochs suffice to attain high accuracy, so the SGD warm-up is capped at five epochs. For
harder tasks such as TinyImageNet, we defer switching to RSAM until the validation Top-1 exceeds
30%, which typically occurs around epoch 20. The discussion and comparison with other related
SAM variants can be found in the Appendix [H]
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6.2 COMPARISON BETWEEN RSAM AND OTHER SAM ALGORITHMS

We now apply our sharpness measure as a regularizer to train neural networks. We consider the
image classification tasks involving the CIFAR10/100 and TinyImageNet datasets. Various convolu-
tional neural networks such as ResNet, and WideResNet (Zagoruyko & Komodakis} 2016)) are used
for CIFAR10/100 experiments. We also evaluated performance by fine-tuning a ViT-B-16 model
pre-trained on ImageNet for CIFAR-10 and CIFAR-100. We used the checkpoint provided by Py-
Torch’s official repository, For comparison, we consider the sharpness-aware minimization (SAM)
method, the adaptive SAM (ASAM) method, an extension of SAM to involve the scale-invariance,
the Eigen-SAM (Luo et al.,[2024) method, which regularizes the top Hessian eigenvalue, the Fisher
SAM (Kim et al} [2022) method which minimize sharpness under the Riemannian metric, and the
Sparse SAM Mi et al.|(2022)) which mask the sharpness to speed up SAM algorithm. More details
are provided in Appendix[J.3.2]

Table 1: Test accuracies (avg. + standard error) for SGD/SAM/ASAM/Eigen-SAM/FSAM/RSAM.

Dataset Model SGD(%) SAM(%) ASAM(%) Figen-SAM(%) FSAM(%) SSAM(%) OURS(%)
ResNet20 02.68%0-25  93.44%007 93 62%0-16 93.24%0-20 03.54%012 93 44+0.14 93 69+0-12

CIFAR10 ResNet56 04.24%0-23 94 96+0-19 95 1240.08 94.96+0-10 9517005 95 15+0-12 95 26+0-12
WideResNet-28-10  96.36+0-08 9695005 g¢ 79+0-10 96.78+0-06 96.96006  96.96+0-04  97,13+0-06

ResNet20 69.12%0-17  70.53%0-30 70 73%0.14 70.51%0-20 70.57£0-32  70,14%0.16  70,91+0-25

CIFAR100 ResNet56 72.60F0-34 7486023 75.20%029 74.80%0-32 74.91%0-21 75 49+0.18 75 71+0-18
WideResNet-28-10  81.47+018  83.5550-14 g3 56+01L g9 g1+0.08 g3 4g+0-11 g3 47+0.09 g3 67+0-09

TinyImageNet ResNet50 59.62F151  60.705070  62.56+0-25 - 61.21+0-64 - 63.330-27

Table 2: Test accuracy for fine-tuning ViT-B-16 pretrained on ImageNet-1K on CIFAR-10 and
CIFAR-100.

Dataset Model SGD(%) SAM(%) ASAM(%) FSAM(%) OURS(%)

CIFAR10 ViT-B-16 98.06%0-09 98501005 9g8.39+0.05 gg 4o+0.11  9g 59+0:03
CIFAR100 ViT-B-16 88.27%0-15 g9 3g8%0-04 gg 78+0.33 gg 41+0.11  gg 58+0-07

We provide the averages and standard errors of the test accuracies obtained from five runs of each
method in TableE]and Table@ As can be seen from the table, one can confirm that the generalization
performance of SGD is significantly improved with our regularizer. Furthermore, our method out-
performs the SAM, ASAM, and Eigen-SAM methods. Although our method outperforms ASAM
overall, the margin is modest on certain tasks. We hypothesize this gap arises because we currently
employ an approximate surrogate of the Rényi sharpness, introduced for computational efficiency.
We expect further improvements if the exact Rényi sharpness can be used as the regularizer (or
if a tighter estimator becomes feasible), and we leave this as a promising direction for future work.
Since we first warm up with plain SGD before switching to RSAM, we did not adjust RSAM’s epoch
budget to equalize total compute across methods; instead, we fixed the total number of epochs. Con-
sequently, given a fixed compute budget, RSAM would be allowed to run more epochs and thus
expected to improve further the performance.

7 CONCLUSION

In this work, we propose a novel measure of sharpness — Rényi sharpness, which is defined as
the negative Rényi entropy of the loss Hessian. By leveraging the reparameterization invariance of
Rényi sharpness and the fact that data perturbations can be absorbed into the weight perturbations,
we develop several generalization bounds based on the Rényi sharpness. Extensive experiments
demonstrate a strong correlation between the Rényi sharpness and generalization. Furthermore,
we propose the Rényi Sharpness-Aware Minimization (RSAM) algorithm, which penalizes Rényi
sharpness during training. Experimental results demonstrate that RSAM outperforms all existing
sharpness-aware minimization methods, across multiple tasks.

Limitations. The generalization bounds in our work relies on homogeneity of the activation func-
tion, which holds for ReLU networks and approximately holds for GELU networks. Extending the
analysis for other activations is a both interesting and important direction. Moreover, our proposed
RSAM algorithm uses an approximation to Rényi sharpness for simplicity, a tighter approximation
or surrogate may further improve generalization.
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A  ORGANIZATION OF APPENDIX

The appendix is organized as follows:

* Sec.|Al an overview of the organization of the appendix.

* Sec. [B} detailed proof of the PAC Bayesian generalization bound under multiplicative
perturbation (Theorem 3.)).

* Sec. [} detailed proof of the PAC Bayesian generalization bound for Rényi entropy moti-
vated by (Jia & Sul 2020) (Theorem [3.2).

* Sec. [D} detailed proof of the PAC Bayesian generalization bound for Rényi entropy (The-
orem [3.3)).

* Sec. [E} detailed proof of the reparameterization invaricance of Rényi entropy (Proposition

* Sec. [F} detailed proof of optimizing global Rényi regularization implies optimizing layer-
wise Rényi regularization.

* Sec. [G} a proof of arbitrary trace rescaling under fixed normalized spectrum.

* Sec. [H detailed discussion and comparison with Rényi sharpness-aware minimization and
some related sharpness-aware minimization variants.

* Sec. |I} detailed description and definition of the baseline sharpness measures.

* Sec. [l detailed descriptions of the datasets, models, hyper-parameter choices used in our
experiments, including correlation experiments and the sharpness-aware minimization ex-
periments.

* Sec. |K} This section presents the Hessian spectrum which determine the Rényi order choice
and the correlation coefficient under different Rényi order . The correlation comparison
between the Rényi sharpness and other sharpness measures across multiple tasks is also
included.

* Sec. [} limitations of our assumptions and theoretical results.

* Sec. M} broader impacts statement of this research.
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B PAC BAYESIAN GENERALIZATION BOUND UNDER MULTIPLICATIVE
PERTURBATION

Below, we state a generalization bound based on multiplicative perturbation.

Theorem B.1 For any p > 0, and a training set S draw from the distribution D, we assumed
that L(D,0) < L(D,0 + 3), where § is the pertubation to the weights, S(A,p) = {(x +
PAX,y)|(x,y) € S} and A is a orthogonal matrix sampled under Haar measure, i.e., uniform
on O(d). With probability 1 — e,

The condition L(D, 8) < L(D, 0+4§) means that adding perturbation to weights should not decrease
the test error. This is expected to hold in practice for the final solution but does not necessarily hold
for any 0.

Proof. Based on the Hoeffding’s inequaliy, which is stated as follows:

Theorem B.2 (Hoeffding’s inequaliy) Let Uy,...,U, beindependent random variables taking
values in an interval [a, b]. Then, for any t € R,

n U nt?(b—a)?
E[etzil[EUz—Um]} <% (15)

Let Ui = Eall(f(0,x; + pAx;),y;)|, thus EU; = Ea[L(D(A,p))] and 230 U; =

EA[L(S(A,p))l. where D(A,p) = {(x + pAx,y)[(x,y) € D}, S(A,p) = {(x +
pAx, y)|(x y) € S8} and A is a orthogonal matrix sampled under Haar measure, i.e., uniform
on O(d). Consequently, we have

Es {gn [EA[Lw(A,p))]EA[L<S<A,p>>ﬂ} < 52 (16)
For any s,
Ps (EALL(D(A )] - EALL(S(A. )] > 5 a7
_ IP)S (ent I:]EA[L(D(A,p))]*EA[L(S(A,p))] > ents) (18)
nt [Ea[L(D(A.p))]~Ea[L(S(A.p))]]
< onts Markov’s inequality (19)
< n5E s (20)
Consequently,
nt2 2
Ps (EAIL(D(A, )] > EAlL(S(A, )] + 5) < ¢35 -0 @
when t = 4s/C?, nt?C? /8 — nts is minimized, thus,
—2ns?
Ps (EalL(D(A, )] > EAL(S(A, )]+ 5) < ¢ @)
—2ns?
lete = e ¢2 , we have
log%
P (EAL(D(A, )] > BAIL(S(A, o)) + O "2 ) < ¢ @3
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consequently,

Ps (EA[uD(A,p))] < BA[L(S(A, )]+ C}/ 1;) >1-c 24)

For any multiplicative perturbation, the perturbation in the input space can be fully transformed
into weight space, which means Ea [L(D(A, p))] = L(D, 0 + §), where d obeys some unknown
distribution. Consider the assumption that L(D, ) < L(D, 6 + §), we have

1
Ps (L(D,e) < Ea[L(S(A,p))] +C l‘fl ) >1-c (25)

Discussion: The idea about multiplicative perturbation under haar measure is also reported in |Pet-
zka et al.|[(2021), whose sharpness is define by the Hessian matrix of the loss function w.r.t a full
connect layer’s weights, but their follow-up results need to split the Hessian matrix into multiple
blocks and compute the corresponding traces individually, which proposes a huge computation bur-
den when dealing with a big layer, thus they only compute the sharpness of last layer in small model.
Contrary to deriving a bound via multiplicative perturbations like [Petzka et al.| (2021]), this section
aims to show that the dependency between the real and empirical data distributions can be trans-
formed to a weight perturbation of an individual layer, enabling the application of Theorem [3.2]and
[3.3]to study the corresponding layer-wise spectrum. Unlike the global spectrum, the layer-wise spec-
trum is more likely to be invariant under reparameterization. In Section 4] we prove the invariance
of the Rényi entropy in Theorem [3.2] and [3.3] Since the invariance conditions for the normalized
global spectrum are much more restrictive, Theorem [3.2]and [3.3]only apply to the layer-wise Rényi
entropy. Nevertheless, in Section [5] we empirically observe that the Rényi entropy of the global
spectrum is still correlated with generalization. We attribute this phenomenon to the fact that the
global spectrum is composed of the layer-wise spectra; hence, when the layer-wise spectra exhibit
strong correlations, the global spectrum also demonstrates significant correlations.

Corollary B.3 For any p > 0, and a training set S draw from the distribution D, we as-
sumed that L(D,0) < L(D,0 + 3), where 0 is the pertubation to the weights, S(A,p) =
{(x + pAx,y)|(x,y) € S} and A is a orthogonal matrix sampled under Haar measure, i.e.,
uniform on O(d). With probability 1 — €, we have

1og%

L(D,0) < EA[L(S(A,p). 0)] + O} =

17
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C PAC BAYESIAN GENERALIZATION BOUND FOR RENYI ENTROPY
MOTIVATED BY (JIA & SU,[{2020)

In this section, we will propose a generalization bound based on the Rényi entropy of the Hessian
spectrum of the loss function with respect to the weights.

Proposition C.1 Given a training set S with size N draw from the data distribution D and a loss
function L(-,-) € [0,1], a layer-wise local minimum 0* € R™ is isolated and unique in its neigh-
borhood M (0*) whose volume V is sufficiently small, pick a uniform prior P over 8 € M(0*) and
pick the posterior Q of density q(0) o< e~ 1Lo= LS with Ly = L(S,0*). For any § € (0,1] and
a > 0, # 1, we have with probability at least 1 — § that:

2Lo +2A+ log%
N -1

Eq[L(D,0)] < Eo[L(S.0)] + 2\/ (26)

_Hcv (H)+A
n

2 1 . . . . .
where A = =nV = mwexp{ }, and A > 0 is the constant item. H is the Hessian matrix

4me
of loss function w.r.t. 6*.

Proof. Using PAC-Bayesian generalization bound proved by (Jia & Sul,[2020):

Theorem C.2 Given a training set S with size N draw from the data distribution D and a loss
function L(-,-) € [0,1], a local minimum 6* € R™ is isolated and unique in its neighborhood
M(60*) whose volume V is sufficiently small, pick a uniform prior P over 8 € M(0*) and pick the
posterior Q of density q(0) o< e~ 1Lo=LSD yith Ly = L(S,0%). For any § € (0, 1), we have with
probability at least 1 — § that:

2Ly +2A+ log%

Eo[L(D,0)] < Eo[L(S,0)] + 2\/

27
N1 27
where A = ﬁnv%ﬂ% exp{l(’%‘m}, and H is the Hessian matrix of loss function w.r.t. 0*.
Next, we will utilize the Rényi entropy to bound the log|H| term.
log/H| = Zlog)\i (28)
i=1
= i log(Tr(H) As ) (29)
P Tr(H)
= nlogTr(H) + ilo Ai (30)
T S )
let p; = ﬁ, we have for o > 1
n n
> logp; <> pilogp; (31)
i=1 i=1
= —Hi(p) (32)
< —H,(p) monotonicity of Rényi entropy (33)
consequently,
1 <-H,(H 34
; o8 gy <~ HalH) (34)

Thus for o > 1,1 — a < 0, larger entropy means a smaller Z?:l logﬁ.

When 0 < a < 1, considering Jensen’s inequality, we have
1< I~ \@  /1\e
— E > <= g i) ==, 35
nz‘:lpz - <ni—1p> (n) )
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Thus,
dopt <l (36)

Using the AM-GM inequality, we will get

(f[lpi)l/" < i;p - G7)

consequently,

[Ipi <o (38)

Combining equation [36]and equation [38] we have
n n 1/ 1 a . . 1 I—a .
(Hpi> (Zpt> <n (nl ) /( ):nl <1 39
i=1

Thus we have

n 1 n n
Stogps + g log(Xopr) < 0 = Ylogps <~ Halp). (40)
i=1 i=1 i=1
consequently,
1 <-H,(H 41
; OgTr(H) < —H,(H) (41)

> log rAi < —H,(H) (42)
=1

Now we apply Eq42|to Eq[30/and Eq[27}

2L + 2A + log2¥
N-—-1

Eo[L(D,0)] < Eg[L(S,0)] + 2\/ (43)
nlogTr(H)—H, (H)

where A = 71 nV 77w exp{
0*.

}, and H is the Hessian matrix of loss function w.r.t.

We decompose the bound as
Gen(fg) < g(A(0) + B(0) +C),  A(0) = Tr(Hy), (44)

where A(6) is parameterization-dependent while B(#) is reparameterization-invariant and C'is the
constant. Let [f] = {S0 : S € G} denote the reparameterization equivalence class that leaves
the predictor fy unchanged (e.g., reparameterization induced by homogeneous activation function).
Since A(0) is not invariant and can be arbitrarily altered within [6], thus it is not an identifiable
property of fy.
To remove this ambiguity, we define a canonical projection II : [8] — [6] that selects, for every 0, a
representative 0* = II(6) € [0] satisfying

A(07) = Ao, (45)

where Ag is a constant independent of the underlying function f. Because B is invariant under
reparameterization, we have B(6*) = B(#) =: B(f). Therefore, for every function f,

Gen(f) = Gen(fo-) < g(A(0") + B(0")) = g(Ao + B(f)). (46)
Hence, up to an additive constant Aq determined by the canonical projection, generalization is
governed by the reparameterization-invariant term B. Accordingly, we absorb the trace term into
the constant A, and obtain A = —nVn T exp{w

I
of the Rényi entropy is proved in Appendlxl

}. The reparameterization invariance
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Corollary C.3 Given a training set S with size N draw from the data distribution D and a loss
function L(-,-) € [0,1], a layer-wise local minimum 0* € R™ is isolated and unique in its neigh-
borhood M (6*) whose volume V is sufficiently small, pick a uniform prior P over § € M(6*) and
pick the posterior Q of density q(0) o< e~ 1Lo= LS with Ly = L(S,0*). For any § € (0,1] and
a > 0, # 1, we have with probability at least 1 — 0 that:

2Lo 4 2A + log2Y
N -1

Eo[L(D,0)] < Eo[L(S.0)] + 2\/ 47

where A = ﬁnv% TF%GXP{W}, and A > 0 is the constant item. H is the Hessian matrix
of loss function w.r.t. 0*.
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D PAC BAYESIAN GENERALIZATION BOUND FOR RENYI ENTROPY

Theorem D.1 Given a training set S with N samples draw from the data distribution D and a loss
function L(-,-), a layer-wise local minimum 0* € R™. We assumed that L(D, 6*) < L(D,0* + ¢),
where € is the pertubation to the weights. Consider a prior uniform in a ball which contains the
ellipsoid that satisfy { 0 : (0 — 0*) "H(0 — 0*) < p? }. Take the posterior uniform on this ellipsoid.
Forany 6 € (0,1] and o > 0, @ # 1, we have with probability at least 1 — § that:

—+H,(H) + log @ +C
2(N — 1)

L(D,0") < L(S,0%) + WPQ +0(e) + \/ (48)

Where A > 0 is the constant term. The condition L(D, §*) < L(D,0* + ¢) means that adding
perturbation to weights should not decrease the test error. This is expected to hold in practice for the
final solution but does not necessarily hold for any 6.

Proof.

We recall the standard PAC-Bayes bound (e.g. McAllester| (2003)): for any prior P independent of
the data, with probability at least 1 — § over the draw of the sample .S of size N, for any posterior ()
we have

Dx1(Q|P) —i—log@
2(N — 1)

Eo~q[L(6)] < EoqlLs(6)] + \/ (49)

Suppose 6* is a local minimum and in a sufficiently small neighborhood we have the quadratic
approximation

Ls(0) = Lo+3(0—07)TH(0 - 67) + Ry(9),  |Ra(f)| <, (50)

with Hessian H > 0. We now consider two different posterior distributions (), both paired with a
uniform prior P.

Fix p > 0 independent of H. Define the ellipsoid
Bra(p) = {0: (06— 0")TH(O —67) < p }.

We take @) = Unif(Fu(p)) and the prior P = Unif(Bp), the uniform distribution over a large
Euclidean ball Br, containing all such ellipsoids.

Step 1. Empirical risk under Q. With the change of variables y = H'/2( — 6*), Q becomes
uniform on the ball B,,(p). Then

p n—1
nr n
,],,2 . 2

o r n+2p.

Eo~q[(6 — 6%) TH(0 — 07)) = E|ly|* = /Op r?fr(r) dr = /0

Thus . .
EonqlLs(0)] = Lo + 5 3%450" + O(e),

which is a constant independent of H.

Step 2. KL divergence. The KL between uniform distributions is a log-volume ratio:

Vol(Bg)

D P) =log ————t_.
The ellipsoid volume is
Vol(Ex(p)) = Vol(B, (1)) p™ (det H)~Y/2,

Hence
Dk (Q||P) = log Vol(Bpg) — log Vol(B,,(1)) — nlog p+3 log det H.

constant

21



Under review as a conference paper at ICLR 2026

Step 3. Bound. Plugging into equation 49| gives

. Llogdet H + log 2VN | constant
Eo~q[L(F)] < L0+2(7;1+2)p2+0(e)+\/2 Q(fo) .

Thus the only dependence on H is through % logdet H.
The PAC-Bayes upper bound under quadratic approximation has the form

Eoq[L(0)] < constant + f(3logdet H)

where f(-) is the complexity term of the chosen PAC-Bayes bound. Thus the only dependence
on the curvature H comes from log det H; all trace-type terms are absorbed into constants. Take
Taylor expansion at 8*, we assume that L(D, 0) < L(D, 8 + §), which means adding perturbation
to weights should not decrease the test error, thus we have

L(0) < Ls(0) + constant + f(3 logdet H)

Recall Eq[30} Eq. [A2] and that Rényi entropy is reparameterization invariant, follow the poof in
Appendix [C} we have

L(f) < Ls(f) + constant I + f(constant 2 — H,(H))

Corollary D.2 Given a training set S with N samples draw from the data distribution D and a loss
Sfunction L(-,-), a layer-wise local minimum 6* € R™. We assumed that L(D, 0*) < L(D,0* + ¢),
where € is the pertubation to the weights. Consider a prior uniform in a ball which contains the
ellipsoid that satisfy {0 : (0 — 0*) TH(0 — 0*) < p? }. Take the posterior uniform on this ellipsoid.
Forany ¢ € (0,1] and « > 0, # 1, we have with probability at least 1 — 0 that:

—+H,(H) + log @ +C
2(N — 1) '

L(D,0") < L(S,0%) + WPQ +0(e) + \/ (51)
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E REPARAMETERIZATION (SCALING) INVARIANCE OF RENYI ENTROPY

Neural networks that use activation functions like ReLU or leaky ReLU exhibit reparametrization-
invariant properties. Specifically, when scaling each layer’s weights by a positive constant, the
overall function computed by the network remains unchanged as long as the product of all scaling
factors equals one.

For example, consider a network defined as
f(x;{W1,...,W}) =W, -ReLUW[_; ---ReLU(W;2)),

where W; € R%*di-1_1If each weight matrix W is scaled by a positive constant s; > 0, and the

scaling factors satisfy HZL:1 s; = 1, then the output of the network remains unchanged for any input
x. The sharpness defined by Rényi entropy is invariant under this scaling trick:

Proposition E.1 Consider a L-layer feedforward neural network with positively homogeneous ac-
tivation function o (i.e., 0(cx) = co(x) for all ¢ > 0), and parameters {W1, ..., W_}. Let the
network output be f(x) = Wr-0(Wr_y---0(Wix)), and let L(0) denote the loss function, where
0 denotes the weights of arbitrary layer, i.e., W . Define the loss Hessian as Hg = V3L(0). Con-

sider a layer-wise scaling transformation defined by W, =W, ¢ >0, with Hlel c =1.
Let 0 = W, be the scaled parameters, and define Hg as the corresponding Hessian. Then the
spectrum-normalized Rényi entropy of H is invariant:

H,(Hy) = Hy(Hp), Va>0, a# 1. (52)

Proof.

The network function f(x) remains unchanged under the layer-wise scaling due to the positive
homogeneity of the activation since ][] ¢; = 1. Consequently, the loss £(8) is invariant:

L£(0) = L(0). (53)

Thus, the spectrum of H(é) will undergo a scaling transformation:

H; = ¢} - Ho, (54)

This implies that the eigenvalues {); } of H satisfy:

< 1
Ai = 5\ (55)
G
Then the normalized spectrum satisfies:
_ i % Ai A

Di Dis (56)

IV %Zﬂj IDYEVEN

so the Rényi entropy remains unchanged:
1 log g Py = 1 log E ps | = Ho(Heg) (57)
1—« - ¢ 11—« - ¢ ¢ '

Corollary E.2 Consider a L-layer feedforward neural network with positively homogeneous ac-
tivation function o (i.e., o(cx) = co(x) for all ¢ > 0), and parameters {W1,...,W}. Let the
network output be f(x) = Wp-0(Wr_1---0(Wix)), and let L(0) denote the loss function, where
0 denotes the weights of arbitrary layer, i.e., W|. Define the loss Hessian as Hg = Vgﬁ(@). Con-
sider a layer-wise scaling transformation defined by W; = Wy, ¢; > 0, with HzL:1 c =1
Let 0 = W, be the scaled parameters, and define Hg as the corresponding Hessian. Then the
spectrum-normalized Rényi entropy of H is invariant:

H,(Hp) = H,(Hg), Ya >0, a# 1. (58)

H.(Hg) =
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Discussion The reparameterization invariance is indeed a scale invariance, as the Rényi entropy
of the Hessian matrix is not invariant under non-linear reparameterization. We regard reparame-
terization invariance as a necessary, but not sufficient, requirement for studying correlations with
generalization. For a given minimum, there typically exists a large family of functionally equivalent
parameterizations (obtained via reparameterization), and optimization may converge to any element
of this family. To obtain a stable and comparable metric, it is therefore natural to seek quantities
that are invariant within this equivalence class, which motivates the necessity of reparameterization
invariance.

However, reparameterization invariance by itself does not guarantee a strong correlation with gen-
eralization. There are many possible invariant candidates, and they differ substantially in how sen-
sitively they capture spectral structure. As a result, their empirical association with generalization
can vary, even though they all satisfy the same invariance requirement.
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F CONNECTION BETWEEN GLOBAL AND LOCAL RENYI SHARPNESS
REGULARIZATION

Proposition F.1 Minimizing the global negative Rényi entropy with order o« > 1 is equivalent, in the
block-diagonal case, to making each layer’s spectrum uniform and balancing trace per dimension
across layers. This configuration simultaneously minimizes the layerwise negative Rényi entropy for
all orders o > 0, including o« < 1. With small cross-layer couplings, the same conclusion holds
up to a perturbation of order ||E|| g /T, where T is the trace of the global Hessian matrix, and E is
the difference between the Hessian matrix and the diagonal Hessian matrix. Considering that layer-
wise trace can be adjusted without performance degradation, thus balancing trace per dimension
across layers doesn’t change the loss. Consequently, optimizing the global negative Rényi entropy
is indeed optimizing the layer-wise negative Rényi entropy, i.e. layer-wise Rényi sharpness.

Proof.
Setup. LetH € R%%4 pe the (symmetric) Hessian at a candidate minimizer; we first treat H > 0
and discuss standard relaxations in Remark [F7] Denote the eigenvalues by
MH) > > N(H) >0, T:=Tr(H) > 0.
Define the normalized spectrum p;(H) := X\;(H)/T so that Zle p;(H) = 1. For & > 1 define

d
Ra(H) = Y (ps(H))",  —Ho(H) = ail log R (HI). (59)

i=1

Since = — log z is strictly increasing, minimizing — H,, (H) is equivalent to minimizing R, (H) for
any fixed a # 1 (monotone transform).
Assume the network parameters are partitioned into L layers with dimensions dy,...,d; (so

Y>ede = d). Let Hy € Rée*de be the principal block associated with layer ¢, with eigenvalues
A1(Hge) > -+ > Ag,(Hye) > 0 and trace Ty := Tr(H)g, > 0. Write

L de

T Ni(H @

Wy = % S (0, 1), E Wy = 1, Ua(Hu) = E ( (Tgu)) .
(=1 i=1

EXACT FACTORIZATION UNDER BLOCK-DIAGONALITY
Lemma F.2 (Exact decomposition) If H is block diagonal with blocks Hy1,...,Hrr, then for

any a > 0,
L

H) = > wi oo (Hy). (60)

proof. The spectrum of a block-diagonal matrix is the disjoint union of the spectra of its blocks.
Since p;(H) = \;(H)/T and T' = >, T, we compute

> (M) - S () () ()

Lemma F.3 (Power-sum bounds within a layer) Fix ¢ and set x; := X\;(Hy) /Ty so that z; > 0
and El 1 2; = 1. Then:

1. If a« > 1 (convex power), o, (Hyy) Zx > dél_o‘, with equality iff x; = 1/dy
(uniform spectrum inside the block).

2. If0 < B < 1 (concave power), szﬂ < délfﬁ, with equality iff v; = 1/d,.

i
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Both follow from Jensen’s inequality (or Karamata’s inequality) under the linear constraint y_, x; =
1.

Theorem F.4 (Global optimum under block-diagonality for oo > 1) Assume H =
blk_diag(Hi1,...,Hry) and o > 1. Then

L L

Ro(H) =Y wioa(Hy) > > wid/ ™ > d'™, (61)
=1 =1

and the following are equivalent:

1. Ro(H) attains its global minimum d*=°.

2. (Layerwise uniformity) For each ¢, the normalized spectrum inside Hy, is uniform:
Xi(Hyo) /T = 1/d,.

3. (Trace-per-dimension balancing) The layer traces satisfy wy = %, ie. g—f is constant across
layers (equal average curvature per parameter).

proof. The first inequality in equation [61] follows from Lemma [F.3(1) applied to each o, (Hy).
Hence

L
Ro(H) > Zaz wy, ap:=d; > 0.
=1

For fixed positive coefficients ay and o > 1, the function f(w) := ), ayw{ is strictly convex on the
simplex {w > 0, Y, wy = 1} and has a unique minimizer characterized by the KKT conditions:

ozagw?_l =\ = w x ae_l/(a_l) = (del_a)*l/(o‘*l) = dy.
Normalizing gives wy = d;/d. Substituting this and the layerwise lower bounds o, (Hys) > d%fo‘
into equation [60] yields
~ L ds\ @ 1 L
Ro(H) > (l) die = —N"g, =dle
=2 G) s

Equality throughout holds iff (i) each o, (Hy,) attains its lower bound, i.e. the layer spectra are
uniform, and (ii) w; = dy/d. This proves both necessity and sufficiency and the equivalences
claimed.

Corollary F.5 (Simultaneous layerwise optimality for all orders 8 > 0, 5 # 1) Under the con-
ditions of Theorem if the global minimum is attained (equivalently: each block has uniform
normalized spectrum and wy = dy/d), then for every order 8 > 0,

dy
1 A (H B
the quantity — Hg(Hy) = 71 log E (%) is minimized (for all £).
i=1

In particular, the same configuration minimizes the layerwise negative Rényi entropy for 5 > 1 and
for0 < g < 1.

proof. For > 1, Lemmal) shows that the uniform layer spectrum uniquely minimizes  _, xf
subject to > . x; = 1; since the logarithm and the factor (5 — 1)~! > 0 are monotone, it also
minimizes —Hg. For 0 < 8 < 1, Lemma @2) shows that the uniform layer spectrum uniquely

maximizes xf ; because (3 — 1)~! < 0, this again minimizes —Hpg. The claim holds for each
layer .

STABILITY UNDER CROSS-LAYER COUPLINGS

Real Hessians may not be exactly block diagonal. Write
B := blk_diag(H11,...,Hy1), E:=H-B.
Note that Tr(E) = 0 (off-diagonal blocks contribute zero trace), hence Tr(H) = Tr(B) = T..
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Proposition F.6 (Perturbation bound for oo > 1) Let « > 1 and set A, =
max{Amax(H), Amax(B)}. Then

(ﬁ)a—l Va|E||r

|Ra(H) -~ Ra(B)| < a 7 T

(62)

Consequently, if | E|| /T is small, minimizing R.,(H) is optimization-equivalent up to O (| E|| /T
to minimizing R (B), which by Theorem drives each layer toward its uniform spectrum (and
hence decreases all layerwise —Hg, 8 > 0, simultaneously).

proof. Let {\;} and {u;} be the eigenvalues of H and B sorted in nonincreasing order. By the
Hoffman-Wielandt inequality, 3% (\; — ;)2 < ||E|/%. For > 1, the function ¢(z) = z* has
derivative bounded on [0, A,] by aA2~!. Hence by the mean value theorem and Cauchy—Schwarz,

’;A?—Xi:ui‘

Since Tr(H) = Tr(B) = T, dividing both sides by 7' yields equation[62}

<aAdTt Z I\ — il < aASTVA|E| p.

REMARK (ORDER-ROBUSTNESS FOR 0 < @ < 1).

Recall the decomposition R, (H) = Z[L:l wy 0o (Hye). Passing froma > 1t00 < a < 1

only changes the curvature of R (H) and o, (Hg,) (from convex to concave) and flips the outer
optimization direction (since ﬁ changes sign), but it does not change the location of the optimizer.

Consequently, in the block-diagonal setting, minimizing the global negative Rényi entropy — H,, (H)
for any order « > 0, a # 1 is equivalent to making each layer’s spectrum uniform and bal-
ancing trace per dimension across layers; this configuration simultaneously minimizes the layer-
wise negative Rényi entropy for all 5 > 0 (including < 1). With small cross-layer couplings
H = blk_diag(Hy1,...,Hy) + E, the same conclusion holds up to a perturbation of order
O(||E||r/Tr(H)) by continuity of H, in total variation.

Remark E.7 (PSD reduction and alternatives) If H is indefinite, one may work with | H| (absolute
value via spectral decomposition), with a Gauss—Newton/Fisher approximation, or with a shifted
PSD proxy (e.g. H + ~XI with v > 0), apply the above results verbatim to the PSD object, and then
track the dependence on the chosen proxy. The normalized formulation equation |59|is unchanged
as long as the trace T > 0.
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G ARBITRARY TRACE RESCALING UNDER FIXED NORMALIZED SPECTRUM

In this appendix, we study how the Hessian trace behaves under linear reparameterizations, and
in particular under those that preserve the spectral shape (normalized eigenvalue distribution) of
the Hessian. We show that, for each individual model, such reparameterizations give a continuous
family of possible scalings of the Hessian trace. For a finite collection of models, this leads to an
explicit infinite feasibility condition under which all Hessian traces can be aligned to a common
value while preserving spectral shape.

Let w € R™ denote the parameter vector of a given (layer of a) model, and let H € R™*" be
the corresponding Hessian at a local minimum. Throughout this subsection, we assume that H is
symmetric positive definite.

We consider linear reparameterizations of the form
w = Ab, A € R™™ invertible, (63)

and define the reparameterized loss by L(6) := L(A#). By the chain rule, the Hessian in 6—
coordinates is
Hy:=V2L(0) = ATHA. (64)

The corresponding parameter vector is
0=Atw. (65)

We are particularly interested in reparameterizations that preserve the spectral shape of the Hessian,
i.e. that only rescale all eigenvalues by a common positive factor.

Lemma G.1 (Spectral-shape—preserving reparameterizations) Let H > 0. For any scalard > 0
and any orthogonal matrix Q € R™*™ (QTQ = I), define

A(d,Q) == H™Y/%(dQ) HY/2. (66)
Then the corresponding reparameterized Hessian Hy = A(d, Q)" H A(d, Q) satisfies
Hy = d*H. (67)

In particular, the eigenvalues of Hy are {d*\;(H)};, so the normalized spectrum
{\i(Hy)/Tr(Hy)}; coincides with that of H.

Proof. A direct computation yields
Hy = A(d, Q)" HA(d, Q)

_ (HI/ZQTdH’l/z) H (H’I/QdQHlﬂ)

— @ HV2QTHYV2HH2QH?

— 2 H'2QTQHY? = 2H.
Thus all eigenvalues are scaled by d?, and the normalized eigenvalue distribution is unchanged.
We next study the effect of equation [66]on the parameter norm. Let

w:= HY?w, r:= |lulj2 > 0. (68)

For A = A(d, Q) as in Lemma|G.1] we have

- 1
- A—lw _ (H—I/Q(dQ)Hl/Q) 1w _ gH_l/QQTHl/Qw

1
= HQT (69)

Let Tr(H) denote the original trace. Under the reparameterization with factor d*> we have

Tr(Hg) = d*Tr(H). (70)
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As d € R, we can adjust the trace of the Hessian matrix to an arbitrarily prescribed value while
keeping the normalized eigenvalue spectrum completely unchanged.

Since our sharpness measure is defined in terms of the normalized spectrum (e.g. via the Rényi en-
tropy of {\;(H)/Tr(H)};), the global scale of the trace is factored out by design. Combining this
observation with the reparameterization freedom described above, we conclude that scale-dependent
quantities such as the raw trace Tr(H ) do not carry reparameterization-robust geometric informa-
tion. What remains intrinsic is precisely the shape of the Hessian spectrum, which we quantify via
its Rényi entropy.
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H ON THE DISCUSSION OF SAM VARIANTS

In this section, we discuss several sharpness-aware minimization variants and compare them with
Rényi sharpness-aware minimization (RSAM). We focus on closely related methods, including the
original SAM (Foret et al.l 2020), Sparse SAM (Mi et al., 2022)), Eigen SAM (Luo et al.| [2024),
Tilted SAM (L1 et al., 2024b), Frobenius SAM (Tahmasebi et al., [2024), and Fisher SAM (Kim
et al., [2022).

Vanilla SAM has been shown to implicitly minimize the largest eigenvalue of the training loss Hes-
sian (Wen et al.l 2023)), and Sparse SAM, which accelerates SAM by explicitly masking part of the
updates, essentially targets the same quantity. Eigen SAM directly penalizes the largest eigenvalue
in its minimization step. Tilted SAM samples noise in multiple directions to perturb the weights
and penalizes the sum of the exponentiated perturbed losses over these noise samples. Intuitively,
the exponential transform amplifies the sharpest directions of the loss landscape, so it imposes a
stronger penalty along these directions. From this perspective, Tilted SAM can be viewed as ef-
fectively penalizing the largest (or relatively large) eigenvalues of the Hessian. Frobenius SAM
penalizes the Frobenius norm of the Hessian matrix; if we normalize this norm by the squared trace,
the resulting quantity becomes essentially a monotone function of the order-2 Rényi entropy. Fisher
SAM minimizes the same type of robust objective as SAM, but with the neighborhood defined by
a Riemannian metric induced by the Fisher information; this is equivalent to penalizing the largest
eigenvalue of the Hessian with respect to the Fisher metric.

Overall, these methods regularize some spectral function of the Hessian eigenvalues. Whether one
penalizes the largest eigenvalue or minimizes the Frobenius norm of the Hessian, the implicit goal
is to encourage the eigenvalues to move closer to each other; for example, reducing the largest
eigenvalue typically decreases the overall spread of the spectrum.

In contrast, Rényi sharpness explicitly focuses on the dispersion of the normalized eigenvalues.
Modern deep models usually enjoy certain reparameterization invariances, so we can rescale the
overall magnitude of the Hessian without changing the model’s behavior. Consequently, if the regu-
larizer depends only on the unnormalized eigenvalues (such as the spectral norm or a generic spec-
tral function), then shrinking the global scale of the Hessian will always reduce the regularization
term, even when the model performance and the relative shape of the spectrum remain unchanged.
Therefore, minimizing such penalties alone does not guarantee that the eigenvalues become more
uniformly distributed.
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I SHARPNESS MEASURES

In this section, we give a detailed introduction to the sharpness measure we use. The content of this
section refers to Jiang et al.|(2019) and the original works corresponding to these measures.

I.1 NORM BASED MEASURES

Several generalization bounds have been proved for neural networks using margin and norm no-
tions. In this section, we go over several such measures. For fully connected networks, [Bartlett &
Mendelson| (2002) have shown a bound based on product of ¢; o, norm of the layer weights times
a 2¢ factor where ¢ 1,00 is the maximum over hidden units of the ¢ norm of the incoming weights
to the hidden unit. [Neyshabur et al.| (2015) proved a bound based on product of Frobenius norms of
the layer weights times a 24 factor and|Golowich et al.[(2017) was able to improve the factor to V.
Bartlett et al.[|(2017) proved a bound based on product of spectral norm of the layer weights times
sum over layers of ratio of Frobenius norm to spectral norm of the layer weights and Neyshabur et al.
(2018a) showed a similar bound can be achieved in a simpler way using PAC-bayesian framework.

Spectral Norm Unfortunately, none of the above founds are directly applicable to convolutional
networks. [Pitas et al.[(2017) built on Neyshabur et al.|(2018a) and extended the bound on the spectral
norm to convolutional networks. The bound is very similar to the one for fully connected networks
by [Bartlett et al| (2017). We next restate their generalization bound for convolutional networks
including the constants.

Theorem L.1 (Pitas et al.|(2017)) Let B an upper bound on the {5 norm of any point in the input
domain. For any B,~y,6 > 0, the following bound holds with probability 1 — § over the training set:

[W; —W?2|3

d 2 d d i~ Willp m
(84B L, ki@ + /In(@n2d)) TIL, Wl oy St = + (%)

y2m

L<L,+ (71)

Parameter Norm Given recent evidence on the importance of distance to initialization (Dziu-
gaite & Royl, 2017; Nagarajan & Kolter} 2019; Neyshabur et al., [2018b), we calculate the following
measures:

d
Nfrobenius—distance(fw) = Z HW'L - W?”%’ (72’)

i=1

In the case when the reference matrix WY = 0 for all weights, Eq (72) the Frobenius norm of the
parameters, which also corresponds to the distance from the origin:

,uparam -norm .fw Z ||W ||F (73)

Fisher-Rao Norm Fisher-Rao metric was introduced in Liang et al.| (2017) as a complexity mea-
sure for neural networks. [Liang et al.| (2017)) showed that Fisher-Rao norm is a lower bound on the
path-norm and it correlates in some cases. We define a measure based on the Fisher-Rao metric of

the network:
m

(d+1)2
,uFlsherRao(fw - + Z WV é fw z))ayi>2 (74)

where ¢ is the cross-entropy loss.

Trace Trace measure is defined as the trace of the Hessian matrix of the loss function on the
training dataset with respect to the weights, i.e., Tr(H), where H = V2 L(S, w).
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1.2 FLATNESS-BASED MEASURES

PAC-Bayesian framework (McAllester} |1999) allows us to study flatness of a solution and connect
it to generalization. Given a prior P is is chosen before observing the training set and a posterior
(@ which is a distribution on the solutions of the learning algorithm (and hence depends on the
training set), we can bound the expected generalization error of solutions generated from @ with
high probability based on the Dy, divergence of P and (). The next theorem states a simplified
version of PAC-Bayesian bounds.

Theorem 1.2 For any § > 0, distribution D, prior P, with probability 1 — § over the training set,
Sfor any posterior Q the following bound holds:

Bveq [LU)] < Bung [E(1)] + \/ Pt el s)

If P and @ are Gaussian distributions with P = N (up,Xp) amd Q@ = N(ug,Xq). then the
Dx1,-term can be written as follows:

det ZP )
det EQ

Setting Q = ./\/(w 021) and P = N (w? o%I) similar to Neyshabur et al.[(2017), the D, term will

be simply M However, since o belongs to prior, if we search to find a value for o, we need

to adjust the bound to reflect that. Since we search over less than 20000 predefined values of ¢ in our
experiments, we can use the union bound which changes the logarithmic term to log(20000m/¢)
and we get the following bound:

{tr (35'Q) + (g — i)' Bp" (g — pp) — k + In(

Dic (Wi, Q) W 1ip, 1)) = 3

lw—wO|3

]EUNN(M’U2I) [L(fw+u)] = E“NN(“»‘72I) [I:(fw+u)} + \/ -

Based on the above bound, we define the following measures using the origin as reference tensors:

+log(Z) + 10
m—1

(76)

[wll3 m
Npac—bayes—orig(fw) - 40_22 + IOg(K) +10 (77)

where o is chosen to be the largest number such that By ar(u,021) []i(fwﬂl)} <0.1.

To understand the importance of the flatness parameters o, we also define the following measure:

1

Hpac-bayes-flatness (fw ) = ; (78)

where o is computed as explained above.

.3 SHARPNESS-BASED MEASURES
SAM |Foret et al|(2020) proposed a generalization bound under weight perturbation:

Theorem 1.3 For any p > 0 and any distribution D, with probability 1 — § over the choice of the

training set S ~ D,
2 ~
klog (1 + loellz (1 + \/1"!‘5(")) ) +4log 2 +0(1)
Lp(w) < max Lg(w +€)+

llellz<p n—1

(79)

where n = |S|, k is the number of parameters and we assumed Lp(w) < E., _xr0,0)[Lp(w + €)].

Thus, the sharpness of SAM is defined as

Hn|1|a><< Ls(w+€) — Lg(w) (80)
Ellp=p
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if we minimize max ||, <, Ls(w + €), the solution via a first-order approximation will be

i a-1 1 1
e(w):p%, g=VIs(w), —-+-=1 (81)
18llq P9
Especially, if p = 2 g
e(w) =p gl g =VLis(w). (82)
andif p = o0
e(w) = psign(g), g = VLs(w). (83)

ASAM Kwon et al.| (202 1)) proposed a new adaptive sharpness which is reparameterization invari-
ant with a normalization operator:

Definition 1.4 (Normalization operator) Let {T\,,w € R*} be a family of invertible linear oper-
ators on R*. Given a weight w, if TXV{,A = T, ! for any invertible scaling operator A on RF which
does not change the loss function, we say Ty, * is a normalization operator of w.

Using the normalization operator, we define adaptive sharpness as follows.

Definition 1.5 (Adaptive sharpness) If T, ! is the normalization operator of W in Definition
adaptive sharpness of w is defined by

max Lg(w+e€)— Lg(w) (84)
ITw el <p

where 1 < p < o0.

They also demonstrated a generalization bound for adaptive sharpness:

Theorem 1.6 Let T, ' be the normalization operator on R*. If Lp(w) < E¢, . n(0,02)[Lp (W + €)]
for some o > 0, then with probability 1 — 0,

2
Lp(w)< max Lg(w+e)+h (”W”2) (85)

— = 22
1T tell2<p n-p

where h : R — RY is a strictly increasing function, n = |S| and p = Vko (1 + \/logn/k) /1.
For a minimax problem

A

min  max Lg(w+e€)+ =||w|3. (86)
W T el <p 2

The solution under a first-order approximation for adaptive sharpness is

| TwV Ls(w)|*”"

€ = pTywsign(VLg(w)) - (87)
17wV Ls(w)ll3~
Especially, if p = 2,
T2V Ls(w)
€e=p—W_ 217 88
OV o
and if p = oo,

€ = pTysign(VLg(w)). (89)

1.4 IMPLEMENTATION

The measures, including Fisher-Rao norm (Eq. [74), Parameter norm (Eq. [73), Trace of the Hessian
matrix, Pac-Bayes from origin (Eq[77), and the Pac-Bayes flatness (Eq. are computed through
the repository| by [Dziugaite et al.|(2020).

The measures, including L, sharpness (Eq. [82), L sharpness (Eq. [83)), L, adaptive sharpness (Eq.
[88), and L sharpness (Eq. [83) compute the corresponding sharpness directly from the solution of
the minimax problem.

For the SAM(ASAM) sharpness, we conducted a grid search over p € {1076, 3 x 1076, 1075, 3 x
107°, 1074, 3x107%, 1073, 3x 1073, 1072, 3x 1072, 1071, 0.3, 1} and select the p with highest
correlation coefficient for each task.
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J  EXPERIMENTAL DETAILS

In this section, we describe the datasets, models, hyperparameter choices, and eigenspectrum adjust-
ment used in our experiments. All of our experiments are run using PyTorch on Nvidia GTX1080ti,
RTX3090s, RTX4090s, and RTX5090s.

J.1 DATASET

CIFAR-10. CIFAR-10 consists of 60,000 color images, with each image belonging to one of ten
different classes with size 32 x 32. The classes include common objects such as airplanes, automo-
biles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The CIFAR-10 dataset is divided into
two subsets: a training set and a test set. The training set contains 50,000 images, while the test set
contains 10,000 images (Krizhevsky & Hintonl |2009). For data processing, we follow the standard
augmentation: normalize channel-wise, randomly horizontally flip, and random cropping.

CIFAR-100. The CIFAR-100 dataset consists of 60,000 color images, with each image belong-
ing to one of 100 different fine-grained classes (Krizhevsky & Hinton| [2009). These classes are
organized into 20 superclasses, each containing 5 fine-grained classes. Similar to CIFAR-10, the
CIFAR-100 dataset is split into a training set and a test set. The training set contains 50,000 images,
and the test set contains 10,000 images. Each image is of size 32x32 pixels and is labeled with its
corresponding fine-grained class. Augmentation includes normalize channel-wise, randomly hori-
zontally flip, and random cropping.

TinyImageNet. TinylmageNet comprises 100,000 images distributed across 200 classes, with
each class consisting of 500 images (Le & Yang| 2015). These images have been resized to 64
x 64 pixels and are in full color. Each class encompasses 500 training images, 50 validation images,
and 50 test images. Data augmentation techniques encompass normalization, random rotation, and
random flipping. The dataset includes distinct train, validation, and test sets for experimentation.

J.2  MODEL

In all experiments, the neural networks are initialized by the default initialization provided by Py-
torch.

ResNet18, ResNet20, ResNet34 and ResNet50 (He et al., 2016). We use the standard ResNet
architecture for TinylmageNet and tune it for the CIFAR dataset on the correlation validation
tasks. The detailed network architecture parameters are shown in Table [3| and Table 4] ResNet18,
ResNet20, ResNet34, and ResNet56 are trained on CIFAR-100 . The standard ResNet18 is trained
on TinylmageNet for efficient computing and tuned ResNetl8 is trained on TinylmageNet for
sharpness-aware minimization.

WideResNet (Zagoruyko & Komodakis, 2016). The Wide ResNet implementation uses the
wrn28_10 model from the horuma (Hatayal |2018)) library. Architecture details can be found in
Table 4

Vision Transformer. We use the SimpleViT architecture from the vit-pytorch library, which
is a modification of the standard ViT (Dosovitskiy et al., [2020) with a fixed positional embedding
and global average pooling instead of the CLS embedding.

J.3 TRAINING HYPER-PARAMETERS SETUP
J.3.1 CORRELATION EXPERIMENTS

We train models for 200 epochs, and cosine learning rate decay is adopted after a linear warm-up for
the first 10 epochs. For the task on CIFAR10/CIFAR100, we vary the initial learning rate {0.001,
0.03, 0.1}, batch size {128, 384, 1280}, and weight decay {0.00001, 0.00005, 0.0001, 0.0003,
0.0005} for SGD with momentum and the initial learning rate {0.00001, 0.0003, 0.001}, batch size
{128, 384, 1280}, and weight decay {0.00001, 0.00005, 0.0001, 0.0003, 0.0005} for Adam. For
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Table 3: ResNet architecture used in correlation experiments.

Layer ResNet18¢ipar ResNet34 ResNet18i,yimageNet
3x3, 64 3x3, 64 Tx7, 64

Conv 1 padding 1 padding 1 padding 3
stride 1 stride 1 stride 2

Max Pool, ks 3, str 2, pad 1

Layer 3x3, 64 3x3, 64 3x3, 64
stack 1 { 33, 64 }XZ { 33, 64 }“ { 33,64 }XQ
Layer [ 3x3,128 ] 5 [ 3x3,128 ] 4 [ 3x3,128 ] )
stack 2 3x3,128 % 3x3,128 |~ 3x3,128 | X
Layer [ 3x3,256 | 2 [ 3x3,256 ] <6 [ 3x3,256 ] 2
stack 3 3x3,256 3x3,256 3x3,256
Layer [ 3x3,512 ] ) [ 3x3,512 ] 3 [ 3x3,512 ] )
stack 4 3x3,512 [ 3x3,512 | % 3x3,512 | X
FC Adaptive Avg Pool, output size (1,1)
512 X N_CLASSES 512 X N_CLASSES 512 X N_CLASSES

Table 4: ResNet architecture used in sharpness-aware minimization experiments.

Layer ResNet-20 ResNet-56 ResNet-50 WideResNet-28-10
3x3, 16 3x3, 16 33, 64 3x3, 16
Conv 1 padding 1 padding 1 padding 1 padding 1
stride 1 stride 1 stride 1 stride 1
- ; - ; 1x1, 64 - ;
Layer 3x3, 16 3x3, 16 . 3x3, 160
stack 1 3x3.16 | %3 3x3.16 | <0 [ Raniyes } x3 33,160 | =4
- ; - ; 1x1, 128 - ;
Layer 33,32 3x3,32 . 33,320
stack 2 3x3,32 | %3 3x3.32 | X [ 3. 128 }X“ 3x3,320 | =4
- ; - ; 1x1,256 - ;
Layer 3x3, 64 3x3, 64 . 33, 640
stack 3 3x3.64 | %3 3x3.64 | <9 [ prd a8 }X(’ 3x3.640 | <4
L I1x1,512
taykez - 3x3.512 | x3 -
stac 1x1,2048

Avg Pool, kernel size 8  Avg Pool, kernel size 8  Adaptive Avg Pool, output size (1,1)  Avg Pool, kernel size 8

FC 64 X N_CLASSES 64 X N_CLASSES 2048 X N_CLASSES 640 X N_CLASSES

the task on TinyImageNet, we vary the initial learning rate {0.001, 0.03, 0.1}, batch size {128, 384,
1280}, and weight decay {0.000003, 0.00001, 0.00003, 0.00005, 0.0001, 0.0003} for SGD with
momentum and the initial learning rate {0.00001, 0.0003, 0.001}, batch size {128, 384, 1280}, and
weight decay {0.000003, 0.00001, 0.00003, 0.00005, 0.0001, 0.0003} for Adam.

Different from Jiang et al.|(2019), we pick the data augmentation in the training scheme, which is a
common setting in modern deep learning, but we still compute the sharpness measure without data
augmentation, as from a theoretical perspective, data augmentation is also challenging to analyze
since the training samples generated from the procedure are no longer identical and independently
distributed.

To investigate the relationship between sharpness and generalization under common training strate-
gies, we pick the stopping criterion based on the number of iterations or the number of epochs. To
avoid differences in optimization speed across hyperparameter settings, we follow the linear scaling
rule recommendated by |Goyal et al.| (2017) and scale the learning rate and batch size in tandem,
which yields comparable convergence after the same number of epochs.
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J.3.2 SHARPNESS-AWARE MINIMIZATION EXPERIMENTS

Firstly, we will introduce the Rényi Sharpness-Aware Minimization algorithm as follows:

Algorithm 2 Rényi Sharpness-Aware Minimization (RSAM) Algorithm

Input: Loss function ¢, training dataset S := J"_, {(x;, y;)}, mini-batch size b, radius p, Rényi
order «, plain SGD epoch e;, RSAM epoch es, weight decay coefficient A, scheduled learning
rate (3, initial weight wy.
Output: Trained weight w. Initialize weight w <+ wy
for:=1,...,e; do
1). Sample a mini-batch B of size b from S
2). w+w—B(VLp(w) + Aw)
end for
forj=1,...,esdo
4). Sample a mini-batch B of size b from S
>, IVLe(w), > T
T, Ve v LB (W)
6). w < w— 3(VLp(w+€) + Aw)
end for
Return: w

5). € « p-sign(l — «)

We first train the neural network with vanilla SGD for e; epochs, without applying the Rényi regu-
larizer. The intuition is that the gradient-magnitude approximation underlying our method becomes
more accurate only after the model has achieved a reasonable training loss/accuracy, so penalizing
the Rényi term at the very beginning of training is unnecessary and may even be harmful. Once the
model reaches this warm-up stage, we activate the Rényi regularizer. For each mini-batch B, we
compute the loss Lp(w) and its gradient VL g (w). We then construct the perturbation € according
to Eq.[I3]and form the perturbed parameters w + €. Next, we evaluate the gradient at the perturbed
point, VL g(w + €), and perform a gradient-descent step on the original parameters w using this
gradient. This procedure is structurally identical to SAM (Foret et al., [2020) and ASAM (Kwon
et al.} 2021); the only difference lies in how the perturbation € is computed, which in our case is
defined by the Rényi sharpness objective in Eq.

We set p for SAM and Eigen-SAM as 0.05 for CIFAR10 and 0.1 for CIFAR100, and p for ASAM as
0.5 for CIFAR10 and 1.0 for CIFAR100. 1 for ASAM is set to 0.01. p and o for RSAM is describled
in Table. [5|and Table. [} The mini-batch size is set to 128. The number of epochs is set to 200 for
SGD, SAM, ASAM, Eigen-SAM, and RSAM. Although prior work recommends training SGD
for 400 epochs to assess improvements under a matched compute budget, RSAM introduces the
regularizer only after a warm-up period, so compute parity no longer holds. Moreover, those studies
have already shown performance superior to 400-epoch SGD. Consequently, our experiments are not
strictly designed under equal-compute conditions. Momentum and weight decay coefficient are set
to 0.9 and 0.0005, respectively. Cosine learning rate decay is s adopted with an initial learning rate
of 0.1. Also, random cropping, padding by four pixels, normalization and random horizontal flip are
applied for data augmentation. As label smoothing is not adopted in Eigen-SAM, all experiments
are conducted without label smoothing.

For the evaluations at a larger scale, we compare the performance of SGD, SAM, ASAM, Eigen-
SAM, and RSAM on TinyImageNet. We apply p = 0.05 for SAM and Eigen-SAM and p = 1.0 for
ASAM. p for RSAM is set to . The number of training epochs are all set to 100. We use a mini-
batch size of 128, an initial learning rate of 0.2, and SGD optimizer with weight decay coefficient
of 0.0001. Other hyperparameters are the same as those of CIFAR-10/100 tests.

All the hyper-parameters are summarized in Table[5] Table[6] and Table

J.4 RENYI ENTROPY COMPUTATION SETUP

The Rényi entropy is computed on the subset of the training dataset. For the CIFAR10 and CI-
FAR100 datasets, we randomly sample 2000 samples to compute Rényi entropy (1000 for ViT on

CIFAR10), and for the TinyImageNet dataset, we randomly sample 1000 samples. Batch size is set
to 128. [ = 100 and m = 15 are set for the Rényi entropy estimation algorithm. The Rényi order is
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Table 5: Hyper-parameters of Sharpness-aware Minimization on CIFAR10

. Momen SGD SAM  Batch Weight
Algorithm Model -tum LR Epochs Epochs Size  Decay P K @
ResNet20 0.9 0.1 200 0 128 0.0005 0 0 0
SGD ResNet56 0.9 0.1 200 0 128 0.0005 0 0 0
WideResNet-28-10 0.9 0.1 200 0 128 0.0005 0 0 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.05 0 0
SAM ResNet56 0.9 0.1 0 200 128 0.0005 0.05 0 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.05 0 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.5 0.01 0
ASAM ResNet56 0.9 0.1 0 200 128 0.0005 0.5 0.01 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.5 0.01 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.05 0 0.2
Eigen-SAM ResNet56 0.9 0.1 0 200 128 0.0005 0.05 0 0.2
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.05 0 0.2
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
FSAM ResNet56 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.2 0.0 0
SSAM ResNet56 0.9 0.1 0 200 128 0.0005 0.2 0.0 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 0.0 0
ResNet20 0.9 0.1 5 195 128 0.0005 0.65 0 1.2
RSAM ResNet56 0.9 0.1 5 195 128 0.0005 0.8 0 1.2
WideResNet-28-10 0.9 0.1 5 195 128 0.0005 0.3 0 1.05
Table 6: Hyper-parameters of Sharpness-aware Minimization on CIFAR100
. Momen SGD SAM  Batch Weight
Algorithm Model -tum LR Epochs Epochs  Size Decay P n @
ResNet20 0.9 0.1 200 0 128 0.0005 0 0 0
SGD ResNet56 0.9 0.1 200 0 128 0.0005 0 0 0
WideResNet-28-10 0.9 0.1 200 0 128 0.0005 0 0 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 0 0
SAM ResNet56 0.9 0.1 0 200 128 0.0005 0.1 0 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 0 0
ResNet20 0.9 0.1 0 200 128 0.0005 1.0 0.01 0
ASAM ResNet56 0.9 0.1 0 200 128 0.0005 1.0 0.01 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 1.0 0.01 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 0 0.2
Eigen-SAM ResNet56 0.9 0.1 0 200 128 0.0005 0.1 0 0.2
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 0 0.2
ResNet20 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
FSAM ResNet56 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.1 1.0 0
ResNet20 0.9 0.1 0 200 128 0.0005 0.5 0.0 0
SSAM ResNet56 0.9 0.1 0 200 128 0.0005 0.5 0.0 0
WideResNet-28-10 0.9 0.1 0 200 128 0.0005 0.2 0.0 0
ResNet20 0.9 0.1 5 195 128 0.0005 0.76 0 1.1
RSAM ResNet56 0.9 0.1 5 195 128 0.0005 0.9 0 1.1
WideResNet-28-10 0.9 0.1 5 195 128 0.0005 0.7 0 1.05

chosen from {0.0001, 0.01, 0.03, 0.06, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 1.001,
1.01,1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3}. Due
to the fact that training cannot guarantee convergence exactly to a strict local minimum, negative
eigenvalues are inevitable, which can cause numerical pathologies for the Rényi entropy as o — 1.
Therefore, when assessing how « affects the correlation between Rényi entropy and generalization,
we restrict v to (0,0.9) and (1.2, 3.0]. Within these ranges, computing the Rényi entropy is stable
and free of anomalies. During our analysis of the sharpness—generalization correlation, we vary «
and plot the sharpness that attains the highest correlation coefficient.
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Table 7: Hyper-parameters of Sharpness-aware Minimization on TinyImageNet

L I
SGD ResNet50 0.9 0.2 100 0 128 0.0001 0 0 0
SAM ResNet50 0.9 0.2 0 100 128 0.0001 0.05 0 0

ASAM ResNet50 0.9 0.2 0 100 128 0.0001 1.0 0.01 0
FSAM ResNet50 0.9 0.2 0 100 128 0.0001 0.5 0.1 0
RSAM ResNet50 0.9 0.2 20 80 128 0.0001 1.25 0 1.1

Note. In practice, we train with SGD until the validation Top-1 accuracy exceeds 30%, then switch to RSAM; this

typically occurs around epoch 20.

Table 8: Hyper-parameters of Sharpness-aware Minimization on ViT-B/16 Finetuning

. Momen SGD SAM  Batch Weight
Algorithm  Dataset -tum LR Epochs Epochs Size Decay P K @
SGD CIFAR10 0.9 0.01 20 0 128 0.0005 0 0 0
CIFAR100 0.9 0.01 20 0 128 0.0005 0 0 0
SAM CIFAR10 0.9 0.01 0 20 128 0.0005 0.05 0 0
CIFAR100 0.9 0.01 0 20 128 0.0005 0.1 0 0
ASAM CIFARI10 0.9 0.01 0 20 128 0.0005 0.5 0.01 0
CIFAR100 0.9 0.01 0 20 128 0.0005 1.0 001 O
FSAM CIFAR10 0.9 0.01 0 20 128 0.0005 0.1 1.0 0
CIFAR100 0.9 0.01 0 20 128 0.0005 0.1 1.0 0
RSAM CIFARI10 0.9 0.01 2 18 128 0.0005 0.8 0 1.3
CIFAR100 0.9 0.01 2 18 128 0.0005 0.6 0 1.1
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K FULL RESULTS
In this section, we report all the results of the tasks in the main body.

K.1 HESSIAN SPECTRUM

In this section, we provide some spectra of the trained models in the correlation validation experi-
ments, including ResNet18 and ResNet34 on CIFAR10 and ResNet18 and ResNet34 on CIFAR100.
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Figure 5: Spectrum of ResNet34 on CIFAR10.
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Figure 7: Spectrum of ResNet34 on CIFAR100.
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K.2 CORRELATION BETWEEN RENYI SHARPNESS AND GENERALIZATION

In this section, we provide the figures about the correlation between generalization and multiple
sharpness measures. We can find that Rényi sharpness is strongly correlated with generalization
than the other measures.
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Figure 8: ResNet18 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure.
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Figure 9: ResNet34 on CIFAR10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure.

Task CIFAR10/ResNet18 CIFAR10/ResNet34 CIFAR10/ViT ~CIFAR100/ResNetl8 CIFAR100/ResNet34  TinyImageNet/ResNet18
Correlation coefficient -0.2092 -0.2966 -0.1954 -0.3149 -0.5310 -0.6063

Table 9: Correlation coefficient between log det H and generalization gap across tasks. H is the
Hessian matrix of the training loss with respect to the whole weights in the model.
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Figure 10: ViT on CIFARI10, The layer 1 to all layer subplots correspond to the Rényi sharpness
measure.

T=0.6828 T=0.7977 T=0.7747
175 -
o 0% LI °
o g150 .- .
2% Bz ;.\ Lo
) 2 . cJ
¥ oo &
R i = = 5 i o P r——
Tyer1 o2 oyers ayera oyers ayer 7 overs
T =0.8897 7= 08575 T =0.8667 T=0.8621 T =0.8759 0.8942 0.8307
175 17 175 175 175 175
3 3 . < - v
Ci e 7 . R 7. 0 o~ 0 7 J
§150] v grof w3 g150 ¥ :
Fis] 3% Bras] 12
B - H o~ H M
1.00 {g2 1.00 g8 100{s®
R RO R A O — % 2 R
oyers ayer 10 oyer 11 ayer 12 ayer 13 Joyer 14 layer 16
T=0.7977 T=0.7931 T=07241 T =0.8161 T=0.8253 0.7839 T =-0.5080
175 - s o s SRS = 175 s 2
B 2| o o o8 ¢
g1s0 .} - g1s0 g g150 .‘i. g1so ‘
§125 < §125 % %125 ¢ §125 r
< &% < < < -l <7 o, ¥
100{e% 1.00 =% 2 100{g & & & 3
B B = = s 20800 40000
Toyer 17 ayer 18 loyer 19 layer 20 ayer 21 parameter norm
T =-0.6690 .0286 T=-0.4437 -0.4023 -0.3195 T=-0.4851
175 v 1.75 1 175
Ld a ke a
g150fy o g1
B 5125 € B2
Y L £
4 L 1.00 (&2 1.00 o
15000 20000 0505 0010 0% 005 ol 00000 0.0025 00050
pacayes flat sy acam o

Figure 11: ResNet18 on CIFAR100, The layer 1 to all layer subplots correspond to the Rényi sharp-
ness measure.
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Figure 12: ResNet34 on CIFAR100, The layer 1 to all layer subplots correspond to the Rényi sharp-
ness measure.
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Figure 13: ResNet18 on TinylmageNet, The layer 1 to all layer subplots correspond to the Rényi
sharpness measure.
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K.3 MORE RESULTS FOLLOWING ANDRIUSHCHENKO ET AL. (2023)

K.3.1 MORE TRAINING RECIPE FOR RESNET18 ON CIFAR10

In previous work, |Andriushchenko et al.| (2023) showed that their sharpness measure correlates
strongly with generalization only within certain hyperparameter subsets or sub-groups. To perform
a similar test, we extend our standard ResNet-18/CIFAR-10 setup by introducing two additional
hyperparameter dimensions: with/without mixup (o = 0.5) (Zhang et al.,|2017) and with/without
standard augmentations combined with RandAugment (Cubuk et al.| |2020). We then compute the
Rényi sharpness of the last two layers and compare it with other sharpness measures. The results
in Fig. [T[4]indicate that, even under these richer hyperparameter combinations, Rényi sharpness still
exhibits a strong and consistent correlation with generalization.
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Figure 14: ResNet18 on CIFAR10 with more training configurations. The learning rate, batch size,
optimizer, and weight decay are varied following standard ResNet-18-on-CIFAR-10 setups, and we
further introduce variants with mixup (o = 0.5) (Zhang et al., 2017) and standard augmentations
combined with RandAugment (Cubuk et al.|[2020), resulting in four times as many models as in the
standard setting.

K.3.2 PRETRAINING VIT-B/16 ON IMAGENET-1K

Following |[Andriushchenko et al.| (2023)), we evaluate ViT models from Steiner et al.| (2021)), using
ViT-B/16-224 weights. Those were trained from scratch on ImageNet-1k for 300 epochs with dif-
ferent hyperparameter settings, and subsequently fine tuned on the same dataset for 20.000 steps
with 2 different learning rates. The different hyperparameters include augmentations, weight decay,
and stochastic depth / dropout, leading to a rich pool of 56 models. As shown in Figure [T3] Rényi
sharpness still exhibits a strong and consistent correlation with generalization, while others not.
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Figure 15: ViT-B/16 trained from scratch on ImageNet-1k. We show for 56 models from |Steiner
et al.|(2021) the generalization gap vs. various sharpness measures. Overall, Rényi sharpness is still
strongly correlated with generalization than the other measures.

K.3.3 FINE-TUNING ON IMAGENET-1K FROM CLIP

We also follow the experiments that investigate fine-tuning from CLIP Radford et al.| (2021). We
study the pool of classifiers obtained by |Wortsman et al.[ (2022), who fine-tuned a CLIP ViT-B/32
model on ImageNet multiple times by randomly selecting training hyperparameters, including learn-
ing rate, number of epochs, weight decay, label smoothing, and augmentations. We compute the
Rényi sharpness of the last layer within the ViT-B/32 model, and compare it with other sharpness
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measures. One can confirm from Fig. [T6]that Rényi sharpness still exhibits a strong and consistent
correlation with generalization, compared to the other measures.
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Figure 16: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show for 72 models from m
(2022) the generalization gap on ImageNet vs multiple sharpness measures.
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2430
2431
2432 In this section, we report statistics of Kendall’s 7 under different Rényi orders. The order « is
2433 varied following the guidelines in Section .1} We compute Kendall’s 7 for each layer and report
2434 the average correlation of all layers. The heatmap in Fig. [I7]shows that e = 0.5 for 0 < a < 1 and
2435 o = 1.5 for a > 1 are consistently robust across tasks.
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K.5 SCATTER PLOT OF CORRELATION COEFFICIENT AND RENYI ORDER «

In this section, we provide all the correlation coefficient 7 under different o across multiple tasks:
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Figure 18: ResNet18 on CIFAR10, we plot the correlation coefficient 7 vs Rényi order a.
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Figure 19: ResNet34 on CIFAR10, we plot the correlation coefficient 7 vs Rényi order «.
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Figure 20: ViT on CIFAR10, we plot the correlation coefficient 7 vs Rényi order «.
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Figure 21: ResNet18 on CIFAR100, we plot the correlation coefficient 7 vs Rényi order a.
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Figure 22: ResNet34 on CIFAR100, we plot the correlation coefficient 7 vs Rényi order a.
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Figure 23: ResNet18 on TinyImageNet, we plot the correlation coefficient 7 vs Rényi order a.
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L LIMITATION

* The generalization bounds in our work relies on homogeneity of the activation function,
which holds for ReLU networks and approximately holds for GELU networks. Extending
the analysis for other activations is a both interesting and important direction.

* Our proposed RSAM algorithm uses an approximation to Rényi sharpness for simplicity, a
tighter approximation or surrogate may further improve generalization.

M BROADER IMPACTS

Our work aims to advance the theoretical understanding of network generalization, with the antici-
pation that theoretical insights can guide future designs of network optimization methods. There are
no ethically related issues or negative societal consequences in our work.
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