
On the Limit of Language Models as Planning Formalizers

Anonymous ACL submission

Abstract

Large Language Models have been shown to001
fail to create executable and verifiable plans002
in grounded environments. An emerging line003
of work shows success in using LLM as a004
formalizer to generate a formal representation005
(e.g., PDDL) of the planning domain, which006
can be deterministically solved to find a plan.007
We systematically evaluate this methodology008
while bridging some major gaps. While previ-009
ous work only generates a partial PDDL rep-010
resentation given templated and thus unrealis-011
tic environment descriptions, we generate the012
complete representation given descriptions of013
various naturalness levels. Among an array014
of observations critical to improve LLMs’ for-015
mal planning ability, we note that large enough016
models can effectively formalize descriptions017
as PDDL, outperforming those directly gener-018
ating plans, while being robust to lexical per-019
turbation. As the descriptions become more020
natural-sounding, we observe a decrease in per-021
formance and provide detailed error analysis.1022

1 Introduction023

Large language models (LLMs) can make informal024

plans, such as suggesting ideas for parties or giv-025

ing general advice on immigration. However, most026

users, let alone automated agents like robots, would027

not be able to actually execute those plans step-028

by-step to fruition – either to organize parties or029

acquire visas – without significant prior knowledge030

or external help. This inability to make executable031

plans lies in LLMs’ inability of grounding and for-032

mal reasoning (Liu et al., 2023b; Pan et al., 2023;033

Zhang et al., 2023). Cutting-edge research in the034

community has evaluated LLMs’ ability to make035

formal plans in grounded environments, such as036

textual simulations, where all objects and actions037

represent actualities in the real world. Therefore,038

1Our code and data can be found at https://anonymous.
4open.science/r/llm-as-pddl-formalizer-1BE2.

any resulting plan that formally involves those ob- 039

jects and actions would be executable and verifiable 040

by nature. Although formal planning has been de- 041

sirable in the history of AI (Weld, 1999), recent 042

work found that even state-of-the-art LLMs are un- 043

able to generate formal plans (Silver et al., 2024; 044

Valmeekam et al., 2024; Stechly et al., 2024). 045

Instead of using the LLM as a planner to gener- 046

ate the plan directly, an alternative line of work uses 047

the LLM as a formalizer. Here, the LLM gener- 048

ates a formal representation of a planning domain, 049

for example in the planning domain definition lan- 050

guage (PDDL), based on some natural language 051

descriptions of the environment. This representa- 052

tion can then be fed into a solver to find the plan 053

deterministically (see Figure 1). Previous work 054

achieved great success by showing that LLM-as- 055

formalizer greatly outperforms LLM-as-planner in 056

various domains (Lyu et al., 2023; Xie et al., 2023; 057

Liu et al., 2023a; Zhang et al., 2024a; Zuo et al., 058

2024; Zhang et al., 2024c; Zhu et al., 2024), as 059

LLMs are more capable of information extraction 060

than formal reasoning (Zhang et al., 2024b). How- 061

ever, the above work has two major shortcomings. 062

First, to simplify the task and evaluation, most have 063

only attempted to generate a partial PDDL repre- 064

sentation while assuming the rest is provided, often 065

unrealistic in real life. Second, the language used 066

to describe the environments is often artificially 067

templated and structured, leading to potential over- 068

estimation of models’ ability. 069

This paper explores the limit of LLM-as- 070

formalizer devoid of the above two simplifications. 071

We use LLMs to generate the entirety of a PDDL 072

representation, including the domain file and the 073

problem file, given a natural-sounding description 074

of the environment and the task (see Figure 1). 075

On one of the most widely used planning datasets, 076

BlocksWorld (PIC, 1998) and its derivative, Mys- 077

teryBlocksWorld (Valmeekam et al., 2024), we 078

benchmark a suite of LLMs on generating PDDL 079

1

 https://anonymous.4open.science/r/llm-as-pddl-formalizer-1BE2
 https://anonymous.4open.science/r/llm-as-pddl-formalizer-1BE2

I am playing with a set
of blocks. Here are the
actions I can do

 Pickup block
 Unstack block from
another block
 Putdown block
 Stack block on
another block

I have the following
restrictions on my
actions:
 To perform Pickup
action, the following
facts need to be true:
clear block, block on
table, arm-empty.
 Once Pickup action
is performed the
following facts will be
true: holding block.
 Once Pickup action
is performed the
following facts will be
false: clear block,
block on table, arm-
empty.
...

As initial conditions I
have that, block a is
clear, block c is clear,
arm-empty, block a is
on top of block b, block
b block is on the table,
and block c block is on
the table.
My goal is to have that
block a is on top of
block b, block b is on
top of block c, and
block c is on the table.

Templated Natural

The Blocksworld
domain involves a
collection of blocks
placed on a table. The
aim is to rearrange
these blocks to
achieve a specified
goal configuration
using a robot arm. The
robot arm can pick up
and move one block at
a time. The key
actions include picking
up a block, placing a
block on the table, and
stacking one block on
top of another. The
constraints are that a
block can only be
picked up if it has no
other block on top of it,
and it can only be
placed on another
block or on the table.

The Blocksworld
problem involves three
blocks identified as A,
B, and C. Initially,
block A is on top of
block B, and block B is
on the table. Block C is
also on the table. The
goal is to rearrange
these blocks such that
block B is on top of
block C, and block A is
on top of block B.

or LLM

(define (domain
blocksworld)
(:predicates (clear ?x)
 (on-table ?x)
 (arm-empty)
 (holding ?x)
 (on ?x ?y))

(:action pickup
 :parameters (?ob)
 :precondition (and
(clear ?ob) (on-table ?
ob) (arm-empty))
 :effect (and (holding ?
ob) (not (clear ?ob))
(not (on-table ?
ob)) (not (arm-
empty))))
...

(define (problem
blocksworld-p98)
 (:domain
blocksworld)
 (:objects a b c)
 (:init
 (on-table b)
 (on a b)
 (clear a)
 (on-table c)
 (clear c)
 (arm-empty)
)
 (:goal (and
 (on-table c)
 (on b c)
 (on a b)
))
)

Planner

(unstack a b)
(putdown a)
(pickup b)
(stack b c)
(pickup a)
(stack a b)

D
om

ai
n

D
es

cr
ip

tio
n

Pr
ob

le
m

 D
es

cr
ip

tio
n

Domain File

Problem File

Plan

b

a

c c

b

a

Figure 1: LLM-as-formalizer uses natural language descriptions to generate the Domain and Problem File in
PDDL, then these are given to a planner to find a plan. We explore the effect of natural-ness of the language in the
description, by giving the model both templated and natural descriptions. Examples of Domain Descriptions and
Problem Descriptions from the Blocksworld Domain are shown. The green text displays what the two examples
have in common (listing all possible actions and restrictions) and the red text displays text that is not considered
natural. The “Templated” text corresponds to the “Heavily Templated” version discussed in Section 4.

that is both solvable and correct. As the descrip-080

tions in these datasets are templated, we also con-081

struct model-generated, human-validated descrip-082

tions that are natural-sounding to different levels.083

Our work is the first to systematically ana-084

lyze state-of-the-art LLMs’ ability of the trending085

methodology of LLM-as-formalizer on the highly086

challenging task of formal planning. We put for-087

ward an array of observations that will benefit fu-088

ture efforts. Discussed in detail in Section 5, our089

key findings are as follows.090

• On fully-observed environments such as the091

BlocksWorld domain, larger GPT models can092

decently generate entire PDDL, while smaller093

open-source models cannot. 094

• When feasible, LLM-as-formalizer greatly 095

outperforms LLM-as-planner. 096

• As the environment descriptions sound more 097

human-like, the models are more challenged. 098

• The performance of LLM-as-formalizer is 099

robust to lexical perturbation, while that of 100

LLM-as-planner is not. 101

• Errors in PDDL generation span syntax and 102

semantics in both the domain and problem. 103

2

2 Task: Formal Planning with PDDL104

Formal planning (or classical planning) with PDDL105

involves a domain file (DF) and problem file (PF)106

(Figure 1). DF describes general properties in a107

planning domain that holds true across problems,108

while PF describes specific configurations of each109

problem instance. Concretely, the DF defines all110

available actions for a state-based environment as111

well as predicates that represent the properties of112

object types. Each action definition contains the113

name of the action, parameters and semantics. The114

semantics of an action include the preconditions115

which describe the necessary world states where116

the action is valid to execute, and effects which117

describe how the states change after the action is118

executed. The PF defines the involved objects, the119

initial states, and the goal states. These two files120

are then given to a deterministic planner which will121

algorithmically search for a plan. Such a plan is122

a series of executable, instantiated actions that se-123

quentially transition the world states from initial to124

goal. In the AI community, classical planning has125

been deemed an effective approach to solve real-126

world users’ problems, as the process is precise,127

explainable, verifiable, and deterministic.128

However, formal planning demands a well-129

crafted pair of DF and PF. In a real-world plan-130

ning scenario, an average user would not describe131

their environment and problem with PDDL, but132

more likely with a textual description of the do-133

main (DD) and the problem (PD), which can be134

specific or loose. Hence, we focus on the textual135

flavor of formal planning: given DD and PD, the136

model outputs a successful plan with regard to the137

DF and PF that are withheld from the model.138

3 Methodology: LLM-as-Formalizer139

To tackle the task above, recent work involving140

LLMs diverged into two methodologies. The first,141

LLM-as-planner, directly uses LLMs to gener-142

ate a plan based on the DD and a PD. The second,143

LLM-as-formalizer, uses LLMs to recover the DF144

and PF, before using a deterministic planner to ar-145

rive at the plan (Figure 2). Our work will focus on146

the second while using the first as a baseline. LLM-147

as-formalizer is in essence neurosymbolic, where148

LLMs help define the structured representation that149

is otherwise prohibitively costly to annotate and150

brittle to generalize. Existing works in this line151

demonstrated success but only generated a partial152

PDDL representation, while assuming the rest, in-153

Plan

LLM-as-Planner

DF

LLM

PF

planner

DD PD

LLM

Plan

LLM-as-Formalizer
DD PD

Figure 2: Methodologies for using LLMs in Formal
Planning. LLM-as-Planner generates the plan directly,
while LLM-as-Formalizer translates the DD and PD
into PDDL. Previous work such as Liu et al. (2023a) use
the LLM to generate partial PDDL, while we generate
the entire PDDL (dashed arrow).

cluding PF goals (Lyu et al., 2023; Xie et al., 2023), 154

the PF (Liu et al., 2023a; Zhang et al., 2024a; Zuo 155

et al., 2024), the action semantics in the DF (Zhang 156

et al., 2024c; Zhu et al., 2024), and the domain file 157

(Wong et al., 2023; Guan et al., 2023). While this 158

simplifies the task and evaluation, the assumption 159

of provided PDDL components is often unrealistic. 160

Therefore, we bridge this gap by asking the LLM 161

to predict the entire PDDL – both the DF and PF.2 162

4 Evaluation: Datasets, Models, Metrics 163

To evaluate both approaches above, we work with 164

fully-observed textual environments. Here, the pro- 165

vided DD and PF contain all necessary information 166

for the model to make a complete plan. 167

4.1 Data 168

We consider two datasets, BlocksWorld (PIC, 169

1998) and MysteryBlocksWorld (Valmeekam et al., 170

2024), one of the most widely used domains in re- 171

lated work. Here, the model must rearrange stacks 172

of blocks on a table from an initial configuration 173

to a goal configuration using a single arm. While 174

each instance has ground-truth DF and PF, they 175

are invisible to the models and for evaluation only. 176

Notwithstanding existing datasets, we generate the 177

problem configurations ourselves to maximize con- 178

trol over ablation studies (see Section 5). Prob- 179

lem configurations were generated by randomly 180

2It is however minimally necessary to provide the action
space, the identifiers and parameters of the actions in DF, so
the agent knows what actions are possible.

3

sampling the number of blocks between 2 and 15181

and number of stacks in the initial state and goal182

between 1 and the number of blocks. Then, the183

natural language description DDs and PDs were184

created using 3 methods for 3 different levels of185

‘naturalness’.186

Heavily Templated. The DD and PD are187

generated using the same template as Mystery-188

Blocksworld (Valmeekam et al., 2024). This de-189

scription is almost a word-by-word translation of190

PDDL. For example, for the ‘pick-up’ action, the191

ground-truth PDDL DF would be the following:192

(:action pick-up
:parameters (?b - block)
:precondition (and (clear ?b) (on-table ?b)
(arm-empty))
:effect (and (not (on-table ?b)) (not
(clear ?b)) (not (arm-empty)) (holding ?b))
)

193

while the Heavily Templated DD is:194

To perform Pickup action, the following
facts need to be true: clear block, block
on table, arm-empty.
Once Pickup action is performed the
following facts will be true: holding
block.
Once Pickup action is performed the
following facts will be false: clear block,
block on table, arm-empty.

195

From an application point of view, spelling out196

all preconditions and effects in terms of the predi-197

cates is paradoxical, as it assumes the user already198

have the algorithmic awareness of PDDL.199

Moderately Templated. The DD and PD are200

generated using the same template as the original201

BlocksWorld dataset, following Valmeekam et al.202

(2024). For example. the Moderately Templated203

description of the ‘pick-up’ action is:204

I can only pick up or unstack one block at
a time.
I can only pick up or unstack a block if my
hand is empty.
I can only pick up a block if the block is
clear. A block is clear if the block has no
other blocks on top of it and if the block
is not picked up.

205

While more natural-sounding than the Heavily206

Templated version, the description still explicitly207

discusses the preconditions and effects as well as208

predicates like ‘clear’.209

Natural. A realistic pair of DD and PD should em-210

ulate how real-life users would describe the plan-211

ning domain and problem, such that a human prob-212

lem solver would understand and have just enough 213

information to find a plan. To create such descrip- 214

tions, we use a human-in-the-loop, model-assisted 215

data generation approach. 216

To generate DD, we ask GPT-4o with high tem- 217

perature to generate and paraphrase a seed anno- 218

tated DD for BlocksWorld, and then manually ver- 219

ify the correctness by making sure it lists the cor- 220

rect predicates, preconditions and effects, which 221

are not unique. We next verify the naturalness of 222

the generated text by making there were variations 223

in language throughout all descriptions generated, 224

but was not giving out unnecessary information. 225

To generate PD, we first algorithmically and 226

randomly permutate BlocksWorld problems, given 227

various total numbers of blocks and stacks. We then 228

provide the model with a symbolic configuration 229

that contains the number blocks, the initial stack 230

configuration and the goal stack configuration. The 231

model then ‘humanize’ the problem by making it 232

sound natural, given a couple of seed exemplars. 233

We manually verify the correctness of the dataset of 234

the non-templated problems by hand by comparing 235

them against the problem configurations. We then 236

verify the naturalness of the PD by making sure 237

there is variation but no ambiguity in its language. 238

The robot arm can pick up and move one block
at a time from one position to another. It
is only able to move the top block from
any stack or table, and have only one block
held by the robot arm at a time. The main
actions available are ’pick up’, ...

239

The above example of the Natural description no 240

longer discusses the preconditions and effects of 241

each actions one by one, but rather focuses on the 242

general rules to the domain. These rules apply to 243

not only ‘pick-up’ but also other actions. Therefore, 244

the DD can be much more concise, requires less 245

algorithmic awareness, and more realistic. 246

In total, we construct 111 problems each varying 247

in the number of objects in the unified domain 248

of BlocksWorld. For each of the two Templated 249

descriptions, there is 1 DD paired with each of 111 250

PDs. For the Natural description, there are 111 251

different pairs of DDs and PDs. We refer to this 252

dataset as BlocksWorld-111. 253

Mystery BlocksWorld is a dataset created in 254

(Valmeekam et al., 2024) that obfuscates the origi- 255

nal BlocksWorld domain by replacing all the names 256

of the types, predicates, actions, and objects with 257

nonsensical words, akin to a wug test (see an ex- 258

4

ample in Appendix A). This dataset as an control259

group can effectively test whether models create260

plans via lexical pattern-matching and memoriza-261

tion. The original Mystery BlocksWorld dataset262

is Heavily Templated. Since the dataset itself263

is an artificial perturbation, we do not provide264

more natural descriptions as that would defeat its265

purpose. We sampled 100 random problems for266

our experiment, resulting in 1 DF, 1 DD, 100267

PFs, and 100 PDs. We refer to this dataset as268

MysteryBlocksWorld-100.269

Data examples can be found in Appendix A.270

4.2 Metrics271

Following past work (Guan et al., 2023; Zhu et al.,272

2024), the model-predicted plan is validated us-273

ing VAL (Howey et al., 2004) against the ground-274

truth DF and PF provided above, instead of being275

compared against “ground-truth” plans like some276

work (Lyu et al., 2023; Liu et al., 2023b; Pan et al.,277

2023) since there could be multiple correct plans.278

For the LLM-as-formalizer approach, the predicted279

DF and PF are similarly not compared against the280

ground-truth, as only the eventual plan is validated281

because there might be more than one way to for-282

malize the planning domain and problem in PDDL.283

We evaluate the predicted plans following Zuo284

et al. (2024): solvability and correctness. Solvabil-285

ity indicates the percentage of plans that were able286

to be found based on the predicted DF and PF, re-287

gardless of whether it can correctly work with the288

actual environment (in our case, described by the289

gold DF and PF). In contrast, correctness is a sub-290

set that indicates the percentage of actually correct291

plans. Solvability was determined using the plan-292

ner dual-bfws-ffparser implemented by Muise293

(2016) and Correctness was evaluated using VAL3.294

4.3 Models295

For both of the LLM-as-planner and LLM-as-296

formalizer approach, we consider a number of297

models, including open-source and closed-source298

LLMs varying in size, including gemma-2-9b-it,299

gemma-2-27b-it (Team et al., 2024), llama-3.1-300

8B-Instruct, llama-3.1-70B-Instruct (Dubey et al.,301

2024), gpt-3.5-turbo-0125, gpt-4o-mini-2024-07-302

18, gpt-4o-2024-08-06, and o1-preview-2024-09-303

124. We query these models using KANI (Zhu304

et al., 2023) with default hyper-parameters. The305

3nms.kcl.ac.uk/planning/software/val.html
4platform.openai.com/docs/models o1 is only re-

ported in some experiments due to prohibitive cost.

Models Solvability Correctness

Llama-3.1-8B 0/111 0/111
Llama-3.1-8B† - 1/111
Llama-3.1-70B 0/111 0/111
Llama-3.1-70B† - 15/111

gemma-2-9b-it 3/111 3/111
gemma-2-9b-it† - 10/111
gemma-2-27b-it 0/111 0/111
gemma-2-27b-it† - 12/111

gpt-3.5-turbo 2/111 1/111
gpt-4o-mini 22/111 3/111
gpt-4o-mini† - 7/111
gpt-4o 73/111 66/111
gpt-4o† - 37/111
o1-preview 101/111 101/111
o1-preview† - 93/111

Table 1: Performance of LLM-as-formalizer and LLM-
as-planner (†) on the Natural BlocksWorld-111. Simi-
larly trends hold for the Heavily and Moderately Tem-
plated versions (results are shown in Appendix C).

open-source models are run using 4 RTX A6000 306

GPUs, averaging about 1062 input and output 307

tokens for the LLM-as-formalizer approach in 308

BlocksWorld-111. To emulate real-life applica- 309

tion with minimal user interference, we use zero- 310

shot prompts for all naturalness levels across all 311

datasets (see prompts in Appendix B). 312

5 Results and Observations 313

In this section, we display our results as well as 314

perform an in-depth analysis of the strengths and 315

weaknesses of LLMs in formal planning, to under- 316

stand the impact of the model choice, naturalness 317

of the description, content of the task, and difficulty 318

of the problem. 319

5.1 Can LLMs formalize? 320

First, we seek to understand the extent to which 321

LLMs can act as a formalizer to generate entire 322

PDDL, instead of partial components in previous 323

work. Table 1 displays the results on our experi- 324

ment using the most natural sounding descriptions 325

on the BlockWorld. 326

These results demonstrate that big enough 327

LLMs can decently generate PDDL on fully 328

observed environments. We can see that for 329

BlocksWorld, the performance for gpt-4o sur- 330

passes the performance for gpt-4o-mini, which 331

surpasses the performance for gpt-3.5-turbo. As 332

the model gets larger, the number of syntax errors 333

decreases, indicating larger models’ stronger abil- 334

ity of code generation. This conclusion also holds 335

5

nms.kcl.ac.uk/planning/software/val.html
platform.openai.com/docs/models

for the other levels of naturalness (Figure 3).336

We also observe that open-sourced models with337

size up to 70B almost cannot generate PDDL.338

Llama models cannot able to find a single plan339

across all three datasets while gemma models show340

poor though non-zero performance across all three341

datasets. Detailed analysis of errors will be dis-342

cussed in Section 5.5.343

5.2 Should LLMs formalize?344

Between LLM-as-planner and LLM-as-formalizer,345

which is the preferred methodology for sym-346

bolic planning tasks like BlocksWorld? From347

Table 1, we can see that the best performing348

gpt-4o is able to generate solvable PDDL 73/111349

times, and of those 73 plans, 66 of them are350

correct. This far surpasses the LLM-as-planner351

baseline, which only found correct plans 37/111352

times. This conclusion holds for the Templated353

BlocksWorld-111 data (Figure 3). From Figure 3,354

for MysteryBlocksWorld-100, we can see that355

LLM-as-formalizer can generate 70/100 correct356

plans, which far surpassed LLM-as-planner which357

did not find a single correct plan as the description358

becomes unorthodox. For gpt-4o-mini, LLM-as-359

formalizer still outperforms LLM-as-planner for360

all cases (all naturalness level across two datasets)361

except Natural BlocksWorld-111.362

These results demonstrate that LLMs as formal-363

izers greatly outperforms those as planners in364

most cases, whenever these LLMs can foramlize365

PDDL at all. However, these results also show366

that models that might not be able to formalize367

(eg. Llama models) but might still be able to plan,368

though they will have low performance.369

5.3 The more natural, the harder?370

In this section, we discuss the question of whether371

using humanized descriptions makes the problem372

more difficult. Results from Figure 3 show that as373

the problem sounds more similar to PDDL, and less374

natural, the performance of all the models improves.375

Also, from our results in the Mystery BlocksWorld376

domain, LLM-as-formalizer performs quite well377

for a few of the models. However, looking at the378

domain and problem descriptions, they are very379

templated and sound like PDDL. This suggests380

that a more natural-sounding domain and prob-381

lem description is much more challenging than382

templated, less natural sounding descriptions. One383

potential explanation is that pattern matching a tem-384

plate back to PDDL is much easier than having to385

Natural BlocksWorld-111

Models Syntax Error DF Error PF Error

gemma-2-9b-it 15/20 20/20 20/20
gemma-2-27b-it 3/20 20/20 14/20

Llama-3.1-8B 20/20 20/20 18/20
Llama-3.1-70B 20/20 20/20 17/20

gpt-3.5-turbo 10/20 20/20 20/20
gpt-4o-mini 2/20 20/20 19/20
gpt-4o 2/20 2/20 18/20

Table 2: Different model errors in generating PDDL for
all the natural BlocksWorld-111, manually annotated
on a 20–example subset.

MysteryBlocksWorld-100
Models Syntax Error DF Error PF Error

gpt-3.5-turbo 16/20 19/20 2/20
gpt-4o-mini 6/20 20/20 1/20
gpt-4o 5/20 16/20 0/20

Table 3: Different errors of gpt-3.5-turbo,
gpt-4o-mini and gpt-4o on Heavily Templated
MysteryBlocksWorld-100, manually annotated on a
20–example subset.

first parse all the predicates and objects from a pas- 386

sage. Another reason is a more-natural sounding 387

description may leave out implicit common-sense. 388

For example, the Natural BlocksWorld-111 does 389

not explicitly specify that a block is ‘clear’, be- 390

cause any human who reads that a block is “on top 391

of a stack” can understand that there is no block 392

on top of it and hence ‘clear’ to be moved. How- 393

ever, models often fail to invoke this knowledge 394

and will leave out the ‘clear’ predicate, leading to 395

unsolvable PDDL or incorrect plans. 396

5.4 Do LLMs memorize pretraining? 397

Do LLMs generate plans or formalize PDDL based 398

on what they have memorized in their training 399

data? We determine this by looking at the re- 400

sults on MysteryBlocksWorld-100, a derivative 401

of BlocksWorld where all names are perturbed and 402

nonsensical. From Figure 3, we can see that LLM- 403

as-planner was not able to find a single correct plan 404

using either gpt-4o-mini or gpt-4o. However, 405

gpt-4o-as-formalizer surpassed this baseline with 406

a Correctness score of 70/100. This suggests that 407

LLM-as-formalizer is robust to lexical perturba- 408

tion, and its success is not due to memorization of 409

the domain which is a part of the pretraining data. 410

6

Figure 3: Performance across different naturalness level of description on BlocksWorld-111.

Natural BlocksWorld-111
Models Wrong Precondition Wrong Effect Missing Predicate Missing Action Missing Parameters

gpt-4o-mini 11/20 18/20 19/20 1/20 2/20
gpt-4o 0/20 2/20 0/20 0/20 0/20

Heavily Templated MysteryBlocksWorld-100
Models Wrong Precondition Wrong Effect Missing Predicate Missing Action Missing Parameters

gpt-4o-mini 14/20 17/20 17/20 0/20 5/20
gpt-4o 13/20 14/20 0/20 0/20 2/20

Table 4: Analysis of errors found in DF for Natural BlocksWorld-111 and Heavily Templated
MysteryBlocksWorld-100 out of 20 randomly sampled instances.

5.5 What kind of errors?411

In this section, we discuss the kind of errors in412

PDDL generation. We perform an error analysis413

on a random 20 sample subset of problems where414

a plan was not found, or the found plan was not415

correct. From there, we categorize the errors by416

syntax errors in either file, semantic errors in the417

DF, and in the PF. Of the errors in the DF, we418

determine finer-grained errors such as incorrect ac-419

tion preconditions and effects, incorrect or missing420

predicates, and missing or incorrect action parame-421

ters. The error analysis can be found for the Natural422

BlocksWorld-111 in Table 2 and Table 4.423

As mentioned before, as the models get larger,424

the amount of syntax errors in the generated PDDL425

decreases. Smaller models consistently make426

mistakes in generating the DF. Interestingly, the427

most common error made for gpt-4o came from428

the PF, which is intuitively easier to generate than429

the DF. Common errors in the PF included incor-430

rect predicates in the initial state and goal state,431

possibly because the descriptions are natural rather432

than templated, so that the implicit information in433

the PD may be nontrivial to infer. Regarding the434

DF, the most common error is an incorrect effect in435

an action. For example, in the ‘unstack’ action, the436

model does not make the next block ‘clear’ when437

the top block has been placed in the hand. 438

For the open-source models, the most com- 439

mon error is syntax errors. For examples, models 440

repeatedly use the keyword ‘preconditions’ instead 441

of ‘precondition’ which might suggest a lack of 442

grasp of the PDDL language. The smallest gemma 443

model also made many mistakes in syntax, though 444

fewer than the Llama models, However, despite 445

the syntax errors, there are still many semantic 446

errors in the DF and PF, which include missing 447

predicates and incorrect effects in the actions. 448

For the Heavily Templated BlocksWorld-111 re- 449

sults, there is a significant gap between the number 450

of plans that were found, and the number of found 451

that were correct. Upon looking at the generated 452

PDDL, we found that the most common error made 453

was swapping the parameters in the preconditions 454

of the ‘stack’ action, leading to incorrect plans. 455

For the MysteryBlocksWorld-100 dataset (Ta- 456

ble 3), we see a similar trend of the syntax errors 457

decreasing as the models get larger. For all three 458

GPT models analyzed, there are barely any errors 459

in the PF but rather the most common errors came 460

from the DF. Since the Mystery BlocksWorld do- 461

main is a result of lexical perturbation, the task 462

of PDDL generation is akin to symbolic informa- 463

tion extraction or translation, devoid of much use 464

7

of commonsense knowledge. As the descriptions465

for MysteryBlocksWorld-100 were heavily tem-466

plated, sounding the most similar to PDDL, all the467

predicates would be listed out in the PD and the468

model would just need to match them to PDDL469

syntax in the PF. While a similar essence, this is470

more of a challenge for DF since the clauses of471

preconditions and effects are more involved. From472

Table 4, a similar trend between BlocksWorld-111473

and MysteryBlocksWorld-100 also suggests that474

the LLM-as-formalizer methodology is robust to475

such perturbation.476

6 Related Work477

Planning with LLMs There has been a large478

amount of research using LLMs for planning tasks.479

Some use LLMs for informal planning, also known480

as script or procedure learning (Zhang et al., 2020;481

Lyu et al., 2021; Lal et al., 2024). While modern482

LLMs can make coherent and plausible informal483

plans, they are ungrounded and so lack executabil-484

ity and verifiability. Work that use LLMs for formal485

planning in grounded environments generally con-486

clude the inability of such LLMs-as-planners (Sil-487

ver et al., 2024; Valmeekam et al., 2024; Stechly488

et al., 2024). Follow-up work tackles this short-489

coming by using the LLM as a heuristic, not just a490

planner, such as by proposing candidate plans that491

are iteratively verified (Valmeekam et al., 2023;492

Kambhampati et al., 2024). While we consider the493

standard LLM-as-planner as a baseline, our focus is494

on LLM-as-formalizer, an alternative methodology495

for the same problem.496

LLMs as PDDL Formalizer Here, LLMs do not497

provide plans but rather generate the a PDDL rep-498

resentation of the domain and problem, which is499

then run through a solver to find the plan. This500

methodology has proven successful in a number of501

recent works, where the LLM generates different502

parts but not all of the PDDL for simplified evalua-503

tion. Zuo et al. (2024); Zhang et al. (2024a); Liu504

et al. (2023a) use the LLM to predict the entire505

PF, while Xie et al. (2023); Lyu et al. (2023) pre-506

dict just the goal for the PF. Some predict the DF,507

such as Zhang et al. (2024c); Zhu et al. (2024) that508

generate the action semantics of the DF and Wong509

et al. (2023) who also predicts the predicates from510

a candidate list. Closest to our work is Guan et al.511

(2023) which predicts the DF as well as the PF512

goal. However, our work of holistically generating513

PDDL shows that coming up with the initial state514

in the PF is non-trivial (Section 5.5). Moreover, 515

we vary the level of naturalness of descriptions in 516

addition to the templated ones, which prove to be 517

more challenging and insightful (Section 5.3). 518

While the above discussions pertain to LLMs 519

generating PDDL, many work on embodied agents 520

outside the NLP community tackle similar prob- 521

lems with different focus (Li et al., 2024). 522

LLMs as Formalizer Our work hinges on modern 523

LLMs’ ability to generate code (Chen et al., 2021). 524

In addition to writing or debugging programs (Jiang 525

et al., 2024), LLMs are also used to generate for- 526

mal, interim representations that are not necessarily 527

PDDL for problem solving. For example, Gao et al. 528

(2023); Lyu et al. (2023); Tang et al. (2024) use 529

the LLM to generate executable Python code for 530

solving symbolic problems. In other work, the gen- 531

erated code may not be executable and is provided 532

to another LLMs to facilitate reasoning (Madaan 533

et al., 2022; Zhang et al., 2023). 534

A table comparing a couple of these works can 535

be seen in Table 7 in the Appendix (Section F). 536

7 Conclusion 537

We explore the limit of state-of-the-art LLMs to 538

be used as a formalizer by generating the entire 539

DF and PF in PDDL given natural language de- 540

scriptions of different naturalness levels. We find 541

that the performance depends on a number of fac- 542

tors, including the size of the model and the nat- 543

uralness of the descriptions. While the LLM-as- 544

formalizer methodology greatly outperforms the 545

LLM-as-planner methodology in domains exempli- 546

fied by BlocksWorld, we conclude that with zero- 547

shot prompting only large GPT models are cur- 548

rently capable for the task. Therefore, future work 549

should attempt to equip open-source models with 550

similar ability to democratize the ability of mak- 551

ing executable plans. We also find that LLM-as- 552

formalizer is robust to lexical perturbation, demon- 553

strating strong performance in long-tail domains 554

that are not represented in LLMs’ pretraining. Our 555

work will hopefully drive future work on improv- 556

ing LLM as a planning formalizer,including ex- 557

periments on partially-observed environments that 558

require exploration and interaction, more complex 559

environments with a larger action space, and so on. 560

8 Limitation 561

While BlocksWorld is one of the most frequently 562

used domains in LLM’s formal planning, it is the 563

8

only domain considered in this work, due to the564

choice to optimize for the analysis’ depth instead of565

breadth. As future work, we are currently consider-566

ing complex domains such as Barman in IPC. Even567

so, a common and valid criticism for using those568

simulations or text problems for evaluation is that569

these settings may be too contrived and removed570

from the reality. Nevertheless, it is likely that571

LLMs’ satisfactory performance on these datasets572

is a necessary condition to success in real life.573

While we only consider zero-shot prompting574

without any attempt for prompt tuning, it is possi-575

ble that the models’ performance significantly in-576

creases otherwise. Therefore, experimental results577

in all settings may be underestimated. Moreover,578

advanced prompting techniques such as chain-of-579

thought, self-refine, and voting can all potentially580

improve model performance. However, the study581

of those is out of the scope of this work.582

While we advocate for the LLM-as-formalizer583

methodology over LLM-as-planner, the former’s584

success may be dependent on the task. Highly585

symbolic tasks which can be relatively easily de-586

scribed, like BlocksWorld, are likely to favor LLM-587

as-formalizer. However, LLM-as-planner might588

shine in tasks with a more complex action space re-589

quiring common-sense knowledge that is easily ac-590

cessed by pretraining. Furthermore, while we only591

consider the most straightforward LLM-as-planner592

prompting method, more involved methods, like593

Kambhampati et al. (2024) that combines LLM-as-594

planner with symbolic validation, will likely lead595

to a stronger baseline.596

Since this work uses only the BlocksWorld and597

Mystery BlocksWorld domains, it is a small toy598

example to the usage of LLMs as formalizers and599

are not representative to problems in the real world,600

which would be much more challenging. This may601

pose a risk to users using this code on real world602

problems.603

The datasets we use and we propose are all under604

the MIT License.605

References606

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming607
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-608
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,609
Greg Brockman, et al. 2021. Evaluating large610
language models trained on code. arXiv preprint611
arXiv:2107.03374.612

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,613

Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 614
Akhil Mathur, Alan Schelten, Amy Yang, Angela 615
Fan, et al. 2024. The llama 3 herd of models. arXiv 616
preprint arXiv:2407.21783. 617

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 618
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 619
ham Neubig. 2023. Pal: Program-aided language 620
models. In International Conference on Machine 621
Learning, pages 10764–10799. PMLR. 622

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, 623
and Subbarao Kambhampati. 2023. Leveraging pre- 624
trained large language models to construct and utilize 625
world models for model-based task planning. Ad- 626
vances in Neural Information Processing Systems, 627
36:79081–79094. 628

R. Howey, D. Long, and M. Fox. 2004. Val: auto- 629
matic plan validation, continuous effects and mixed 630
initiative planning using pddl. In 16th IEEE Inter- 631
national Conference on Tools with Artificial Intelli- 632
gence, pages 294–301. 633

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 634
and Sunghun Kim. 2024. A survey on large lan- 635
guage models for code generation. arXiv preprint 636
arXiv:2406.00515. 637

Subbarao Kambhampati, Karthik Valmeekam, Lin 638
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham- 639
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t 640
plan, but can help planning in llm-modulo frame- 641
works. arXiv preprint arXiv:2402.01817. 642

Yash Kumar Lal, Li Zhang, Faeze Brahman, Bod- 643
hisattwa Prasad Majumder, Peter Clark, and Niket 644
Tandon. 2024. Tailoring with targeted precision: 645
Edit-based agents for open-domain procedure cus- 646
tomization. In Findings of the Association for Com- 647
putational Linguistics: ACL 2024, pages 15597– 648
15611, Bangkok, Thailand. Association for Compu- 649
tational Linguistics. 650

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, 651
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony 652
Lee, Li Erran Li, Ruohan Zhang, et al. 2024. Embod- 653
ied agent interface: Benchmarking llms for embodied 654
decision making. arXiv preprint arXiv:2410.07166. 655

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 656
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 657
2023a. Llm+ p: Empowering large language models 658
with optimal planning proficiency. arXiv preprint 659
arXiv:2304.11477. 660

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji 661
Zhou, and Yue Zhang. 2023b. Evaluating the logical 662
reasoning ability of chatgpt and gpt-4. arXiv preprint 663
arXiv:2304.03439. 664

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 665
Delip Rao, Eric Wong, Marianna Apidianaki, and 666
Chris Callison-Burch. 2023. Faithful chain-of- 667
thought reasoning. In Proceedings of the 13th In- 668
ternational Joint Conference on Natural Language 669

9

https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20

Processing and the 3rd Conference of the Asia-Pacific670
Chapter of the Association for Computational Lin-671
guistics (Volume 1: Long Papers), pages 305–329,672
Nusa Dua, Bali. Association for Computational Lin-673
guistics.674

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.675
Goal-oriented script construction. In Proceedings of676
the 14th International Conference on Natural Lan-677
guage Generation, pages 184–200, Aberdeen, Scot-678
land, UK. Association for Computational Linguistics.679

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,680
and Graham Neubig. 2022. Language models of code681
are few-shot commonsense learners. In Proceedings682
of the 2022 Conference on Empirical Methods in Nat-683
ural Language Processing, pages 1384–1403, Abu684
Dhabi, United Arab Emirates. Association for Com-685
putational Linguistics.686

Christian Muise. 2016. Planning.Domains. In The687
26th International Conference on Automated Plan-688
ning and Scheduling - Demonstrations.689

Liangming Pan, Alon Albalak, Xinyi Wang, and690
William Wang. 2023. Logic-LM: Empowering large691
language models with symbolic solvers for faithful692
logical reasoning. In Findings of the Association693
for Computational Linguistics: EMNLP 2023, pages694
3806–3824, Singapore. Association for Computa-695
tional Linguistics.696

PIC. 1998. International planning competition. https:697
//www.icaps-conference.org/competitions.698

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B699
Tenenbaum, Leslie Kaelbling, and Michael Katz.700
2024. Generalized planning in pddl domains with701
pretrained large language models. In Proceedings702
of the AAAI Conference on Artificial Intelligence,703
volume 38, pages 20256–20264.704

Kaya Stechly, Karthik Valmeekam, and Subbarao705
Kambhampati. 2024. Chain of thoughtlessness:706
An analysis of cot in planning. arXiv preprint707
arXiv:2405.04776.708

Hao Tang, Darren Key, and Kevin Ellis. 2024. World-709
coder, a model-based llm agent: Building world mod-710
els by writing code and interacting with the environ-711
ment. Preprint, arXiv:2402.12275.712

Gemma Team, Morgane Riviere, Shreya Pathak,713
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-714
raju, Léonard Hussenot, Thomas Mesnard, Bobak715
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:716
Improving open language models at a practical size.717
arXiv preprint arXiv:2408.00118.718

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,719
Sarath Sreedharan, and Subbarao Kambhampati.720
2024. Planbench: An extensible benchmark for eval-721
uating large language models on planning and reason-722
ing about change. Advances in Neural Information723
Processing Systems, 36.724

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar- 725
quez, Alberto Olmo, and Subbarao Kambhampati. 726
2023. On the planning abilities of large language 727
models (a critical investigation with a proposed 728
benchmark). Preprint, arXiv:2302.06706. 729

Daniel S Weld. 1999. Recent advances in ai planning. 730
AI magazine, 20(2):93–93. 731

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, 732
Zachary S Siegel, Jiahai Feng, Noa Korneev, 733
Joshua B Tenenbaum, and Jacob Andreas. 2023. 734
Learning adaptive planning representations with 735
natural language guidance. arXiv preprint 736
arXiv:2312.08566. 737

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, 738
and Harold Soh. 2023. Translating natural language 739
to planning goals with large-language models. arXiv 740
preprint arXiv:2302.05128. 741

Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu 742
Song, and Dan Roth. 2020. Analogous process struc- 743
ture induction for sub-event sequence prediction. In 744
Proceedings of the 2020 Conference on Empirical 745
Methods in Natural Language Processing (EMNLP), 746
pages 1541–1550, Online. Association for Computa- 747
tional Linguistics. 748

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark, 749
Chris Callison-Burch, and Niket Tandon. 2024a. 750
PDDLEGO: Iterative planning in textual environ- 751
ments. In Proceedings of the 13th Joint Conference 752
on Lexical and Computational Semantics (*SEM 753
2024), pages 212–221, Mexico City, Mexico. As- 754
sociation for Computational Linguistics. 755

Li Zhang, Hainiu Xu, Abhinav Kommula, Chris 756
Callison-Burch, and Niket Tandon. 2024b. 757
OpenPI2.0: An improved dataset for entity 758
tracking in texts. In Proceedings of the 18th Confer- 759
ence of the European Chapter of the Association for 760
Computational Linguistics (Volume 1: Long Papers), 761
pages 166–178, St. Julian’s, Malta. Association for 762
Computational Linguistics. 763

Li Zhang, Hainiu Xu, Yue Yang, Shuyan Zhou, Weiqiu 764
You, Manni Arora, and Chris Callison-Burch. 2023. 765
Causal reasoning of entities and events in procedural 766
texts. In Findings of the Association for Compu- 767
tational Linguistics: EACL 2023, pages 415–431, 768
Dubrovnik, Croatia. Association for Computational 769
Linguistics. 770

Tianyi Zhang, Li Zhang, Zhaoyi Hou, Ziyu Wang, Yul- 771
ing Gu, Peter Clark, Chris Callison-Burch, and Niket 772
Tandon. 2024c. PROC2PDDL: Open-domain plan- 773
ning representations from texts. In Proceedings of 774
the 2nd Workshop on Natural Language Reasoning 775
and Structured Explanations (@ACL 2024), pages 776
13–24, Bangkok, Thailand. Association for Compu- 777
tational Linguistics. 778

Andrew Zhu, Liam Dugan, Alyssa Hwang, and Chris 779
Callison-Burch. 2023. Kani: A lightweight and 780
highly hackable framework for building language 781

10

https://doi.org/10.18653/v1/2021.inlg-1.19
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://aclanthology.org/2024.eacl-long.10
https://aclanthology.org/2024.eacl-long.10
https://aclanthology.org/2024.eacl-long.10
https://doi.org/10.18653/v1/2023.findings-eacl.31
https://doi.org/10.18653/v1/2023.findings-eacl.31
https://doi.org/10.18653/v1/2023.findings-eacl.31
https://aclanthology.org/2024.nlrse-1.2
https://aclanthology.org/2024.nlrse-1.2
https://aclanthology.org/2024.nlrse-1.2
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8

model applications. In Proceedings of the 3rd Work-782
shop for Natural Language Processing Open Source783
Software (NLP-OSS 2023), pages 65–77, Singapore.784
Association for Computational Linguistics.785

Wang Zhu, Ishika Singh, Robin Jia, and Jesse Thoma-786
son. 2024. Language models can infer action seman-787
tics for classical planners from environment feedback.788
arXiv preprint arXiv:2406.02791.789

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,790
Michael L Littman, and Stephen H Bach. 2024. Plan-791
etarium: A rigorous benchmark for translating text792
to structured planning languages. arXiv preprint793
arXiv:2407.03321.794

A Data Examples795

A.1 BlocksWorld-111 PDDL796

The following are an example of the groundtruth797

DF and PF for BlocksWorld-111.798

DF:799

(define (domain blocksworld)
(:predicates (clear ?x)
(on-table ?x)
(arm-empty)
(holding ?x)
(on ?x ?y))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table
?ob) (arm-empty))
:effect (and (holding ?ob) (not (clear
?ob)) (not (on-table ?ob))
(not (arm-empty))))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect (and (clear ?ob) (arm-empty)
(on-table ?ob)
(not (holding ?ob))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob)
(holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on
?ob ?underob)
(not (clear ?underob)) (not (holding
?ob))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear
?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)
(not (on ?ob ?underob)) (not (clear ?ob))
(not (arm-empty)))))

800

The DF contains all four actions (pickup, put-801

down, stack and unstack) and their pre-conditions802

and post-conditions, as well as predicates needed 803

for the domain. 804

PF: 805

(define (problem blocksworld-p99)
(:domain blocksworld)
(:objects red blue green yellow)
(:init
(on-table red)
(on blue red)
(clear blue)
(on-table green)
(on yellow green)
(clear yellow)
(arm-empty)
)
(:goal (and
(on-table red)
(on green red)
(on yellow green)
(on blue yellow)
))
)

806

The PF contains the objects, initial state and 807

goal state for the problem. 808

A.2 BlocksWorld-111 DD and PD 809

The following display example DD and PD for all 810

natural settings in the BlocksWorld-111 dataset. 811

We can see that the descriptions have all the same 812

components as the DF and PF in PDDL, but written 813

in different levels of naturalness. 814

For the Heavily Templated DD, all preconditions 815

and post-conditions are written out explicitly and 816

sound similar to PDDL. The PD is similar, in that it 817

lists all the predicates needed for to solve the task. 818

11

https://doi.org/10.18653/v1/2023.nlposs-1.8

Heavily Templated DD:819

I am playing with a set of blocks. Here
are the actions I can do

Pickup block
Unstack block from another block
Putdown block
Stack block on another block

I have the following restrictions on
my actions:
To perform Pickup action, the following
facts need to be true: clear block, block
on table, arm-empty.
Once Pickup action is performed the
following facts will be true: holding
block.
Once Pickup action is performed the
following facts will be false: clear block,
block on table, arm-empty.
To perform Putdown action, the following
facts need to be true: holding block.
Once Putdown action is performed the
following facts will be true: clear block,
block on table, arm-empty.
Once Putdown action is performed the
following facts will be false: holding
block.
To perform Stack action, the following
needs to be true: clear block2, holding
block1.
Once Stack action is performed the
following will be true: arm-empty, clear
block1, block1 on block2.
Once Stack action is performed the
following will be false: clear block2,
holding block1.
To perform Unstack action, the following
needs to be true: block1 on block2, clear
block1, arm-empty.
Once Unstack action is performed the
following will be true: holding block1,
clear block2.
Once Unstack action is performed the
following will be false:, block1 on block2,
clear block1, arm-empty.

820

Heavily Templated PD:821

As initial conditions I have that, the
blue block is clear, the yellow block is
clear, arm-empty, the blue block is on top
of the red block, the yellow block is on
top of the green block, the red block is
on the table, and the green block is on
the table.
My goal is to have that the blue block is
on top of the yellow block, the green block
is on top of the red block, the yellow
block is on top of the green block, and
the red block is on the table.

822

For the Moderately Templated data, the DD and 823

PD are much more natural than the Heavily Tem- 824

plated data, but all predicates are still listed. 825

Moderately Templated DD: 826

I am playing with a set of blocks where
I need to arrange the blocks into stacks.
Here are the actions I can do

Pick up a block
Unstack a block from on top of another
block
Put down a block
Stack a block on top of another block

I have the following restrictions on
my actions:
I can only pick up or unstack one block at
a time.
I can only pick up or unstack a block if
my hand is empty.
I can only pick up a block if the block
is on the table and the block is clear. A
block is clear if the block has no other
blocks on top of it and if the block is
not picked up.
I can only unstack a block from on top of
another block if the block I am unstacking
was really on top of the other block.
I can only unstack a block from on top of
another block if the block I am unstacking
is clear.
Once I pick up or unstack a block, I am
holding the block.
I can only put down a block that I am
holding.
I can only stack a block on top of another
block if I am holding the block being
stacked.
I can only stack a block on top of another
block if the block onto which I am stacking
the block is clear.
Once I put down or stack a block, my hand
becomes empty.
Once you stack a block on top of a second
block, the second block is no longer clear.

827

Moderately Templated PD: 828

As initial conditions I have that, the blue
block is clear, the yellow block is clear,
the hand is empty, the blue block is on
top of the red block, the yellow block is
on top of the green block, the red block
is on the table, and the green block is on
the table.
My goal is to have that the blue block is
on top of the yellow block, the green block
is on top of the red block, the yellow
block is on top of the green block, and
the red block is on the table.

829

12

Finally for the natural data, we can see that the830

DD and PD give all necessary information to com-831

plete the task, but does not sound like PDDL, and832

does not describe all predicates needed to perform833

the task.834

Natural DD:835

The Blocksworld game involves a set of
blocks of different colors, which can be
stacked on top of each other or placed on
the table. The objective is to move the
blocks from an initial configuration to a
goal configuration using a series of legal
moves. Legal moves in Blocksworld include:
picking up a block from the table or from
the top of another block, stacking a block
onto the table, or stacking a block onto
another block.

836

Natural PD:837

In this particular game, there are 4
blocks: a red block, a blue block, a green
block, and a yellow block. At the start,
the red block is on the table, the blue
block is on top of the red block, the green
block is on the table, and the yellow block
is on top of the green block. The goal is
to have the red block on the table, the
green block on top of the red block, the
yellow block on top of the green block, and
the blue block on top of the yellow block.

838

A.3 MysteryBlocksWorld-100 PDDL 839

This section displays an example of the groundtruth 840

DF and PF for MysteryBlocksWorld-100. 841

DF: 842

(define (domain mystery_blocksworld)
(:predicates (province ?x)
(planet ?x)
(harmony)
(pain ?x)
(craves ?x ?y))

(:action attack
:parameters (?ob)
:precondition (and (province ?ob) (planet
?ob) (harmony))
:effect (and (pain ?ob) (not (province
?ob)) (not (planet ?ob))
(not (harmony))))

(:action succumb
:parameters (?ob)
:precondition (pain ?ob)
:effect (and (province ?ob) (harmony)
(planet ?ob)
(not (pain ?ob))))

(:action overcome
:parameters (?ob ?underob)
:precondition (and (province ?underob)
(pain ?ob))
:effect (and (harmony) (province ?ob)
(craves ?ob ?underob)
(not (province ?underob)) (not (pain
?ob))))

(:action feast
:parameters (?ob ?underob)
:precondition (and (craves ?ob ?underob)
(province ?ob) (harmony))
:effect (and (pain ?ob) (province ?underob)
(not (craves ?ob ?underob)) (not (province
?ob)) (not (harmony)))))

843

PF: 844

(define (problem mystery_blocksworld-p01)
(:domain mystery_blocksworld)
(:objects a b c d)
(:init
(craves a b)
(craves b c)
(harmony)
(planet c)
(planet d)
(province a)
(province d)
)
(:goal (and
(craves a d)
(craves c a)
))
)

845

13

A.4 MysteryBlocksWorld-100 DD and PD846

The following are example DD and PD of the Heav-847

ily Templated MysteryBlocksWorld-100. Text848

written in green demonstrates natural sounding849

text while text written in red demonstrates text that850

sounds the most like PDDL.851

DD:852

I am playing with a set of objects. Here
are the actions I can do

Attack object
Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on
my actions:
To perform Attack action, the following
facts need to be true: Province object,
Planet object, Harmony.
Once Attack action is performed the
following facts will be true: Pain object.
Once Attack action is performed the
following facts will be false: Province
object, Planet object, Harmony.
To perform Succumb action, the following
facts need to be true: Pain object.
Once Succumb action is performed the
following facts will be true: Province
object, Planet object, Harmony.
Once Succumb action is performed the
following facts will be false: Pain
object.
To perform Overcome action, the following
needs to be true: Province other object,
Pain object.
Once Overcome action is performed the
following will be true: Harmony, Province
object, Object Craves other object.
Once Overcome action is performed the
following will be false: Province other
object, Pain object.
To perform Feast action, the following
needs to be true: Object Craves other
object, Province object, Harmony.
Once Feast action is performed the
following will be true: Pain object,
Province other object.
Once Feast action is performed the
following will be false:, Object Craves
other object, Province object, Harmony.

853

PD:854

As initial conditions I have that, object
a craves object b, object b craves object
c, harmony, planet object c, planet object
d, province object a and province object
d.
My goal is to have that object a craves
object d and object c craves object a.

855

B Prompts 856

For the LLM-as-planner, we give all the models the 857

following prompt for BlocksWorld-111: 858

Here is a game involving a table with
blocks on it.

{domain_description}

{problem_description}

Write the plan that would solve this
problem.

These are the available actions:
(PICK-UP block): pick up a block from the
table
(PUT-DOWN block): put down a block on the
table
(STACK block1 block2): stack block1 onto
block2
(UNSTACK block1 block2): unstack block1
from block2

Here is what the output should look
like:
(PICK-UP A)
(STACK A B)
(UNSTACK A B)
(PUT-DOWN A)

859

For MysteryBlocksWorld-100, we use the fol- 860

lowing prompt: 861

Here is a game involving a table with
blocks on it.

{domain_description}

{problem_description}

Write the plan that would solve this
problem.

These are the available actions:
(ATTACK object): attack object
(SUCCUMB object): succumb
(OVERCOME object1 object2): overcome
object1 from object2
(FEAST object1 object2): feast object1
from object2

Here is what the output should look like:
(ATTACK A)
(OVERCOME A B)
(FEAST A B)
(SUCCUMB A)

862

Whenever possible, we asked the model to return 863

the output in a JSON object for easier parsing. 864

14

C Results for Templated865

BlocksWorld-111866

Metrics

Moderately Templated
Models Solvability Correctness

gemma-2-9b-it 0/111 0/111
gemma-2-9b-it† - 5/111
gemma-2-27b-it 21/111 12/111
gemma-2-27b-it† - 3/111

Llama-3.1-8B 0/111 0/111
Llama-3.1-8B† - 1/111
Llama-3.1-70B 0/111 0/111
Llama-3.1-70B† - 13/111

gpt-3.5-turbo 14/111 4/111
gpt-4o-mini 9/111 5/111
gpt-4o-mini† - 7/111
gpt-4o 87/111 76/111
gpt-4o† - 37/111

Heavily Templated
Models Solvability Correctness

gemma-2-9b-it 71/111 10/111
gemma-2-9b-it† - 5/111
gemma-2-27b-it 90/111 89/111
gemma-2-27b-it† - 9/111

Llama-3.1-8B 0/111 0/111
Llama-3.1-8B† - 0/111
Llama-3.1-70B 0/111 0/111
Llama-3.1-70B† - 11/111

gpt-3.5-turbo 41/111 33/111
gpt-4o-mini 71/111 64/111
gpt-4o-mini† - 1/111
gpt-4o 99/111 99/111

gpt-4o† - 32/111

Table 5: Performance of LLM-as-formalizer and LLM-
as-planner (†) on Moderately Templated and Heavily
Templated BlocksWorld-111.

Table 5 displays results for Heavily Templated867

and Moderately Templated BlocksWorld-111.868

D Results for Heavily Templated869

MysteryBlocksWorld-100870

Table 6 displays the results for Heavily Templated871

MysteryBlocksWorld-100.872

E Sample Model Output873

The following is an example DF and PF that874

Llama-3.1-8B-Instruct gave. We can see that875

there are syntax errors, as well as semantic errors876

in the DF and PF.877

We give the model the following input DD and PD:878

Models Solvability Correctness

Llama-3.1-8B 0/100 0/100
Llama-3.1-8B† - 0/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70B† - 0/100

gemma-2-9b-it 100/100 99/100
gemma-2-9b-it† - 9/100
gemma-2-27b-it 99/100 98/100
gemma-2-27b-it† - 0/100

gpt-3.5-turbo 4/100 0/100
gpt-4o-mini 36/100 5/100
gpt-4o-mini† - 0/100
gpt-4o 74/100 70/100
gpt-4o† - 0/100

Table 6: Performance of LLM-as-formalizer and
LLM-as-planner (†) on the Heavily Templated
MysteryBlocksWorld-100.

Blocksworld is a puzzle domain where the
aim is to move a set of blocks to achieve
a specific goal configuration. The domain
consists of a flat surface, often called
the ’table’, and an arbitrary number of
blocks. Every block can be stacked on top
of another block or placed on the table.
Blocks can be moved one at a time, and
only the block at the top of a stack can
be moved. The main actions available in
Blocksworld are:

1. **Pick Up (Pick-Up B)**: Picks up
block B from the table.
2. **Put Down (Put-Down B)**: Places block
B onto the table.
3. **Stack (Stack B1 B2)**: Stacks block
B1 on top of block B2.
4. **Unstack (Unstack B1 B2)**: Removes
block B1 from the top of block B2.

The goal is to transform an initial
configuration of blocks into a desired
target configuration using these actions.

In this Blocksworld problem, we will
consider a simple scenario with 2 blocks:
Block1 and Block2. The initial state of
the blocks is as follows:
Initial State:
- Block1 is on the table.
- Block2 is on Block1.

The goal is to achieve the following
configuration:

*Goal State**:
- Block2 is on the table.
- Block1 is on the table.

To solve this problem, you will need
to use the available actions to rearrange
the blocks from the initial state to the
goal state.

879

15

Which returns the following880

Output DF:881

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates
(on-table?b - block)
(on?b1 - block?b2 - block)
(clear?b - block)
)
(:action pick-up
:parameters (?b - block)
:preconditions (and (on-table?b)
(clear?b))
:effects (and (not (on-table?b)) (not
(clear?b)) (on-table?b))
)
(:action put-down
:parameters (?b - block)
:preconditions (and (not (on-table?b))
(clear?b))
:effects (and (on-table?b) (clear?b))
)
(:action stack
:parameters (?b1 - block?b2 - block)
:preconditions (and (on-table?b1)
(clear?b2))
:effects (and (not (on-table?b1)) (not
(clear?b2)) (on?b1?b2))
)
(:action unstack
:parameters (?b1 - block?b2 - block)
:preconditions (and (on?b1?b2) (clear?b1))
:effects (and (on-table?b1) (not
(on?b1?b2)) (clear?b2))
)
)

882

Output PF:883

(define (problem blocksworld-problem)
(:domain blocksworld)
(:objects block1 block2 - block)
(:init
(on-table block1)
(on block2 block1)
(clear block1)
(clear block2)
)
(:goal
(and (on-table block2)
(on-table block1)
(clear block1)
(clear block2)
)
)
)

884

Text in red displays errors outputted from the885

model. We can see that in the DF there are syntax886

errors (incorrect keyword “preconditions”) as well887

as semantic errors (incorrect predicates in precon-888

ditions and effects). For the output PF there are889

semantic errors, such as incorrect preconditions (a890

block cannot be clear and have another block on 891

top of it) in the init section. 892

F Related Works Comparison 893

Table 7 compares works related to this paper. We 894

can see that other works as the LLM to predict 895

either the plan, parts of PDDL files and other lan- 896

guages. We can also see that other works have 897

mostly templated natural language descriptions, 898

while this work uses both templated and natural 899

descriptions. 900

16

Environment LLM predicts? Natural Descriptions?

Zuo et al. (2024) fully-observed PF N
Zhang et al. (2024a) partially-observed PF N
Liu et al. (2023a) fully-observed PF N
Xie et al. (2023) fully-observed & partially-observed PF goal N
Lyu et al. (2023) fully-observed PF goal N
Zhang et al. (2024c) procedural texts DF action semantics N
Wong et al. (2023) partially-observed DF N
Guan et al. (2023) fully-observed DF & PF goal N
Zhu et al. (2024) fully-observed DF action semantics N

Tang et al. (2024) partially-observed Python N/A

Silver et al. (2024) fully-observed plan N
Valmeekam et al. (2024) fully-observed plan N
Stechly et al. (2024) fully-observed plan N

This work fully-observed DF & PF Y

Table 7: Comparison with related work.

17

	Introduction
	Task: Formal Planning with PDDL
	Methodology: LLM-as-Formalizer
	Evaluation: Datasets, Models, Metrics
	Data
	Metrics
	Models

	Results and Observations
	Can LLMs formalize?
	Should LLMs formalize?
	The more natural, the harder?
	Do LLMs memorize pretraining?
	What kind of errors?

	Related Work
	Conclusion
	Limitation
	Data Examples
	BlocksWorld-111 PDDL
	BlocksWorld-111DD and PD
	MysteryBlocksWorld-100 PDDL
	MysteryBlocksWorld-100DD and PD

	Prompts
	Results for Templated BlocksWorld-111
	Results for Heavily Templated MysteryBlocksWorld-100
	Sample Model Output
	Related Works Comparison

