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Abstract
Multimarginal optimal transport (MOT) is a powerful framework for modeling interactions between
multiple distributions, yet its applicability is bottlenecked by a high computational complexity. En-
tropic regularization provides computational speedups via an extension of Sinkhorn’s algorithm,
whose time complexity generally scales as O(nk), for a dataset size n and k marginals. This
dependence on the entire dataset size is prohibitive in high-dimensional problems that require mas-
sive datasets. In this work, we propose a new computational framework for entropic MOT (EMOT),
dubbed neural entropic MOT (NEMOT), that enjoys significantly improved scalability. NEMOT
employs neural networks trained using mini-batches, which transfers the computational bottleneck
from the dataset size to the size of the mini-batch and facilitates EMOT computation in large prob-
lems. We provide formal theoretical guarantees on the accuracy of NEMOT via non-asymptotic
error bounds that control for the associated approximation (by neural networks) and estimation
(from samples) errors. We also provide numerical results that demonstrate the performance gains
of NEMOT over Sinkhorn’s algorithm. Consequently, NEMOT unlocks the MOT framework for
large-scale machine learning.

1. Introduction

Optimal transport (OT) [32, 43] is a versatile framework for modeling complex relationships be-
tween distributions, which has achieved wide-ranging success across machine learning [3, 34, 38]
statistics [11, 13], economics [18], and applied mathematics [32]. In many applications, one seeks
to account for interaction between more than two marginals, which naturally leads to the multi-
marginal OT (MOT) setting [29]. Given k ≥ 2 marginal distributions µ1, . . . , µk, defined on the
spaces X1, . . . ,Xk, respectively, and cost function c : X1×· · ·×Xk → [0,∞) the MOT problem is

MOTc(µ1, . . . , µk) := inf
π∈Π(µ1,...,µk)

∫
c(x1, . . . , xk)dπ(x1, . . . , xk), (1)

where Π(µ1, . . . , µk) is the set of all joint distributions over X1× · · · ×Xk with ith marginal µi for
i = 1, . . . , k. MOT initially emerged as a mathematical model of certain operational problems in
physics [8, 15], and more recently have found various applications in machine learning, encompass-
ing multi-domain image translation [9], Bayesian learning [37], distributionally robust optimization
[12], adversarial learning [39], fair representation learning [24] and multiview embedding matching
[31]. Unfortunately, practical adoption of MOT has been limited due to its computational complex-
ity, as it requires solving a linear program over an exponentially large (in k) number of variables.
In fact, [1] shows for a variety of cost structure, a polynomial deterministic algorithm for the MOT
does not exist, e.g., even if the cost tensor is low-rank.
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In the bimarginal case, entropic regularization is key for the empirical successes of OT, mainly
due to the computational advantages of the Sinkhorn algorithm [16, 17] and fast estimation rates
[19, 26]. Entropic regularization also enables computational gains in the multimarginal setting via
an extension of Sinkhorn’s algorithm [23]. However, the algorithm operates on the k-wise coupling
directly, which has nk elements and results in the memory and computational costs scaling as nk,
which is exponential in the number of marginals. One approach to reduce the Sinkhorn algorithm
complexity is to consider specific cost structures that benefit from a sparse graph representation
(such as circle or tree structures), i.e., the k-wise cost function decomposes into a sum of a small
number of pairwise costs. A cost with a sparse graph representation reduces the Sinkhorn algorithm
runtime to polynomial in (n, k) [2, 4, 20]. Unfortunately, existing formulations do not lift the
polynomial dependence of the overall algorithm in n, which poses a computational bottleneck when
large real world datasets are considered.

1.1. Neural Entropic Multimarginal Optimal Transport

This work develops a novel methodology to scale up the EMOT computation. Drawing inspiration
from recent neural estimation approaches [7, 40, 44], we propose the neural EMOT (NEMOT)
framework, which optimizes an approximation of the dual form of the EMOT over a set of neural
networks. This allows us to harness the vast array of deep learning tools and methodology for the
task of MOT calculation while efficiently solving the optimization task using minibatch gradient
descent methodology. In contrast to existing approaches, NEMOT offers increased flexibility that
can handle any structure of the MOT cost. Furthermore, NEMOT can be integrated into larger
systems as a regularization factor for marginals matching, e.g., multi-view learning.

To facilitate a principled implementation of NEMOT, we provide formal guarantees on its con-
vergence given n i.i.d. samples of the of the k distributions. We show that under mild assumptions,
a NEMOT implemented with m-neuron shallow ReLU networks attains a O(poly(ϵ−1)k(m− 1

2 +

n− 1
2 )) error bound when estimating an EMOT with regularization coefficient ϵ. NEMOT provides

a computationally efficient framework to estimate the MOT, as the computational bottleneck is
transferred from the dataset size n to the batch size b, which is a hyper-parameter with b≪ n. Fur-
thermore, we show that in popular cases where the Sinkhorn iteration complexity is polynomial in
(n, k), the corresponding NEMOT computational complexity can be made polynomial in (b, k) and
only linear in n/b. We then provide empirical results that demonstrate the computational advantage
of NEMOT over the Sinkhorn algorithm. NEMOT’s cost flexibility and data-driven approach allow
for a seamless integration into modern machine learning tasks, unlocking EMOT calculation and
optimization in large datasets.

1.2. Related Work

Existing applications of MOT generally aim to alter the distribution of learned representations, ei-
ther by acting as a distributional constraint or matching criteria across multiple representations. In
generative modeling, [9] introduce a multimarginal extension of the Wasserstein GAN [3] to address
the multimarginal matching problem. In multi-view learning, the multimarginal Sinkhorn algorithm
is employed for multimarginal distribution matching of learned embeddings [31]. A recent work at-
tempted to leverage the multimarginal 1-Wasserstein distance to regularize data representations,
with applications in fairness, harmonization, and generative modeling [6]. In the context of ad-
versarial classification, [39] show the equivalence between MOT and certain adversarial multiclass
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classification problems, allowing the derivation of optimal robust classification rules. In [28] a so-
lution for high dimensional star-structured EMOT problems is proposed via diffusion processes.
However, it does not generalize to other cost structures, leaving it mainly useful for barycenter
problems. Despite these advances, the main limitation of existing methods is twofold: (i) most ap-
proaches are tailored to specific cost structures, limiting their general applicability [6, 28], and (ii)
they often suffer from the aforementioned scalability issues, with computational complexity grow-
ing as O(nk) [31]. The goal of this work is to overcome the scalability bottleneck, so is to facilitate
broader applicability of the EMOT estimation method in terms of cost structures.

2. Background

2.1. Entropic MOT

We consider a set of k marginals µk := (µ1, . . . , µk) supported on X k := X1×· · ·×Xk respectively.
We assume in this work that Xi ⊂ Rdi is compact for all i. For a given cost function c : X k → R
the EMOT is defined as

MOTc,ϵ(µ
k) := inf

π∈Π(µk)

∫
c(xk)dπ(xk) + ϵD(π∥ ⊗k

i=1 µi), (2)

where xk = (x1, . . . , xk) and D(µ∥ν) := Eµ[log(dµ/dν)] is the KL divergence between probability
measures µ and ν and Π(µk) is the set of joint distributions over X k with marginal µi for every i.
EMOT serves as a convexification of the linear MOT program (1) that can be solved faster but at
the price of an approximation gap, which is upper bounded by O(ϵ log(1/ϵ)) [27]. Convex duality
further yield the following dual representation of EMOT

MOTc,ϵ(µ
k) = sup

φ1,...,φk

k∑
i=1

∫
Xi

φidµi − ϵ

∫
×k

i=1Xi

e(
⊕k

i=1 φi−c)/ϵd(⊗k
i=1µi) + ϵ, (3)

where
⊕k

i=1 φi(x
k) :=

∑k
i=1 φi(xi) is the direct sum of the dual potentials φi : Xi → R, i =

1, . . . , k. The dual formulation is an unconstrained concave optimization w.r.t. (φ1, . . . , φk), and
the optimal solution k-tuple is unique up to additive constants. The unique EMOT plan can be
represented in terms of the dual potentials as

dπϵ = exp

(⊕k
i=1 φi − c

ϵ

)
d(⊗k

i=1µi). (4)

The EMOT is often solved using the multimarginal Sinkhorn algorithm [23], which generalizes the
matrix scaling procedure [33] to high dimensional data structures. The computational bottleneck of
the Sinkhorn algorithm follows a marginalization step of the coupling tensor, whose complexity is
in general O(nk). This is a key limitation that this paper aims to overcome.

2.2. Graphical Representation of the Cost

We consider a class of MOT cost functions that decompose into pairwise terms,1 i.e., c(xk) =∑
(i,j)∈E c̃(xi, xj) This enables representing the cost using a graph Gc = (V, E), where V =

1. For simplicity of presentation we consider use the same pairwise cost function c̃ for all pairs, note that the framework
readily adapts to edge-dependent pairwise cost functions.
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{1, . . . , k} and the edge set E corresponds to the pairwise components on the decomposition Namely,
(i, j) ∈ E if the term c̃(xi, xj) appears in the cost decomposition. The size of V is induced by the
structure of c(xk) and determines the complexity of the coupling marginalization. In the general
case, where V considers all pair i ̸= j, |V| grows as k2 and the corresponding Sinkhorn iteration
complexity remains O(nk). We refer to such c(xk) as a full cost. Imposing structure on the graph
can reduce the scaling with k, as the coupling marginalization can be reformulated as a set of matrix-
matrix operations [2, 4, 20]. For instance, in circular and tree graphs, |V| grows linearly with k and
the Sinkhorn complexity is reduced to polynomial in (n, k).

Algorithm 1: NEMOT
Input: Dataset Xn,k

Output: Optimized dual NNs
initialize k dual NN parameters (θi)ki=1, ℓ = 0;
while not converged do

Sample batch Xb,k;
Calculate fi = [fθi(xi,j)]

b
j=1 for

i = 1, . . . , k;

Calculate NEMOT loss M̂OTc,ϵ(Xb,k);
Update parameters:;

θℓ ← θℓ +∇θℓM̂OTc,ϵ(Xb,k);
ℓ← ℓ+ 1

end
Return M̂OTc,ϵ(Xn,k), neural plan Πϵ

θ⋆(Xn,k)

𝑿𝑛,𝑘
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𝑋2
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Figure 1: NEMOT system. Each marginal compo-
nent of Xn,k is fed to the corresponding neural po-
tential (fθi)

k
i=1 and outputs are fed into the EMOT

loss (5), from which gradients are calculated.

3. Neural Estimation of Entropic MOT

We propose a neural EMOT algorithm as a means to further scale up computation to massive
datasets. We propose to parameterize the set of dual potentials with neural networks, approx-
imate expectations with sample means, and optimize the resulting objective over the space of
neural network (NN) parameters. Given (n × k) i.i.d. samples Xn,k := (Xi,j)

k,n
i=1,j=1 where

(Xi,1, . . . , Xi,n)
i.i.d.∼ µi. NEMOT then takes the form

M̂OTc,ϵ(Xn,k) := sup
θ1,...,θk

1

n

n∑
j=1

k∑
i=1

fθi(Xi,j)−
ϵ

nk

∑
j1,...,jk

e(
∑k

i=1 fθi (Xji
)−c(Xj1

,...,Xjk
))/ϵ + ϵ. (5)

where fθi : Xi → R is a neural network with parameters θi ∈ Rd′i . To this end, as a random mini-
batch of µk preserves the expectation of the objective function, the neural estimation procedure of
MOTϵ(µk) considers an optimization of (5) using minibatch gradient descent. The neural estima-
tion procedure operates on the parameter space specifying the neural dual potentials.2 The NEMOT
is depicted by Figure 1. Having solved (5), we may use (4) to obtain a neural EMOT plan

dπθ⋆

ϵ := e

(⊕k
i=1 fθ⋆i

−c
)
/ϵ
d(⊗k

i=1µi), (6)

which serves to approximate the optimal solution to MOTc,ϵ(µ
k)

2. One may reduce the number of NNs by using the (c, ϵ)-transform to represent the ith network in terms of the rest.
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Remark 1 (Complexity reduction for sparse cost graphs) The naive implementation of minibatch
gradient descent on (5) has computational cost O(bk−1n) per epoch, vs. the O(nk) cost of each
Sinkhorn iteration where b is the batch size. In Appendix A we show that if the cost c has graph Gc
that is sparse, then the second term in (5) can be further accelerated to O(kb2n) computations per
epoch, i.e. linear in k and n for constant b.

3.1. Performance Guarantees

We provide a non-asymptotic bound on the NEMOT estimation error, which stems from three
sources of error: (i) function approximation of the dual MOT potential; (ii) empirical estimation of
the means; and (iii) optimization, which comes from employing suboptimal (e.g., gradient-based)
routines. Our analysis provides sharp non-asymptotic bounds on the errors of type (i) and (ii),
leaving the account of the optimization error for future work. To that end we assume for any i,
Xi ⊆ [−1, 1]d.3 the pairwise cost c̃ is continuously differentiable. Many transportation costs of
interest adhere to this assumption, e.g., the p-Wasserstein cost for p > 1. We focus on a class of
m-neuron shallow ReLU networks. Define Fm

nn(a) as the class of NNs f : Rm → R, f(z) =∑m
i=1 βiϕ (⟨wi, z⟩+ bi) + ⟨w0, z⟩ + b0, whose parameters satisfy max1≤i≤m ∥wi∥1 ∨ |bi| ≤ 1,

max1≤i≤m |βi| ≤ a
2m , and |b0|, ∥w0∥1 ≤ a, where ϕ(z) = z ∨ 0 is the ReLU activation and a

specifies the parameter bounds.The bound is given as follows

Proposition 2 (Neural Estimation Error) There exists a constant C > 0 depending only on d :=
maxi=1,...,k di such that setting a = C(1 + ϵ−s) with s = ⌊d⌋+ 3, we have

E
[∣∣∣M̂OT

m,a

c,ϵ (Xk×n)−MOTc,ϵ(µ
k)
∣∣∣] ≲d (1 + ϵ−( d

2
+1))kp(Gc)(m− 1

2 + n− 1
2 ), (7)

where p(Gc) = d+ 6 when deg(Gc) = rk for some r ∈ R and p(Gc) = 1 otherwise.

The proof of Proposition 2 is given in Appendix B.1. It decomposes the error into its approximation
and estimation terms. The former is controlled by showing that the optimal dual potentials belong
to some Hölder class of arbitrarily large smoothness, whence we may appeal to approximation error
bounds [22]. For the estimation error, we use standard maximal inequalities from empirical process
theory. The analysis is inspired by approach from [44] for bi-variate EOT neural estimation, and
generalizes it to k-marginals. Proposition 2 readily extends to approximation via sigmoidal NNs,
with minor adjustments to certain parameters, by leveraging the results of [5].

4. Numerical Results

In this section, we numerically demonstrate the scalability advantages of NEMOT over the baseline
Sinkhorn algorithm. We consider the calculation of the EMOT between k uniform distributions
over a d-dimensional normalized cube, i.e., µi = Unif

(
[− 1√

d
, 1√

d
]d
)

. We first consider a full cost
graph with pairwise quadratic cost terms. In this setting, the MOT vanishes, while the EMOT does
not due to the bias created by the regularization. Additional implementation details are given in
Appendix C, and the code implementation can be found in the Github repository. We compare the
performance of NEMOT with that of the Sinkhorn algorithm, averaging over 5 different seeds.

3. The considered results readily extend to arbitrary compact spaces
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First, we observe in Figure 2(a) that NEMOT successfully estimates the ground truth EMOT
value for a wide range of data dimension values. We further observe in Figure 2(b) that the data
dimensionality does not have a significant effect on the runtime of either algorithm. Second, we
study the effect of the size of the data set on the runtime of the algorithm. We observe in Figure 3(a)
that, while the runtime of the Sinkhorn algorithm is exponential in the dataset size, while NEMOT
remains linear in n. Then, we compare the performance of both algorithms under the computational
gain of a circle cost graph. As shown in Figure 3(b), even under sparse cost graphs the NEMOT is
significantly faster than Sinkhorn. Further results and analysis are given in Appendix D.
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Figure 2: Sinkhorn vs. neural estimator on Uniform data, full cost. Note that both algorithms
successfully recover the EMOT and neither runtime is bottlenecked by dimension.
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Figure 3: Runtime Comparison Between Sinkhorn and NEMOT under both full and circle cost
structures. Note that NEMOT is significantly faster, even for the simpler circle cost structure.

5. Conclusion

This paper proposed NEMOT, a new EMOT estimation algorithm that utilizes modern NN opti-
mization schemes. The NEMOT is cost flexible and operates in a data-driven manner, rendering it
applicable for the optimization of modern machine learning models. We derive formal guarantees
on the NEMOT estimation error under mild smoothness assumptions on the class of dual potentials.
The resulting error are parametric (and therefore minimax optimal). We claim that NEMOT is a
proper candidate to replace the Sinkhorn algorithm for massive datasets. Compared to the Sinkhorn
algorithm, the NEMOT introduces a significant speedup in terms of the dataset size, while main-
taining a similar level of accuracy. This claim is then demonstrated through numerical experiments.
Consequently, NEMOT unlocks EMOT estimation for a new class of real world datasets. For future
work, we plan to implement the NEMOT to popular EMOT applications where the Sinkhorn is the
algorithmic standard, which limits the size of applicable datasets [31, 39]. Furthermore, we plan
to extend the proposed methodology to additional classes of transportation problems, such as the
Gromov-Wasserstein [25] and the Fused Gromov-Wasserstein [42] distances.
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Appendix A. Computational Complexity of the Neural Estimator

As NEMOT is optimized using mini-batches, it transfers the exponential time complexity from
the dataset size n to the batch size b. Specifically, the complexity of a single epoch of NEMOT
is O(bk−1n), while a single Sinkhorn iteration takes O(nk) time to compute. Furthermore, as
we empirically demonstrate below, NEMOT provides good results with standard batch sizes (e.g.,
b = 32, 64), which suggests that the mini-batch may not need to scale with the dataset size. In this
regimen, where n≪ b, we can treat b as a constant, which results in a significant speedup to the the
EMOT computation.

Sparse Cost Graphs Additional computational gains are attainable when the cost graph is sparse,
e.g., a circle or a tree. In such cases, the Sinkhorn complexity reduced to depend on polynomially
(n, k) [2]. We next show that the batch loss expression (5) can be realized via matrix-matrix op-
erations, which leads to a polynomial complexity in (b, k). Consequently, NEMOT maintains its
computational advantages over the Sinkhorn algorithm also in the sparse cost setting. For a circle
cost graph we have the following result (See Appendix B.2 for the proof).

Proposition 3 Let Gc be a circle cost graph, fi = [fθi(xi,1), . . . , fθi(xi,n)] ∈ Rn be the vector of
dual potential outputs, Ci[j, l] = c̃(xi,j , xi+1,l) be the pairwise cost matrix for i = 1, . . . , k with

k + 1 = 1 and let Li := exp
( 1

2
(fi

⊕
fi+1)−Ci

ϵ

)
∈ Rn×n. Then

M̂OTc,ϵ(Xn,k) =
1

n

n∑
j=1

k∑
i=1

fi,j −
ϵ

nk
tr

(
k∏

i=1

Li

)
+ ϵ, (8)

and the complexity of calculating (8) is O(kn3). Furthermore, the neural plan tensor can be repre-
sented as

Πϵ
θ⋆(X

n,k)[i1, . . . , ik] =
k∏

j=1

Lj(ij , ij+1). (9)

The neural plan representation (9) allows for an efficient calculation of the unregularized OT
cost induced by Πϵ

θ⋆(X
n,k), due to the following proposition (see Appendix B.3 for the proof)

Proposition 4 Let (Ci)ki=1 be the pairwise cost matrices such that Ci
j,l = c(xi,j , xi+1,l) for a given

circle cost graph Gc. The corresponding unregularized transport cost is given by

⟨C, Π̂ϵ
θ⋆⟩ =

k∑
j=1

⟨Cj ,m
(
Π̂ϵ

θ⋆ , j, j + 1
)
⟩

where m
(
Π̂ϵ

θ⋆ , i1, i2

)
is the pairwise marginalization of Π̂ϵ

θ⋆ between (µi1 , µi2), which is given by

m
(
Π̂ϵ

θ⋆ , i1, i2

)
=

i2−1∏
j=i1

Lj

⊙
i1−1∏

j=1

Lj

⊺ k∏
j=i2

Lj

⊺ (10)

where A⊙ B is the Hadamard product of (A,B).

At the heart of Proposition 4 is the efficient marginalization, which is the main computational bot-
tleneck of the Sinkhorn algorithm.

10
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Appendix B. Proofs

B.1. Proof of Proposition 2

We begin by defining the population-level NEMOT as

ˆMOT
ϵ

m,a(µ
k) sup

fθ1 ,...,fθk∈×Fmi,di

k∑
i=1

∫
fθidµi − ϵ

∫
e(

⊕k
i=1 fθi−c)/ϵd(⊗k

i=1µi) + ϵ

First, note divide the neural estimation error into two components

E
[∣∣∣ ˆMOT

ϵ

m,a(X
k×n)−MOTc,ϵ(µ

k)
∣∣∣]

≤ E
[∣∣∣MOTϵ

c,m,a(µ
k)−MOTc,ϵ(µ

k)
∣∣∣]︸ ︷︷ ︸

(approximation)

+E
[∣∣∣ ˆMOT

ϵ

m,a(X
k×n)−MOTϵ

c,m,a(µ
k)
∣∣∣]︸ ︷︷ ︸

(estimation)

,

where (approximation) quantifies the approximation error that is induced by replacing the optimal
MOT potentials with elements from a the class of Shallow ReLU NNs and (estimation) quantifies
the error the one accumulates by replacing expectations with sample means.

We begin by bounding the approximation error. Denote the optimal set of potentials with
(φ⋆

1, . . . , φ
⋆
k).

4 The approximation error is upper bounded by given by

0 ≤ MOTc,ϵ(µ
k)−MOTϵ

c,m,a(µ
k)

≤ sup
fθ1 ,...,fθk∈×Fmi,di

k∑
i=1

∫
Xi

(φ⋆
i − fi) dµi

+

∫ (
exp

(∑k
i=1 φ

⋆
i (Xi)− C(Xk)

ϵ

)
− exp

(∑k
i=1 fi(Xi)− C(Xk)

ϵ

))
d(⊗k

i=1µi).

Due to compactness ofX k, the exponential function is consequently Lipschitz continuous on (−∞,MX ]
with Lipschitz constant eMXk , where MX := supxk∈Xk

∑k
i=1 φi(xi)− c(xk). We therefore have∣∣∣MOTc,ϵ(µ

k)−MOTϵ
c,m,a(µ

k)
∣∣∣ ≤ (1 + eM/ϵ)

k∑
i=1

Eµi [|φ⋆
i − fi|]

≤ (1 + eM/ϵ)

k∑
i=1

∥φ⋆
i − fi∥∞,Xi

≤ (ϵ+ eM )kϵ−1 max
i=1,...,k

∥φ⋆
i − fi∥∞,Xi

(11)

Due to (11), our goal boils down to bounding the sup-norm error between the optimal dual potentials
and the corresponding NN approximators. To do that, we are interested in employing the following
approximation bound from [36], which was previously utilized to bound the approximation error of
f -divergence neural estimators by a measure of the function smoothness. To this end, we define the
function class

Csb (U) := {f ∈ Cs(U) : max
α:∥α∥1≤s

∥Dαf∥∞,U ≤ b},

4. Existence of dual potentials is guaranteed under the assumption of finitely-supported measures [10].

11



NEURAL ENTROPIC MULTIMARGINAL OPTIMAL TRANSPORT

where Dα, α = (α1, . . . , αd) ∈ Zd
≥0, is the partial derivative operator of order

∑d
i=1 αi.

Proposition 5 (Proposition 10,[35]) Let X ∈ Rd be compact and let g : X → R. Suppose that
there exists an open set U ⊃ X , b ≥ 0 and g̃ ∈ CsKBb (U) with sKB := ⌊d2⌋ + 3, such that g = g̃

∣∣
X .

Then, there exist f ∈ Fm,d(c̄b,d,∥X∥) where c̄b,d,∥X∥ is a constant that depends on (b, d) and is
proportional to max∥α∥1 ∥Dαf∥∞,X is given in [35, Eqn. A.15], such that

∥f − g∥∞ ≲ c̄b,d,∥X∥d
1
2m− 1

2 .

A preliminary step to use Proposition 5 is to that for any i, φi ∈ CsKBb , i.e., that the function we
aim to approximate adhere to the required smoothness conditions. Furthermore, for an explicit
characterization of c̄b,d,∥X∥ in terms of the problem’s parameters, the smoothness of the partial
derivatives of the dual potentials should also be characterized. To that end, we propose the following

Lemma 6 There exist dual EMOT potentials (φ1, . . . , φk) for MOTc,ϵ(µ
k) such that

max
i=1,...,k

∥φi∥∞,Xi ≲d |Gc| (12)

max
i=1,...,k

∥Dαφi∥ ≲d,s (1 + ϵ1−s) (deg(Gx))s , 1 ≤ |α| ≤ s. (13)

for any s ≥ 2 and some constant Cs that depends only on s.

The proof of Lemma 6, which is given in Appendix B.4, is a generalization of [44, Lemma 1]
which accounts for the dual potential and its (c, ϵ) transform in the bimarginal EOT case. Specif-
ically, given a set of optimal potentials (φ⋆

1, . . . , φ
⋆
k) we can construct a set of dual potentials

(φ′
1, . . . , φ

′
k) that benefit from an explicit representation via the Schrödinger system, while agreeing

with (φ⋆
1, . . . , φ

⋆
k) µk-a.s., rendering them optimal as well for the considered EMOT. Accordingly,

the proof follows from similar arguments. Using Lemma 6 we result with the following error on the
approximation error∣∣∣MOTc,ϵ(µ

k)−MOTϵ
c,m,a(µ

k)
∣∣∣ ≲d,MX

(
1 + ϵ−(2+⌊ d

2
⌋)
)
(deg(Gc))⌊

d
2
⌋+3 km− 1

2 , (14)

We now turn to bound the estimator error, which is given by the following lemma

Lemma 7 (Estimation Error) Under the considered setting, we have

E
[∣∣∣MOTϵ

c,m,a − M̂OT
m,a

c,ϵ (µk)
∣∣∣] ≲d n− 1

2 max
{
(1 + ϵ−(d+4)) (deg(Gc))d+6 , (1 + ϵ−( d

2
+2))k

}
.

(15)

The proof of Lemma 7 is given in Appendix B.5 and follows the steps of the corresponding estima-
tion error bound from [44]. It uses the established smoothness of the integrands to construct bounds
on the empirical error using covering and bracketing numbers of the corresponding function classes,
combined with maximum inequalities of empirical processes [41]. We note that the maximum be-
tween the two terms in (15) depends on the cost graph, as deg(Gc) is independent on k for sparse
graphs.

Finally, combining (14) and (15), we obtain

E
[∣∣∣M̂OT

m,a

c,ϵ (Xk×n)−MOTc,ϵ(µ
k)
∣∣∣]

≤ (1 + ϵ−( d
2
+1)) (deg(Gc))

d
2
+2 km− 1

2 + n− 1
2 max

{
(1 + ϵ−(d+4)) (deg(Gc))d+6 , (1 + ϵ−( d

2
+2))k

}
.

12
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To obtain a simpler bound, we consider two cases, distinguishing between the the dependence of
deg(Gc) on k. In the worst case, when deg(Gc) = k, the first term is dominant in the error bound,
leaving us with

E
[∣∣∣M̂OT

m,a

c,ϵ (Xk×n)−MOTc,ϵ(µ
k)
∣∣∣] ≲ (1 + ϵ−( d

2
+1))kd+6(m− 1

2 + n− 1
2 ),

while, in the sparse case where deg(Gc) is a constant that is independent of k we have

E
[∣∣∣M̂OT

m,a

c,ϵ (Xk×n)−MOTc,ϵ(µ
k)
∣∣∣] ≲ (1 + ϵ−( d

2
+1))k(m− 1

2 + n− 1
2 ).

This concludes the proof □.

B.2. Proof of Proposition 3

Recall the the NEMOT is given by the expression

M̂OTc,ϵ(Xn,k) := sup
θ1,...,θk

1

n

n∑
j=1

k∑
i=1

fθi(Xi,j)−
ϵ

nk

∑
j1,...,jk

e(
∑k

i=1 fθi (Xji
)−c(Xj1

,...,Xjk
))/ϵ + ϵ.

The first sum directly follows from the definition of the direct sum. For the exponential term, we
have

exp

(∑k
i=1 fθi(Xji)− c(Xj1 , . . . , Xjk)

ϵ

)

= exp

(∑k
i=1 fθi(Xji)−

∑k
i=1 c̃(XjiXji+1)

ϵ

)

= exp

(∑k
i=1

1
2

(
fθi(Xji) + fθi+1

(Xji+1)
)
−
∑k

i=1 c̃(XjiXji+1)

ϵ

)

=

k∏
i=1

exp

(
1
2

(
fθi [ji] + fθi+1

[ji+1]
)
− Ci[ji, ji+1]

ϵ

)

=
k∏

i=1

Li[ji, ji+1].

Note that by the definition of the neural plan (6) we have obtained the desired representation. Con-
sequently, the second sum is given by∑

j1,...,jk

k∏
i=1

Li[ji, ji+1] =
∑

j1,...,jk

L1[j1, j2]L2[j2, j3] · · ·Lk[jk, j1] (16)

note that each index we sm over corresponds only to a specific pair of matrices, and is equivalent to
their matrix multiplication. Thus, after taking the product of the set of matrices, we remain with the
sum ∑

j1,...,jk

(
k∏

i=1

Li

)
[j1, j1] = tr

(
k∏

i=1

Li

)
completes the proof. □
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B.3. Proof of Proposition 4

Recall that the optimal neural plan can be represented as the multiplication of exponential matrices,
i.e.,

Π̂ϵ
θ⋆(i1, i2, . . . , ik) =

k∏
j=1

Lj [ij , ij+1].

Let C ∈ Rnk
be the explicit cost tensor and (Ci)ki=1 ⊂ Rn×n be the corresponding pairwise cost

matrices. We begin with the representation of the unregularized cost. We have the following

⟨C, Π̂ϵ
θ⋆⟩ =

∑
i1,i2,...,ik

C[i1, i2, . . . , ik]Π̂
ϵ
θ⋆ [i1, i2, . . . , ik]

=
∑

i1,i2,...,ik

k∑
j=1

Cj [ij , ij+1]Π̂
ϵ
θ⋆ [i1, i2, . . . , ik]

=
∑

i1,i2,...,ik

k∑
j=1

Cj [ij , ij+1]

(
k∏

ℓ=1

Lℓ[iℓ, iℓ+1]

)

=

k∑
j=1

∑
ij ,ij+1

Cj [ij , ij+1]

 ∑
(i1,...,ik)\(ij ,ij+1)

k∏
ℓ=1

Lℓ[iℓ, iℓ+1]


=

k∑
j=1

∑
ij ,ij+1

Cj [ij , ij+1]m
(
Π̂ϵ

θ⋆ , j, j + 1
)
[ij , ij+1]

=

k∑
j=1

⟨Cj ,m
(
Π̂ϵ

θ⋆ , j, j + 1
)
⟩.

We now move on to prove the circle cost marginalization formula. Let 0 ≤ u, v ≤ k with u ̸= v.
The marginalization follows from noticing that the considered summations over the given product
can be represented with products of the matrices L1, . . . ,Lk. For a given entry of the marginalized
coupling, we have the following

m
(
Π̂ϵ

θ⋆ , u, v
)
(iu, iv) =

∑
(i1,...,ik)\[iu,iv ]

(
k∏

ℓ=1

Lℓ[iℓ, iℓ+1]

)
We dividethe sum into its consecutive parts and define the matrices

A<u :=
u−1∏
j=1

Lj , Au<v :=
v−1∏

j=u+1

Lj , A>v :=

k∏
j=v+1

Lj

, we result with the following product:

m
(
Π̂ϵ

θ⋆ , u, v
)
[iu, iv] =

∑
i1

A<u[i1, iu]Au<v[iu, iv]A>v[iv, i1]

= Au<v(iu, iv)
∑
i1

A⊺
<u[iu, i1]A

⊺
>v[i1, iv]

= Au<v[iu, iv] (A
⊺
<uA

⊺
>v) [iu, iv],

14
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which completes the proof. □

B.4. Proof of Lemma 6

Fix i ∈ [1, . . . , k]. We start with the bound of ∥φ⋆
i ∥∞,Xi . By the invariance of the EMOT to additive

constants we may take without loss of generality optimal MOT potentials such that
∫
Xi

φidµi =
1
kMOTc,ϵ. We consider a set of dual potentials (φi)

k
i=1 that satisfy the Schrödinger system with the

optimal potentials, i.e.,∫
exp

(
k∑

i=1

φ⋆
i (xi)− c(xk)

)
dµ−i(x−i) = 1, µi − a.e.,

where X−i(×k
j=1Xj)\Xi and similarly µ−i := ⊗j∈[1,...,k]\iµj . Thus, for any i ∈ [1, . . . , k] we have

φi(x) = −ϵ log
∫
X−i

exp

(∑
−j φj(xj)− c(xk)

ϵ
dµ−i(x−i)

)
(17)

To obtain the desired bound, we derive a uniform bound over Xi. First, by Jensen’s inequality, we
have

φi(xi) ≤
∫
X−i

c(xk)−
k∑

j=1,j ̸=i

φ⋆
j (xj)dµ

−i(x−i)

≤ |Gc|C(d)− k − 1

k
MOTc,ϵ(µ

k)

≤ |Gc|C(d).

where the second inequality follows from the choice
∫
Xi

φ⋆
i dµi = 1

kMOTc,ϵ(µ
k) ≥ 0 and the

decomposition of c(xk) into its pairwise components, each of which upper bounded C(di, dj),
which we uniformly upper bound with C(d) such that d = maxki=1 di. For example, when the
pairwise cost is quadratic, C(di, dj) = 2max(di, dj). Next, we have

φi(xi) ≤ ϵ log

∫
X−i

exp

(
c(xk)−

∑k
j=1,j ̸=i φ

⋆
j (xj)

ϵ

)
dµ−i(x−i)

≤ ϵ log

∫
X−i

exp

(
(1 + k−1

k )|Gc|C(d)

ϵ

)
dµ−i(x−i)

≤ 2C(d)|Gc|.

where, here, the second inequality follows from MOTc,ϵ(µ
k) ≤ |Gc|C(d). As the bound is uniform

we can conclude that
max

i=1,...,k
∥φi∥∞,Xi ≲d |Gc|

15
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Next, note that (ϕ1, . . . , ϕk) are also optimal potentials of the EMOT, as by Jensen’s inequality we
have

k∑
i=1

(φ⋆
i − φi)dµi ≤

k∑
i=1

ϵ log

∫
Xi

exp

(
φ⋆
i − φi

ϵ

)
dµi

=
k∑

i=1

ϵ log

∫
Xk

exp

(∑k
j=1 φ

⋆
j − c

ϵ

)
d(⊗k

j=1µj)

= 0.

By the concavity of the logarithm function we can conclude that φi = φ⋆
i µi-a.s. for i = 1, . . . , k.

Next we bound the magnitude of the partial derivative. The differentiability of the dual potentials
is granted from their definition. To bound the partial derivative we will use the Faa di Bruno Formula
[14, Corocllary 2.10], which for a multi-index α, provides us with the following characterization of
the partial derivative of φ w.r.t. α as follows

−Dα(φi)(x) = ϵ
α∑

r=1

∑
p(α,r)

α!(r − 1)!(−1)r−1∏|
j=1 α|(kj !)(βj !)kj

×
|α|∏
j=1

Dβj
∫
exp

(∑k
ℓ=1,ℓ ̸=i φ

⋆
ℓ (xk)−c(xk)

ϵ dµ−i(x−i)

)
∫
exp

(∑k
ℓ=1,ℓ̸=i φ

⋆
ℓ (xk)−c(xk)

ϵ dµ−i(x−i)

)
 , (18)

where p(α, r) is the collection of all tuples (k1, . . . , k|α|;β1,...,β|α|) ∈ N|α| × Ndi×α satisfying∑|α|
i=1 ki = r,

∑|α|
i=1 kiβi = α and for which there exit s ∈ (1, . . . , |α|) such that ki = 0 and βi = 0

for all i ∈ (1, . . . , |α| − s), ki > 0 for all i ∈ (|α| − s+1, . . . , |α|) and 0 ≺ β|α|−s+1 ≺ · · · ≺ β|α|.
We refer the reader to [14] for more information on Faa di Bruno formula. For our purpose, it is
sufficient to bound Dβj

∫
exp

(∑k
ℓ=1,ℓ̸=i φ

⋆
ℓ (xk)− c(xk)

)
dµ−i(x−i). To that end, we apply the

Faa di Bronu formula to Dβj exp(−c(xk)/ϵ) to result with

Dβj exp(−c(xk)/ϵ)
|ηj |∑
r′=1

(
−1
2ϵ

)r′ ∑
p(βj ,r′)

l(βj , r
′,k, η) exp(−c(xk)

βj∏
ℓ=1

Dηℓc(xk),

and the cost derivative can be bounded using the pairwise cost bound, i.e., for any ηℓ

Dηℓc(xk) =
∑

j∈N(Xi)

Dηℓc(xi, xj) ≤ C ′(d)deg(Gc).

where N(Xi) re the neighbors of the variable Xi in the cost graph Gc, C ′(d) is a uniform bound
on the pairwise costs derivatives that depends only on d and deg(Gc) is the degree of the graph Gc.
The sum

∑|ηj |
r′=1

(−1
2ϵ

)r′ is upper bounded by ϵ−|βj | when 0 ≤ ϵ ≤ 1, and by ϵ−1 when ϵ > 1.
Consequently, we have uniformly on Xi

|Dαφi(xi)| ≤ C ′(|α|, d)(1 + ϵ1−|α|) (deg(Gc))|α| ,

which concludes the proof. □
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B.5. Proof of Lemma 7

We start by decomposing the expression at hand. To that end we define Fk,m(a) =
⋃k

i=1Fm,di(a).
We have the following

E
[∣∣∣MOTϵ

c,m,a − ˆMOT
ϵ

a,m(µk)
∣∣∣]

≤ n− 1
2

k∑
i=1

E

 sup
fi∈Fm,di

(a)

∣∣∣∣∣∣n− 1
2

n∑
j=1

fi(xi,j)− Eµi [fi]

∣∣∣∣∣∣


+ n− 1
2

(
E

[
sup

(f1,...,fk)∈Fk,m(a)

∣∣∣∣∣n− 1
2

n∑
j=1

e(
∑k

i=1 fi(xi,j)−c(xk
j ))/ϵ − E

[
e(

⊕k
i=1 fi−c)/ϵ

]∣∣∣∣∣
])

.

Te first term contains k distinct error terms for each of the NNs fi, i ≤ k. This bound is therefore
effectively reduced to the one considered in [44]. Consequently, we can repeat the arguments in
[44, Eqn. 24], which bound the expected error using maximal inequalities of empirical processes,
combined with a bound on the covering number of the dual potential function class. Thus, for each
i ≤ k we have

E

 sup
fi∈Fm,di

(a)

∣∣∣∣∣∣n− 1
2

n∑
j=1

fi(xi,j)− Eµi [fi]

∣∣∣∣∣∣
 ≤ ad

3/2
i .

To bound the second term we need to account for the smoothness of the exponential term we aim to
estimate, which was, fortunately, already established in Appendix B.4. We follow the step in [44],
with an adjustment to the exponential term smoothness bound. To avoid heavy notation, we denote
F(xk) := e(

∑k
i=1 fi(xi,j)−c(xk

j ))/ϵ. We have

E

 sup
(fθ,k)∈Fk,m(a)

∣∣∣∣∣∣n− 1
2

n∑
j=1

F(xk
j )− E [F]

∣∣∣∣∣∣
 (a)

≲ E
[∫ ∞

0

√
logN(δ,Fk,m(a), ∥ · ∥2,⊗k

i=1(µi)n
)dδ

]

≤
∫ ∞

0

√
sup

γ∈P(Xk)

logN(δ,Fk,m(a), ∥ · ∥2,γ)dδ

≲ sup
γ∈P(Xk)

∫ 12a

0

√
logN(δ,Fk,m(a), ∥ · ∥2,γ)dδ

(b)

≲ sup
γ∈P(Xk)

∫ 12a

0

√
logN[](δ,Fk,m(a), ∥ · ∥2,γ)dδ

(c)

≲ Ks

∫ 12a

0

(
C ′(s, d)(1 + ϵ1−s) (deg(Gc))s

2δ

) d
2s

dδ

≲ C̃(s, d)a(1 + ϵ1−s) (deg(Gc))s

where fθ,k := (fθ1 , . . . , fθk) (a) is an upper bound in terms of the function class covering num-
ber, which follows from [41, Corollary 2.8.2], since n− 1

2
∑n

i=1 σjF(x
k
j ) is Sub-Gaussian w.r.t. the

pseudo metric ∥·∥2,⊗k
i=1(µi)n

whenever (σi)ni=1 are Rademacher random variables, (b) upper bounds
the covering number with the bracketing number and (c) utilizes [41, Corollary 2.7.2] which upper
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bounds the bracketing number in terms of the smoothness parameter of the function class with a
constant Ks that depends only in s and C(s, d) is the constant from Appendix B.4.

Finally, by setting a = c̄b,d and combining both bounds, we have

E
[∣∣∣MOTϵ

c,m,a − ˆMOT
ϵ

a,m(µk)
∣∣∣] ≲d n− 1

2 max
{
(1 + ϵ−(d+4)) (deg(Gc))d+6 , (1 + ϵ−( d

2
+2))k

}
.

This concludes the proof. □

Appendix C. Additional Implementation Details

All NEMOT models are implemented in PyTorch [30]. The models are trained with the Adam
optimizer [21] with an initial learning rate of 5× 10−5. As the neural estimation batch loss (5) con-
siders an exponential term, we introduce a gradient norm clipping with the norm clipping parameter
of 0.1. We consider an exponential learning rate decay with decay value of 0.5 and scheduling rate
of 5 epochs. We consider a batch size of b = 32 and train the network for 50 epochs to ensure
convergence of the loss for small values of n. However, in all training sessions the estimate satu-
rated after less than 20 epochs. The NEMOT networks are implementation with simple feedfoward
MLPs. The networks consists of 3 layers with output sizes [10K, 10K, 1] with K := min(10d, 80).
Each layer output is followed with a ReLU activation. When calculating the neural plan, we apply
normalization by the sum of its entries to very it is a proper joint distribution over the product space.
In practice, we found that drawing gradients for all the k networks improved the NEMOT conver-
gence, while at a neglible cost of runtime. This method of course introduces a trade-off, which is
made crucial in the large k regime.

Appendix D. Additional Experimental Results

We present additional plots to analyse the NEMOT performance. We being by providing another
outlook o the runtime comparison between the Sinkhorn and the EMOT algorithm. While the total
algorithm runtime is usually the standard approach to compare runtimes, these are highly dependent
on user design hyperparameters, such as error tolerance and total number of iterations. To this end,
we complement the analysis in Section 4 with a comparison of the average iteration time. We
compare a single Sinkhorn iteration runtime with a single NEMOT epoch, as both serve as a proxy
for a pass on the entire dataset. We consider the same experimental setting of Section 4 for several
combination of cost graph and k values. The results, as presented in Figure 4, show that for the
full cost, when n is small (n ≤ 500) a single Sinkhorn iteration is indeed faster than a NE epoch.
However, such cases are not the ones this work aims to address, as the NEMOT is a tool designed
for large n. When n is bigger, or k > 3, the significant computational advantage of NEMOT on the
iteration level is visible.

Next, we are interested in the NEMOT runtime dependence on the data dimension and number
of marginal. As seen in Figure 5, the NEMOT average iteration complexity grows approximately
linearly with the number of marginals. It is also notable that the dimension have a moderate effect
on the average iteration time, which stems from optimizing k NNs on each epoch, as described in
Appendix C.
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Figure 4: Average iteration time - Sinkhorn algorithm vs. neural estimator.
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Figure 5: Average epoch time vs. k, circle loss, ϵ = 0.5.
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