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ABSTRACT

Recent research on LLM quantization has predominantly focused on post-training
quantization (PTQ). While effective at higher bit-widths, PTQ still suffers from se-
vere performance degradation in extremely low-bit settings (e.g., 2-bit), limiting its
applicability in resource-constrained environments. In contrast, quantization-aware
training (QAT) offers a promising solution to recover the accuracy loss introduced
by quantization. However, due to its substantial demands on training data and
computational resources, QAT remains largely underexplored for LLMs. In this
work, we present a comprehensive empirical study of QAT for extremely low-bit
quantized LLMs. We investigate critical factors affecting QAT effectiveness, in-
cluding quantizer design, quantization granularity, initialization strategies, training
data selection, and training hyperparameters. Based on these insights, we propose
a general QAT recipe and validate it on LLaMA3 models, achieving state-of-the-art
performance under extremely low-bit settings. All code and training details will be
released to facilitate reproducibility and foster future research on QAT for LLMs.

1 INTRODUCTION

Large Language Models (LLMs), built upon large-scale transformer architectures(Vaswani et al.,
2017), have demonstrated strong generalization ability across diverse tasks, including text gener-
ation(Liang et al., 2024), information extraction(Xu et al., 2023), machine translation(Zhu et al.,
2024), text classification(Sun et al., 2023), and so on. Despite their impressive performance, the
massive parameter size and computational demands result in high latency and energy consumption
during inference, which makes deployment challenging, particularly on resource-constrained edge
and mobile devices(Zhu et al., 2023).

These challenges highlight the critical need for efficient compression methodologies for LLMs.
Quantization, which converts computationally expensive floating-point parameters into low-bit
precision, has emerged as an effective technique for reducing memory footprint, computational
latency, and energy consumption during inference, thereby facilitating deployment on resource-
constrained devices. Extremely low-bit quantization (e.g., 2 bits) could achieve substantial model
compression rate, further reducing inference costs and enabling deployment on resource-constrained
platforms. However, such aggressive compression often incurs severe accuracy degradation, making
the exploration of extremely low-bit quantization methods crucial.

Existing quantization methods can be broadly categorized into post-training quantization (PTQ) and
quantization-aware training (QAT). PTQ methods, such as GPTQ(Frantar et al., 2022), AWQ(Lin et al.,
2024), and Omniquant(Shao et al., 2023), calibrate a pre-trained full-precision model using a small
amount of calibration data, without retraining, and are therefore highly efficient and resource-friendly.
However, PTQ methods generally struggle to maintain accuracy under extremely low-bit quantization.
In contrast, the QAT approaches utilize training data to to retrain the quantized model, helping
to recover accuracy. Among them, some QAT methods(Ma et al., 2024; 2025; Chen et al., 2025)
explore training extremely low-bit models from scratch, but they fail to fully leverage the knowledge
embedded in pre-trained full-precision models, resulting in higher resource requirements to obtain
a well-optimized model. Other approaches(Liu et al., 2025a; Team, 2025) suggest that inheriting
knowledge from pre-trained full-precision models improves performance and reduces training cost,
highlighting the importance of developing strategies to transfer this knowledge to extremely low-bit
quantized models. Despite the recent growing interest in QAT within the research community, a
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systematic exploration of training strategies for extremely low-bit quantization remains limited. Key
aspects of QAT, such as quantizer design, quantization granularity, initialization strategies, training
strategies, and data selection, are still underexplored within a unified framework, leaving substantial
room to narrow the performance gap between full-precision and quantized models.

In this work, we build upon a simple quantization baseline to systematically investigate key factors
affecting extremely low-bit quantization performance. We begin by revisiting the design of quantizers.
Our analysis shows that, using a floating-point offset yields lower quantization error compared
to an integer zero-point, and learning the step size is more efficient than learning the upper and
lower clipping bounds. Incorporating additional Stretched Elastic levels significantly enhances the
representational capacity of the quantizer. Based on these observations, we propose a enhanced
LSQ+ quantizer, ELSQ+, which not only exhibits stable training across different learning rates but
also achieves substantially faster loss convergence. In addition, we study the effects of quantization
granularity and initialization, finding that group-wise quantization consistently outperforms channel-
wise quantization. Finer granularities such as group size 64 lead to substantial accuracy gains, while
coarser granularities like group sizes 128 and 256 achieve similar performance. Advanced initializa-
tion provides clear benefits for coarse-grained quantization, but offers little to no improvement over
the naive MinMax method for fine-grained quantization. Furthermore, we investigate the impact of
training data on QAT. By simply selecting data that exhibit moderate alignment with the full-precision
model, namely the middle-PPL subset, we can effectively improve the accuracy of the quantized
model. Finally, we examine the impact of key training hyperparameters, including learning rate,
scheduler, weight decay, and training budget, on quantization-aware training, and derive an effective
and efficient configuration.

Based on these insights, we design a general and cost-effective solution for extremely low-bit
quantization-aware training, termed NashQuant, serving as a stronger baseline for future studies.
We validate our proposed NashQuant on model sizes suitable for mobile deployment, such as 1B
and 3B. The results show that our solution achieves substantial performance improvements over
existing quantization baselines. We strongly believe that extremely low-bit quantization is a key trend
for the future development of LLMs, with quantization-aware training being an essential enabling
technique. As more optimization techniques are introduced, the accuracy gap between full-precision
and quantized models can be further reduced.

2 DESIGN SPACE OF QAT FOR LLMS

In this section, we systematically investigate several key factors that affect the performance of
extremely low-bit quantization for LLMs, including the design of the quantizer, the choice of
quantization granularity and initialization, the selection of training data, and the configuration of
training hyperparameters. Through rigorous analysis and empirical comparisons, we derive several
insights that inform the design of strong baseline. Our analysis primarily focuses on the 2-bit setting.

2.1 PRELIMINARIES

Quantization is the process of compressing high-precision tensors into low-precision representations,
inherently introducing irreversible information loss. In this work, we primarily focus on extremely
low-bit quantization of model weights, specifically the 2-bit settings, which enables substantial
compression to reduce storage overhead, resulting in significant inference speedups. Following
OmniQuant (Shao et al., 2023) and BitDistiller (Du et al., 2024), given a floating-point weight W ,
we quantize it to a b-bit tensor W q with the upper clipping value u and the lower clipping value l.

W q = Clip(Round(W/s) + z, 0, 2b − 1)),

W deq = (Wq − z) · s,
(1)

where

s = (u− l)/(2b − 1),

z = Clip(−Round(l/s), 0, 2b − 1).
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(a) Learning Rate 1e-3.
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(b) Learning Rate 1e-4.
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(c) Learning Rate 1e-5.

Figure 1: Comparison of different quantizers under 2-bit weight quantization. The baseline is the
quantizer defined in Equation 1. +fp offset, +step size, and +levels denote the three
techniques in our Enhanced LSQ+. The experiments are conducted incrementally, adding each
technique on top of the previous one, with the final setting corresponding to the full Enhanced LSQ+
quantizer. To further validate effectiveness, all techniques are evaluated under three learning rates.

Here, Clip(W,α, β) = Min(Max(W,α), β), Round outputs the nearest integer value around the
input. Typically, the clipping value u and l are set as learnable parameters, and during training,
the corresponding quantization step size and zero-point are computed accordingly. To address the
non-differentiability of the rounding operation, we typically employ the Straight-Through Estimator
(STE) (Courbariaux et al., 2015) to approximate its gradients.

2.2 QUANTIZER DESIGN

First, we examine the weight quantizer defined in Equation 1, commonly employed in LLMs. We
refer to the resolution as the fineness of its discretization, namely the number of distinct representable
values determined by the bit-width. We observe that the resolution of extremely low-bit quantization
is highly constrained—for instance, 2-bit allows only four discrete values, corresponding to three
levels. Consequently, several design choices that work well at higher bit-widths become suboptimal
in this regime. To mitigate this issue, we propose three modifications to enhance the performance of
quantizers in extremely low-bit settings.

Floating Offset vs. Integer Zero Point: Typically, the learned clipping values in Equation 1 maps
the floating-point range onto the full b-bit integer range, with l mapped to 0 and u to 2b − 1. However,
we observe that using an offset in the integer domain (i.e. zero-point z) can lead to distortion in
the de-quantization of learnable clipping values. As shown in Equation 2, quantizing the clipping
values introduces significant rounding errors, with a maximum magnitude of 0.5/(2b − 1) of the
floating-point range. In extremely low-bit settings, this error can be substantial. For instance, in 2-bit
quantization, the maximum rounding error can reach 16.7% of the full floating-point range.

W deq
min = Round(l/s) · s, W deq

max = Round(u/s) · s. (2)

Although rounding errors are common in the quantization process, clipping values primarily serve
to compute the scale. To preserve accuracy during QAT, it is crucial to ensure that updates to
these clipping values are as precise as possible. To address this issue, we propose replacing the
integer-domain offset z with a floating-point offset β, effectively mitigating the quantization error.
The formulation is presented as follows.

W q = Round(Clip(
W − β

s
, 0, 2b − 1)),

W deq = Wq · s+ β,

(3)

where offset β = l and the step size s is determined according to the formulation in Equation 1.
With this design, the clipping values l and u can be recovered losslessly after quantization and
dequantization, thereby enabling more efficient learning of the optimal clipping range.

Step Size vs. Clipping Value: Although clipping values (l, u) and the step size s are algebraically
interchangeable via s = (u − l)/(2b − 1), their gradient behaviors differ substantially in practice.
During QAT, the forward computation flows from the clipping values u and l to the derived step size

3
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Figure 2: Training loss of four quantizers.

Quantizer Symmetric Levels Clipping/Step

LSQ (Esser et al., 2019) ✓ 2b − 1 Step size

LSQ+ (Bhalgat et al., 2020) ✗ 2b − 1 Step size

SEQ (Liu et al., 2025a) ✓ 2b Clipping Value

ELSQ+ (Ours) ✗ 2b Step size

Table 1: Comparison on key quantization properties

s. In the backward pass, however, the gradient of the loss L is first accumulated with respect to s and
only then propagated to u and l through ∂s/∂u = 1/(2b − 1) and ∂s/∂l = −1/(2b − 1) as shown
in Equation 4. The scaling factor 1/(2b − 1) in this chain drastically attenuates the gradients of u and
l, leading to significantly smaller update steps. This is particularly problematic because the absolute
values of u and l are typically much larger than the step size s in the forward pass, yet their gradients
are disproportionately suppressed in the backward pass. Such imbalance renders the optimization of
clipping values inefficient and misaligned with their role in the quantization process.

∂L
∂u

=
∂L
∂s

· 1

2b − 1
,

∂L
∂l

=
∂L
∂s

·
(
− 1

2b − 1

)
. (4)

Although gradient scaling techniques (Esser et al., 2019) can be applied to compensate for the
suppressed gradients of u and l, we note that large language models are typically trained with the
AdamW optimizer (Loshchilov & Hutter, 2017), which normalizes gradients and thereby diminishes
the effect of such scaling. This observation naturally motivates directly optimizing the step size s
rather than the clipping values, providing a more effective and stable approach for QAT of LLMs,
particularly under extremely low-bit settings.

Stretched Elastic vs. Vanilla Elastic: We further study the representational capacity of the quantizer.
In prior approaches, which we refer to as vanilla elastic, b-bit quantization is typically assumed to
produce 2b discrete nodes, with 2b − 1 quantization levels between them. Recent work, ParetoQ (Liu
et al., 2025a), introduces a quantizer based on Stretched Elastic Quantization (SEQ). In 2-bit
quantization, this approach maps to the discrete nodes {−1.5,−0.5, 0.5, 1.5}, allocating two levels
to positive values and two levels to negative values. Consequently, the total number of quantization
intervals increases from 2b − 1 to 2b, effectively enhancing the representational capacity with extra
level. To this end, building upon the two techniques introduced above, we further incorporate
the Stretched Elastic approach to extend the quantization levels, resulting in the Enhanced LSQ+
quantizer, as formulated in the following equation.

W q = Round(Clip(
W − β

s
,−2b−1 + ϵ, 2b−1 − ϵ)− 0.5) + 0.5,

W deq = Wq · s+ β,

(5)

where ϵ denotes a very small positive constant, typically set to 0.01. ELSQ+ can be regarded as a
rethinking and extension of existing approaches for extremely low-bit quantization, incorporating
three key techniques: floating-point offsets, learnable step size, and adding stretched elastic level.

To validate the effectiveness of ELSQ+, we conduct incremental ablation experiments across three
different learning rates, as shown in Figure 1. When training with a high learning rate of 1e − 4,
the baseline quickly diverges, while a low learning rate of 1e− 5 leads to high-loss collapse. Using
a floating-point offset stabilizes training, and replacing clipping values with a learnable step size
improves performance, especially at high learning rates. Adding extra levels with stretched elastic
quantization further reduces loss across all learning rates, showing that each strategy consistently
enhances ELSQ+ performance. In addition, we conduct a comprehensive comparison with LSQ (Esser
et al., 2019), LSQ+ (Bhalgat et al., 2020), and SEQ (Liu et al., 2025a) quantizers, as shown in Table 1.
ELSQ+ differs from these methods in that it adopts an asymmetric design, learns the step size, and
further incorporates stretched elastic quantization, making it particularly well-suited for extremely
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Figure 3: Quantization granularity.
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Figure 4: Quantization Initialization.

low-bit settings. The results, summarized in Figure 2, show that ELSQ+ consistently achieves
significantly lower loss than LSQ+ and SEQ, underscoring its advantage in the low-bit regime.

2.3 QUANTIZATION GRANULARITY AND INITIALIZATION

Quantization Granularity. In general, finer quantization granularity leads to better accuracy. This
observation is particularly salient in LLMs, where parameter distributions often exhibit a substantial
number of outliers. In coarse-grained quantization schemes, for example channel-wise quantization,
an entire set of parameters within a large scope is constrained to share a single quantization interval.
However, the presence of outliers in LLM parameters forces the quantization levels to expand in order
to cover a much larger floating-point range under a fixed bit-width. Consequently, even significantly
different parameters are mapped to the same quantization nodes, leading to severe information
loss and accuracy degradation. By contrast, fine-grained quantization more faithfully approximates
parameter distributions. By locally adjusting step sizes and offsets, it captures statistical variations
and isolates outliers within smaller subgroups. This prevents diverse parameters from collapsing into
the same quantization level, alleviating the representational limits of extremely low-bit quantization.
It is worth noting that the effectiveness of fine-grained quantization has been extensively validated in
PTQ (Shao et al., 2023). However, its efficacy in QAT, especially under extremely low-bit regimes,
remains largely unexplored.

Our work extends the study of quantization granularity to this more challenging scenario, demonstrat-
ing its practical benefits in training 2-bit LLMs. we conduct experiments comparing channel-wise
quantization with group-wise quantization under group sizes of {64, 128, 256}, employing the En-
hanced LSQ+ quantizer. As shown in Figure 3, all group-wise quantization strategies outperform the
channel-wise baseline in both perplexity and zero-shot accuracy, confirming that finer granularity
mitigates outlier effects and improves downstream generalization. Performance at group sizes 128 and
256 is similar, whereas group size 64 yields substantially better results. At these larger group sizes, the
granularity remains too coarse to effectively separate outliers, resulting in comparable quantization
errors. In contrast, group size 64 provides finer isolation of outliers, reducing quantization errors and
enabling more accurate parameter representation, which translates into improved model performance
across all evaluation metrics.

Quantization Initialization. Previous studies have shown that better initialization can lead to
significant improvements in the performance of quantized models, as exemplified by LSQ(Esser et al.,
2019), which introduced mean-squared-error (MSE)–based initialization. In contrast, researches on
QAT for LLMs have paid little attention to this factor, with simple MinMax initialization remaining
the prevalent choice(Liu et al., 2023; Chen et al., 2024; Liu et al., 2025a). However, under extremely
low-bit quantization, the representational range of quantized models is severely compressed, which
can exacerbate the impact of initialization on both training stability and model accuracy. Furthermore,
under the same bit-width, how quantization granularity interacts with initialization remains largely
unexplored. To investigate this, we systematically evaluate multiple common initialization schemes,
including MinMax, Quantile and MSE initialization, across different quantization granularity.
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Figure 6: Zero-shot accuracy comparison.

As shown in Figure4, we find that MSE achieves best performance in perplexity and zero-shot under
channel-wise quantization. And, as the quantization granularity becomes finer, the difference between
the best and worst results across quantization initialization methods decreases significantly. As shown
in Figure 4, MSE achieves the best performance in both perplexity and zero-shot accuracy under
channel-wise quantization. Moreover, as quantization granularity becomes finer, the gap between
the best and worst initialization methods decreases substantially. For instance, with channel-wise
quantization, the difference in PPL between MSE (best) and MinMax (worst) is 2.3 points, with an
average zero-shot performance gap of 3.1 points. In contrast, using group-wise quantization with a
group size of 64 reduces the PPL difference to just 0.1 points.

2.4 TRAINING DATA SELECTION

Data quality is widely acknowledged as a decisive factor in the success of LLM training, and its role
has been thoroughly examined in the full-precision models. However, in LLM quantization, this
aspect has received relatively little attention. Most existing methods focus on PTQ, where only a
small calibration set is required, often consisting of 128 samples randomly drawn from datasets such
as Wikipedia (Merity et al., 2016) or C4 (Raffel et al., 2020). Since the model weights remain fixed
in PTQ, the impact of data quality on the final performance is minimal, leading to the perception
that data is not a decisive factor for quantization. In contrast, quantization-aware training (QAT)
requires updating the model weights, making data quality substantially more critical. Modern LLMs
are typically pretrained on trillions of tokens from large-scale general-purpose corpora, followed by
fine-tuning with hundreds of billions of carefully curated, high-quality data. Unfortunately, such
high-quality datasets used in the final training stages are often not publicly available.

In this section, we study the impact of data selection on QAT using open-source datasets. Specifically,
we consider SlimPajama (Soboleva et al., 2023), a cleaned and deduplicated version of RedPajama. To
measure alignment with a pretrained model, we evaluate SlimPajama using LLaMA3-1B by comput-
ing the model’s perplexity (PPL) on the dataset. Formally, given a dataset D = x(1), x(2), . . . , x(N)

and a language model with parameters θ, perplexity is defined as

PPL(D; θ) = exp

(
− 1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

ln pθ
(
x
(i)
t | x(i)

<t

))
, (6)

where Ti is the length of the i-th sequence, and pθ(x
(i)
t | x(i)

<t) denotes the probability assigned by
the model to token x

(i)
t conditioned on its preceding context.

As shown in Figure 5, we present the perplexity distribution of the SlimPajama dataset. It can be
observed that the dataset exhibits a highly uneven alignment with the LLaMA3 model: the majority of
data points are concentrated below a perplexity of 60, while the maximum perplexity reaches several
million. We further partitioned the dataset into tertiles based on the 1/3 and 2/3 quantiles, resulting
in three subsets: high-PPL, middle-PPL, and low-PPL. Typically, low-PPL data are considered
easier for the model to learn, representing well-learned or simple examples, whereas high-PPL
data correspond to more difficult or even noisy examples. Under extremely low-bit quantization,
quantization-aware training (QAT) can be interpreted as a reconstruction of the model weights (Liu
et al., 2025a). Motivated by this, we investigate the impact of high-, middle-, and low-PPL data on
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LLM performance under extremely low-bit training. Figure 6 illustrates the zero-shot accuracy across
seven downstream tasks. Compared with randomly sampled data from the dataset, high-PPL data
generally result in slightly worse performance across most metrics, with particularly poor results on
the ARC-e task. Middle-PPL data consistently achieve the best performance across the majority of
tasks, whereas low-PPL data lead to highly uneven metrics, with most being significantly degraded.

2.5 TRAINING HYPERPARAMETERS

In addition to quantizer design, quantization granularity, initialization strategies, and the selection
of training data, the choice of training hyperparameters also plays a crucial role in determining the
final accuracy of quantized models, such as learning rate, scheduler, training steps, and weight decay.
However, this aspect has been largely overlooked in prior QAT studies. In this work, we conduct a
systematic ablation study on training hyperparameters to investigate their impact on the effectiveness
of QAT under extremely low-bit quantization.

Learning Rate. As shown in Figure 1, learning rate has a substantial impact on the performance of
a given quantizer. A small learning rate (e.g., 1e−5) often leads certain quantizers to converge to
excessively high loss values, whereas a large learning rate (e.g., 1e−3) can cause training instability,
with the loss diverging to NaN. Through careful design, we find that ELSQ+ consistently converges
stably across a wide range of learning rates. To further identify the optimal setting, we conduct a
finer-grained ablation study on the learning rate. As illustrated in Figure 7, we visualize the loss
curves under five learning rates (1e−3, 5e−4, 1e−4, 5e−5, 1e−5). The smallest learning rate, 1e−5,
exhibits the slowest convergence: although its loss decreases rapidly at the beginning, it soon stagnates
without further reduction. In contrast, 5e−4 and 1e−3 achieve comparable convergence speeds,
while 1e−4 and 5e−5 consistently yield the fastest loss reductions throughout training. Among them,
1e−4 demonstrates the most stable and effective convergence, enabling the model to reach the best
overall performance.

Scheduler. Cosine annealing is widely used in full-precision training of LLMs, while the Warmup-
Stable-Decay(WSD) scheduler(Team, 2025) has recently been proposed for 1.58-bit quantization,
adopting a warm-up and stable learning rate for the first 80% of steps and decay for the final 20%. Our
ablations show that the two schedulers yield highly similar results: WSD improves average zero-shot
accuracy over cosine annealing by only 0.1, with nearly overlapping training curves. However, WSD
achieves slightly faster early convergence and lower final loss, suggesting it as a preferable choice for
quantization-aware training.

Training Steps. Training cost is a critical consideration in QAT. ParetoQ (Liu et al., 2025a) recom-
mends 120k steps for 2-bit quantization, where weights are heavily distorted and require reconstruc-
tion. With our improved techniques described above, we revisit this question under our framework,
training with 10k, 20k, 40k, 80k, and 120k steps. We find that increasing the step substantially
improves quantized model accuracy, with the most pronounced gains observed between 10k and 80k.
Beyond 80k, additional training yields minimal improvement. Therefore, 80k steps offer the most
balanced trade-off between accuracy and training cost for extremely low-bit quantization.
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Table 2: Main results of 2-bit quantization on different evaluation benchmarks. We report the
perplexity on Wiki2 and C4, and zero-shot accuracy on 7 downstream tasks. * denotes that the results
are reproduced with open-source training data.

Model Method
Perplexity ↓ Zero-shot Accuracy ↑

Wiki2 C4 Avg BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg

LLaMA3-1B

FP 9.75 14.01 11.9 63.7 74.2 63.8 60.7 60.3 36.5 37.2 56.6
GPTQ-g64 283 1061 672 39.7 50.9 27.4 47.8 27.2 25.9 28.0 35.3
AWQ-g64 2.1e5 2.5e5 2.3e5 45.4 53.4 26.7 49.0 25.7 27.2 28.2 36.5

OmniQuant-g64 104 202 153 47.0 56.3 28.3 50.0 32.7 21.9 25.6 37.4
LLM-QAT 16.87 22.84 19.85 58.3 68.8 47.5 52.6 47.9 28.4 32.6 48.0

EfficientQAT 85.52 68.21 76.87 60.6 60.7 33.8 50.1 34.4 24.2 29.2 41.9
EfficientQAT-g64 17.98 24.09 21.03 56.4 65.4 41.2 52.3 46.3 26.7 30.4 45.5

ParetoQ* 19.63 25.68 22.65 59.9 66.5 40.1 53.0 40.9 25.2 28.4 44.8
NashQuant 13.86 21.32 17.59 62.0 71.3 51.8 56.0 50.5 29.4 31.4 50.3

LLaMA3-3B

FP 7.81 11.33 9.6 73.0 77.4 73.7 69.2 71.7 46.0 43.2 64.9
GPTQ-g64 106 578 342 41.3 53.2 29.6 50.9 27.1 23.9 24.6 35.8
AWQ-g64 3.0e4 2.1e4 2.6e4 41.8 50.3 26.1 48.9 25.7 24.1 25.2 34.6

OmniQuant-g64 44.75 75.79 60.27 40.9 58.7 35.5 50.7 35.8 24.3 28.4 39.2
LLM-QAT 12.60 17.52 15.06 65.8 73.1 59.6 55.1 58.0 34.0 32.6 54.0

EfficientQAT 29.46 34.31 31.89 64.9 64.7 46.6 54.0 48.1 27.0 28.2 47.6
EfficientQAT-g64 11.86 17.16 14.51 64.1 72.1 61.1 61.9 64.2 36.4 36.0 56.5

ParetoQ* 13.10 18.47 15.78 63.8 71.1 55.9 58.3 53.2 31.1 32.8 52.3
NashQuant 10.19 16.93 13.56 63.8 74.2 64.8 62.6 64.3 37.2 36.4 57.6

Weight Decay. Finally, we examine the effect of weight decay in quantization-aware training. In full-
precision LLM training, weight decay is typically set to 0.1, while some quantization methods (Liu
et al., 2023; 2025a) adopt 0 without justification. We conduct ablations with coefficients of 0, 0.01,
and 0.1, and observe nearly identical loss trajectories across all settings, suggesting that weight decay
has little impact on quantized training. Since extremely low-bit quantization primarily focuses on
weight reconstruction, a reasonable choice is to set weight decay to 0.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Baselines. We conduct experiments on LLMs of different scales, including LLaMA3-1B, LLaMA3-
3B, and LLaMA3-8B (Dubey et al., 2024). To evaluate the effectiveness of our proposed NashQuant,
we compare it with state-of-the-art LLM quantization approaches, covering both PTQ and QAT
methods. For PTQ, which calibrates quantization parameters without retraining, we consider Omni-
Quant (Shao et al., 2023), AWQ (Lin et al., 2024), and GPTQ (Frantar et al., 2022). For QAT, which
jointly optimizes quantization parameters during fine-tuning, we include LLM-QAT (Liu et al., 2023),
BitDistiller (Du et al., 2024), EfficientQAT (Chen et al., 2024), and ParetoQ (Liu et al., 2025a).

Benchmarks. We evaluate the performance of our proposed NashQuant against existing LLM
quantization methods using two metrics: perplexity and zero-shot accuracy, with evaluation conducted
via the lm-evaluation-harness (EleutherAI, 2021). For perplexity, we report results on WikiText-
2 (Merity et al., 2016) and C4 (Raffel et al., 2020), where lower values indicate better language
modeling. For zero-shot accuracy, we evaluate on seven downstream tasks: BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al.,
2021), ARC (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018), where higher accuracy
indicates stronger performance.

Implementation Details. In this paper, all training is conducted using the SlimPajama dataset (Sobol-
eva et al., 2023) with a sequence length of 2048. For our proposed NashQuant, we select examples
within the middle-PPL range. The model is trained with our ELSQ+ quantizer for a total of 80k steps,
using a batch size of 128 following ParetoQ (Liu et al., 2025a). We employ the AdamW optimizer , a
learning rate of 1e−4, weight decay set to 0, and the WSD scheduler with final decay to 0. Our main
experiments adopt channel-wise quantization with MSE-based initialization.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3.2 MAIN RESULTS

In Table 2, we present the 2-bit results of several commonly used baselines on perplexity and zero-shot
tasks. We compare our proposed NashQuant with a range of state-of-the-art PTQ and QAT techniques.
It is important to note that the Llama3 model used in our experiments is the publicly available open-
source version, rather than a reproduced full-precision model. Given that PTQ methods generally
perform suboptimally in 2-bit quantization settings, we report all PTQ results using a group size of
64 to ensure consistency. Our NashQuant outperforms the existing PTQ and QAT methods, setting a
new state-of-the-art (SOTA) benchmark.

For the Llama3-1B model, most PTQ methods fail to achieve acceptable performance under 64-group
quantization. In contrast, our channel-wise NashQuant demonstrates notable improvements over
existing PTQ and QAT baselines. The results shows that our NashQuant outperform EfficientQAT
and EfficientQAT-g64 both on perplexity and zero-shot accuracy. Meanwhile, the average perplexity
of channel-wise NashQuant is 2.26 lower than that of LLM-QAT, while achieving 5% higher accuracy
on average across seven zero-shot tasks. Furthermore, when compared to the recent work ParetoQ,
NashQuant achieves nearly a 30% improvement on the Wiki and 17% on the C4, along with a 5.5
points increases in zero-shot accuracy. Notably, ParetoQ requires an additional 40k iterations (10B)
to train, underscoring the efficiency of our approach.

For the larger Llama3-3B model, NashQuant also achieves best performance among PTQ and QAT
methods. In particular, NashQuant achieves a 22% improvement over ParetoQ on the Wiki2 dataset
and a 10% improvement on C4, accompanied by a 5.2-point gain in average accuracy across zero-shot
tasks. Moreover, NashQuant achieves a 10% reduction in average perplexity together with a 1.1-point
increase in zero-shot task performance when compare to EfficientQAT-g64. While against LLM-QAT,
NashQuant attains an additional 1.5-point decrease in average perplexity and a 3.6-point improvement
on zero-shot benchmarks. Compared to the full-precision Llama3-3B model, our 2-bit channel-wise
NashQuant only drops 1.04 and 2.9 on Wiki2 and C4, respectively, thereby significantly reducing the
gap between full-precision and quantized model.

3.3 A STRONG QAT BASELINE FOR LLMS

In the previous sections, we systematically explored various aspects of extremely low-bit quantization
for LLMs, including the design of quantizer, quantization granularity and initialization, selection of
QAT training data, as well as the tuning of key hyperparameters such as learning rate, weight decay,
and scheduler choices, together with the trade-offs between training cost and accuracy. Building
upon these observation, in this section we present a strong baseline for extremely low-bit LLM
quantization. As shown in Figure 8, we illustrate the evolution of our model. The baseline employs
the LSQ+ quantizer and training strategy following ParetoQ (Liu et al., 2025a). Replacing LSQ+
with our proposed ELSQ+ quantizer significantly reduces the converged loss and improves both
perplexity and zero-shot performance. Further applying MSE-based initialization enhances channel-
wise quantization and accelerates convergence. Building upon this, optimizing the training data
and hyperparameters yields the standard NashQuant presented in the previous subsection. Finally,
introducing group-wise quantization produces our strongest baseline NashQuant†.

4 CONCLUSION

In this study, we present a comprehensive and systematic empirical investigation of extremely
low-bit quantization-aware training (QAT) for large language models (LLMs) within a unified
framework. Our analysis examines how quantizer design, quantization granularity and initialization,
training hyperparameters, and data selection affect both the stability and effectiveness of training,
thereby providing deeper insights into extremely low-bit quantization. Based on these findings, we
introduce NashQuant, a robust and practical QAT baseline that outperforms existing PTQ and QAT
methods under extensive evaluations on LLaMA-3-1B and LLaMA-3-3B. By demonstrating superior
performance across diverse settings, NashQuant establishes itself as a reliable benchmark, offering
the research community a solid reference for future studies and a fair foundation for comparing
subsequent methods in the pursuit of extremely low-bit LLM quantization.
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Table 3: Main results of 2-bit quantization on CosineAnealling and WSD Scheduler.

Model Scheduler
Perplexity ↓ Zero-shot Accuracy ↑

Wiki2 C4 Avg BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg

LLaMA3-1B
Cosine 14.37 21.55 17.96 57.6 70.8 53.2 56.2 54.3 29.7 34.0 50.8
WSD 14.61 21.76 18.18 60.4 71.1 52.8 55.8 53.7 29.8 33.0 50.9

A APPENDIX

A.1 RELATED WORKS

Post-Training Quantization (PTQ) for LLMs. PTQ is an efficient approach for large language
model compression, as it is directly applied to a pretrained model by calibrating with a small
amount of data, without necessitating retraining. This makes PTQ particularly attractive when
data and computational resources are limited. PTQ approaches can be broadly categorized into
scalar quantization and vector quantization. Scalar methods, such as GTPQ(Frantar et al., 2022),
perform layer-wise weight quantization utilizing second-order information from the Hessian matrix.
AWQ(Lin et al., 2024) reduces outlier effects by introducing channel-wise smooth scaling, which
transfers the impact of activation outliers to the salient weights. While, OmniQuant(Shao et al., 2023),
in contrast, mitigates the extreme weight outliers by learning optimal upper and lower truncation
boundaries. More recently, vector quantization (VQ) techniques have also shown great progress in
extremely low-bit quantization. QuIP#(Tseng et al., 2024) leverages Hadamard matrices to compress
weights into compact codebooks, whereas AQLM(Egiazarian et al., 2024) incorporates a classic
learned additive quantization(AQ) strategy into LLMs by jointly optimizing the codebook with
transformer blocks. Additionally, VPTQ(Liu et al., 2024) combines second-order optimization with
codebook initialization to further improve vector quantization efficiency. VQ-LLM(Liu et al., 2025b)
further alleviates memory and access inefficiencies in traditional vector quantization schemes by
introducing codebook caching. Despite these advances, PTQ techniques still face substantial accuracy
degradation, particularly in the case of extremely low-bit quantization.

Quantization-Aware Training (QAT) for LLMs. Although PTQ methods are widely used for
extremely low-bit LLM quantization, their fine-grained granularity is suboptimal for hardware deploy-
ment and accuracy degradation still remains unavoidable. To address these limitations, quantization-
aware training (QAT) has been introduced, which alleviates accuracy loss by leveraging additional
training data and extra learnable parameters. LLM-QAT(Liu et al., 2023) and Bitdistiller(Du et al.,
2024) integrate knowledge distillation to preserve performance, while EfficientQAT(Chen et al., 2024)
introduces a block-wise training scheme that reduces the memory and computational burden. More
recently, ParetoQ(Liu et al., 2025a) employs the stretched elastic quantization(SEQ) and achieves
state-of-the-art results in 2-bit weight-only QAT. Additionally, ternary quantization, such as BitNet
b1.58(Ma et al., 2024; 2025) and BitCPM(Team, 2025) either train models from scratch or inheriting
pre-trained model weights, offering valuable insights into training strategies and optimization for
extremely low-bit QAT. Despite these advances, a systematic understanding of how quantizer design
and training strategies jointly affect extremely low-bit QAT remains unexplored.

A.2 TRAINING HYPERPARAMETERS

To supplement the discussion in the main paper, we provide additional figures and tables related to
experiments on training hyperparameters. Table 3 compares the results using the cosine annealing
and WSD schedulers, while Figure 9 presents their corresponding loss curves. Table 4 reports the
outcomes across five different learning rates, and Table 10 illustrates the effect of varying weight
decay settings on quantization-aware training.

A.3 IMPLEMENTATION DETAILS FOR BASELINES

We reproduce the baseline results reported in our main experiments using the publicly available
code. The specific training details are summarized in Table 5 and most settings are aligned with
those described in the original papers. For a fair comparison, LLM-QAT is not trained with any
self-generated data and all reproductions use the SlimPajama dataset. It is important to note that
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Table 4: Main results of 2-bit quantization on different training iterations.

Model Iterations
Perplexity ↓ Zero-shot Accuracy ↑

Wiki2 C4 Avg BoolQ PIQA HS WG ARC-e ARC-c OBQA Avg

LLaMA3-1B

10k 13.89 20.64 17.26 60.4 69.7 51.4 56.2 53.8 29.0 32.0 50.4
20k 13.68 20.38 17.03 59.8 70.4 52.0 56.7 52.1 29.4 33.0 50.5
40k 13.30 20.36 16.83 58.6 71.7 52.5 55.6 52.4 29.8 32.6 50.4
80k 13.21 20.49 16.85 59.6 70.9 53.0 56.8 54.2 30.5 35.0 51.4
120k 13.03 20.41 16.72 61.8 71.4 53.0 55.0 55.1 29.9 32.8 51.3
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Figure 9: Comparison of different schedulers.
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Figure 10: Comparison of different wd.

EfficientQAT is originally a two-stage training method. However, during our reproduction of channel-
wise quantization, we encountered an unresolved bug, so the reported EfficientQAT results in Table 2
correspond only to the first stage. In contrast, EfficientQAT-g64 results are obtained following the
full two-stage training as intended.

A.4 A GENERAL QAT RECIPE

Based on our preceding analyses, we propose a simple and efficient training approach for low-bit
quantization-aware training. As shown in Table 5, we recommend an initial learning rate of 1e− 4
with the WSD scheduler, a batch size of 128, and 80k training iterations. The optimizer remains
AdamW, and training is performed in a single end-to-end stage with all parameters updated. Most
importantly, we strongly recommend training with our proposed ELSQ+ quantizer. Data selection is
also important, but using data from the same source as that for our large model training could further
improve results. Since our evaluation does not involve long sequences, a sequence length of 2k is
considered sufficient.

A.5 LLM DECLARATION

In this study, Large Language Models (LLMs) are only utilized for polishing and refining the academic
writing, ensuring the paper with clarity, coherence, and academic tone. Its role is limited to assisting
in improving the structure and fluency of the text, with all scientific content and findings being solely
the result of the authors’ work.
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Table 5: Implementation Details of QAT baselines and proposed general QAT recipe.

LLM-QAT EfficientQAT ParetoQ A General QAT recipe

Training Data Slimpajama Slimpajama Slimpajama Slimpajama
Sequence Length 2048 4096 2048 2048

Batch Size 128 2, 32 128 128
Optimizer AdamW AdamW AdamW AdamW

Traing Steps 120k {4k,128} 120k 80k
Training stages 1 2 1 1

Scheduler Cosine Aneal Cosine Aneal Cosine Aneal WSD
Initial LR 2e− 5 {1e− 4, 2e− 5} 2e− 5 1e− 4

Initialization MinMax MinMax MinMax MSE
Weight Decay 0 0 0 0
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