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Figure 1: Geometric Reconstruction and Rendering. Examples from a challenging scene [11]
showing our Eve3D method’s accurate geometry and appearance. Left: Normal maps highlight
superior surface reconstruction over 2DGS [18] and GOF [55], particularly on flat surfaces and object
boundaries. Right: Photorealistic view synthesis alongside its detailed depth map rendering.

Abstract

We present Eve3D, a novel framework for dense 3D reconstruction based on 3D
Gaussian Splatting (3DGS). While most existing methods rely on imperfect priors
derived from pre-trained vision models, Eve3D fully leverages these priors by
jointly optimizing both them and the 3DGS backbone. This joint optimization
creates a mutually reinforcing cycle: the priors enhance the quality of 3DGS, which
in turn refines the priors, further improving the reconstruction. Additionally, Eve3D
introduces a novel optimization step based on bundle adjustment, overcoming the
limitations of the highly local supervision in standard 3DGS pipelines. Eve3D
achieves state-of-the-art results in surface reconstruction and novel view synthesis
on the Tanks & Temples, DTU, and Mip-NeRF360 datasets. while retaining fast
convergence, highlighting an unprecedented trade-off between accuracy and speed.

1 Introduction

Dense 3D scene reconstruction is a crucial task in computer vision and graphics, supporting ap-
plications ranging from virtual reality and simulating environments to robotic navigation. Recent
breakthroughs in this field draw inspiration from the adjacent literature concerning novel view
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synthesis [32, 22], which faced a remarkable revolution in the last few years. Initially, Neural Radi-
ance Fields (NeRFs) [32] were adapted to encode dense 3D surfaces within MLP weights [42, 25];
however, despite their compact representation, these approaches impose prohibitive computational
demands, often requiring hundreds of hours of processing to reconstruct a single scene. More recently,
3D Gaussian Splatting [22] (3DGS) has gained significant attention in the graphics community,
characterized by an optimized rasterizer that facilitates real-time rendering, establishing it as the
current preferred alternative to NeRFs. This has led to the development of numerous 3DGS-based
approaches [18, 55, 6, 29] that deliver promising results and high-fidelity scene reconstructions.
However, despite the efficiency and flexibility of 3DGS and the latest advances, the framework
continues to face significant limitations that hinder its broader application for 3D reconstruction task.

First and foremost, 3DGS in its original formulation is unsuited for this purpose, as Gaussian
primitives rarely fit accurately to true surface geometries [16]. This limitation derives from two
critical factors: the inherent independence of Gaussian primitives, which operate without contextual
awareness, and the sole reliance on image reconstruction losses during training. While this approach
excels at novel view synthesis, it often fails at properly modeling the real 3D geometry of the observed
scene. Second, the accuracy of 3DGS heavily relies on a proper initialization strategy for seeding
Gaussian primitives. Despite its efficiency and widespread adoption, COLMAP’s [35] reliance on
local feature makes it vulnerable to challenging scenarios such as textureless regions and repetitive
patterns, resulting in structural distortions, blurring, and under-reconstructed areas.

To address these shortcomings, recent 3D reconstruction pipelines built upon 3DGS [18, 55, 6, 29]
have incorporated additional scene priors from pre-trained vision models [48, 58, 4, 5, 12, 1, 15,
53]. Among these supplementary signals, depth and surface normals have proven most effective,
significantly enhancing reconstruction quality in traditionally challenging scenarios such as textureless
regions. On the one hand, although vision models can reason both locally and globally over their
inputs, they are constrained by the limited amount of images they can process simultaneously – e.g.,
typically a single frame [48, 12, 1, 15, 53], a stereo pair [58, 44, 3], or at most about ten images
[4, 5]. This limitation restricts these models to analyzing only localized portions of a scene when
extracting priors. Furthermore, despite their training on large-scale datasets ranging from hundreds of
thousands [4, 5] to several million images [48], the priors they predict still suffer from inaccuracies.
These dual constraints create sub-optimal supervision for 3DGS, tampering with the optimization
process and ultimately limiting the final 3D reconstruction accuracy.

In this paper, we introduce Eve3D, a novel 3D reconstruction framework built upon 3D Gaussian
Splatting, specifically designed to overcome these limitations. Firstly, Eve3D unlocks the full
potential of vision models by rendering synthetic rectified stereo pairs through 3DGS and applying
state-of-the-art stereo foundation models to obtain geometric priors. These priors are then refined
through joint optimization alongside the 3DGS model itself. This joint optimization strategy works
by back-propagating gradients through both the depth rendered by 3DGS and the predicted depth
priors, with the latter treated as learnable parameters throughout the process. Secondly, we propose a
local bundle adjustment strategy that maintains global consistency across co-visible frames during
each forward optimization. This approach overcomes 3DGS’s inherent limitation in simultaneously
rasterizing and optimizing multiple frames – a constraint imposed by computational complexity. This
allows Eve3D to achieve unprecedented accuracy, as demonstrated in Fig. 1.

Eve3D is trained and evaluated over popular benchmarks for 3D reconstruction, including DTU [9]
and Tanks and Temples [24], achieving state-of-the-art accuracy on both datasets. In particular, on
the latter, this is done in just 20 minutes, while it takes only ∼ 1 GPU hours to push the accuracy to
the upper bound. In summary, the main contributions of this paper are:

• We introduce Eve3D, a novel framework for dense 3D reconstruction based on 3DGS,
setting a new state-of-the-art in the field while maintaining efficient training time.

• We develop an improved supervision paradigm for 3DGS used to train Eve3D, which treats
external priors as learnable parameters and optimizes them jointly with the 3DGS model
during training.

• We introduce a local bundle adjustment to better enforce multi-view consistency during each
optimization step, overcoming one of the main limitations of 3DGS-based frameworks.

2



2 Related Work

Neural Scene Representations. Neural scene representations have revolutionized 3D reconstruction
and rendering. NeRF [32] pioneered this direction with continuous volumetric functions modeled
by MLPs, though at high computational cost. More recently, 3DGS [22] introduced an explicit
representation using 3D Gaussian primitives with efficient rasterization-based rendering, achieving
superior quality and real-time performance. Despite successful applications in large-scale scene
reconstruction [23, 28, 26], SLAM systems [47, 21, 37, 63, 40], dynamic scene modeling [49, 50,
46, 27], AI-generated content [38, 8, 34, 61], and autonomous driving [62, 30, 60], both NeRF and
3DGS focus primarily on appearance rather than geometry, resulting in poorly defined surfaces.

Neural Surface Reconstruction. To address these limitations, several methods have extended neural
rendering for accurate surface reconstruction. NeuS [42] and VolSDF [52] represent surfaces as
zero-level sets of signed distance functions without mask supervision. Neuralangelo [25] enhances
detail with multi-resolution hash grids and numerical gradients, while NeuralWarp [10] improves
consistency through patch warping. These implicit approaches produce high-quality surfaces but
require significant computational resources and long optimization times.

Surface Reconstruction with Gaussian Splatting. 3DGS’s efficiency has inspired many surface
reconstruction methods. SuGaR [16] introduced regularization for surface-aligned Gaussians, en-
abling Poisson reconstruction. 2DGS [18] uses planar disks for surface modeling, while Gaussian
Surfels [9] treats local z-axis as normal direction. GS2Mesh [45] extracts meshes using TSDF fusion
on depth maps from a pre-trained stereo model, while StereoGS [33] employs self-improving depth
supervision with virtual stereo pairs. Some approaches combine Gaussians with implicit fields: GOF
[55] derives an opacity field, while GSDF [54] and 3DGSR [31] integrate 3DGS with signed distance
functions. Others focus on geometric constraints, like PGSR [6] with unbiased depth rendering,
DN-Splatter [41] with depth/normal priors, and VCR-GauS [7] with view-consistent depth-normal
regularization. GS-Pull [57] aligns Gaussians to a neural SDF’s zero-level set. Despite progress,
current approaches have limitations with geometric priors - either using external vision model priors
that may be inconsistent [48, 58, 4, 5, 12, 1, 15, 53], or applying heuristic constraints that struggle
with complex geometries. Our work jointly optimizes Gaussians and priors in a unified framework,
introducing non-local information flow for better geometric consistency.

3 Method

3.1 Framework Overview

Scene Representation. As illustrated in Fig. 2, our backbone is built over 3D Gaussian Splatting,
which models the scene as a set of Gaussian primitives, each one defined as:

Gi(x|µi,Σi) = e−
1
2
(x−µi)

⊤Σ−1
i (x−µi) (1)

with µi ∈ R3 and Σi ∈ R3×3 being the center and 3D covariance matrix, respectively. The latter can
be decomposed into scaling and rotation matrices Si Ri ∈ R3×3:

Σi = RiSiS
⊤
i R⊤

i (2)

To better fit surfaces [18, 9], we enforce Gaussians to be flat by minimizing the minimal factor in Si.
The pixel-wise color C ∈ R3 is rendered through α-blending:

C =
∑
i∈N

Tiαici, Ti =

i−1∏
j=1

(1− αi), (3)

where α and ci ∈ R3 are the alpha and view-dependent color. Similarly, properties such as depth and
surface normals can be rendered. Following [6], normals N are derived from the minimum scale
factor direction ni and camera rotation Rc. Depth D are obtained through unbiased rendering [6],
calculated as the intersection between the ray and the plane defined by rendered normals and the
distance map D, where di = (RT

c (µi − Tc))
T (RT

c ni) represents the distance from the plane to the
camera center Tc. The two geometric properties follow:

N =
∑
i∈N

RT
c niαi

i−1∏
j=1

(1− αj), D =
∑
i∈N

diαi

i−1∏
j=1

(1− αj). (4)
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(a) Stereo Pair Generation

(b) Depth Prior Computation

(c) Joint Optimization & Bundle Adjustment (d) Final Results
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Figure 2: Overview of our Framework. (a) We generate stereo pairs by rendering from a virtual
camera using 3DGS. (b) A pre-trained stereo network extracts initial depth priors. (c) Our core
contribution: joint optimization of learnable depth priors and 3DGS, enhanced by local bundle
adjustment for geometric and photometric consistency. (d) Final results showing high-quality mesh
reconstruction, accurate depth/normal maps, and high-fidelity novel view synthesis.

While color can be supervised with real images, depth and normals can be supervised using priors
from pre-trained vision models [48, 58, 4, 5, 12, 1, 15, 53] for better optimization.

Priors Computation. Unlike approaches supervising 3DGS with ill-posed monocular depth models
[48, 12], we use binocular stereo matching [39] for more geometrically consistent priors. Since our
method operates in a standard multi-view setting with a single moving camera rather than a stereo rig,
we exploit 3DGS’s view synthesis to render rectified stereo pairs [33, 45]. Specifically, for a given
camera pose Pi, we define a virtual right camera with pose Pr

i , at a distance b as:

Pr
i =

(
I t
0 1

)
×Pi with t =

(
b 0 0

)⊤ (5)

We render a virtual right image and form a stereo pair with the input left image (Ii, I
r
i ). We then

apply a pre-trained state-of-the-art stereo model – FoundationStereo [44] in our implementation –
to predict a disparity map, which is converted to depth D∗ through triangulation. We also derive a
confidence mask M c by computing the consistency check between disparity maps for left and right
views. While effective for assisting 3DGS optimization [33] and recovering meshes [45], we argue
that explicitly addressing the noisy nature of these priors is critical to fully exploit their potential.

3.2 Prior-Involved Local Bundle Adjustment

Multi-view consistency is vital for determining accurate surfaces. However, extracting accurate and
detailed surfaces from either Gaussians or vision models presents challenges without multi-view
constraints. This difficulty arises because 3DGS captures depth information through image rendering
supervision, while vision models inherently contain noise and have limited view inputs. To address
this issue, we have developed a local bundle adjustment algorithm that utilizes both rendered and
prior depth maps, enhancing their multi-view consistency to represent surfaces more accurately. In
multi-view pairs, we employ priors at source views, which allows us to incorporate more viewpoints
in a single loop by eliminating the need for depth rendering. For the reference view, we select either
the rendered or prior depth map, depending on the stage of joint optimization (Sec 3.3).

For view Vi at the current iteration, we build a factor-graph (V, E) to perform local bundle adjustment.
To balance reconstruction quality and efficiency, rather than optimizing all frames together, we
only select views that overlap with the current view i. Specifically, following standard MVS
methods [51, 4, 5], we determine neighboring views by computing an overlapping score and select
only the top K frames {Vj}Kj=1. We construct the graph by adding edge connections between the
current view Vi and each of its neighboring views Vj . The underlying optimization principle enforces
both geometric and photometric consistency.
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Geometric Consistency. Given learnable depth D̂i of the current view Vi, we first convert it into a
normal map N D̂i

with finite differences as in [18], and derive the distance map D̂i as:

D̂i(p) = D̂i(p)N T
D̂i

(p)K−1
i p̂, (6)

where p is the 2D position on the image plane, p̂ denotes its homogeneous coordinate, and Ki is the
camera intrinsic matrix. We then map the full set of pixel coordinates Pi from the current view Vi to
the neighboring view Vj through the homography matrix Hij :

P̂j = HijPi, Hij = Kj(Rij −
TijN T

D̂i

D̂i

)K−1
i (7)

where Rij and Tij are the relative rotation and translation from view Vi to the neighboring view Vj .
Similarly, for pixels in the neighboring view Vj , we derive the surface normal and distance map from
its learnable depth D̂j to compute the homography matrix Hji. By enforcing geometry consistency,
we aim at minimizing the projection error minΦij , where

Φij =∥ Pi −HjiHijPi ∥ . (8)

Photometric Consistency. This constraint is based on plane patches. For pixels Pi in the current
view Vi, we map a 7× 7 pixel patch centered at each pixel p ∈ Pi to the neighboring view using the
homography matrix Hij . We aim to minimize the photometric error to zero:

Ψij = (1− NCC (Ii (Pi) , Ij (HijPi)) , (9)

Objective. To account for occlusions between views and noise in depth estimates, following [6], we
model the confidence map to weight the error function Wij and the overall cost function to refine
depth maps of the current view and its neighbors is defined as:

Llba = λlba

∑
(s,t)∈E

Wst (λgΦst + λpΨst) . (10)

3.3 Joint Optimization of 3DGS and Priors

Regardless of their source, all model-generated priors inevitably contain noise and inaccuracies.
Rather than treating them as rigid supervision, we jointly optimize both the 3DGS model and
the associated guidance. This creates a mutually beneficial relationship, refining priors through
multi-view consistency while providing improved supervision for the 3DGS representation.

Parameterized Prior. Given a prior depth map D∗, we initialize a set of learnable parameters D̂
with its values. The joint optimization follows a two-phase schedule. Initially (i.e., before iteration
Tjoint), we use the original D∗ to supervise 3DGS and avoid early convergence to poor local minima.
Later, once the 3DGS-rendered depth becomes sufficiently reliable, we switch to optimizing D̂
jointly with 3DGS parameters through backpropagation, allowing the model to refine both the scene
representation and the the guidance signal simultaneously without degrading their quality.

Local Bundle Adjustment Pre-training. Neural networks that generate prior depth estimates often
do so at very sparse viewpoints, resulting in insufficient multi-view consistency. To address this limi-
tation, before starting the joint optimization (Tjoint), we apply our proposed local bundle adjustment
between the prior depths of different viewpoints, which will provide a multi-view consistent prior
initialization before starting the joint optimization of 3DGS and prior depth.

Confidence Mask Update. As the quality of depth prior gradually improves through the joint
optimization and local bundle adjustment, the initial confidence mask M c may become outdated.
Concurrently, the confidence map computed during local bundle adjustment reflects the quality of the
latest depth prior. Therefore, we update the mask M̂ c as:

M̂ c
i = M̂ c

i ∨ (Wij > 0) for j ∈ {1, 2, · · · ,K} (11)

For pixels with value 0 in M̂ c, i.e., low-quality depth prior, it remains possibile for them to be
adjusted to a more accurate position by 3DGS:

Lpull = λpull(∼ M̂ c)||D̂ −Ddetach||1, (12)

where Ddetach denotes the gradient of rendered depth D is detached. When such pixels attain a
sufficiently accurate state and are subsequently classified as confident by local bundle adjustment,
they become eligible to participate in joint optimization and local bundle adjustment, ultimately
contributing to accurate surface reconstruction.
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Table 1: Quantitative results of F1 Score on Tanks and Temples. , , indicate the
absolute, second, and third bests respectively.

Method Barn Caterpillar Courthouse Ignatius Meetingroom Truck Mean ↑ Time
Im

pl
ic

it NeuS [42] 0.29 0.29 0.17 0.83 0.24 0.45 0.38 >24h
Geo-Neus [14] 0.33 0.26 0.12 0.72 0.20 0.45 0.35 >24h
Neuralangelo [25] 0.70 0.36 0.28 0.89 0.32 0.48 0.50 >128h

E
xp

lic
it

3DGS [22] 0.13 0.08 0.09 0.04 0.01 0.19 0.09 20m
SuGaR [16] 0.14 0.16 0.08 0.33 0.15 0.26 0.19 2h
DN-Splatter [41] 0.15 0.11 0.07 0.18 0.01 0.20 0.12 1h
GSurfels [9] 0.24 0.22 0.07 0.39 0.12 0.24 0.21 15m
2DGS [18] 0.36 0.23 0.13 0.44 0.16 0.26 0.30 34m
GOF [55] 0.51 0.41 0.28 0.68 0.28 0.58 0.46 2h
PGSR [6] 0.66 0.44 0.20 0.81 0.33 0.66 0.52 45m
GS-Pull [57] 0.60 0.37 0.16 0.71 0.22 0.52 0.43 38m
Eve3D-fast (Ours) 0.69 0.44 0.34 0.82 0.41 0.62 0.56 20m
Eve3D (Ours) 0.70 0.48 0.35 0.83 0.46 0.66 0.58 1.2h

Reference Image 2DGS [18] GOF [55] PGSR [6] Eve3D (Ours)
Figure 3: Qualitative Comparison on Tanks and Temples. We visualize the surface normal of
reconstructed 3D meshes for comparison.

3.4 Training Loss

With the prior depth, we apply a single-view prior loss Ldepth to regularize the depth and normal
from 3D Gaussians in confident regions weighted by M̂ c:

Ldepth
prior = M̂ c ⊙

{
||D∗ −D||1, iter < Tjoint,

||D̂ −D||1, otherwise.
(13)

To strengthen the impact on plane surface reconstruction, we also jointly optimize the normals
obtained from 3DGS and the depth prior in confident regions as follows:

Lnormal
prior = M̂ c ⊙

{
Γ(ND∗ ,ND) + Γ(ND∗ ,N), iter < Tjoint,
Γ(N D̂,ND) + Γ(N D̂,N), otherwise,

(14)

where Γ(A,B) denotes the pixel-wise cosine distance (1 − A · B) between normal maps. In
addition, we also use ground-truth color loss Lc [22], depth-normal consistency loss Ldn to encourage
consistency between rendered depth and rotational normal [6, 18, 55], and scale loss Ls [6] to
encourage Gaussians to flatten to planes. The final training loss is:

L = Lc + Ldn + Ls + Lprior + Llba + Lpull. (15)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on real-world datasets, including object-centric, indoor, and outdoor scenes.
For 3D reconstruction, we use large-scale scenes from Tanks and Temples [24] and 15 object-centric
scenes from DTU [20]. For novel view synthesis, we use the Mip-NeRF360 dataset [2].

Evaluation Metrics. Following established protocols, we assess reconstruction accuracy using
Chamfer Distance (CD) on DTU [9] and F-score on Tanks and Temples [24], employing the official
evaluation scripts. For novel view synthesis evaluation on Mip-NeRF360, we use standard rendering
quality metrics: PSNR, SSIM [43], and LPIPS [56].

Baselines. We compare against state-of-the-art methods from two categories: (1) implicit NeRF-
based approaches including NeRF [32], VolSDF [52], NeuS [42], Geo-Neus [14], NeuralWarp [10],
and Neuralangelo [25]; and (2) explicit 3DGS-based frameworks including 3DGS [22], SuGaR [16],
DN-Splatter [41], GSurfels [9], 2DGS [18], GOF [55], GS2Mesh [45], PGSR [6], and GS-Pull [57].
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Table 2: Quantitative Results (Chamfer Distance) on DTU. , , indicate the absolute,
second, and third bests respectively.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean ↓ Time
Im

pl
ic

it
NeRF [32] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49 > 12h
VolSDF [52] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 >12h
NeuS [42] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 >12h
NeuralWarp [10] 0.49 0.71 0.38 0.38 0.79 0.81 0.82 1.20 1.06 0.68 0.66 0.74 0.41 0.63 0.51 0.68 >10h
Neuralangelo [25] 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 d0.61 >12h

E
xp

lic
it

3DGS [22] 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 12m
SuGaR [16] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 1h
DN-Splatter [41] 1.60 2.03 1.42 1.44 2.37 2.11 1.62 1.95 1.88 1.48 1.63 1.82 1.20 1.50 1.40 1.70 30m
GSurfels [9] 0.66 0.93 0.54 0.41 1.06 1.14 0.85 1.29 1.53 0.79 0.82 1.58 0.45 0.66 0.53 0.88 11m
2DGS [18] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80 20m
GOF [55] 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74 2h
GS2Mesh [45] 0.59 0.79 0.70 0.38 0.78 1.00 0.69 1.25 0.96 0.59 0.50 0.68 0.37 0.50 0.46 0.68 20m
PGSR [6] 0.36 0.57 0.38 0.33 0.78 0.58 0.50 1.08 0.63 0.59 0.46 0.54 0.30 0.38 0.34 0.52 30m
GS-Pull [57] 0.51 0.56 0.46 0.39 0.82 0.67 0.85 1.37 1.25 0.73 0.54 1.39 0.35 0.88 0.42 0.75 22m
Eve3D (Ours) 0.33 0.47 0.32 0.33 0.73 0.58 0.44 1.00 0.62 0.54 0.43 0.45 0.29 0.38 0.32 0.48 15m

Reference Image 2DGS [18] GOF [55] GS2Mesh [45] PGSR [6] Eve3D (Ours)
Figure 4: Qualitative Comparison on the DTU Dataset. Visual comparison of 3D meshes recon-
structed by our approach versus previous methods.

Implementation Details. Training Eve3D occurs in two phases: first, we pre-train a vanilla 3DGS
model using [13], which we use to render pseudo stereo views that feed into [44] to predict dense
depth maps D∗ as priors. We use the pretrained model without fine-tuning, ensuring zero-shot
generalization with no overlap between its training data and our evaluation datasets. We employ
a left-right consistency check with a 3-pixel threshold to estimate confidence masks Mc. We set
Tjoint to 7000, introduce depth prior supervision after the first 500 iterations, and apply local bundle
adjustment from the beginning of training. We also built the Eve3D-fast variant, reducing the total
iterations from 30k to 5k and setting Tjoint to 1000. Following PGSR [6], we set λdn = 0.015,
λs = 100.0, and λc = 1.0. For our proposed losses, we use λprior = 0.05, λpull = 0.05, and
λlba = 0.15. These hyperparameters remain fixed across all datasets without tuning. Finally, we use
K = 4 neighboring views for local bundle adjustment across all experiments.

4.2 Evaluation Against State-of-the-Art

Tanks and Temples. The Tanks and Temples dataset [24] collects scenes in a surround manner,
comprising six diverse environments that include both indoor and outdoor scenarios with varying
scales and lighting conditions. Tab. 1 presents our quantitative evaluation based on F1-score (the
higher the better). Eve3D achieves superior performance with an average of 0.58, outperforming
both implicit methods and other explicit approaches. Our method achieves the highest ranking in five
scenes (Barn, Caterpillar, Courthouse, Meeting Room, and Truck) and ranks second in one scene
(Ignatius). The most significant improvements appear in challenging scenarios: Eve3D achieves an
F1 Score of 0.46 in Meetingroom (compared to 0.33 from PGSR) and 0.35 in Courthouse (compared
to 0.28 from the best competitors). Despite these substantial quality improvements, Eve3D (trained
for 30K iterations) maintains a reasonable 1.2-hour total training time (including 3DGS pretraining,
stereo rendering, and depth prediction) – significantly faster than implicit methods (>24h) while
delivering superior reconstruction quality. Our Eve3D-fast variant, trained for only 5K iterations
(20 minutes total time), still achieves second-best reconstruction quality with an average F1-score of
0.56, setting an unprecedented trade-off between accuracy and speed. Fig. 3 shows Eve3D addresses
standard 3DGS limitations in scenes with varied lighting and complex architecture, producing more
accurate flat surfaces and detailed structures in both indoor and outdoor settings.
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Table 3: Quantitative Comparisons of Novel View Synthesis on the Mip-NeRF360 Dataset. ,
, indicate the absolute, second, and third bests, respectively.

Outdoor Scenes Indoor Scenes
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [32] 21.46 0.458 0.515 26.84 0.790 0.370
Deep Blending [17] 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP 22.90 0.566 0.371 29.15 0.880 0.216
MERF 23.19 0.616 0.343 27.80 0.855 0.271
BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258
MipNeRF360 24.47 0.691 0.283 31.72 0.917 0.180

SuGaR [16] 22.93 0.629 0.356 29.43 0.906 0.225
3DGS [22] 24.64 0.731 0.234 30.41 0.920 0.189
2DGS [18] 24.34 0.717 0.246 30.40 0.916 0.195
GOF [55] 24.76 0.742 0.225 30.80 0.928 0.167
PGSR [6] 24.76 0.752 0.203 30.36 0.934 0.147
Eve3D (Ours) 24.99 0.758 0.203 30.42 0.930 0.157

Reference Image 2DGS [18] GOF [55] PGSR [6] Eve3D (Ours)
Figure 5: Qualitative Comparison on the Mip-NeRF360 Dataset. Visual comparison of 3D meshes
reconstructed by our approach versus previous methods.

DTU. Tab. 2 shows our Chamfer Distance evaluation (lower is better) on DTU [20]. Eve3D achieves
the best average performance with a score of 0.48, outperforming both the best implicit method (Neu-
ralangelo at 0.61) and the previous best explicit approach (PGSR at 0.52). Our method demonstrates
remarkable consistency, achieving the best performance in any scenes except one, where it is the
second-best. Importantly, our method maintains an efficient 15-minute total training time (including
all preprocessing steps), comparable to vanilla 3DGS while delivering largely superior reconstruction
quality. Qualitative comparisons in Fig. 4 show that while existing 3DGS methods produce good
object meshes, they struggle with sparse viewpoints and inconsistent multi-view images. Our method
enhances robustness in these difficult scenarios, yielding more complete, detailed meshes with better
preserved fine structures.

Mip-NeRF360. For validating rendering quality, we evaluate on the Mip-NeRF360 dataset [2]
following 3DGS’s standard protocol. Tab. 3 shows our results using standard metrics. Eve3D
achieves excellent synthesis across outdoor and indoor scenes. For outdoor scenes, Eve3D delivers
best performance on all metrics: PSNR (24.99), SSIM (0.758), and LPIPS (0.203), outperforming
both NeRF-based approaches and recent 3DGS methods. In indoor scenes, instead, our method
achieves the second-highest SSIM (0.930) and LPIPS (0.157) scores, while maintaining competitive
PSNR (30.42, third-best after MipNeRF360 and GOF). This demonstrates that our geometry-aware
optimization also enhances rendering quality. Fig. 5 further highlights this qualitatively.

4.3 Ablation Study

We ablate the key components of Eve3D on the Tanks and Temples [24] dataset in Tab. 4.

Single-view Prior Loss. Due to the lack of explicit geometric constraints, the baseline model
struggles to reconstruct accurate surfaces relying solely on RGB supervision. When a single-view
depth prior is introduced to constrain the rendered depth and normals of 3D Gaussians, the surface
reconstruction performance improves from 0.340 to 0.463. We also ablate the use of single-view prior
loss in a joint optimization setting, where the prior depth maps are treated as learnable parameters.
This leads to a further improvement from 0.523 to 0.539. Please refer to the supplementary material
for experiments using different types of single-view priors derived from other vision models.
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Reference w/o Joint Optimization w/ Joint Optimization

Figure 6: Qualitative Mesh Comparison. Results without (w/o) and with (w/) joint optimization.

Table 4: Component Contribution. Evaluation of
each module’s effect on reconstruction quality.

Single-view Local Bundle Joint Evaluation

Prior Loss Adjustment Optimization P ↑ R ↑ F1 ↑
0.297 0.418 0.340

✓ 0.431 0.519 0.463
✓ ✓ 0.437 0.523 0.467

✓ 0.483 0.594 0.523
✓ ✓ 0.504 0.605 0.539

✓ ✓ 0.531 0.595 0.553
✓ ✓ ✓ 0.553 0.631 0.581

Local Bundle Adjustment. Local bundle ad-
justment applies explicit multi-view consistency
constraints on the rendered depth and prior
depth maps. Solely with local bundle adjust-
ment, the performance is improved significantly
from 0.340 to 0.523. In this configuration, prior
depths guide the multi-view consistency but re-
main non-learnable. Enabling joint optimization,
which treats priors as learnable parameters D̂,
yields further improvement from 0.523 to 0.539,
demonstrating that allowing the model to refine
priors through backpropagation enhances both
prior quality and 3DGS reconstruction. When using both single-view prior loss and local bundle
adjustment, jointly optimizing 3DGS and depth priors also has significant effects, improving the F1
score from 0.553 to 0.581.

Table 5: Component Contribution – Joint Opti-
mization. Evaluation of each module’s effect.

Methods P ↑ R ↑ F1 ↑
Joint Optimization (Full) 0.553 0.631 0.581

w/o LBA Pre-training 0.549 0.618 0.574
w/o Confidence Mask Update 0.552 0.626 0.578

Joint Optimization. We analyze the impact
of each joint optimization component in Tab 5.
The local bundle adjustment pre-training plays
an important role in initializing multi-view con-
sistent priors; removing it leads to a performance
drop from 0.581 to 0.574. Disabling the confi-
dence mask update causes a slight drop to 0.578,
highlighting the benefit of including more prior
regions—when validated by geometry checks—during joint optimization. Fig 6 compares results
with and without joint optimization. Jointly optimizing Gaussians and priors enables reconstruction
of fine details, while disabling it leads to over-smoothed surfaces due to excessive reliance on prior
supervision. Furthermore, this joint strategy is also especially effective for recovering geometry
details that are very ambiguous from single-view visual clues, such as the dark areas in the Truck.

In Tab. 6, we compare the FoundationStereo [44] prior depths before and after joint optimization with
Eve3D. We evaluate depth accuracy on the Tanks and Temples dataset using ground-truth depth maps
provided by the RobustMVD benchmark. Among the four scenes available in RobustMVD, we use
the three that overlap with our experimental setup: Barn, Courthouse, and Ignatius.

Since the camera poses estimated by COLMAP are not aligned with the ground-truth poses—leading
to inconsistencies in depth scale—we perform mesh-to-mesh alignment between the reconstructed
and ground-truth geometry to obtain accurate scaling and alignment information. We then compute
the relative depth error to quantify performance.

As shown in the comparison, in all evaluated scenes, the Eve3D rendering results consistently
outperform the initial priors in depth accuracy. Furthermore, our proposed joint optimization strategy
improves the accuracy of the initial depth priors.
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Table 6: Impacts of Joint Optimization. We evaluate the accuracy of the learned depth priors before
and after joint optimization using ground-truth depth maps from the Tanks and Temples dataset,
provided by the Robust Multi-view Depth (RobustMVD) benchmark [36]. Relative error rates are
reported to quantify the improvement in depth estimation.

Methods Barn (%) Courthouse (%) Ignatius (%)

FoundationStereo [44] 1.84 12.25 1.43
Optimized FoundationStereo 1.51 11.96 1.00

Eve3D Depth 1.48 11.79 0.80

Prior Multi-view Consistency Prior Multi-view Consistency

w/o Joint Optimization w/ Joint Optimization

Figure 7: Visualization of the multi-view consistency without and with the joint optimization.
The consistency of current-view depth priors is measured by computing the pixel-wise reprojection
differences with the eight nearest neighbor views, followed by a consistency measurement using
an exponential decay function, exp(−d), where d denotes the reprojection error. This weighting
emphasizes geometrically consistent regions and suppresses unreliable estimates. Joint optimization
significantly improves the multi-view consistency.

Additionally, in Fig 7, we highlight another key property of the priors: multi-view consistency.
While initial priors provide reasonable but coarse estimates of depth and normals, they often exhibit
inconsistency across different viewpoints. This inconsistency introduces noise, which can degrade the
quality of supervision during Gaussian optimization. With our proposed joint optimization strategy,
the multi-view consistency of priors is significantly improved, resulting in more stable and accurate
supervision signals.

5 Conclusion

We presented Eve3D, a novel framework for dense surface reconstruction based on 3DGS. Our
approach jointly optimizes both self-derived stereo depth priors and the 3DGS representation, estab-
lishing a mutually beneficial relationship in which each component improves the other. Our local
bundle adjustment strategy ensures global consistency across view-overlapping frames, effectively
compensating for the local supervision limitations inherent in 3DGS. Extensive experiments on Tanks
& Temples, DTU, and Mip-NeRF360 demonstrate that Eve3D achieves state-of-the-art performance
in both surface reconstruction and novel view synthesis, while training in as little as 15-20 minutes
for our fast version, and ∼1 GPU hours for our base approach.

Limitations. Eve3D sets a new state-of-the-art, yet with some trade-offs. Its primary constraint
is the reliance of a vision foundation model for stereo depth estimation. This choice is motivated
by the unpaired accuracy of the estimated depth priors compared to alternative monocular [48] or
multi-view stereo [19] solutions, as discussed in the supplementary material. However, it requires
rendering stereo images from the model itself – an overhead that could be avoided if a multi-view
stereo foundation model could achieve comparable accuracy.
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [No]
Justification: The source code will be open-sourced upon paper acceptance. The datasets
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details for our method, baselines, and experiments are well
documented in the main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Consistent with previous studies, we follow established evaluation protocols
that do not involve statistical significance testing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The devices, runtime statistics, and technical parameters are reported in the
main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not have these risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used in this work comply with their respective license requirements
and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The submission does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: he paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix for “Eve3D: Elevating Vision Models for Enhanced 3D Surface
Reconstruction via Gaussian Splatting”

Overview

This appendix contains supplementary material that supports and extends the findings presented
in the main paper. We begin in Sec. A with detail descriptions of our experimental setup. Sec. B
provides further analysis, including ablation studies to better understand different components of our
approach. Additional qualitative results of 3D reconstructions produced by Eve3D are presented in
Sec. C. Finally, in Sec. D, we reflect on the broader impact of our methodology.

A Details of Experimental Setting

A.1 Datasets

DTU. The DTU dataset provides ground-truth point clouds for evaluating object-level reconstruction
quality. Following prior works [18, 55, 6], we use 15 scans (24, 37, 40, 55, 63, 65, 69, 83, 94, 102,
106, 110, 114, 118, and 122) to assess surface reconstruction performance. In our experiments, all
images from each scan are used, downsampled to half resolution for training.

Tanks and Temples. The Tanks and Temples dataset includes ground-truth points for evaluating
surface reconstruction in both indoor and outdoor scenes. In line with previous studies [18, 55, 6],
we conduct experiments on six scenes: Barn, Caterpillar, Courthouse, Ignatius, Meetingroom, Truck.
For each scene, we use all available images, downsampled to half resolution for training.

Mip-NeRF360. Since Mip-NeRF360 does not provide ground-truth points for surface reconstruction
evaluation, we instead use it to evaluate novel view synthesis performance. We adopt the standard
train/test splits from prior works [18, 55, 6]. For outdoor scenes (bicycle, flowers, garden, stump,
treehill), images are downsampled to quarter resolution. For indoor scenes (bonsai, counter, kitchen,
room), images are downsampled to half resolution, consistent with previous studies [18, 55, 6]. For
mesh reconstruction visualizations, we train models using only the training split images.

A.2 Implementations

Hyperparameters. Our base model adopts the plane depth definitions [6] to render depth. We
constrain the shortest axis scale of Gaussians to zero to make Gaussians as close to planes. We adopt
a depth-normal consistency loss [18, 55, 6] to encourage the consistent representations of rendered
depth and normal vectors. The learnable prior depth maps are initialized using predictions from a
depth estimation model and optimized with a learning rate of (1×10−4). For depth map initialization,
we sample 500,000 points for DTU scans and 1,000,000 points for both Tanks and Temples scenes
and the Mip-NeRF360 dataset.

Eve3D. We train Eve3D for a total of 30,000 iterations. Prior depth supervision is introduced starting
from iteration 500. We set the Tjoint to 7000. The shortest axis scale loss is applied from the
beginning of training. The depth-normal consistency is activated starting at iteration 7000. The
densification process for 3D Gaussians begins at iteration 500 and ends at iteration 15,000.

Eve3D-fast. We train Eve3D-fast for a total of 5,000 iterations. Prior depth supervision is introduced
starting from iteration 500. We set Tjoint = 1000. The shortest axis scale loss is applied from the
beginning of training. The depth-normal consistency is enabled from iteration 1000. The densification
of 3D Gaussians begins at the 500 iteration and concludes at iteration 4000.

Mesh Extraction. We render depth maps from the 3D Gaussians and apply Truncated Signed
Distance Function (TSDF) fusion to extract surface meshes. For scenes captured with front-facing
cameras (DTU), we use unbounded mesh extraction and set the voxel size to 0.002. For scenes
captured by surround-view cameras (e.g., Tanks and Temples, Mip-NeRF360), we use bounded mesh
extraction, where the voxel size is set to the maximum scene extent divided by 2048. For indoor
scenes, scene bounds are estimated from camera trajectories, while for outdoor scenes, they are
estimated from the reconstructed point clouds.
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Table 7: Direct Comparisons between Eve3D and GS2Mesh. Methods are trained with mini-
splatting2 to render stereo views and FoundationStereo to predict depth maps.

Methods Barn Caterpillar Courthouse Ignatius Meetingroom Truck Mean ↑ Time

GS2Mesh [45] 0.51 0.27 0.08 0.61 0.19 0.41 0.35 12 m
Eve3D-fast (Ours) 0.69 0.44 0.34 0.82 0.41 0.62 0.56 20 m

Eve3D (Ours) 0.70 0.48 0.35 0.83 0.46 0.66 0.58 1.2 h

Table 8: Comparisons to PGSR with Depth Priors. We train PGSR with the FoundationStereo
initialization and supervision, which is the same to the supervision used in Eve3D. The difference is
that Eve3D uses the Prior-involved bundle adjustment with joint optimization, while PGSR uses multi-
view consistency between neighbor-view rendering results to maintain the multi-view consistency.
With the same depth prior, Eve3D shows significantly better convergence than PGSR.

Total PGSR + FoundationStereo Eve3D (Ours)

Iterations Precision ↑ Recall ↑ F1 Score ↑ Precision ↑ Recall ↑ F1 Score ↑
3k 0.494 0.531 0.485 0.500 0.570 0.525
5k 0.492 0.574 0.519 0.532 0.600 0.555
10k 0.505 0.586 0.532 0.546 0.611 0.568
30k 0.552 0.609 0.571 0.553 0.631 0.581

Overlapping Score. Following [51], for a reference view Vi, we compute the overlapping score
s(i, j) =

∑
X η(θij(X)) for its neighboring view Vj , and X is a 3D point which is observed by

both views Vi and Vj . In detail, θij(X) = (180/π) arccos((ti − X) · (tj − X)) is the baseline
angle and t represents the camera center. η(·) is piece-wise Gaussian function that favors a certain
baseline angle θ0:

η(θ) =

exp
(
− (θ−θ0)

2

2σ2
1

)
, if θ ≤ θ0

exp
(
− (θ−θ0)

2

2σ2
2

)
, if θ > θ0

. (16)

where θ0, σ0 and σ1 are hyper-parameters and are set to 5, 1, and 10 respectively.

B Additional Analysis

B.1 Direct Comparisons with Improved GS2Mesh

Eve3D leverages the rendering capabilities of 3DGS to generate stereo pairs and infer depth pri-
ors—similar in spirit to GS2Mesh [45]. However, while GS2Mesh directly uses stereo depth maps
to reconstruct the meshes, our apporoach treats stereo depth maps as priors, which are then jointly
optimized along with the 3D Gaussian via our proposed framework.

Although the original GS2Mesh significantly underperforms compared to Eve3D in terms of recon-
struction accuracy (see Tab. 2 in the main paper), the reader might argue that the discrepancy could
be due to the use of a different stereo backbone-DLNR [59]. Therefore, to fully assess the superiority
of our methodology over the direct fusion of stereo priors, we re-implement GS2Mesh using the same
settings as Eve3D.

Accordingly, we provide a new comparison between GS2Mesh and Eve3D in Tab. 7 on the Tanks
and Temples dataset. In this experiment, both methods use Mini-Splatting [13] to render pseudo
stereo views and FoundationStereo [44] to estimate depth maps. Even with such high-quality
priors, GS2Mesh struggles to reconstruct accurate surfaces—particularly in complex scenes like
Meetingroom and Courthouse. In contrast, our Eve3D-fast, with only eight minutes of additional
optimization, achieves significantly better reconstruction quality.
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Table 9: Ablation Study. Impact of vision model choice.
Prior Source Eve3D (Ours) Precision ↑ Recall ↑ F1 Score ↑
FoundationStereo [44] ✗ 0.431 0.519 0.463
FoundationStereo [44] ✓ 0.553 0.631 0.581

Stereo Anywhere [3] ✗ 0.410 0.470 0.431
Stereo Anywhere [3] ✓ 0.533 0.600 0.555

MVSAnywhere [19] ✗ 0.430 0.517 0.462
MVSAnywhere [19] ✓ 0.506 0.578 0.532

MVSFormer [4] ✗ 0.450 0.548 0.483
MVSFormer [4] ✓ 0.493 0.598 0.528

OMNI-DC [64] ✗ 0.298 0.390 0.330
OMNI-DC [64] ✓ 0.448 0.540 0.479

Figure 8: Comparisons of PGSR and Eve3D with FoundationStereo priors – convergence speed.
.

B.2 Comparisons to PGSR with Depth Prior

PGSR [6] sets a strong baseline for surface reconstruction with the proposed multi-view consistency
based on rendered results. Compared to PGSR, Eve3D uses the prior-depth involved bundle ad-
justment to enhance the multi-view consistency, incorporating more than one neighbor view in one
training loop. Moreover, Eve3D leverages bundle adjustment not only to refine the 3D Gaussians
but also to optimize the depth priors themselves. When the initial priors are reasonably accurate at
a coarse level, they can be quickly refined into multi-view consistent priors through local bundle
adjustment. This leads to better convergence behavior compared to enforcing multi-view constraints
directly on rendering outputs, as done in PGSR. As shown in Table8 and Figure8, when using the
same FoundationStereo priors, Eve3D achieves significantly faster and more stable convergence than
PGSR.

Table 10: Ablation Study. Impacts of baseline length.
Baseline Length 3 % camera extent 7 % camera extent 10 % camera extent

F1 score ↑ 0.580 0.581 0.581

B.3 Additional Ablation Study on Method Components

Prior Depth Types. We evaluate the generalizability of our method across alternative sources for
depth priors, replacing those obtained from FoundationStereo applied to rendered stereo images with
different approaches: i) using the Stereo Anywhere model [3]; ii) using depth maps from multi-view
stereo (MVSAnywhere [19] and MVSFormer [4]) or iii) a depth completion network (OMNI-DC
[64]) applied to sparse depth points extracted from COLMAP. All these methods predict depth maps
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Table 11: Ablation study. Impact of the neighbors in local bundle adjustment.
Number of Neighbors Precision ↑ Recall ↑ F1 Score ↑ Training Time

1 0.544 0.625 0.573 50 m
2 0.551 0.627 0.578 1 h
4 0.553 0.631 0.581 1.2 h
8 0.554 0.631 0.582 1.5 h

at the correct metric scale, although through different working principles: stereo models estimate
disparity maps from stereo images rendered using intrinsics and extrinsics at the same scale as the
pretrained 3DGS, then triangulate depth using the known focal length and baseline; multi-view stereo
methods exploit the same camera poses used to optimize 3DGS, thus predicting depth at consistent
scale; depth completion models densify sparse COLMAP points used to initialize 3DGS, maintaining
their metric scale. Despite variations in depth accuracy across these sources, our joint optimization
consistently improves reconstruction performance (Table 9), demonstrating robustness to different
depth initializations and strong generalization. We emphasize that all foundation models used in our
experiments are applied zero-shot without fine-tuning.

We also highlight how, at the current stage, rendering stereo images to extract priors through
FoundationStereo [44] represents the optimal choice; nonetheless, we don’t exclude that future
advances in multi-view stereo or depth completion may lead to stronger models, thus making Eve3D
no longer require rendering stereo images to get priors. Confirming this hypothesis in future research
would allow for further improve Eve3D performance – as it can be seamlessly integrated even with
future, more advanced networks.

Virtual Camera Baseline Length. For stereo pair generation, we set the baseline length to 7% of
the scene radius across all experiments. To assess the sensitivity of our method to this choice, we
evaluate different baseline lengths in Table 10. The results demonstrate that our method is robust to
baseline selection, with F1 scores remaining consistent (0.580-0.581) across baseline lengths ranging
from 3% to 10% of the camera extent. This robustness stems from our joint optimization and local
bundle adjustment, which enforce multi-view consistency constraints that naturally compensate for
variations in initial stereo depth estimates.

Number of Neighbors in Local Bundle Adjustment. We study the impact of the number of
neighboring views used in local bundle adjustment in Table 11. As the number of neighbors increases,
the training time also grows due to the additional computation. At the same time, the inclusion of more
diverse viewing angles in each optimization step enhances the geometric accuracy of both the 3DGS
representation and the optimized depth priors. However, beyond a certain point, the benefit of adding
more neighbors saturates. This is because additional views with weaker co-visibility relationships
contribute limited new information, resulting in diminishing returns in geometric improvement.

B.4 Training Time Breakdown

All training times reported in the main paper include the complete pipeline: 3DGS pretraining,
stereo pair rendering, FoundationStereo predictions, and final 3DGS training. We provide a detailed
breakdown of preprocessing and training times for transparency.

Tanks and Temples: On average, it takes 4 minutes to pretrain 3DGS with Mini-Splatting [13], 8
minutes for stereo pair rendering and FoundationStereo depth predictions, and 60 minutes for final
Eve3D training (8 minutes for Eve3D-fast). The total time is therefore 1.2 hours for Eve3D and 20
minutes for Eve3D-fast.

DTU: On average, it takes 3 minutes to pretrain 3DGS with Mini-Splatting, 4 minutes for stereo pair
rendering and FoundationStereo predictions, and 8 minutes for final training. The total time is 15
minutes.

C Additional Visualization Results

We provide additional qualitative results of Eve3D in Fig. 9, 10, and 11, which illustrate the surface
reconstructions on the Tanks and Temples, DTU, and Mip-NeRF360 datasets, respectively.
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Figure 9: Qualitative Visualizations on the Tanks and Temples Dataset.

Figure 10: Qualitative Visualizations on the DTU Dataset.

D Broader Impact Statement

Eve3D sets a new state-of-the-art in 3D surface reconstruction, achieving unprecedented accuracy
with a very low time and hardware budget.

On the one hand, Eve3D has the potential to accelerate progress across several high-level applicative
domains, including augmented/virtual reality, robotics, autonomous navigation/interaction with the
environment, and 3D content creation. The accuracy-speed trade-off achieved by Eve3D could repre-
sent a strong opportunity to democratize access to high-quality 3D modeling, by significantly lowering
the entry barriers for researchers, educators, or any independent developers. Furthermore, a faster
convergence speed also translates into a reduced carbon footprint associated to 3D reconstruction.

On the other hand, the possibility of producing higher-quality 3D models also comes with ethical
considerations. These latter could be misused for applications such as surveillance or other privacy-
infringement purposes. However, we argue Eve3D is not designed to handle dynamic objects/subjects
during the reconstruction process, thus making it unsuited for processing casually collected videos
where subjects may appear without their explicit consent.
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Figure 11: Qualitative Visualizations on the Mip-NeRF360 Dataset.

27


	Introduction
	Related Work
	Method
	Framework Overview
	Prior-Involved Local Bundle Adjustment
	Joint Optimization of 3DGS and Priors
	Training Loss

	Experiments
	Experimental Setup
	Evaluation Against State-of-the-Art
	Ablation Study

	Conclusion
	Details of Experimental Setting
	Datasets
	Implementations

	Additional Analysis
	Direct Comparisons with Improved GS2Mesh
	Comparisons to PGSR with Depth Prior
	Additional Ablation Study on Method Components
	Training Time Breakdown

	Additional Visualization Results
	Broader Impact Statement

